

MONITORING WELL COMPLETION REPORT AND UPDATE OF HYDROGEOLOGICAL ASSESSMENT, MCLEAN LAKE QUARRY LTF, WHITEHORSE, YUKON

REVISION 1

PRESENTED TO Arctic Backhoe Services Ltd.

DECEMBER 2014 ISSUED FOR USE FILE: ENVSWM03344-02 This page intentionally left blank.

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Scope of Work	
	1.4	Authorization	2
	1.5	Qualification of Assessors	2
2.0	SITE	DESCRIPTION AND HISTORY	3
3.0	FIEL	D INVESTIGATIONS	3
	3.1	Groundwater Monitoring Well Installation	3
	3.2	Monitoring Well Surveying	
	3.3	Monitoring Well Development	6
	3.4	Groundwater Sampling	6
	3.5	In-Situ Hydraulic Rising Head Tests	
	3.6	Groundwater Level Monitoring	
	3.7	Monitoring Well Decommissioning	
4.0	RES	ULTS AND DISCUSSION	8
	4.1	Groundwater Quality	8
	4.2	Quality Control and Quality Assurance	
	4.3	Applicable Groundwater Quality Standards	9
	4.4	Comparison of Groundwater Quality with Applicable Regulatory Water Quality Standards	10
	4.5	Hydraulic Response Test Results	10
5.0	CON	ICEPTUAL HYDROGEOLOGICAL MODEL	11
	5.1	Climate	11
	5.2	Geological Framework	11
	5.3	Hydrostratigraphy	
	5.4	Regional Groundwater Flow Direction and Hydraulic Gradient	
	5.5	Receiving Environments	
	5.6	Estimated Groundwater Flow Velocity and Travel Time to Receiving Environments	12
6.0	ΡΟΤ	ENTIAL FOR WATER CONTAMINATION AND TRANSPORT MECHANISMS	13
7.0	CON	ICLUSIONS	14
8.0	REC	OMMENDATIONS	15
9.0	CLO	SURE	16
REF	EREN	ICES	17

LIST OF TABLES IN TEXT

Table 3-1: Well Construction Details	5
Table 3-2: Piezometric Elevations (m asl)	7
Table 3-2: Review of Monitoring Event QA/QC	8
Table 4-2: Inferred Bedrock Hydraulic Conductivities	11

LIST OF FIGURES IN TEXT

Figure 3-1: Water level recovery in the monitoring wells after well development and sampling......7

APPENDIX SECTIONS

TABLES

Table 1	Groundwater Analytical Results
---------	--------------------------------

Table 2Groundwater Analytical QA/QC

FIGURES

- Figure 1 Monitoring Well Locations and Piezometric Contours
- Figure 2 Site Plan Showing Cross Section Alignment and Receiving Environments
- Figure 3 Cross Section A-A'

APPENDICES

- Appendix A Tetra Tech's General Conditions
- Appendix B Groundwater Monitoring Well Logs
- Appendix C Hydraulic Response Test Data and Analysis
- Appendix D Laboratory Analytical Results

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Arctic Backhoe Services Ltd. and their agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Arctic Backhoe Services Ltd., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech EBA's Services Agreement. Tetra Tech EBA's General Conditions are provided in Appendix A of this report.

1.0 INTRODUCTION

1.1 Background

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by Arctic Backhoe Services Ltd. (Arctic Backhoe) to oversee the installation of additional monitoring wells that were to be completed below the regional groundwater table at the McLean Lake Quarry Land Treatment Facility (LTF), as well as the decommissioning of monitoring wells ML-LTF-Well#3 and ML-LTF-Well#4. The information from the new monitoring wells was used to update the hydrogeological assessment for the LTF (EBA 2009, 2010, 2013) as requested by the Department of Environment, Government of Yukon (YG) in their letters dated January 9, 2014 and June 5, 2014 following a third party review of the hydrogeological assessment (Core6, 2013).

Tetra Tech EBA completed a hydrogeological desktop study, taking into account existing geological and hydrogeological information and site topography to assess anticipated groundwater flow direction and depth to groundwater. Based on this preliminary estimate of the regional groundwater flow direction, three additional monitoring wells outside of the bermed area were proposed. The proposed well locations were selected such that one well would be located up-gradient of the LTF, thus providing background water quality data. The two other wells would be positioned down-gradient of the LTF and used to assess potential impact from the LTF on down-gradient groundwater quality. The proposed monitoring well locations were submitted to YG in a technical memorandum dated June 12, 2014. Approval from YG for the proposed well locations was received in an email from Ms. Heather Badry, Contaminated Sites Coordinator on September 5, 2014 based on the limited available information on groundwater in the area of the LTF. It was noted that additional monitoring wells may be required if data from the new wells will be insufficient to address all outstanding information requests from YG included in their letter to Arctic Backhoe dated January 9, 2014.

1.2 Objectives

The objectives of this field program were to provide further information on the regional groundwater and receiving environment, and thus address data gaps identified by the third party review of the previous hydrogeological assessment of the LTF (Core6 2013). In accordance with the information request from YG (letter from YG to Arctic Backhoe dated January 9, 2014), the additional hydrogeological information was collected from new monitoring wells completed below the regional groundwater table.

1.3 Scope of Work

The scope of consulting services for this project included the installation oversight, development, monitoring, and sampling of three additional monitoring wells at the LTF. All wells were to be completed below the regional groundwater table within the bedrock aquifer, with two monitoring wells located downgradient of the LTF and one monitoring well located upgradient of the LTF to provide information on background groundwater quality. The scope also included hydraulic response tests on each monitoring well to infer the hydraulic conductivity of the bedrock aquifer. Tetra Tech EBA also confirmed the location of surface water bodies in the vicinity of the LTF to identify the downgradient receiving environment. Tetra Tech EBA also decommissioned two of the existing monitoring wells which were located within the bermed area. The information collected from the new monitoring wells was then used to update the conceptual hydrogeological site model and address information requests from YG.

1.4 Authorization

Written authorization to proceed with the work detailed in Tetra Tech EBA's letter report Proposed Monitoring Well Locations (Doc. Ref. ENVSWM03344-01) dated June 12, 2014 was provided by Mr. Wayne Dear via a signed Service Agreement on August 15, 2014.

Any subsequent authorizations to proceed with the drilling beyond the depth agreed upon in the signed Service Agreement during the drilling program were provided verbally by Mr. Wayne Dear via telephone conversations between Mr. Earl of Tetra Tech EBA and Mr. Wayne of Arctic Backhoe.

1.5 Qualification of Assessors

Tetra Tech EBA selected a team of experienced professionals to work with Arctic Backhoe on this project. All project team members are located in Tetra Tech EBA's Whitehorse Office. Biographies for each of the proposed project team members are summarized below.

- Mr. Ryan Martin, M.Eng, P.Eng, provided senior review for the overall project. Mr. Martin is the Discipline Director Water Resources for the Tetra Tech EBA Environment Practise and is a Professional Engineer specializing in hydrogeology. He has over 17 years of experience in Yukon and British Columbia on a diverse range of hydrogeological, environmental assessment and engineering projects. His areas of expertise include physical hydrogeology, mining-related groundwater assessment, aquifer characterization, aquifer protection, groundwater resource development, geoexchange suitability studies and development, and project management of environmental engineering and municipal source water supply infrastructure. Ryan is a registered Professional Engineer in Yukon.
- Dr. Stephan Klump, Dipl-Geol, PhD, was the project hydrogeologist for the hydrogeological assessment. Dr. Klump is a Senior Hydrogeologist and Team Lead in Tetra Tech EBA's Water Resources Group. He has worked for more than 11 years on a diverse range of hydrogeological projects. His areas of expertise include physical and chemical hydrogeology, aquifer characterization, groundwater resource development, geothermal exploration, geoexchange suitability studies, and hydraulic well testing. He has been involved as the lead hydrogeologist for many hydrogeological assessments at various sites including solid waste facilities, contaminated sites, and mine sites.
- Ms. Kristen Range, B.Sc, GIT, was the field hydrogeologist. She oversaw drilling and well installation, and conducted well development and sampling. Ms. Range is a Hydrogeologist with Tetra Tech EBA in Whitehorse, Yukon. Ms. Range has extensive experience collecting field data, conducting environmental impact assessments, mapping using ArcGIS software, and preparing reports. She holds a Bachelor of Science degree with a major in Environmental Sciences from the University of Alberta and is registered as a Geoscientist in Training through APEGGA. She previously worked for University of Alberta as a Research Technician conducting hydrogeological field work for research projects for Syncrude, Canada in Fort McMurray.
- Ms. Eliane Roy, B.Eng, was the assistant field engineer and conducted the well development, hydraulic testing. She also assisted with data analysis and report preparation. Ms. Roy is a Junior Water Resources Engineer with the Environment Practice in Whitehorse, YT. She has two years of experience in environmental consulting, mining exploration projects, and oil & gas exploration projects. She has knowledge of provincial and federal environmental laws and regulations. Her experience includes implementing surface water and groundwater monitoring programs and overseeing companies' environmental compliance status.

Mr. Gareth Earl, EIT, was the Project Manager for this project and provided technical support to field staff during the drilling program in the absence of the project hydrogeologist. As an intermediate environmental engineer he has been involved in development of water well specifications, field review of water well drilling, groundwater monitoring, feasibility assessment for water well and sewage disposal systems, and conceptual design and field review of community water treatment systems. Mr. Earl has also been involved in development of specifications and field reviews for expansion of existing landfills and new transfer stations, assessment of existing landfills, estimating landfill gas generation, assessing landfill gas management systems and preparation of solid waste management plans.

2.0 SITE DESCRIPTION AND HISTORY

The LTF is located approximately four kilometers southwest of the Whitehorse Airport and operated by Arctic Backhoe under LTF Permit #24-002 (the Permit). Arctic Backhoe's activities are not only limited to managing contaminated soil stockpiles and water, but also include quarrying activities beyond the extent of the LTF. Figure 1 indicates the approximate extent of the current LTF usable area and other cleared areas where quarrying activities take place.

At the time of completion of the first hydrogeological assessment, EBA (2009) approached the investigation based upon the following provision, as allowed by Yukon Environment for the assessment at the time:

When drilling wells for the hydrogeological assessment, the proponent will be required to drill to a minimum of 7.5 m below ground surface or until groundwater is encountered, whichever comes first. Upon reaching 7.5 m without encountering groundwater, the proponent may choose to continue drilling or complete the well at this depth. If groundwater is not encountered, the hydrogeological assessment will not be able to determine the direction and rate of groundwater flow, nor the travel times for potential contaminant pathways. In this case, the hydrogeological assessment should calculate the estimated travel time of contaminants through the subsurface from the surface to the depth of well completion.

Therefore, the maximum drilling depth for the hydrogeological assessment did not extend past 7.6 metres below ground (m bg). Bedrock was encountered in the boreholes drilled for wells ML-LTF-Well#1, #3, and #4 at depths of 7.56, 2.28, and 3.96 m bg; these wells were constructed with the screen intervals positioned just above the bedrock surface to intersect shallow perched groundwater where it exists within the surficial sand and gravel deposits.

The new guidelines for conducting a hydrogeological assessment for a LTF require the installation of a minimum of one upgradient and two downgradient monitoring wells completed within the regional groundwater table unless any potential pathway for contaminants originating from the LTF would be negligible in the opinion of a hydrogeologist. The purpose of this project was to install additional monitoring wells below the regional groundwater table to update the previously completed hydrogeological assessment (EBA 2009, 2010, and 2013) with additional site-specific data.

3.0 FIELD INVESTIGATIONS

3.1 Groundwater Monitoring Well Installation

Three groundwater monitoring wells were installed within bedrock at the site to assess the local groundwater regime and potential downgradient contamination sourced from the LTF. 14MW01 was targeted to characterize

up-gradient conditions and 14MW02 and 14MW03 were aimed to assess potential impacts to the groundwater quality downgradient of the LTF.

Locations of the monitoring wells were selected based on aerial photography, review of geological and topographical information, review of site history and a site inspection. A site plan showing the monitoring well locations and key site features is provided in Figure 1.

The drilling and monitoring well installations were completed by Midnight Sun Drilling (MSD) of Whitehorse, Yukon under the direction of Tetra Tech EBA from September 23 to 26, 2014. All boreholes were drilled using an air rotary drilling rig. Obvious permafrost was not encountered in any borehole during drilling.

Grab samples of the drill cuttings from the cyclone were collected at regular intervals to log the drill cuttings. The borehole logs indicating observed lithology and monitoring well completion details are included in Appendix B, with a summary of well completion details presented in Table 3-1.

The first borehole was drilled to a depth of 50 m and groundwater was not encountered. Authorization was granted from ABS to continue drilling to a depth of 61 m (200 ft). MDS reached the target depth by the end of the day on September 23, 2014. The well was airlifted for 10 minutes and no water returned to the surface. The drilling rods were removed to measure the depth to water. A small amount of water was encountered in the well at a depth of 62.6 m below the top of the casing. This water was thought to be sourced from the drilling process, as approximately 10 US gallons of water had been used during the drilling at the bedrock interface. The following morning, groundwater was encountered in the borehole 49.56 m bg and slowly rising. The monitoring well 14MW01 was then installed with a 12.2 m screened section extending from 49.8 to 62.0 m bg. Completion details are found in Table 3-1 and on the well log in Appendix B.

After completing the installation of 14MW01, MSD began drilling the next borehole on September 24, 2014. Bedrock was encountered at 2.4 m bg (8 ft). Following the advancement of each length of drill rod (6.1 m), the drillers waited 10 to 15 minutes before airlifting to see if groundwater had accumulated within the borehole. Groundwater did not return to the surface during the airlifting. MDS drilled to a final depth of 43.58 m bg (143 ft). The borehole sat overnight with the drill rods inside. On the morning of September 25, 2014, the drill rods were pulled while noting any evidence of groundwater entering the borehole on the drill rods. There was no sign of groundwater entering on the drill rods, but groundwater was encountered at a depth of 38.26 m bg and rising, indicating that that the water-bearing fractures were likely encountered below a depth of 38.26 m bg, i.e., close to the bottom of the borehole. Monitoring well 14MW02A was then installed with a 12.2 m screened section extending from 31.2 to 43.4 m bg. A shallow nested well 14MW02B was completed at the bedrock interface with a 0.9 m screen extending from 1.6 to 2.5 m bg. Completion details are found in Table 3-1 and on the well log in Appendix B.

