4.0 BUILDING 3440: BLANCHARD GRADER STATION4.1 Description of Existing Water Supply System

Building 3440, the Blanchard Grader Station and Building 3441, the Blanchard Living Complex, are currently served by a water supply system that delivers water from a well of unknown depth. Midnight Sun Drilling Company (MSD) drilled the well, however, neither MSD nor YTG have been able to provide a log for this well. The well is located in an enclosure off the maintenance room of the grader station. The well location and other details about the surrounding area are provided in Figure 3440-A in Appendix A4. The coordinates of the wellhead, as measured by a handheld GPS device, were recorded as:

- UTM ZONE 8
- Northing: 6653029
- Easting: 396549

There is no treatment or disinfection system for the water supplying the maintenance garage. As such, the kitchen area in the lounge of the Grader station receives untreated water. The water system that supplies the living complex is equipped with a NSF 61 filtration system that is followed by a UV disinfection system and a reverse osmosis treatment system. The treatment system is located in the maintenance garage and post-treatment water is stored in a 5000 L water storage tank before being piped to the living complex. A schematic detailing the water supply system is provided as Figure 3440-B in Appendix A4.

4.2 Description of Existing Wastewater Systems

Septic effluent from both the maintenance garage and the living complex is piped to a communal discharge system north of both the maintenance garage and living complex. The septic discharge system is greater than 80 m cross-gradient from the well. A site plan showing the septic system is given by Figure 3440-A in Appendix A4.

4.3 Water Quality Results

4.3.1 Water Quality Results from Previous Sampling

Bacteriological

Nine samples were collected from the Blanchard Grader Station water system between September 2004 and June 2005 and were tested for total coliform and *E. coli* by Yukon

Environmental Health Services using the presence/absence test method. Results are tabulated in Table 3440-1 in Appendix A4. Coliform bacteria and *E. coli* were reported as absent in each of the nine samples for which results are provided.

Potability

Water samples were previously collected from the Blanchard Grader Station water system on September 21, 2004 and June 15, 2005. The samples were submitted to Northwest Labs in Surrey, BC and ALS Environmental in Vancouver, BC for potability analyses. The results of these analyses are summarized in Table 3440-2 in Appendix A4. EBA reviewed the analytical results to compare them with the Canadian Drinking Water Quality Guidelines (CDWQG) to observe general water quality, identify and recommend additional sampling and analytical, and to identify indicators of potential contamination. The following observations were made:

- The raw water quality results indicated that all health based and aesthetic objectives were met for the parameters analyzed;
- The untreated water quality results indicated that the groundwater from this well is a calcium bicarbonate type water; and,
- The hardness (as CaCO₃) of the untreated water was 198 mg/L during the first sampling event, and is considered very hard. During the second sampling event the hardness (as CaCO₃) was 102 mg/L, and is considered moderately hard.

4.3.2 Identification of Additional Analytical Testing Required

Additional analytical for the Blanchard Grader Station included during the water system assessments is detailed below:

- UV absorbance and UV transmissivity, as well as tannins and lignin, to determine potential for UV treatment as a disinfection option for this water system;
- Total organic carbon (TOC);
- Extractable Petroleum Hydrocarbon (EPH) to determine any potential impacts of hydrocarbon contamination; and,
- Measurements in the field for total dissolved solids, conductivity, pH, and temperature.

Additionally, as no water quality data was taken previously from the living quarters water system, a sample was obtained for potability analysis.

Additional Analytical Results

A water sample was obtained during the water system assessment on July 29, 2005, and was submitted to ALS Environmental in Vancouver, BC for analysis. These results are summarized in Table 3440-2 in Appendix A4 and the laboratory reports are included in Appendix B. Items to note are:

- The analyses done on the water from the living complex reported the pH to be 6.10, which is below the CDWQG aesthetic objective lower limit of 6.5. Field chemistry done at the time of sampling, however, reported the pH to be 7.86. This shows that the pH at the point of use is likely within the CDWQG aesthetic objective; and,
- Water quality analysis reported no other exceedences of CDWQG MACs or aesthetic objectives.
- 4.3.3 Indicators of Potential Contamination

Analytic results for EPH indicated EPH concentrations below laboratory detection limits.

Chloride, nitrate and nitrite concentrations can indicate impacts from surfacewater sources or septic waste. Chloride concentrations were reported to be low and are considered to be within the normal background ranges for groundwater in the area. Nitrate and nitrite concentrations for this sample are also low and within the normal background range for this area. These water quality results do not suggest that the aquifer from which the groundwater is obtained for the Blanchard Grader Station is under the influence of surfacewater sources or septic wastes.