Following the installation of 14MW02, MDS began drilling the last borehole on September 25, 2014. Bedrock was encountered at 2.4 m bg (8 ft). Following the advancement of each length of drill rod (20 ft), the drillers waited 10 to 15 minutes before airlifting to see if groundwater had accumulated within the borehole. Groundwater did not return to the surface during the airlifting. MDS drilled to a final depth of 43.58 m bg (143 ft). The borehole sat overnight with the drill rods inside. On the morning of September 26, 2014, the drill rods were pulled while noting any evidence of groundwater entering on the drill rods. It was noted that groundwater had entered into the borehole at 21.3 m bg (70 ft), 24.4 m bg (80 ft) and 33.5 m bg (110 ft). The borehole was backfilled with bentonite chips to 33.5 m bg and monitoring well 14MW03A was installed with a 12.2 m screened section extending from 20.8 to 33.0 m bg to capture the shallowest observed water-bearing fracture. A shallow nested well 14MW03B was completed at the bedrock interface with a 1.5 m screen extending 2.4 m to 0.9 m bg. Completion details are found in Table 3-1 and on the well log in Appendix B.

The lithology encountered was similar at all three locations and consistent with the regional geology map. Each borehole profile generally consisted of sand and gravel underlain by granodiorite.

The monitoring well completion details are as follows:

- All wells were completed in bedrock;
- Monitoring wells were completed with 50 mm Schedule 40 PVC pipes and 0.010-slot well screens;
- A solid un-slotted PVC pipe was installed above the well screen to about 0.8 m above grade at all wells;
- A silica sand pack was placed in the annulus between the well screen and the borehole wall. The sand pack was extended from the base of the borehole to about 1 m above the well screen;
- Approximately 3 m of bentonite was placed in the annulus above the sand pack and hydrated. The annulus was then filled with grout to around 1.0 m bg;
- A surface seal consisting of 0.6 m of bentonite below 0.4 m of concrete was then installed to bring the borehole to ground level and limit surface water infiltration; and,
- Each well was capped with a PVC end-cap. All wells are protected and secured with a lockable steel protective casing.

Well ID	Northing	Easting	Elevation Top of PVC (m asl)	Drilled Depth (m bg)	Aquifer Unit Monitored	Screened Interval (m bg)	Filter Pack Interval (m bg)
14MW01	6726082.20	494358.81	827.24	61.97	Grandiorite	49.8 - 62.0	47.5 – 62.5
14MW02A	0700400.05	40,4000,45	823.13	43.58	Grandiorite	31.2 – 43.4	43.6 – 28.9
14MW02B	6726139.65	494623.45	823.07	2.48	Fine sand and gravel	1.6 – 2.5	2.5 – 1.4
13MW03A	07000000	404507.00	822.85	43.58	Granodiorite	20.8 - 33.0	19.8 – 33.5
14MW03B	6726289.05	494527.30	822.87	2.36	Fine sand and gravel	0.9 – 2.4	2.4 - 0.6

Table 3-1: Well Construction Details

3.2 Monitoring Well Surveying

Underhill Geomatics completed a survey of all the monitoring wells on site upon completion of the monitoring wells on September 29, 2014. The survey included a horizontal survey of the locations, as well as a vertical survey of the elevations of ground surface and top of the PVC casing at each well location. A site plan showing monitoring well locations and key site features is provided in Figure 1; the site plan has been compiled by Tetra Tech EBA using survey data and georeferenced background imagery.

WELL COMPLETION REPORT AND UPDATED HYDROGEOLOGICAL ASSESSMENT, MCLEAN LAKE LTF, WHITEHORSE, YUKON FILE: ENVSWM03344-02 | DECEMBER 2014 | ISSUED FOR USE

3.3 Monitoring Well Development

Following the completion and installation of monitoring wells, Tetra Tech EBA field personnel developed each well that contained water using a Grundfos RediFlo 2 submersible pump and/or a Waterra non-return foot valve and surge block. All three monitoring wells recovered very slowly and had to be developed over a period of about one week. A minimum of three well volumes was removed from each well over the period of well development.

3.4 Groundwater Sampling

Following well development and at least one week after well installation, Tetra Tech EBA purged the wells dry on October 7, 2014 and upon recovery, collected groundwater samples on October 8, 2014 for submission to an accredited laboratory for analysis of the parameters required under the Permit:

- Petroleum Hydrocarbons including benzene, toluene, ethylbenzene, and xylenes (BTEX), styrene, methyl tbutyl ether (MTBE), volatile petroleum hydrocarbons (VPH), volatile hydrocarbons (VH), and extractable petroleum hydrocarbons (EPH); and
- Routine analysis including conductivity, pH, temperature and dissolved metals.

At the time of sample collection, field parameters were recorded including temperature, specific conductance, pH, and dissolved oxygen.

Sample containers and appropriate preservatives for each suite of tests were provided by the laboratory. Samples for dissolved metals analysis were field filtered using new, clean 0.45 µm filters and preserved with nitric acid. All samples were stored in coolers containing icepacks and delivered to ALS Environmental Group (ALS Environmental) in Whitehorse, Yukon under chain-of-custody and within appropriate holding times. ALS Environmental is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025 for analysis.

3.5 In-Situ Hydraulic Rising Head Tests

Due to the very slow water level recovery, it was not possible to conduct a pumping test to infer the hydraulic properties of the granodiorite aquifer. Instead, hydraulic response tests were conducted on all three monitoring wells. In general, pumping tests yield the most reliable estimates of the aquifer hydraulic conductivity in the area of the monitoring well being tested and are more representative for a larger aquifer volume that the monitoring well is completed in compared to hydraulic response tests. Hydraulic response tests (also referred to as falling/rising head tests or slug tests) are only representative of the aquifer in the immediate vicinity of the well screen. Therefore, hydraulic response tests were conducted in all three monitoring wells to estimate the hydraulic conductivity of the bedrock aquifer at multiple locations throughout the LTF. Since all hydraulic response tests showed similar results, i.e., inferred hydraulic conductivities within about one order of magnitude (see Section 4.5), the observed hydraulic conductivities can be deemed representative of the bedrock aquifer in the area of the LTF.

The hydraulic response tests were conducted as rising head tests by quickly bailing water from the well to create a water level decrease of between 3.5 and 5 m. The recovery response in the wells was then monitored using a Solinst Levelogger®. The datalogger was deployed in each test well to automatically record the water level at a one minute interval. The pre-test water level and initial displacement was also confirmed with manual water level readings using a water level sounder.

3.6 Groundwater Level Monitoring

The static groundwater level in each monitoring well was measured following recovery of the water level after well development and purging. Because of the very slow recovery of the water level, dataloggers were installed in each well to record the water level recovery and confirm that all wells had fully recovered before the static water level was recorded. Figure 3-1 shows the water level recovery on the three monitoring wells following well development and sampling. The data show that wells 14MW02A and 14MW03A had fully recovered on October 29. The water level in 14MW01 was still slightly rising on October 29; however, the shape of the recovery curve indicates that the well had been recovered to probably within less than a metre of the static water level.

The observed static water level was then converted into the piezometric elevation at each monitoring well location to infer the groundwater flow direction. The observed piezometric elevations are summarized in Table 3-2.

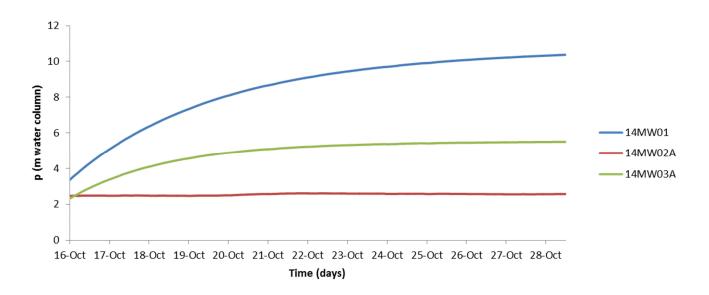


Figure 3-1: Water level recovery in the monitoring wells after well development and sampling

Table 3-2. The content Clevations (in as)								
Date	14MW01	14MW02A	14MW03A					
29-Oct 2014	821.52	816.16	817.61					

Table 3-2: Piezometric Elevations (m asl)

3.7 Monitoring Well Decommissioning

As per YG's request, monitoring wells ML-LTF-Well#3 and ML-LTF-Well#4 were decommissioned on September 26, 2014 and October 17, 2014, respectively. ML-LTF-Well#4 was decommissioned by MSD under the direction of Tetra Tech EBA. ML-LFT-Well#3 was decommissioned by Tetra Tech EBA field staff.

Both monitoring wells were decommissioned in general accordance with Yukon CSR *Protocol 7 Groundwater Monitoring Well Installation, Sampling and Decommissioning.* The PVC standpipes from both monitoring wells were removed and the boreholes backfilled to surface with cement-bentonite grout.

Monitoring well ML-LTF-Well#3 was dry at the time of decommissioning and has always been dry during previous monitoring events. ML-LTF-Well#4 contained water and a sample was obtained prior to decommissioning the well. The sample was analyzed for the same suite of parameters as the three new wells and in accordance with Permit requirements.

4.0 RESULTS AND DISCUSSION

4.1 Groundwater Quality

Groundwater samples were collected from the three new monitoring wells 14MW01, 14MW02A, and 14MW03A, as well as well ML-LTF-Well#4 prior to its decommissioning. The list of analytes is in compliance with the requirements of the Permit. The analytical results are summarized in Table 1 (attached). Laboratory certificates are included in Appendix D.

4.2 Quality Control and Quality Assurance

This section describes the Quality Assurance and Quality Control (QA/QC) procedures undertaken to ensure sample integrity and representativeness and the reliability and accuracy of analysis results. Data validation is summarized in Table 3-2.

Evidence and Evaluation							
Data Representativeness							
All samples were collected in new sample bottles provided by the laboratory (ALS, Whitehorse). All preservatives were also provided by the laboratory. The samples were shipped on ice with a Chain of Custody immediately following the completion of the fieldwork. All samples were received by the laboratory within appropriate holding times.							
Monitoring wells were developed and sampled in accordance with applicable regulation and guidelines using dedicated Waterra tubing.							
Calibration of field equipment was undertaken regularly during fieldwork.							
 pH: two-point calibration with pH7 and pH10 calibration solutions 							
 Electrical conductivity: one-point calibration with a 1,413 µS/cm standard 							
 Dissolved Oxygen: one-point percent calibration based on local barometric pressure and elevation 							

Table 3-2: Review of Monitoring Event QA/QC

QA/QC Aspect	Evidence and Evaluation				
Duplicates	One blind duplicate sample was collected from 14MW01. All duplicate results showed relative percent difference (RPD) of less than 30% when compared to concentrations measured in the respective sample from the same monitoring well for all concentrations greater than five times the method detection limit. The RDP values for both duplicate samples collected are presented in Table 2.				
Laboratory Internal QA/QC	Laboratory internal QA/QC is detailed within the laboratory reports (Appendix D). The laboratory showed acceptable testing frequency and results for method blanks, laboratory duplicates and matrix spikes.				
Laboratory Detection Limit	Laboratory reports indicate that the method detection limits for the winter 2013 monitoring program were lower than the respective assessment criteria for all parameters.				
Completeness of Test Program	The scope of work undertaken was generally consistent with the requirements of the LTF Permit 24-002.				
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater and therefore, the data set used as the basis for the groundwater assessment is considered valid and complete.				

Table 3-2: Review of Monitoring Event QA/QC

4.3 Applicable Groundwater Quality Standards

The Yukon Contaminated Site Regulation (CSR) provides standards for the assessment and remediation of contaminated sites in Yukon. Receptor categories include the following water uses: Drinking Water (DW), Aquatic Life (AW), Irrigation (IW), and Livestock (LW) – as defined by the CSR. Table 4-1 summarizes receptors applicable to the Site according to Yukon CSR Protocol No. 6: *Application of Water Quality Standards*.

Table 4-1: Summary of Applicable Receptors

Receptor	Criteria for Applicability	Applicable to Site	Name and Location of Receptor
Aquatic Life	1 km radius (groundwater travel time of less than or equal to 50 years) of the nearest surface water potentially containing aquatic life.	Applicable	Several surface water bodies within a 1 km radius of the LTF
Drinking Water	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest existing or probable future drinking water source.	Applicable	Potential existence of current or future domestic water wells at residence to the north and east of the LTF
Irrigation	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest surface water body used for an irrigation water source.	Not Applicable	-
Livestock	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest surface water body used as a source for drinking water for livestock.	Not Applicable	-

4.4 Comparison of Groundwater Quality with Applicable Regulatory Water Quality Standards

Table 1 (attached) summarizes the analytical results from the three new monitoring wells completed with the regional bedrock aquifer, as well as monitoring well ML-LTF-Well#4 prior to decommissioning. A comparison of the analytical results with the applicable CSR AW and DW standards shows that all parameters analyzed had concentrations below the CSR standards at the time of sample collection, except for an exceedance of the CSR DW standard for manganese and for benzo(a)pyrene of 0.01 μ g/L in sample 14MW02A. The observed benzo(a)pyrene concentration in this sample was 0.057 μ g/L and therefore exceeded the CSR DW standard concentration about five times. The same sample also showed a detectable concentration of benzo(b)fluoranthene (0.065 μ g/L). There is no CSR standard for benzo(b)fluoranthene.

The duplicate sample collected from the upgradient well 14MW01 showed a detectable concentration of HEPH slightly above the laboratory detection limit. However, the original sample collected from the same well did not show any detectable hydrocarbons. Well 14MW01 is located hydraulically upgradient of the LTF and it is therefore unlikely that there is any impact on groundwater quality from the LTF at this location.