4.4 Conceptual Hydrogeology

There is no well log available for review for this well or for any other wells in the area. The direction of groundwater flow in the vicinity of the site as inferred from topographical maps and aerial photographs is likely westerly towards the Blanchard River.

4.5 Potential Contaminant Sources

Potential contaminant sources from observations made during the water system assessment are compiled in field notes in Appendix A4. Photos of potential contaminant sources are also provided in Appendix A4.

Potential contaminant sources within 30 m of the wellhead are:

- An above ground fuel storage tank (AST) at 21 m;
- An above ground fuel storage tank (AST) at 24 m; and,
- A fueling area at 21 m.

In addition, a tar emulsion above ground storage tank is located 31 m away from the wellhead, and bulk fuel storage tank is located at 36 m. The bulk fuel tank is located within a secondary containment berm to contain spillage/ leaks. The closest portion of a septic system to the wellhead is a septic line located 30 m away. The closest septic field is approximately 80 m away from the wellhead.

4.5.1 Spills Records and Contaminated Sites Search Results

The Government of Yukon Environmental Programs Branch and Environment Canada Environmental Protection Branch did not identify any recorded spill events or contaminated sites issues for this site or neighbouring sites. During the site assessment, however, it was noted that there are monitoring wells located downgradient of the bulk fuel storage area. The purpose of these monitoring wells is unknown, however their existence indicates the completion of some sort of environmental investigation, likely related to the bulk fuel storage. As the bulk fuel storage area is inferred to be significantly downgradient of the water supply well, the risk of drinking water contamination from any existing contamination in the area is considered to be low.

4.6 Identified Water System Deficiencies and Associated Risk

4.6.1 High and Medium Risk Deficiencies

- There is no treatment or disinfection on the water system supplying the maintenance garage;
- There is a vehicle fueling area located approximately 21 m upgradient from the well;
- There is no well log available to review well construction and lithology; and,
- By definition of the Draft Yukon GUDI Assessment Guideline, the well is potentially under the direct influence of surface water because the completion depth is unknown, and the well construction does not meet the requirements of the CGWA Guidelines for Water Well Construction.

- 4.6.2 Low Risk Deficiencies
 - The wellhead is only approximately 150 mm above grade, but is located in an appropriately constructed enclosure with a low risk of flooding, and is approximately 450 mm above the floor of the enclosure.

4.7 Mitigative Options for Deficiencies

Mitigative options were developed to address the deficiencies identified in the previous section. Deficiencies are categorized by recommended level of priority (with Priority 1 being most critical).

4.7.1 Priority 1

- Re-plumb the treated water to provide potable water to dedicated taps in the bathroom and kitchen area of the maintenance garage.
- A further attempt should be made to obtain the well record to assess aquifer and well vulnerability. If a well record cannot be obtained, the overall well depth should be determined at the very least.
- 4.7.2 Priority 2
 - As indicated previously, two large Enviro Tanks and a fueling area are located approximately 20 m in a direction that is inferred to be upgradient of the well. Although the tanks are double walled, and there is a secondary containment tray beneath the fuel pumps, it is evident that vehicles are re-fueled in front of this fueling area. There is a risk of overfilling, and potential contamination of the subsurface and aquifer that provides water to the buildings at the site. It would be prudent to relocate the fueling area downgradient, or cross gradient and at least 60 m from well to protect the water quality.
- 4.7.3 Priority 3
 - To limit potential contaminants entering the wellhead, or traveling down the outside of the casing, it is recommended that the casing be extended to 500 mm above grade, and the concrete floor elevation be raised to grade.

4.8 Cost Estimates for Mitigative Options

Engineering costs for mitigative options are estimated to be 20% of construction costs, and would include inspection and completion reporting. The costs for materials and labour (not including engineering) are provided in the sections below. An additional contingency allowance of 20% is suggested for budgetary purposes.

- 4.8.1 Priority 1
 - It is estimated that materials and labour to upgrade the plumbing such that the kitchen area and washroom sink within the maintenance garage can be supplied with treated (filtered, UV and RO) water, would cost in the order of \$250 for materials and labour.
- 4.8.2 Priority 2
 - To relocate the Enviro-tanks to an area that is at least 60 m west, or 30 m south of the well location would cost approximately **\$600.**
- 4.8.3 Priority 3
 - To extend the wellhead to at least 500 mm above grade, and to raise the elevation of the concrete floor to grade level, would cost in the order of **\$400** for materials and labour.