The source of the detected hydrocarbons in monitoring wells 14MW01 and 14MW02A is unknown. Since both samples were collected relatively soon after the installation of the monitoring wells, it is possible that the observed hydrocarbons are related to the drilling of the monitoring wells. Drill rod grease or traces of other hydrocarbons on the drilling equipment may be a possible source of the detected hydrocarbons and are sometimes found in well water samples shortly after the installation of a new monitoring well. We therefore collected samples from the groundwater shortly after the start of well development and retained these samples for future analysis in the case of the detection of hydrocarbons in the water samples. The two samples collected at the beginning of well development for the two wells with detectable hydrocarbons were also analyzed for the same suite of hydrocarbons above the laboratory detection limit. Sample DEV-14MW02A contained HEPH at a concentration of 430 µg/L, indicating that these hydrocarbons may be related to contamination by drilling equipment.

In summary, the sample results are inconclusive and the source of the detected hydrocarbons remains unknown. The drilling equipment used for the installation of the monitoring wells represents a potential source of the detected hydrocarbons; however, the currently available data do not clearly support or reject this hypothesis. Additional monitoring and sampling will be required to confirm the presence or absence of hydrocarbons and assess potential sources if applicable.

The groundwater samples from all three monitoring wells 14MW01, 14MW02A, and MW1403A also exceeded the CSR DW standard by about 10 times. However, exceedances of the manganese standard are common and usually related to naturally occurring manganese and reducing chemical conditions in the aquifer. The manganese standard is an aesthetic objective and was established to protect against taste and odour. There is therefore no health or environmental concern related to the exceedance of the manganese CSR DW standard.

4.5 Hydraulic Response Test Results

The hydraulic response test data were interpreted using the Bouwer & Rice (1976) method to infer the bulk hydraulic conductivity. The Bouwer & Rice method is implemented in AquiferTest Pro v. 2014 which was used for the data analysis. The hydraulic response test data and detailed analysis are included in Appendix C. Table 4-2 summarizes the inferred hydraulic conductivities from the slug tests conducted in wells 14MW01, 14MW02A, and 14MW03A.

Well ID	Inferred Hydraulic Conductivity (m/s)
14MW01	5×10 ⁻¹⁰
14MW02A	3×10 ⁻⁹
14MW03A	2×10 ⁻⁹
Geometric Mean	1×10 ⁻⁹

Table 4-2: Inferred Bedrock Hydraulic Conductivities

The results of the hydraulic response tests indicate that the hydraulic conductivity of the bedrock aquifer consisting of granodiorite is very low, which is in agreement with the observed very slow recovery of the well water levels. The geometric mean of the hydraulic conductivities inferred from the slug tests conducted in the three new wells is about 1×10^{-9} m/s. Based on the spatial distribution of the three wells across the southern, eastern and northern perimeter of the LTF and the consistent results from all three monitoring wells, we deem the inferred mean hydraulic conductivity to be representative of the bedrock aquifer underlying the LTF. The hydraulic conductivity of 1×10^{-9} m/s is also in agreement with typical textbook values for slightly fractured granitic bedrock (e.g., Domenico and Schwartz, 1998).

5.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

5.1 Climate

The Whitehorse area has a daily average temperature of -0.1 °C on a yearly basis, with the highest daily average in July (14.3°C), and lowest daily average occurring in January (-15.2°C). The area receives an average of 262.3 mm of precipitation annually, with the greatest amount of precipitation recorded through the summer and early fall. In a semi-arid climate such as Whitehorse, most groundwater recharge happens during spring freshet when the snowpack melts and there is a surplus of precipitation (i.e., when precipitation exceeds evapotranspiration). For most of the rest of the year evapotranspiration exceeds precipitation and hence there is little to no groundwater recharge.

5.2 Geological Framework

The LTF is located on a topographical high, with elevations ranging from approximately 818 m asl near the northern end of the site to slightly more than 829 m at the highest point on site. The terrain slopes steeply generally toward the northwest, north, and northeast from the referenced high point. The geology at the LTF is comprised of unconsolidated overburden deposits (glacial deposits) consisting primarily of silt, sand, and gravel, overlying intrusive granitic bedrock.

Cross section A-A' shown on Figure 3 illustrates the distribution of overburden beneath the LTF site. Subsurface conditions consist of 0 to more than 7.5 m of silt, sand and gravel overlying bedrock. At ML-LTF-Well#2 where bedrock was not encountered, we expect it to be at about 10 m depth (based on cross section interpretation). The bedrock underlying the shallow overburden deposits consist of granodiorite to unknown depths.

5.3 Hydrostratigraphy

The local groundwater regime in the area of the LTF consists of a shallow overburden and deep bedrock aquifer. However, based on information from the old monitoring wells on site installed in 2008 and additional information collected from the new monitoring wells completed in overburden (14MW02B and 14MW03B), the shallow overburden aquifer consists of local lenses of perched groundwater just above the bedrock contact. Based on the fact that most shallow monitoring wells have been dry or only occasionally contained water, it is very likely that the shallow perched groundwater lenses are isolated and not interconnected to form a continuous (seasonal) groundwater system in overburden at the LTF.

The deeper bedrock aquifer consists of granodiorite with a very low hydraulic conductivity that was estimated to be about 1×10^{-9} m/s. The low hydraulic conductivity suggests that the granodiorite is poorly fractured and/or that fractures have a very low permeability. Observations during the drilling of the monitoring wells and measurements of the piezometric elevations indicate that the bedrock aquifer is confined with a hydraulic head of about 5 to 7 m below ground surface. However, water bearing fractures were only encountered near the bottom of the monitoring wells, i.e., at depth below 50 m bg (14MW01), below 39 m bg (14MW02A), and at about 21 m bg (14MW03A) as described in Section 3.1.

5.4 Regional Groundwater Flow Direction and Hydraulic Gradient.

The measured piezometric elevations in the monitoring wells on October 29, 2014 were used to infer the groundwater flow direction within the bedrock aquifer. Figure 1 shows the inferred piezometric contours indicating a groundwater flow direction toward the east with a hydraulic gradient of about 0.02 m/m.

Groundwater flow within the perched overburden aquifer, where it exists, is likely limited and follows the local topography and overburden/bedrock interface. However, based on the observation that most monitoring wells completed within the overburden have mostly been dry, it is likely that perched groundwater in the overburden predominantly occurs in isolated lenses with limited horizontal flow.

5.5 Receiving Environments

Tetra Tech EBA (2009) had previously identified water bodies located at 750, 1000, and 1050 m away from the site as down-gradient receptors. Core6 (2013) questioned this analysis and identified a creek about 150 m to the west of the site as a potential receiving environment.

Additional review of topographic maps, aerial imagery, and ground truthing of the locations of surface water bodies in the area was conducted by Tetra Tech EBA. The closest distance to a surface water body is about 400 m to McIntyre Creek and a wetland southwest of the site (see Figure 2). We believe that this is the same creek that Core6 (2013) were referring to. However, based on an easterly groundwater flow direction within the bedrock aquifer, McIntyre Creek and the wetlands to the southwest of the LTF would be located upgradient of the site and would therefore not be considered a receiving environment.

The nearest downgradient surface water receptors (wetland and ponds) were identified at a distance of about 700 m to the east-northeast of the edge of the expansion area of the LTF (Figure 2).

5.6 Estimated Groundwater Flow Velocity and Travel Time to Receiving Environments

The groundwater flow velocity can be estimated using Darcy's Law:

$$v = K \cdot i \cdot \theta^{-1}$$

Where:

v – average linear groundwater flow velocity

K – hydraulic conductivity

- *i* hydraulic gradient
- θ effective porosity

The effective porosity of the granodiorite was assumed to be 0.0005% which is a typical value for granite (Domenico and Schwartz, 1998). Based on the inferred mean hydraulic conductivity of 1×10^{-9} m/s and the hydraulic gradient of 0.02, the average linear groundwater flow velocity is in the order of 0.35 m/day (126 m/year).

The closest downgradient surface water bodies are located about 700 m to the east of the LTF. Based on the average linear groundwater flow velocity estimated above, the horizontal groundwater travel time to this surface water body would be about 5.5 years. It has to be noted that this travel time estimate only accounts for horizontal flow within the bedrock aquifer but does not take into account the vertical travel time from surface to the saturated zone.

It should be further noted that the analysis of groundwater flow direction and velocity is based on a continuum approach, i.e., on the assumption that the bedrock aquifer acts like a porous medium on a large scale. It has been shown that in many cases the continuum approach including Darcy's Law can be applied to fracture flow systems (e.g., Freeze and Cheery, 1979). Typically, the representative elementary volume is considerably larger for fractured media than for porous media. In this case, the relevant spatial scale, i.e., the distance between the LTF and potential nearby receptors is in the order of several hundred metres to one kilometre. Given the relatively large spatial scale, it is likely that the continuum approach is valid to describe groundwater flow in the fractured bedrock aquifer in the area of the LTF. However, it should be pointed out that the continuum approach has limitations which may result in differences in inferred and actual groundwater flow direction and an overly conservative, i.e., low estimate of groundwater flow velocity.

6.0 POTENTIAL FOR WATER CONTAMINATION AND TRANSPORT MECHANISMS

Based on the conceptual hydrogeological model and hydrostratigraphy presented in the previous section, Tetra Tech EBA assessed potential pathways for contaminants originating from the LTF.

Core6 (2013) suggested that shallow perched groundwater in the overburden may represent a potential pathway for contaminants in addition to the regional bedrock aquifer. However, based on site observations, shallow groundwater within the overburden sediments appears to only exist in isolated lenses that are perched on top of the low permeability bedrock interface. Well ML-LTF-Well#2 is the only shallow monitoring well which has consistently contained groundwater. All other shallow monitoring wells including the newly installed wells 14MW02B and 14MW03B have mostly been dry. It is therefore unlikely that a continuous pathway for contaminants exists within overburden in the area of the LTF.

The regional bedrock aquifer has previously been identified as a potential pathway for contaminants originating from the LTF (EBA 2009, 2010, 2013). As discussed above, the estimated horizontal travel time to the nearest downgradient receiving environment is in the order of about 5.5 years. However, by applying retardation factors to this estimate and accounting for the physical properties of the compacted liner (1 m thick), the thickness of unsaturated surficial deposits and unsaturated dense bedrock under the LTF, the actual travel times from the surface at the LTF to the nearest receptor would be considerably longer.

WELL COMPLETION REPORT AND UPDATED HYDROGEOLOGICAL ASSESSMENT, MCLEAN LAKE LTF, WHITEHORSE, YUKON FILE: ENVSWM03344-02 | DECEMBER 2014 | ISSUED FOR USE

7.0 CONCLUSIONS

Based on the results of this study, Tetra Tech EBA draws the following conclusions:

- Three additional monitoring wells were successfully completed within the regional bedrock aquifer in the area of the LTF. Well 14MW01 was installed hydraulically upgradient of the LTF, whereas monitoring wells 14MW02A and 14MW03A are located hydraulically downgradient of the LTF.
- The downgradient wells were installed as nested wells with a shallow well completed within the overburden immediately above the bedrock contact. Both shallow wells 14MW02B and 14MW03B have been dry since installation, indicating the absence of shallow groundwater within overburden at these locations at this time.
- Hydraulic response tests were conducted in all three deep monitoring wells and indicate a low bedrock hydraulic conductivity of about 1×10⁻⁹ m/s.
- The conceptual hydrogeological model presented in previous reports (EBA 2009, 2010, and 2013) did not change significantly based on the new findings; however, the new monitoring wells add significant sitespecific data to support the conceptual hydrogeological model.
- Groundwater in overburden seems to be unlikely to present a potential pathway for contaminants originating
 from the LTF due to its occurrence in isolated lenses that are perched on top of the low permeability bedrock.
 Ongoing monitoring of the shallow monitoring wells completed in overburden is required to confirm the
 absence of a continuous shallow perched groundwater system to conclusively dismiss shallow groundwater
 as a potential contaminants pathway.
- The deeper bedrock aquifer consisting of fractured granodiorite remains the most probable pathway for contaminants originating from the LTF. The horizontal travel time to the nearest surface water receptor was estimated at about 5.5 years not accounting for retardation and vertical transport through the compacted low permeability silt liner, overburden sediments and unsaturated bedrock. The low bedrock hydraulic conductivity and confined nature of the bedrock aquifer provide considerable protection to the downgradient receptors.
- The benzo(a)pyrene concentration measured in the sample collect from monitoring well 14MW02A exceeded the CSR DW standard. Another sample collected from the same well shortly after the well drilling and during the well development contained HEPH in measurable concentrations but below the CSR DW standard. The benzo(a)pyrene concentration in this sample was below the laboratory detection limit.
- The duplicate sample taken from the upgradient monitoring well 14MW01 also contained HEPH at a concentration slightly above the laboratory detection limit but below CSR AW and DW standards.
- The low concentrations of hydrocarbons detected in two of the new monitoring wells (14MW01 and 14MW02A) may be sourced from drilling equipment during the installation of the wells. However, the currently available data are inconclusive and the source remains unknown.

8.0 **RECOMMENDATIONS**

Based on the results of this study and the conclusions presented above, we make the following recommendations:

- The new monitoring wells along with the existing well ML-LTF-Well#2 should be resampled within the next four weeks to confirm presence or absence of hydrocarbons. Especially the exceedance of the CSR DW standard for benzo(a)pyrene in monitoring well 14MW02A should be verified and further assessment initiated if the exceedance persists.
- In accordance with permit requirements, piezometric elevations should be measured on a quarterly basis to assess seasonal changes and determine the appropriate time for the annual compliance monitoring during high water levels.
- The ongoing groundwater monitoring as required by the LTF permit should also include all existing monitoring wells that are completed within overburden and have mostly been dry to confirm the absence of a continuous shallow perched groundwater system.
- The groundwater flow direction should be confirmed based on seasonal changes in piezometric elevations to confirm that monitoring well 14MW01 is located hydraulically upgradient of the LTF and wells 14MW02A and 14MW03A are located downgradient of the LTF.