Z:\0201Drawings\1260002 Water Assessment YTG\003 -Western Region\blanchard\1260002 Blanchard Camp_3440 Schematic.dwg, 4/4/2006 1:43:37 PM, Adobe PDF, jbuyck

DISTRIBUTION & TREATMENT SYSTEM DATA

Item	Description	Manufacturer	Model	Part No.	Serial No.	Size]
1	SOFTENER	HYDROTECH	ELITE 6730M			ZOK.	
2	R.O. SYSTEM	US FILTER	US 1800		RATED a)	ZZOO GPT-	Þ
3	HOLDING TANK	ZEEBEST	1250 AG.			1250Gm	025
4	FLOAT CONTROL	SJE RUMPHASTE	L PUMPUP			2HO 230V	i. D
5	JET RIMP.	MONARCH	JKS-3			3/4 HD.	ų.
6	PREFILTER	AQUA TECH	DUPLEX BIG BLUE	730 BB - JOIDP97	CARTRIDO	θes	
7	UN STERILIZER	R-CAN	UVAQOIZ	Ĺ	2023381		
8		k					
9							
10							

Building #	Building Name	Number of Sampling Events	Time Period over which Sampling was Done	Any Positive Total Coliform Results? (yes or no)	Fraction of Positive Total Coliform Results vs. Total Sampling Events	Any positive E.Coli results? (yes or no)	Most Recent Sampling Event Available for EBA Review	Is Most Recent Result Positive?
3440	Blanchard Grader Station	9	Sept-04 to Jun-05	no	0/9	no	16-Jun-05	no

TABLE 3440- 1: SUMMARY OF BACTERIOLOGICAL RESULTS

SOURCE:	Building 3	440 - Blan	chard Grad	ler Station			
Location/ Resident		Haine	s Road				
Address				Filtration			
				Filtration,			
Treatment		None		RO			
Treatment		Titolio		11V	GC	DWQ Crite	ria .
Disinfection		None		disinfection			
Source of Water		On-si	te well				
			Additional	Additional			
Purpose of Sampling	Base Line	Base Line	Analytical	Analytical			
	Grader	Grader	Grader	Living			
Sample Location	Station	Station	Station	Complex			
Date Sampled	21-Sep-04	15-Jun-05	29-Jul-05	29-Jul-05	Lower	Upper	Limit
Physical Tests (ALS)					<u>A0</u>	MAC	AO
Colour (CU)	<5.0	<5.0	-	<5.0			15
Conductivity (uS/cm)	212	124	-	2.8			500
Total Dissolved Solids	212	102		-10	10 > 200 -	> 500	JUU
Hardness CaCO3	198	817		<0.00	AU >200 =	500r, > 500 u	8 5
pri Turbidity (NTID	0.09	0.17		0.10	0.5	1	5
	0.5	0.4	<0.0050	- 0.04			
% UV Transmittance			99.3	-			
Dissolved Anions (ALS)							
Alkalinity-Total CaCO3	163	89.7		1.9			
Chloride Cl	5.7	8.59		< 0.50		1.6	250
Fluoride F	<0.05	0.028	-	<0.020		1.5	
Silicate SiO4	30.4	10.4		<0.50			500
Suphate SO4	0.5	<0.10	-	<0.30		10	500
Nitrite Nitrogen N	< 0.05	<0.10	-	<0.10		3.2	
Ammonia Nitrogen N			-	-			
Total Phosphate PO4			-	-			
·····							
Total Metals (ALS)							
Aluminum T-Al	<0.005	< 0.010		<0.010		0.006	
Antimony T-Sb	<0.0002	<0.00050		<0.00050		0.000	
Arschie 1-As Barium T-Ba	0.0003	0.0000		<0.00010		1	
Boron T-B	0.023	< 0.10	-	<0.10		5	
Cadmium T-Cd	< 0.00001	< 0.00020	-	< 0.00020		0.005	
Calcium T-Ca		30.3	-	<0.10			
Chromium T-Cr	0.001	< 0.0020	-	< 0.0020		0.05	
Copper T-Cu	0.032	0.0484		0.107		1	
Iron T-Fe	0.01	<0.030		<0.030		0.01	0.3
Lead T-Pb	0.0004	6.0011		0.0011			
Manganese T-Mn	<0.005	<0.00		<0.10			0.05
Mercury T-Hg	-0.005	<0.00020	-	<0.00020	I	0.001	
Potassium T-K		2.66	-	0.45			
Selenium T-Se		0.0017	-	<0.0010		0.01	
Sodium T-Na		<2.0	-	<2.0			200
Uranium T-U	< 0.0005	0.00075	-	<0.00010		0.02	
Vanadium T-V	0.175	0.057			<u> </u>		
<u>2.mc 1-2.n</u>	0.175	0.037		~0.030			
Organic Parameters				1			
Tannin and Lignin			< 0.10	-			
Total Organic Carbon C			0.81	-			
Extractable Hydrocarbons					ļ	1	
EPH10-19		ļ	<0.30			I	
EPH19-32		<u> </u>	<1.0				
Field Chemistry (FRA)		<u> </u>		+			
nH	1		8.59	7.86	6.5	1	8.5
TDS (ppm)	1	1	83	<1			500
EC (uS/cm)			175	<1			
Temperature (°C)			7.3	16.4			
Free Available Chlorine							