WELL COMPLETION REPORT AND UPDATED HYDROGEOLOGICAL ASSESSMENT, MCLEAN LAKE LTF, WHITEHORSE, YUKON FILE: ENVSWM03344-02 | DECEMBER 2014 | ISSUED FOR USE

9.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Prepared by: Kristen Range, B.Sc., GIT Junior Hydrogeologist Direct Line: 604.685.0017 x372 Kristen.Range@tetratech.com

Kya V Ch

Reviewed by: Ryan Martin, M.Eng., P.Eng. Director – Water Resources Direct Line: 867.668.9221 Ryan Martin@tetratech.com

Steplan KCr

Prepared by: Stephan Klump, Ph.D. Senior Hydrogeologist, Team Lead Direct Line: 867.688.9220 Stephan.Klump@tetratech.com

REFERENCES

- EBA Engineering Consultants Ltd. (2009) Hydrogeological Assessment for Land Treatment Facility (LTF), McLean Lake Quarry, Whitehorse, Yukon. Project report to Arctic Backhoe Services Ltd.
- EBA Engineering Consultants Ltd. (2010) Hydrogeological Assessment for Land Treatment Facility (LTF), McLean Lake Quarry, Whitehorse, Yukon. Project report to Arctic Backhoe Services Ltd.
- EBA Engineering Consultants Ltd. (2013) Hydrogeological Conditions Permit #24-002, McLean Lake Quarry, Whitehorse, Yukon. Project report to Arctic Backhoe Services Ltd.
- Core6 Environmental (2013) Review of reports regarding hydrogeological site assessment LTF McLean Lake Quarry, Whitehorse Yukon (Contract NO: C00020871). Project report to Government of Yukon, Department of Environment.
- Domenico, P.A. and Schwartz, F.W. (1998) Physical and Chemical Hydrogeology. 2nd ed. Wiley and Sons (New York).

Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice Hall (Upper Saddle River, NJ).

TABLES

Table 1 Groundwater Analytical Results

Table 2 Groundwater Analytical QA/QC

Table 1: Groundwater Analytical Results

Table 1: Groundwater Analytica		Yukon CSB AW	Yukon CSR DW	ML-LTF-WELL#4	14MW01	14MW02A	14MW03A	DEV-14MW01	DEV-14MW02A
Parameter	Unit	Yukon CSR AW Standard ¹	Standard ¹	26-Sep-14	8-Oct-14	8-Oct-14	8-Oct-14	30-SEP-14	02-OCT-14
Physical Parameters									
рН	pH_Units	NS	NS	7.53	7.74	7.01	7.51	-	-
Electrical Conductivity (EC)	uS/cm	NS	NS	633	814	610	734	-	-
Hardness as $CaCO_3$	µg/L	NS	NS	373,000	409,000	275,000	291,000	-	-
Total Dissolved Solids (TDS) Alkalinity (Bicarbonate as CaCO ₃)	µg/L	NS NS	NS NS	-	526,000 332,000	328,000	484,000	-	-
Alkalinity (Carbonate as $CaCO_3$) Alkalinity (Carbonate as $CaCO_3$)	µg/L	NS	NS NS	-	<1000	124,000 <1000	199,000 <1000	-	-
Alkalinity (Hydroxide as $CaCO_3$)	μg/L μg/L	NS	NS	-	<1000	<1000	<1000	-	-
Alkalinity (Total as CaCO ₃)	μg/L	NS	NS		332,000	124,000	199,000	-	-
Chloride (Cl)	μg/L	NS	250,000	3,040	29,300	5,770	5,800	-	-
Fluoride (F)	μg/L	2000-3000 ²	2000-3000 ²	-	249	220	266	-	-
Sulphate (SO ₄)	µg/L	1,000,000	1,000,000	-	66,100	185,000	186,000	-	-
Nitrate (as N)	µg/L	400,000	10,000	3,260	54	414	1,430	-	-
Nitrite (as N)	μg/L	200-2000 ³	10,000	1.4	7.8	12.6	2.7	-	-
Dissolved Metals	•		•			•			
Aluminium	µg/L	NS	200	<10	<10	<10	<10	-	-
Antimony	µg/L	200	6	<0.50	<0.50	<0.50	<0.50	-	-
Arsenic	µg/L	50	25	<1.0	<1.0	<1.0	<1.0	-	-
Barium	µg/L	10,000	1000	143	60	44	43	-	-
Beryllium	µg/L	53	NS	<5.0	<5.0	<5.0	<5.0	-	-
Boron	µg/L	50,000	5000	<100	<100	<100	<100	-	-
Cadmium	µg/L	0.1-0.6 ²	5	<0.050	0.081	0.063	0.082	-	-
Calcium	µg/L	NS	NS	127,000	111,000	79,600	87,500	-	-
Chromium	µg/L	10, 90 ⁴	50	0.79	<0.50	<0.50	<0.50	-	-
Cobalt	µg/L	9	NS	<0.50	2.25	1.65	2.01	-	-
Copper	µg/L	20-90 ²	1000	1.1	2.1	2.9	3.1	-	-
Iron	µg/L	NS	300	<30	<30	<30	<30	-	-
Lead	µg/L	40-160 ²	10	<1.0	<1.0	<1.0	<1.0	-	-
Lithium	µg/L	NS	NS	<50	<50	<50	<50	-	-
Magnesium	µg/L	NS	100,000	13,700	32,000	18,400	17,500	-	-
Manganese	µg/L	NS	50	<10	700	466	645	-	-
Mercury	µg/L	1	1	<0.20	<0.20	<0.20	<0.20	-	-
Molybdenum	µg/L	10,000	250	1.2	3	2.7	2	-	-
Nickel	µg/L	250-1500 ²	NS	<5.0	10.4	8.1	11.3	-	-
Selenium	µg/L	10	10	<1.0	<1.0	<1.0	<1.0	-	-
Silver	µg/L	0.5, 15 ²	NS	<0.050	< 0.050	< 0.050	< 0.050	-	-
Sodium	µg/L	NS	200,000	5,700	26,500	11,900	24,100	-	-
Thallium	µg/L	3	NS	<0.20	<0.20	<0.20	<0.20	-	-
Titanium	µg/L	1000	NS 100	<50 1.22	<50 9.71	<50	<50	-	-
Uranium Vanadium	µg/L	3000 NS	100 NS	<30	<30	11.4 <30	4.37 <30	-	-
Zinc	μg/L μg/L	75-2400 ²	5000	<5.0	21	<30	<30	-	-
Polycyclic Aromatic Hydrocarbons (P		75-2400	5000	<5.0	21	<3.0	<3.0	-	-
Acenaphthene	μg/L	60	NS	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Acenaphthylene	μg/L	NS	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acridine	μg/L	0.5	NS	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050
Anthracene	μg/L	1	NS	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Benz(a)anthracene	μg/L	1	NS	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050
Benzo(a) pyrene	µg/L	0.1	0.01	<0.010	<0.010	0.057	<0.010	<0.010	<0.010
Benzo(b)fluoranthene	µg/L	NS	NS	<0.050	< 0.050	0.065	<0.050	<0.050	<0.050
Benzo(g,h,i)perylene	μg/L	NS	NS	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Benzo(k)fluoranthene	μg/L	NS	NS	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
Chrysene	μg/L	NS	NS	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Dibenz(a,h)anthracene	µg/L	NS	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluoranthene	µg/L	2	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluorene	µg/L	120	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Indeno(1,2,3-c,d)pyrene	µg/L	NS	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
	µy/L		NO	<0.050	0.050	<0.050	<0.050	<0.050	<0.050
Naphthalene	μg/L μg/L	10	NS		<0.050				
	μg/L μg/L	3	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Naphthalene Phenanthrene Pyrene	μg/L μg/L μg/L	3 0.2	NS NS	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050	<0.050	<0.050
Naphthalene Phenanthrene Pyrene Quinoline	μg/L μg/L	3	NS	<0.050	<0.050	<0.050			
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs)	μg/L μg/L μg/L μg/L	3 0.2 34	NS NS NS	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050 <0.050	<0.050	<0.050
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene	μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000	NS NS NS 5	<0.050 <0.050 <0.050 <0.50	<0.050 <0.050 <0.050 <0.50	<0.050 <0.050 <0.050 <0.50	<0.050 <0.050 <0.50	<0.050	<0.050
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene	μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390	NS NS NS 5 24	<0.050 <0.050 <0.050 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50	<0.050 <0.050 <0.50 <0.50	<0.050 <0.050	<0.050 <0.050
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000	NS NS NS 5 24 2.4	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50	<0.050 <0.050 <0.50 <0.50 <0.50	<0.050 <0.050	<0.050 <0.050 - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS	NS NS NS 5 24 2.4 NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 - -	<0.050 <0.050 - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS	NS NS S 24 2.4 NS NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 - - - -	<0.050 <0.050 - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS	NS NS S 24 2.4 NS NS 300	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 - - - - - - - - -	<0.050 <0.050 - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS NS 720	NS NS S 24 2.4 NS NS 300 NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	<0.050 <0.050 - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS	NS NS S 24 2.4 NS NS 300	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75	<0.050 <0.050 - - - - - - - - -	<0.050 <0.050 - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS 720 NS	NS NS NS 5 24 2.4 NS NS 300 NS NS NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <0.50	<0.050 <0.050 - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS 720 NS 5000	NS NS NS 5 24 2.4 NS NS 300 NS NS 5000	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <0.50 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250	<0.050 <0.050 - - - - - - - - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉ EPH C ₁₉ -C ₃₂	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS 720 NS 5000 NS	NS NS NS 5 24 2.4 NS NS 300 NS NS 5000 NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <2.50	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250	<0.050 <0.050 - - - - - - - - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (m & p) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉ EPH C ₁₀ -C ₁₉ EPH C ₁₉ -C ₃₂ LEPH	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS 720 NS 5000 NS 5000	NS NS NS 5 24 2.4 NS NS 300 NS NS 5000 NS NS NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 - - - - - - - - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (m & p) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉ EPH C ₁₉ -C ₃₂ LEPH HEPH	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS NS NS 720 NS 5000 NS 500 NS	NS NS NS 5 24 2.4 NS NS 300 NS NS 5000 NS NS NS NS NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250 <250	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <0.50 <250 <250 <250 <250	<0.050 <0.050 - - - - - - - - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - - - - - -
Naphthalene Phenanthrene Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (m & p) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉ EPH C ₁₀ -C ₁₉ EPH C ₁₉ -C ₃₂ LEPH	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3 0.2 34 4000 390 2000 NS NS 720 NS 5000 NS 5000	NS NS NS 5 24 2.4 NS NS 300 NS NS 5000 NS NS NS	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.50 <0.50 <250 <250 <250	<0.050 <0.050 - - - - - - - - - - - - - - - - - -	<0.050 <0.050 - - - - - - - - - - - - - - - - - -

Т

Notes:

¹ Environment Act Contaminated Sites Regulation (CSR) (2002). Schedule 3 Generic Numerical Water Standards