Notes:

A. Guidelines indicated for hardness are not CDWQG, rather they are general aesthetic guidelines

exceedences are indicated in yellow highlighting.
 <u>Italics</u> and underline indicates exceedence of proposed MAC (ie. arsenic)

Bold with Yellow highlighting indicates exceedence of CDWQG Aesthetic Objective (AO)

Bold Underline with Yellow highlighting indicates exceedence of CDWQG MAC

Results are expressed as milligrams per litre except for pH and Colour (CU)

Conductivity (umhos/cm), Temperature (°C) and Turbidity (NTU)

< = Less than the detection limit indicated.

AO = Aesthetic Objective

MAC = Maximum Acceptable Concentration (Health Based)

Creating and Delivering Better Solutions

SMALL PUBLIC WATER SYSTEM ASSESSMENT

PART A: EBA Site Inspection

Inspector: Ryan Markin, Luke Lebel

Date July 29, 2009

WELL ID #	Owner	Location Description
3440	YTG	Blanchard Grader Statron

1. Well Location and Potential Contaminant Sources

- a. General location of well: (Community, Subdivision, etc.) Haines Road
- b. Specific location: (Road or street, Building number, name of owner and/, legal description,

c. G	PS location: N6653029 E396549 el 837m ±9m
d	Is there electric power? \bigotimes Yes \Box No
e	Is there outside water access? X Yes INO
L. □1 L, g,	5 or more service connections to a piped distribution system? If so how many Ving complex and Maintenance garage 5 or more delivery sites on a trucked distribution system? If so how many Nearest building, specify Located in enclosure off from maintenance garage
h.	Distance from well to building
i. j.	If there is an effluent disposal field, is its location known? \square Yes \square No Distance from well to nearest point of known field: 260 km
k.	Well location relative to field: L upslope A downslope L lateral

EBA Engineering Consultants Ltd.

Creating and Delivering Better Solutions

1. Is there any part of a sewage disposal system(s)or other potential sources of pollution that may pose a

heal	th and safety risk within 30 m? 🛛 Yes 🗌 No
5	eptic service lines
m.	Is the well located within 300 m from a sewage lagoon or pit? \Box Yes \boxtimes No $on \frac{1}{ke}$
n.	Is the well located within 120 m from a solid waste site or dump, cemetery? \Box Yes \boxtimes No $\lor h \not \models k \not \models h$
0.	Is the infrastructure protecting the wellhead, pumphouse, storage tank and/or water treatment
	plant designed and secured to prevent:
	Unauthorized access by humans? A Yes D No Entrance by animals? A Yes D No but access is possible from but access is possible
p.	Is well site subject to flooding? Yes
q	Is the well site well drained? \bigvee Yes \Box No
r.	Is there a buried fuel tank on the property? \Box Yes \boxtimes No $\cup_{\kappa} \bigcup_{k \in I} \gamma$
	If yes, is it 🗌 in use 🗌 abandoned
	Is the location known? \Box Yes \Box No
	Distance from the well to known buried tank
s.	Are there any other known contaminant sources on the property?
	Yes Describe
	If yes, specify the source: $\Box_{Rock} = 0$ dump \Box sewage lagoon \Box cemetery \Box other
	Potential Source 1: $\frac{A + 1}{2}$; Distance from well to Potential Source 1: $\frac{-21}{2}$
	Potential Source 2: $\frac{457}{2}$; Distance from well to Potential Source 2: $\frac{244}{2}$;
	Potential Source 3: Fueling area; Distance from well to Potential Source 3: ~21 m