2 Standard varies with water hardness

3 Standard varies with chloride concentration

4 Standard depends on speciation

BOLD - Exceeds CSR standard

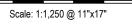
Blank- Not analyzed

NS - No standard applies

Table 2: Groundwater Analytical QA/QC

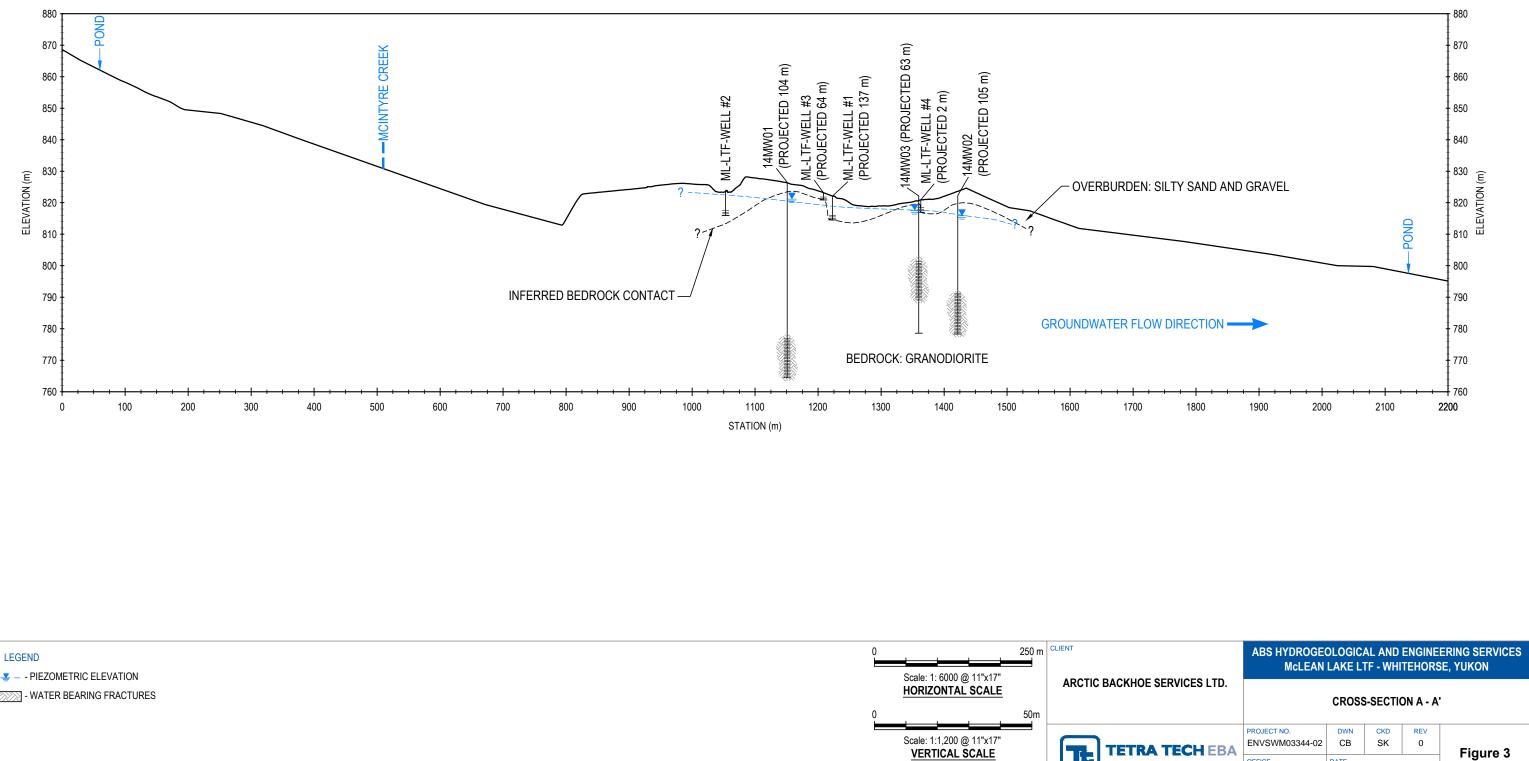
Table 2: Groundwater Analytical QA/QC Parameter Plusiest Parameter	Unit	14MW01 8-Oct-14	DUP01 8-Oct-14	Relative Percent Difference (%)
Physical Parameters pH	pH_Units	7.74	7.69	0.6
Electrical Conductivity (EC)	uS/cm	814	788	3.2
Hardness as CaCO ₃	µg/L	409,000	393,000	4.0
Total Dissolved Solids (TDS)	µg/L	526,000	524,000	0.4
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	332,000	329,000	0.9
Alkalinity (Carbonate as CaCO ₃)	µg/L	<1000	<1000	-
Alkalinity (Hydroxide as CaCO ₃)			<1000	-
	µg/L	<1000		
Alkalinity (Total as CaCO ₃)	µg/L	332,000	329,000	0.9
Chloride (CI)	µg/L	29,300	29,300	0.0
Fluoride (F)	µg/L	249	250	0.4
Sulphate (SO ₄)	µg/L	66,100	66,200	0.2
Nitrate (as N)	µg/L	54	52	3.4
Nitrite (as N)	μg/L	7.8	8	2.5
Dissolved Metals	1			
Aluminium	µg/L	<10	<10	-
Antimony	µg/L	<0.50	<0.50	-
Arsenic	µg/L	<1.0	<1.0	-
Barium	µg/L	60	58	3.4
Beryllium	µg/L	<5.0	<5.0	-
Boron	µg/L	<100	<100	-
Cadmium	µg/L	0.081	0.078	3.8
Calcium	µg/L	111,000	107,000	3.7
Chromium	µg/L	<0.50	<0.50	-
Cobalt	µg/L	2.25	2.2	2.2
Copper	µg/L	2.1	2.1	0.0
Iron	µg/L	<30	<30	-
Lead	µg/L	<1.0	<1.0	-
Lithium	µg/L	<50	<50	-
Magnesium	µg/L	32,000	30,600	4.5
Manganese	µg/L	700	666	5.0
Mercury	µg/L	<0.20	<0.20	-
Molybdenum	µg/L	3	3.1	3.3
Nickel	µg/L	10.4	10.1	2.9
Selenium	µg/L	<1.0	<1.0 <0.050	-
Silver Sodium	µg/L	<0.050 26,500	26,600	0.4
Thallium	μg/L μg/L	<0.20	<0.20	- 0.4
Titanium	µg/L	<50	<50	-
Uranium	µg/L	9.71	9.81	1.0
Vanadium	µg/L	<30	<30	-
Zinc	µg/L	21	19.6	6.9
Polycyclic Aromatic Hydrocarbons (PAHs)	µg/L	21	10.0	0.0
Acenaphthene	µg/L	<0.050	< 0.050	-
Acenaphthylene	µg/L	<0.050	<0.050	-
Acridine	µg/L	<0.050	<0.050	-
Anthracene	μg/L	<0.050	<0.050	-
Benz(a)anthracene	µg/L	<0.050	<0.050	-
Benzo(a) pyrene	µg/L	<0.010	<0.010	-
Benzo(b)fluoranthene	µg/L	< 0.050	< 0.050	-
Benzo(g,h,i)perylene	µg/L	< 0.050	< 0.050	-
Benzo(k)fluoranthene	µg/L	< 0.050	< 0.050	-
Chrysene	μg/L	<0.050	< 0.050	-
Dibenz(a,h)anthracene	µg/L	< 0.050	< 0.050	-
Fluoranthene	μg/L	<0.050	<0.050	-
Fluorene				-
Indeno(1,2,3-c,d)pyrene	μg/L	< 0.050	< 0.050	
Naphthalene	μg/L μg/L	<0.050	<0.050 <0.050	-
				-
Phenanthrene	µg/L	<0.050	<0.050	-
Pyrene	μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050	-
Pyrene Quinoline	μg/L μg/L μg/L	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	
Pyrene Quinoline Volatile Organic Compounds (VOCs)	μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050	- - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene	μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50	- - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene	μg/L μg/L μg/L μg/L μg/L 	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50	- - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50	- - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50	- - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50	- - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	- - - - - - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	- - - - - - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	- - - - - - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (no) Xylene Total Styrene MTBE Hydrocarbons	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C10 ^{-C} C19	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50	- - - - - - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C10 ^{-C} C19	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons	μg/L μg/L	<0.050	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C ₁₀ -C ₁₉ EPH C ₁₀ -C ₃₂	μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.75 <0.50 <0.75 <0.50 <0.75	- - - - - - - - - - - - - - - - - - -
Pyrene Quinoline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene Total Styrene MTBE Hydrocarbons EPH C10°C19 EPH C10°C32 LEPH HEPH	μg/L μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <250 <250 <250 <250	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <2.50 <2.50 270 <250 270	
Pyrene Quincline Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Xylene (m & p) Xylene (o) Xylene (o) Styrene MTBE Hydrocarbons EPH C10 ⁻ C10 ⁻ C32 LEPH	μg/L	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	<0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.75 <0.50 <0.75 <0.50 <250 270 <250	

FIGURES


Figure 1 Monitoring Well Locations and Piezometric Contours

- Figure 2 Site Plan Showing Cross Section Alignment and Receiving Environments
- Figure 3 Cross Section A-A'

- EXISTING MONITORING WELL LOCATION (SHOWN WHITE)
- NEW MONITORING WELL LOCATIONS
- APPROXIMATE EXTENTS OF LTF
- - PIEZOMETRIC CONTOURS (OCTOBER 29, 2014)


50m

CLIENT	ABS HYDROGEOLOGICAL AND ENGINEERING SERVICES McLEAN LAKE LTF - WHITEHORSE, YUKON				
ARCTIC BACKHOE SERVICES LTD.	-	NITORIN D PIEZO			
_	PROJECT NO.	DWN	CKD	REV	
	ENVSWM03344-02	СВ	SK	0	Figure 1
	OFFICE	DATE			rigure i
	EBA-WHSE	Novembe	er 5, 2014		

PROJECT NO. ENVSWM03344-02 REV 0 СВ SK TETRA TECH EBA TŁ Figure 2 OFFICE DATE EBA-WHSE November 7, 2014

OFFICE

EBA-WHSE

DATE

November 7, 2014

APPENDIX A TETRA TECH'S GENERAL CONDITIONS

GEOENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of Tetra Tech EBA's client. Tetra Tech EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. The Client warrants that Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by Tetra Tech EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

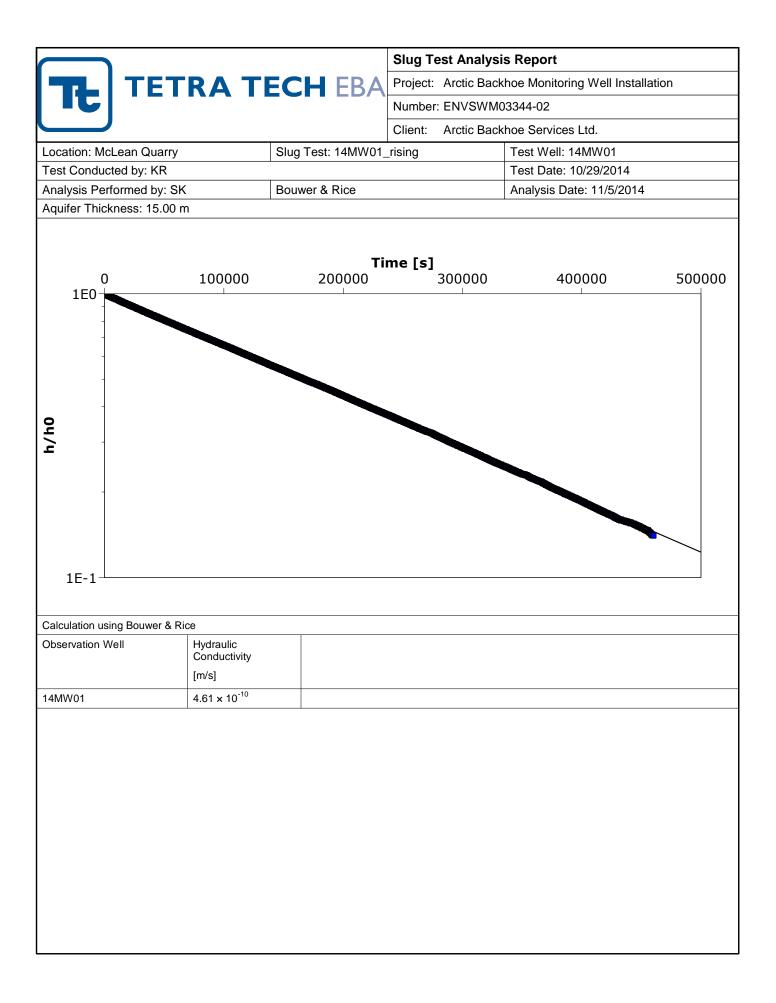
APPENDIX B GROUNDWATER MONITORING WELL LOGS

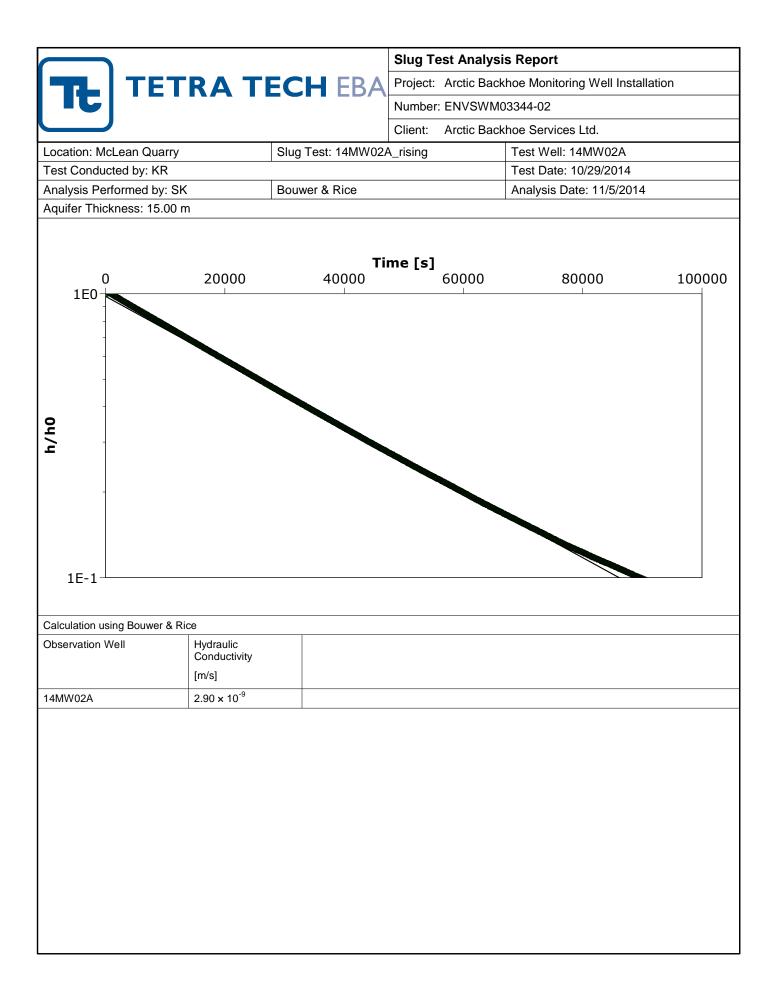
ABS N	IONITORING WELL INSTALLATION	SER	VICES		PROJECT NO BOREHOLE NO.							
LEAS	E 105D11/6/810LTF	Y			ENVSWM03344-02-14MW01							
	EHORSE, YUKON	3.81E	; Zone 8		ELEVATION: 826.45 m							
				A-CASING		.BY TUE		CORE				
BACK	FILL TYPE 📄 BENTONITE 🛛 🚺 PEA GRAVE	EL []]] SLOUGH	[GROUT		RILL CUTTINGS 🚉 SAND IY (kg/m³)□ ♦ CLAY (%) ♦						
			TYPE		BULK DENSITY (k 1400 1600 1800	2000	20 40	60 80	5	Ê		
Depth (m)	SOIL		ЕTY	GROUND ICE DESCRIPTION		■ 80	● SIL1 20 40	Г (%) ● 60 80	14MW01	Elevation (m)		
epth	DESCRIPTION			AND			▲ SAN	D (%) 🛦	1	vatio		
			SAMPLE	COMMENTS	PLASTIC M.C.	-	GRAV	60 80 EL (%) ■		Ē		
= 0	SAND - gravelly, some organics, medium grained, well	praded fine well rounded		Pipe stickup =	20 40 60	80	20 40	60 80		N 926 0 =		
	gravel, damp, loose, brown	j		0.79 metres					un n			
	1	ad anna an ife mala		Elevation TOC - 827.24 metres						825.0_		
E_ 2	 less organics, less silt, some fine to coarse well grad graded 	ed grave, uniformly		021.21110000						824.0_		
	- boulder - granodiorite									·] =		
Ē,	GRANODIORITE							: : : : : : (··?·{··?·{·		823.0		
4								· · · · · · · · · · · · · · · · · · ·		822.0_		
0 0ct29/14												
1.29/1.										8250 8250 8250 8250		
E 68										820.0		
E 7										; =		
8										819.0_		
								•••••••••••••••••••••••••••••••••••••••		, 818.0		
<u> </u>										9 _		
E 10								· · · · · · · · · · · · · · · · · · ·	, o ,	817.0_		
								······································		816.0		
E 11								· · · · · · · · · · · · · · · · · · ·		, 815.0_		
E 12										. E		
										814.0		
E 13								:		813.0		
Ē 14								· · · · · · · · · · · · · · · · · · ·		9 =		
										812.0_		
L 15								•••••••••••••••••••••••••••••••••••••••		811.0		
L 16												
E 17										, 810.0_		
E "										809.0		
E 18												
E 19	- chloritic alterations											
										° 807.0		
E_ 20								· · · · · · · · · · · · · · · · · · ·		806.0		
21								•••••••••••••••••••••••••••••••••••••••		.] ≡		
										805.0_		
E_ 22										804.0		
23								· · · · · · · · · · · · · · · · · · ·				
										803.0		
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 10 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 25 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 10 \\ 10 \\ 11 \\ 12 \\ 23 \\ 24 \\ 25 \\ 10 \\ 10 \\ 11 \\ 12 \\ 23 \\ 24 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$								······································		802.0		
25	_								<u> </u>			
	TETRA TECH EBA			DGGED BY: K EVIEWED BY:		COMPLETION DEPTH: 61.97m COMPLETE: 14/09/23						
			RAWING NO:			age 1 of 3		<u> </u>				
WHITEHOR	SE ENVSWM03344-02.GPJ EBA.GDT 14/11/06											