Potential Source 4: Tar or emploin tank, Distance from well to Potential Source 4: ~ 31 m	•
Bulk tank @ 36m (berned v/bern@~29m)	

t. Are there other wells on this property? \Box Yes \Box No

How many?_____ in use abandoned require proper sealing

<u>2. v</u>	Vell and Wellhead information:
a.	When was well installed? Year <u>unknown</u> Month
b.	Type: Arilled and dug and point other
c.	Is there a drillers log for the well: 🛛 Yes 🕅 No
d.	Is there a surface seal to 6 m \Box Yes \Box No \bigotimes unknown \Box unlikely
e.	Surface casing: Yes Diameter No
f.	Well casing: Diameter $2^{\mathcal{O}_{Cm}}$ Material: \square steel \square plastic \square concrete
g.	Depth of well: <u>unknown</u> measured (if possible) reported from log
h.	Static water level below ground: Un Known
	\Box measured (if possible) \Box reported \Box from log \Box flowing
i.	(If granular) Is the well completed: \Box open end casing \Box with a well screen
	with slotted pipe unknown other
j.	(If bedrock) Does the well have a liner? $\Box_{yes} \Box$ No $\Box_{steel} \Box$ plastic
k.	If there is a well screen: length
1.	Is there a sump below the screen? I Yes I No unknown, un Ukely
m.	Is the well head: \Box in pumphouse \Box in pit \Box pitless adaptor $\widecheck{\boxtimes}$ in a building
	in a wooden enclosure other, describe
n.	If the well head is located in a wooden enclosure,

	i. Is the well head below grade? describe in detail ~0.15m above grade. ~0.45 cm enhove floor
	ii. Are there signs of ponding on the enclosure(e.g. water stains, etc.)? Yes X No
	iii. Is the wellhead enclosed by fiberglass insulations? Dres D No in walls of enclosure
	iv. Any evidence of rodents? Specify No access possible
	v. Does the well casing have a proper seal cap? \square Yes \square No
	If no, describe condition
<u>3. \</u>	Water Supplying This Well:
a.	By definition is the water from a surface water source or under the direct influence of surface water?
	\Box Yes \Box No \Box farther investigation required.
	If yes is there treatment or disinfection \bigotimes Yes \Box No
	Explain (filtration, disinfection etc) UV, Fitrontion, RO
<u>4.</u>	Aquifer Supplying This Well:
a.	The aquifer is: \Box bedrock $\bigotimes_{\substack{i, k \in I_j}} granular sediment \boxtimes$ unknown
b.	Does water level and/or well capacity show seasonal fluctuation? Ves No
<u>5.</u>	Pump Installation:
a.	Is the well equipped with a pump? \bigotimes yes \Box No
b.	Type of pump: hand gelectric submersible jet
	shallow well centrifugal other,
c.	Description: Manufacturer Model
	horsepower capacity voltage
	4/11

EBA Engineering Consultants Ltd.
Creating and Delivering Better Solutions
d. Date installed: By:
e. For submersible pump, depth of setting below surface
f. Drop pipe for submersible pump: \Box steel \Box plastic $u_n k_{nonn}$
g. Pump delivers water to: \square pressure tank \square elevated tank \square other $(\rho \circ \sigma^{\frac{1}{2}} R \circ \gamma \circ \sigma^{\frac{1}{2}})$
h. Are there automatic pump controls: \bowtie Yes \Box No
i. Is there provision for taking water samples before water reaches storage? \checkmark Yes \Box No
j. Is there a water meter on the system? \Box Yes \bowtie No
k. Is the pump and piping protected from freezing? \bowtie Yes \square No
If yes, describe: Heated enlosure, Insulation. Likely Heat Trace
I. Comments on pump installation:
6. Conclusions a. Comments on overall installation:
······································
h Recommendations:

PA	RTB: EBA Site Inspecti	<u>On</u>	. 1
Ins	pector: BERT ALB	155ER	Date July 2905
	WELL ID #	Owner	Location Description
	3440	YTG.	BLANCHARD GRADLE STATION
6.	Water Treatment Fo	R RESIDENCE	(SHOT WATER NOT REATED.
a.	Is well water treated?	Yes 🛛 No; Type o	ftreatment: UV STERIFIZER.
	\Box chlorination \Box iro	on and or manganese remo	oval O other
b.	Is water entering plumbin as effective as chlorine	g or piped distribution sys used to achieve disinfect	tem treated with chlorine or another treatment that is ion throughout the system?
	□ Yes □/No	If so how	
c.	If treated with chlorine, is	the free residual chlorine	concentration less than 0.2 mg/L
	□ Yes □ No _	reading	ŗ.
	Tested at		_(location)
d.	Is testing for chlorine resid points in a piped distribution	lual concentration done at	the tap (eg. Kitchen faucet) or from representative nt from tap at the end line
	Yes -No	If yes how ofte	en?
e.	If the drinking water is be	ing transported by water	delivery truck does it have a minimum chlorine free
	residual of 0.4 mg/L a	t the time of fill. 🗌 Yes	1 No
7.	Water Quality (observa	tions):	
a.	Does the water stain plum	nbing? 🗆 yes 🗆 No 🗹	slight \Box severe
	Type of stain:	brown I red	black
b.	Does the water contain se	ediment? 🗆 Yes 🗹	Io 🗆 occasional 🔲 constant
c.	Is there an unpleasant od	our? 🗆 Yes 🗹 i	No \square H ₂ S \square Other
		6/1	1

d.	Is there an unpleasant taste? Yes No brackish Other
e.	Is there a history of bad bacterial analyses? Yes No
f.	Is there a chemical analysis? If Yes I No adequate incomplete
g.	Is there analysis of trihalomethanes (THMs) where the water source is a surface water supply or a well under the direct influence of surface water? \Box Yes \Box No
h.	Is the drinking water tested daily with an accurate reading chlorine test kit capable of reading in the
rang	ge 0 to 3.5 mg/L of free chlorine residual in increments of 0.1 mg/L? 🗌 Yes 🗹 No 🗋 unknown
i.	If yes is the test performed in accordance with manufactures directions? \Box Yes \Box No \Box unknown
j.	Is a record of the date, time, name of person performing the test and results of the drinking water sample
	kept? I Yes I No
	TANK AND PIPING DETAILS
	Tank Room
	Is there a water tank? (Yes No Details: 1200 GALLON FIBRE GLASS
	Where is it located? Comments: <u>SHOP</u> Frence.
	Is the room in which the water tank is located heated to maintain an optimum temperature of 4°C for stored water? YES NO
	Comments:
	Are there windows in the add-on that may allow direct sunlight onto the water holding tank? YES
C	NO Comments:
	Are there other heat sources near the tank? YES NO
	Is there waterproof flooring with a sealed base to contain spills? VES NO Comments:

Overall Tank

What are the tank size and dimensions?

1250 MP GALLONS

What material is the tank constructed of? FIBRE GLUSS
Is tank and associated piping constructed of safe materials (i.e. CSA approved and material that does not affect the taste of the water)? $\overline{\text{YES}}$ NO
Comments:
Tank Inlet, Outlet and Lid Is there adequate access on the tank for cleaning (i.e. min 15" access lid) YES NO
Does the lid have a tight seal and is it watertight when closed? YES NO
Does the tank have an overflow or high level whistle? YES (NO)
Is the water tank drain accessible? YES NO
WATER TANK AND WATER QUALITY CONDITION
Are there signs of staining or biofouling? YES NO Comments:
Is there any sediment or scum in bottom of tank? YES NO Comments:
Is there any odour associated with the water or tank? YES NO
Have there been any bacteriological analyses conducted previously? YES NO
Does the tank appear that it has been cleaned recently? YES NO
Are the tanks easily assessed for the purpose of cleaning and disinfection? YES NO

EBA Engineering Consultants Ltd.

Creating and Delivering Better Solutions

8. Conclusions

a. Comments on overall installation:

THIS IS A PERSONABLE INSTANTION. IT PROVIDES WATER TO THE RESIDENCE QUALITY 0 b. Recommendations: INIMATE & PEOPER MAINTENANCE SCHEDULE WER SHOCK CHLORINATION BI-ANNHAL FOR CLEANING ANDUN CLEANING. ANGE CONT BULR VEARLY. MANNTEN ANCE SET UP CHECK IST TRAINING FOR PEOPLE RESPONSIBLE FOR DUSTEM. 110 WATER QUILITY CHECK KEGULARD STLV