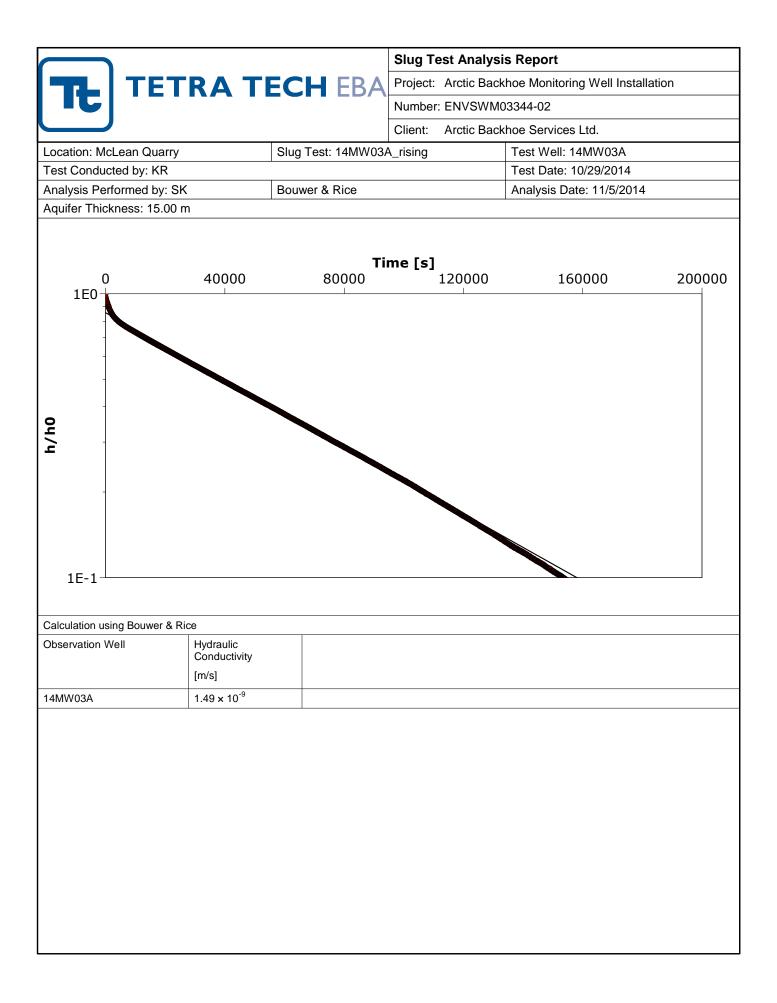
ABS MONITORING WELL INSTALLATION ARCTIC BACKHOE					E SEI	RVICES		PROJECT NO BOREHOLE NO.							
LEASE 105D11/6/810LTF DRILL: AIR ROTA								ENVSWM03344-02-14MW01							
WHITEHORSE, YUKON 6726082.21					8.811	_		ELEVATION: 826.45 m							
	LE TYPE	DISTURBED	NO RECOVE												
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L []]] SLOUGH		GROUT			INGS 🔅			1			
					TYPF		BULK DENSITY (k 1400 1600 1800	2000	20 4	AY (%) ♦ 0 60 80		Ê			
Depth (m)						80	• SI	LT (%) ● 0 60 80	6	Elevation (m)					
epth		DES	SOIL CRIPTION		Ц	AND			≜ SA	ND (%) 🛦	14MW01	vatic			
ă		520			SAMPL	COMMENTS	PLASTIC M.C.		20 4	0 60 80 VEL (%) ■	-	Шè			
≡ 25							20 40 60	80	20 4	0 60 80	•	=			
E 25												801.0_			
E_ 20												800.0			
E_ 27											• • •	799.0_			
E 28											, o ,	/99.0_ <u>=</u>			
												9 798.0			
E_ 29												707 0			
30												797.0_			
												796.0			
E_ 31												795.0_			
32								••••••							
												794.0_			
E_ 33												793.0_			
E 34															
												792.0_			
E_ 35												9 791.0			
<u> </u>											, , , ,	790.0_			
37						•						/90.0_			
												789.0			
E_ 38								•••••••				700 0			
E 39												° 788.0_			
												787.0_			
E_ 40											. d .	۹ 786.0_			
Ē 41															
												785.0_			
E_ 42												784.0_			
43	- chloritic alt	erations] _			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												783.0_			
E 44												782.0			
45												-			
46												781.0_			
												780.0_			
47												 779.0			
48											• • •				
												778.0			
E_ 49]						777.0_			
50											** - *	° _			
	TETRA TECH EBA					OGGED BY: K				TION DEPT		.97m			
						EVIEWED BY: RAWING NO:		COMPLETE: 14/09/23 Page 2 of 3							
WHITEHOR	SE ENV/SWM03344-02	.GPJ EBA.GDT 14/11/06						1	ago 2 01	-					

				ARCTIC BACKHOE	PROJECT NO BOREHOLE NO.											
				DRILL: AIR ROTAR	ENVSWM03344-02-14MW01											
				6726082.2N; 494358.81E; Zone 8						ELEVATION: 826.45 m						
	LE TYPE	DISTURBED	NO RECOVE			A-CASING			LBY TU		CORE					
BACK	BACKFILL TYPE BENTONITE 🖸 PEA GRAVEL 🛄 SLO					GROUT				FINGS 🤅						
					Ц	I	BULK 1400	CDENSITY (1600 1800	kg/m³) □ 2000	20	CLAY (%) 40 60	◆ 80		Ē		
E				TYPF	GROUND ICE		SPT (N)		● SILT (%) ●			14MW01	ע ע			
Depth (m)					DESCRIPTION AND	l 20 40 60		80	80 20 4		40 60 80 SAND (%) ▲		atio			
ا گ		DLO	CRIPTION		SAMPLI	COMMENTS	PLAST	IC M.C.	LIQUI	20 ■GE	40 60 RAVEL (%	80	4	Elevation (m)		
					0.		20	40 60	80	20	40 60	80	<u></u>			
50	- softer										•••••••		· · - · ·	776.0_		
E_ 51														775.0_		
52								· · · · · · · · · · · · · · · · · · ·					* - * * * - * *			
													• – • • • – • •	774.0_		
53													°• - °• • - ••	773.0_		
54													• – • • • – • •	-		
Ē ,,													°∘ – °∘ °∘ – °∘	772.0_		
55								······································	······································			•••••••••••••••••••••••••••••••••••••••	• <u> </u>	771.0_		
<u>56</u>													* <u>-</u> *			
57											• • • • • • •		• <u>-</u> • •	770.0_		
									· · · · · · · · · · · · · · · · · · ·				* <u>-</u> *	769.0_		
58													• – • • • – • •	768.0_		
59													:: :-::			
													* - *	767.0_		
E 60													:: -:-:	766.0_		
E 61																
													* - *	765.0_		
E 62	END OF BORE	EHOLE (61.97 metre	es)		-						••••••••		<u>.• = .•</u>	764.0_		
E 63	water - 4.94	metres on October 29 ell instlaled to 61.87	9, 2014											/04.0		
	wormoning w		licitos											763.0_		
E 64														762.0		
65														=		
Ē.,														761.0_		
E_ 66											••••••••			760.0		
67														=		
														759.0_		
68														758.0_		
Ē 69														=		
E 70														757.0_		
								(* *) * (* *) 1						756.0_		
E 71														755.0_		
E 72											•••••••			/55.0_=		
														754.0_		
E 73								: : : : : : : : : : : : :						753.0_		
 74														100.0_		
E_														752.0		
= 75	_					 .OGGED BY: K	I.E.E. R		<u>; ; ;</u>	COMPL	FTION	DFPT	H· 61	97m		
Т		A TECH EB	A		F	REVIEWED BY			(COMPL	ETE: 14					
	SE ENVSWM03344-02.				Γ	RAWING NO:				Page 3 o	of 3					

ABS MONITORING WELL INSTALLATION ARCTIC BACKHOE S					E SERVIO						PROJECT NO BOREHOLE NO.							
LEASE 105D11/6/810LTF DRILL: AIR ROTARY											ENVSWM03344-02-14MW02							
WHITEHORSE, YUKON 6726139.65N; 494623. CAMPLE TYPE DISTUBSED					623.45E; Z					ELEVATION: 822.3 m								
	SAMPLE TYPE DISTURBED NO RECOVERY SPT BACKFILL TYPE BENTONITE PEA GRAVEL SLOUGH											LL CUTTINGS						
BACK							GROUT DRI					<u>(*;*</u> ; SANE (%) ◆)					
(L)		-			TYPE	GROUNI	DICE	1400 1600 180	0 2000	20	40	<u>60 80</u> (%)●	14MW02A	02B	E)			
th (r	Image: Solic stateImage: Solic s				Ш	DESCRIF	TION		80	20	40	60 80	14MV	14MW02B	tion			
Dep					SAMPL	ANE COMME	, NTS	PLASTIC M.C.	LIQUID	20	40	0 (%) ▲ 60 80			Elevation (m)			
					S	i		20 40 60	080			EL (%) ■ 60 80						
	GRAVEL AND SAND - fine to coarse gravel, well graded, orga rusty brown, woody debris					Pipe A stic = 0.83 m	kup								822.0_			
E_ 1						Pipe B stic	:kup							0 0	821.0_			
2	SAND - grav gravel	elly, some silt, cobbles, , dry to damp	, fine grained, fine to o	coarse rounded		= 0.77 m Elevation	A								820.0_			
ш З	GRANODIO					TOC - 82 metres	3.13							<u>ř al – ľ a</u>				
						Elevation TOC - 82						······································			819.0_			
L 4						metres	5.07								818.0_			
5														000	817.0_			
uluuluu 6¥∀																		
uluu 7														, o o .	816.0_			
												· · · · · · · · · · · · · · · · · · ·		0.0	815.0_			
8															814.0			
9															813.0_			
E 10															1 =			
															812.0			
E_ 11															811.0_			
12															810.0			
E 13																		
															809.0_			
E_ 14													• e •		808.0_			
E_ 15															807.0_			
16														• • • •	806.0			
E_ E_ 17															000.0_			
															805.0_			
E_ 18															804.0_			
19														, o o ,	803.0_			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
															802.0_			
E_ 21															801.0			
E_ 22															800.0			
23												· · · · · · · · · · · · · · · · · · ·						
E24															799.0			
												······································			798.0_			
25	_					 0G(GED	BY: KR					DFP1	<u>∮°°</u> [H: 43	 .58m			
T	TETRA TECH EBA					REVI	LOGGED BY: KR REVIEWED BY: RM					COMPLETION DEPTH: 43.58m COMPLETE: 14/09/23						
WHITEHORSE ENVSWM03344-02 GPJ EBA GDT 14/11/06						DRA	NING	G NO:		P	age '	1 of 2						


ABS	MONITORING	G WELL INSTALLA	ATION	ARCTIC BACKHOE SERVICES							PROJECT NO BOREHOLE NO.								
LEAS	E 105D11/6/8	B10LTF		DRILL: AIR RO	TA	RY				ENVSWM03344-02-14MW02									
	EHORSE, YL	JKON		6726139.65N; 4	946				_		ION: 82								
	PLE TYPE	DISTURBED	NO RECOVE			A-CA			ELBY TUBE CORE										
BACK	(FILL TYPE	BENTONITE	PEA GRAVE		1	GROL	-					AND							
Depth (m)			oil Ription		SAMPLE TYPE	GROUND ICE DESCRIPTION AND COMMENTS	1400 1600 ■SP 20 40 PLASTIC M	ISITY (kg/m³) ⊑ 1800 2000 T (N) 60 80 I.C. LIQUI 60 80		20 40 ● SILT 20 40 ▲ SAN 20 40 ■ GRAV	Y (%) ◆ 60 80 T (%) ● 60 80 D (%) ▲ 60 80 'EL (%) ■ 60 80		14MW02B	Elevation (m)					
25 26							20 40			20 40	00 00			797.0					
27														795.0_					
28														794.0					
30														795.0 795.0					
31														, 791.0					
32 33											· · · · · · · · · · · · · · · · · · ·		- • • • • • • • • • • • • • • • • • • •	790.0					
34													- • • • • • • • • • • • • • • • • • • •	788.0_					
35														787.0					
37											· · · · · · · · · · · · · · · · · · ·		- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	786.0 785.0					
38													-	1 783.0					
40 41 42 43 43													- • • • • • • • • • • • • • • • • • • •	782.0 781.0 780.0 7779.0 7778.0 7778.0 7778.0 7778.0 7778.0					
42													- • • • • • • • • • • • • • • • • • • •	780.0					
43	END OF BOF	REHOLE (43.58 metro	es)		_									779.0_					
	water - 6. Monitoring	well 14MW02A installe 14 metres on October well 14MW02B installe y on October 29, 2014	29, 2014 ed to 2.44 metres											778.0					
45	water - UI	y on Oolober 29, 2014												776.0					
47														775.0					
49														773.0_					
<u> </u>				LOGGED BY: KR						COM	PLETIC		 PTH: 43	⊥ 3.58m					
	L TETF	RA TECH EB	A			REVIEWE		COM	PLETE										
		2.GPJ EBA.GDT 14/11/06			DRAWING NO:						2 of 2								


LEASE 1050116810LTF DRLL: AR ROTARY ENVSW033404-244W03 SAMPLE TYPE DISTURBED MORECOVERY SPT ACASNG Istellar TUBE OCRE SAMPLE TYPE DISTURBED MORECOVERY SPT ACASNG Istellar TUBE OCRE BACKFLIL TYPE BENTOMRE SOIL SCOUL Istellar TUBE DORE OCRE BACKFLIL TYPE SOIL DESCRIPTION Istellar TUBE DORE SAND (NO ROVEL-Integrand Serie (The to course notified to aubounded grand, net to course notifie			WELL INSTALL	ATION		E SERVICES		PROJECT NO BOREHOLE NO.											
SAMD RUFEL TYPE DSTURAED No RECOVERY S PT A CASING THE SHEES TUBE: CORE BACKFLI TYPE BENTONTE PRA GRAVEL IS COLGH CRUIT CUTTINGS S AND EG SOIL CRUIT CUTTINGS S AND CLUY 161 0 S OLA 168 0 S OLA 168 0 EG SOIL DESCRIPTION CRUIT CUTTINGS S AND S OLA 168 0																			
BACKFILL TYPE BENTONTE PEA GRAVEL III SLOUGH C GROUT RelL CUTTINE SAND Image: Solid DESCRIPTION SOIL DESCRIPTION Image: Solid Comparison of the total stand, fine to came founded to stand stand stand, fine to came founded to stand stand stand, fine to came founded to stand stand, fine to came founded to stand stand, fine to came foun			_			945													
End SOIL DESCRIPTION Counce and the second associated and the second performance and the second performanc																			
End SOIL DESCRIPTION End GROUND DC To::::::::::::::::::::::::::::::::::::	BACK		BENTONITE	PEA GRAVE		1	GROL)						
B DESCRIPTION Description <thdescription< th=""> <thdescription< th=""> <thdescri< td=""><td>(m</td><td></td><td>C</td><td></td><td></td><td>TYPE</td><td></td><td>1400 1600 180</td><td>0 2000</td><td>20</td><td>40 (</td><td><u>60 80</u> %)●</td><td>N03A</td><td>W03B</td><td>(m) (</td></thdescri<></thdescription<></thdescription<>	(m		C			TYPE		1400 1600 180	0 2000	20	40 (<u>60 80</u> %)●	N03A	W03B	(m) (
0 SANO AND GRAVELT- fine grained sand, fine to corse rounded to subrounded gravel, well graded, damp, rusty troon Pice A stabular	pth (ш		20 40 60	80	20	40 6 SAND	<u>50 80 </u> (%) ▲	14M	14M	atior				
0 SANO AND GRAVELT- fine grained sand, fine to corse rounded to subrounded gravel, well graded, damp, rusty troon Pice A stabular	De		DESCI	XIP HON		AMF	COMMENTS	PLASTIC M.C.	LIQUID	20	40 6	50 80			lev				
aubounded gravel, weil graded, damp, neaty torown Pipe Betwick Pipe B						S		20 40 60	80	20	40 6	- (%) - 50 80							
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23		SAND AND G subroun	RAVEL - fine grained Ided gravel, well grad	l sand, fine to coarse i led, damp, rusty brow	rounded to n										=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23			0 / 0				Pipe B stickup							- · ·	821.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	2														820.0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23		GRANODIOR	TE				TOC - 822.85					· · · · · · · · · · · · · · · · · · ·		°, −°,	=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23							Elevation B					· · · · · · · · · · · · · · · · · · ·							
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 4										· · · · · ·	· · · · · · · · · · · · · · · · · · ·		\$	<u>81</u> 8.0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23															₽ <u>4</u>				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23																			
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 6												°0 °		816.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 7														815.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23												;		a, o. o	=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23														0.0	=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	9														813.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	L 10											· · · · · · · · · · · · · · · · · · ·			812.0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23											· · · · · · · · · · · · · · · · · · ·	: : : : : : : : : :		6 ~ 0					
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E_ 11													P ~ 9	I =				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 12												,0 ,0	0.0	810.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 13																		
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23															=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E_ 14										· · · ·				808.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	15														807 0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23														0.0					
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23												3 · (· ·) · (· · 1 · · · · · ·							
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 17														805.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	18														804.0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23												· · · · · · · · ·			=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E_ 19											· · · · · · · · · · · · · · · · · · ·			803.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	20														802.0_				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E											· · · · · · · · · · · · · · · · · · ·			=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E_ 22										· · · · · · · · · · · · · · · · · · ·				800.0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	23														799 0				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23											· · · · · ·				=				
TETRA TECH EBALOGGED BY: KRCOMPLETION DEPTH: 43.58mREVIEWED BY: RMCOMPLETE: 14/09/23	E 24														798.0				
REVIEWED BY: RM COMPLETE: 14/09/23	25	_												<u>[</u> 					
			A TECH EB	3A									.30111						
DRAWING NO: Page 1 of 2 WHITEHORSE ENVSWM03344-02.GPJ EBA.GDT 14/11/06 Very Comparison of the second seco					DRAWING														


ABS N	ONITORING	G WELL INSTALLA	TION	ARCTIC BACK	HOE	E SERVICES			PROJECT NO BOREHOLE NO.								
	E 105D11/6/8			DRILL: AIR RC					ENVSWM03344-02-14MW03								
	EHORSE, YL			6726289.05N; 4	945				ELEVATION								
		DISTURBED	NO RECOVE			A-CA			ELBY TUBE CORE								
BACK	FILL TYPE	BENTONITE	PEA GRAVE		1	GROL		_)						
					ΓΥΡΕ		1400 1600 180	0 2000	20 40 60	0 80			Ê				
E C		S	DIL			GROUND ICE DESCRIPTION		I) ■) 80	● SILT (% 20 40 60	5)● 080	'03A	03B	l) uo				
Depth (m)			RIPTION			AND			SAND (%) 🔺	14MW03A	14MW03B	Elevation (m)				
					SAMPL	COMMENTS			GRAVEL	(%) 🔳	÷	-	Ē				
≡ 25							20 40 60	0 80	20 40 60	0 80	<u>.</u>		797.0				
26						1				• • • • • • • • • • • • • • • • • • • •			706 0				
Ē-													796.0				
27								• • • • • • • •					795.0_				
28													794.0				
E_ 29													793.0_				
<u> </u>													792.0				
E 31																	
													/91.0_=				
E_ 32													790.0_				
E 33													780 0				
Ē.,													109.0				
E 34										• • • • • • • • •			788.0_				
35													790.0 789.0 788.0 788.0 788.0				
E 36													786.0				
										· · · · · · · · · · · · · · · · · · ·							
37	- chloritic al	terations											 785.0				
E 38													784.0				
E													/04.0				
E 39													783.0				
Ē 40													782.0				
E 41										• • • • • • • • •			781.0				
<u> </u>													780.0				
L 43										• • • • • • • •							
Lala 40 41 42 42 43 43 44													779.0_				
44	Monitoring	REHOLE (43.58 metre well 14MW03A installe	d to 32.97 metres						•••••••	• • • • • • •			778.0				
	water - 4.	55 metres on October 2 well 14MW03B installe	29, 2014										777.0				
	water - dr	y on October 29, 2014	G (O 2.77 IIIG(IGO														
46													776.0_				
47													775.0				
48													774.0				
H 40													774.0_				
45 46 47 48 48 49													773.0_				
50										· {· · · · · · · · · ·			-				
		RA TECH EB.	Α			LOGGED			COMPL	ETION	DEPT	H: 43	.58m				
	5					DRAWING			COMPL Page 2 d		+/09/2	3					
WHITEHOR	SE ENVSWM03344-0	2.GPJ EBA.GDT 14/11/06							1 490 2 (

APPENDIX C HYDRAULIC RESPONSE TEST DATA AND ANALYSIS

APPENDIX D LABORATORY ANALYTICAL RESULTS

Tetra Tech EBA Inc. ATTN: Gareth Earl 61 Wasson Place Whitehorse YT Y1A 0H7 Date Received:09-OCT-14Report Date:07-NOV-14 13:42 (MT)Version:FINAL REV. 2

Client Phone: 867-668-3068

Certificate of Analysis

Lab Work Order #: L1530485

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED ENVSM03344-02 10-152931

Comments:

7-NOV-2014 Alkalinity, Conductivity, and pH data has been updated for L1530485-1.

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1530485 CONTD.... PAGE 2 of 7 07-NOV-14 13:42 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Version: FINA	
	Sample ID Description Sampled Date Sampled Time Client ID	L1530485-1 Water 08-OCT-14 18:30 14MW01	L1530485-2 Water 08-OCT-14 15:40 14MW02A	L1530485-3 Water 08-OCT-14 19:20 14MW03A	L1530485-4 Water 08-OCT-14 DUP01	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	814	610	734	788	
	Hardness (as CaCO3) (ug/L)	409000	275000	291000	393000	
	рН (рН)	7.88	7.01	7.51	7.69	
	Total Dissolved Solids (ug/L)	526000	328000	484000	524000	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (ug/L)	332000	124000	199000	329000	
	Alkalinity, Carbonate (as CaCO3) (ug/L)	<1000	<1000	<1000	<1000	
	Alkalinity, Hydroxide (as CaCO3) (ug/L)	<1000	<1000	<1000	<1000	
	Alkalinity, Total (as CaCO3) (ug/L)	332000	124000	199000	329000	
Nutrients	Chloride (Cl) (ug/L)	29300	5770	5800	29300	
	Fluoride (F) (ug/L)	249	220	266	250	
	Nitrate (as N) (ug/L)	53.7	414	1430	51.9	
	Nitrite (as N) (ug/L)	7.8	12.6	2.7	8.0	
	Sulfate (SO4) (ug/L)	66100	185000	186000	66200	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (ug/L)	<10	<10	<10	<10	
	Antimony (Sb)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Arsenic (As)-Dissolved (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Barium (Ba)-Dissolved (ug/L)	60	44	43	58	
	Beryllium (Be)-Dissolved (ug/L)	<5.0	<5.0	<5.0	<5.0	
	Boron (B)-Dissolved (ug/L)	<100	<100	<100	<100	
	Cadmium (Cd)-Dissolved (ug/L)	0.081	0.063	0.082	0.078	
	Calcium (Ca)-Dissolved (ug/L)	111000	79600	87500	107000	
	Chromium (Cr)-Dissolved (ug/L)	<0.50	<0.50	<0.50	<0.50	
	Cobalt (Co)-Dissolved (ug/L)	2.25	1.65	2.01	2.20	
	Copper (Cu)-Dissolved (ug/L)	2.1	2.9	3.1	2.1	
	Iron (Fe)-Dissolved (ug/L)	<30	<30	<30	<30	
	Lead (Pb)-Dissolved (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Lithium (Li)-Dissolved (ug/L)	<50	<50	<50	<50	
	Magnesium (Mg)-Dissolved (ug/L)	32000	18400	17500	30600	
	Manganese (Mn)-Dissolved (ug/L)	700	466	645	666	
	Mercury (Hg)-Dissolved (ug/L)	<0.20	<0.20	<0.20	<0.20	
	Molybdenum (Mo)-Dissolved (ug/L)	3.0	2.7	2.0	3.1	
	Nickel (Ni)-Dissolved (ug/L)	10.4	8.1	11.3	10.1	
	Selenium (Se)-Dissolved (ug/L)	<1.0	<1.0	<1.0	<1.0	
	Silver (Ag)-Dissolved (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Sodium (Na)-Dissolved (ug/L)	26500	11900	24100	26600	

L1530485 CONTD.... PAGE 3 of 7 07-NOV-14 13:42 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

					Version: FINAL F
	Sample ID Description Sampled Date Sampled Time Client ID	L1530485-1 Water 08-OCT-14 18:30 14MW01	L1530485-2 Water 08-OCT-14 15:40 14MW02A	L1530485-3 Water 08-OCT-14 19:20 14MW03A	L1530485-4 Water 08-OCT-14 DUP01
Grouping	Analyte				
WATER					
Dissolved Metals	Thallium (TI)-Dissolved (ug/L)	0.00	0.00	0.00	
Discorrea metale	Titanium (Ti)-Dissolved (ug/L)	<0.20	<0.20	<0.20	<0.20
	Uranium (U)-Dissolved (ug/L)	<50	<50	<50	<50
	Vanadium (V)-Dissolved (ug/L)	9.71	11.4	4.37	9.81
	Zinc (Zn)-Dissolved (ug/L)	<30	<30	<30	<30
Volatile Organic	Benzene (ug/L)	21.0	<5.0	<5.0	19.6
Compounds		<0.50	<0.50	<0.50	<0.50
	Ethylbenzene (ug/L)	<0.50	<0.50	<0.50	<0.50
	Methyl t-butyl ether (MTBE) (ug/L)	<0.50	<0.50	<0.50	<0.50
	Styrene (ug/L)	<0.50	<0.50	<0.50	<0.50
	Toluene (ug/L)	<0.50	<0.50	<0.50	<0.50
	ortho-Xylene (ug/L)	<0.50	<0.50	<0.50	<0.50
	meta- & para-Xylene (ug/L)	<0.50	<0.50	<0.50	<0.50
	Xylenes (ug/L)	<0.75	<0.75	<0.75	<0.75
	Surrogate: 4-Bromofluorobenzene (SS) (%)	100.7	99.1	97.3	98.5
	Surrogate: 1,4-Difluorobenzene (SS) (%)	100.2	100.0	100.0	100.1
Hydrocarbons	EPH10-19 (ug/L)	<250	<250	<250	<250
	EPH19-32 (ug/L)	<250	<250	<250	270
	LEPH (ug/L)	<250	<250	<250	<250
	HEPH (ug/L)	<250	<250	<250	270
	Volatile Hydrocarbons (VH6-10) (ug/L)	<100	<100	<100	<100
	VPH (C6-C10) (ug/L)	<100	<100	<100	<100
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	88.5	94.8	99.1	98.1
Polycyclic Aromatic Hydrocarbons	Acenaphthene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Acenaphthylene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Acridine (ug/L)	<0.050	<0.050	<0.050	<0.050
	Anthracene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Benz(a)anthracene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (ug/L)	<0.010	0.057	<0.010	<0.010
	Benzo(b)fluoranthene (ug/L)	<0.050	0.065	<0.050	<0.050
	Benzo(g,h,i)perylene (ug/L)	<0.050	< 0.050	<0.050	<0.050
	Benzo(k)fluoranthene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Chrysene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Fluoranthene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Fluorene (ug/L)	<0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (ug/L)	<0.050	<0.050	<0.050	<0.050

L1530485 CONTD.... PAGE 4 of 7 07-NOV-14 13:42 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1530485-1 Water 08-OCT-14 18:30 14MW01	L1530485-2 Water 08-OCT-14 15:40 14MW02A	L1530485-3 Water 08-OCT-14 19:20 14MW03A	L1530485-4 Water 08-OCT-14 DUP01	
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Naphthalene (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Phenanthrene (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Pyrene (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Quinoline (ug/L)	<0.050	<0.050	<0.050	<0.050	
	Surrogate: Acenaphthene d10 (%)	96.3	94.0	92.4	100.2	
	Surrogate: Acridine d9 (%)	97.1	90.7	89.2	100.9	
	Surrogate: Chrysene d12 (%)	91.1	88.7	90.1	97.4	
	Surrogate: Naphthalene d8 (%)	109.2	91.8	94.8	115.6	
	Surrogate: Phenanthrene d10 (%)	94.1	93.8	89.9	97.7	

OC Samples with Qualifiers & Comments

Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Aluminum (AI)-Dissolved Antimony (Sb)-Dissolved Cadmium (Cd)-Dissolved Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved Copper (Cu)-Dissolved Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA DLA DLA DLA DLA DLA	L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1
Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Matrix Spike Matrix Spike		Cadmium (Cd)-Dissolved Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved Copper (Cu)-Dissolved Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (Tl)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA DLA DLA DLA	L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1
Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved Copper (Cu)-Dissolved Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA DLA DLA DLA	L1530485-1 L1530485-1 L1530485-1 L1530485-1 L1530485-1
Duplicate Duplicate Duplicate Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Cobalt (Co)-Dissolved Copper (Cu)-Dissolved Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA DLA DLA	L1530485-1 L1530485-1 L1530485-1 L1530485-1
Duplicate Duplicate Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Copper (Cu)-Dissolved Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA DLA	L1530485-1 L1530485-1 L1530485-1
Duplicate Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Lead (Pb)-Dissolved Silver (Ag)-Dissolved Thallium (Tl)-Dissolved Calcium (Ca)-Dissolved	DLA DLA DLA	L1530485-1 L1530485-1
Duplicate Duplicate Matrix Spike Matrix Spike Matrix Spike		Silver (Ag)-Dissolved Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA	L1530485-1
Duplicate Matrix Spike Matrix Spike Matrix Spike		Thallium (TI)-Dissolved Calcium (Ca)-Dissolved	DLA	
Matrix Spike Matrix Spike Matrix Spike		Calcium (Ca)-Dissolved		L1530485-1
Matrix Spike Matrix Spike		()		
Matrix Spike			MS-B	L1530485-2, -3, -4
•		Sulfate (SO4)	MS-B	L1530485-1, -2, -3, -4
Matrix Spike		Sulfate (SO4)	MS-B	L1530485-1, -2, -3, -4
		Sulfate (SO4)	MS-B	L1530485-1, -2, -3, -4
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L1530485-2, -3, -4
Matrix Spike		Uranium (U)-Dissolved	MS-B	L1530485-2, -3, -4
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1530485-1
Qualifiers for Ind	ividual Parameters	Listed:		
Qualifier D	Description			
DLA D	Detection Limit adjust	ed for required dilution		
MS-B N	Atrix Spike recovery	could not be accurately calculated du	e to high analyte	background in sample.
est Method Refe	arences.			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration		APHA 2320 "Alkalinity"
				otal alkalinity is determined by potentiometric titration to another the titration to a state of the titration to a state of the titration to be a state of the titration of the titration to be a state of the titration of titration of the titration of titration of the titration of titratio of titration of tit
ALK-PCT-VA	Water	Alkalinity by Auto. Titration		APHA 2320 Alkalinity
				otal alkalinity is determined by potentiometric titration to a thalein alkalinity and total alkalinity values.
ANIONS-CL-IC-WR	Water	Chloride by Ion Chromatography		EPA 300.1
				n of Inorganic Anions by Ion Chromatography", Revision Hydroxide-Selective Column", Application Note 154 v.19
ANIONS-F-IC-WR	Water	Fluoride by Ion Chromatography		EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

Nitrite Nitrogen by Ion Chromatography ANIONS-NO2-IC-WR Water

ANIONS-NO3-IC-WR

EPA 300.1

EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

Nitrate Nitrogen by Ion Chromatography This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR	Water	Sulphate by Ion Chromatography	E	PA 300.1
	0.	•		Inorganic Anions by Ion Chromatography", Revision droxide-Selective Column", Application Note 154 v.19,

EC-PCT-VA Water Conductivity (Automated)

Water

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

EPH-SF-FID-VA Water EPH in Water by GCFID BC MOE EPH GCFID

APHA 2510 Auto. Conduc.

Analysis is in accordance with BC MOE Lab Manual method "Extractable Petroleum Hydrocarbons in Water by GC/FID", v2.1, July 1999. Whole water

Hardness HARDNESS-CALC-VA Water APHA 2340B Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. Water Dissolved Mercury in Water by CVAFS EPA SW-846 3005A & EPA 245.7 HG-DIS-CVAFS-VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United

samples are extracted with DCM prior to gas chromatography with flame ionization detection (GC-FID). EPH results include Polycyclic Aromatic

Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

Dissolved Metals in Water by ICPOES

States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA Water LEPHs and HEPHs

Water

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

Dissolved Metals in Water by ICPMS(Low) EPA SW-846 3005A/6020A MET-DIS-LOW-MS-VA Water This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A).

Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A). PAH-SF-MS-VA Water PAH in Water by GCMS EPA 3510, 8270 The entire water sample is extracted with dichloromethane, prior to analysis by gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(i)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PAH-SURR-MS-VA PAH Surrogates for Waters Water

Analysed as per the corresponding PAH test method. Known quantities of surrogate compounds are added prior to analysis to each sample to demonstrate analytical accuracy.

PH-PCT-VA Water pH by Meter (Automated)

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA

MET-DIS-ICP-VA

Water pH by Meter (Automated)

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC							
5	01		s are determined gravimetrically. Total Dissolved Solids vaporating the filtrate to dryness at 180 degrees celsius.							
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	B.C. MIN. OF ENV. LAB. MAN. (2009)							
The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.										
VH-SURR-FID-VA	Water	VH Surrogates for Waters	B.C. MIN. OF ENV. LAB. MAN. (2009)							
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA8260B, 5021							
The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.										
VOCZIVOC SUPP MS VA	\M/ator	VOC7 and/or VOC Surrogatos for Waters	EDA2260B 5021							

VUC//VUC-SURK-INS-VA	valei	voor allu/or voo Sullogales for walers	LI A0200D, 3021
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)

BC MOE LABORATORY MANUAL (2005)

EPA SW-846 3005A/6010B

EPA 3510, 8270

APHA 4500-H "pH Value"

APHA 4500-H pH Value

These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10).

XYLENES-CALC-VA

Water Sum of Xylene Isomer Concentrations CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

10-152931

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

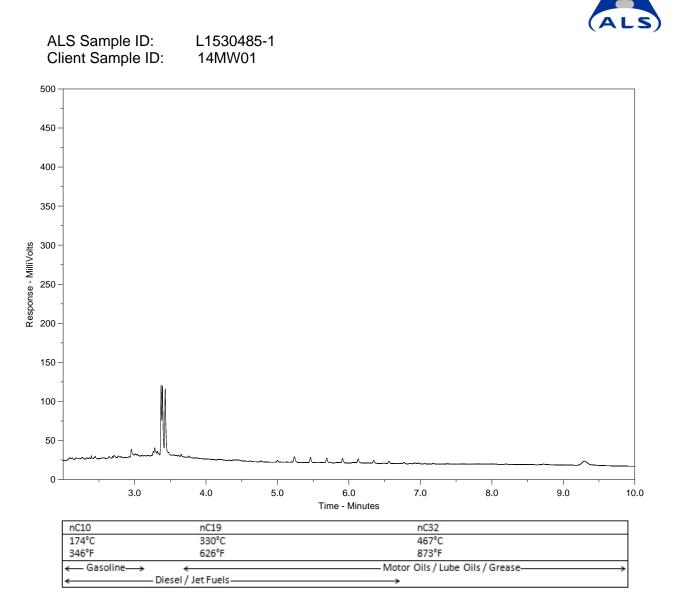
mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

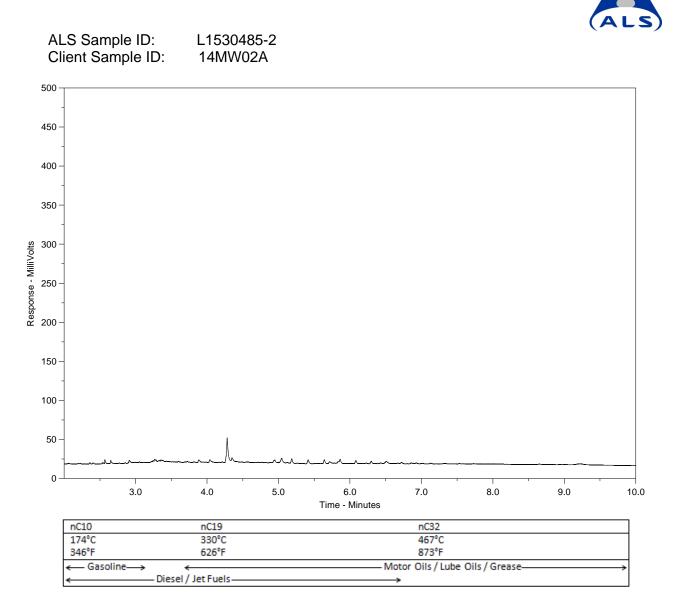
< - Less than.


D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

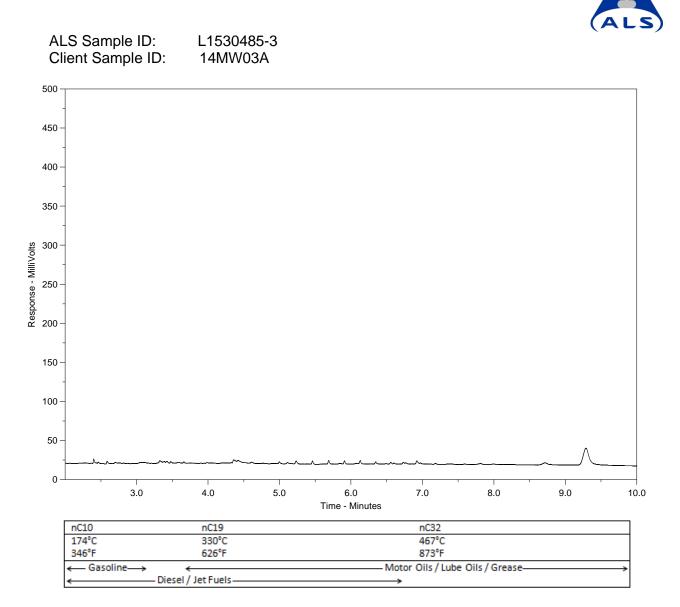
Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.


Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

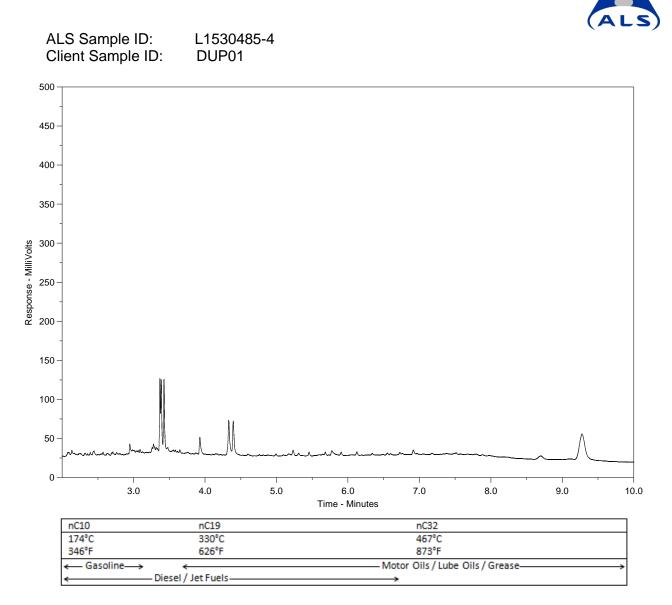
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

Chain of Custody / Analytical Reque Canada Toll Free: 1 800 668 98

www.alsglobal.com

Environmental

) of Page

10-152931

									1	L153	0485	0-COF	-C								
	areth Earl	00	with ear	1@ tehratech	Report Fo	ormat / Di	stributio	on		tact ALS to confirm TAT)											
	tra Tech EE	A V			Standard:	$\overline{\mathcal{C}}$	Other (s			~	Regula	v (Standa	arđ Turna	around T	īmes - B	lusiness (
Contact: 61	Wasson Pla	le			Select: Pl		Excel	Digital V	Fax		Priority	(2-4 Bus	iness Da	ys)-50%	surchar	rge - Cont	act ALS to	confirm T	TAT		
Address: U	Intehorse, Y.	٢			Email 1:	garet	h. ca	-10 tetrai	tech un	Emergency (1-2 Bosiness Days)-100% Surcharge - Contact ALS to confirm TAT											
	1A 0H7				Email 2:	Elian	· 104	@ te trat	ection.	Same Day or Weekend Emergency - Contact ALS to confirm TAT											
Phone:		Fax:								Analysis Request											
	Same as Report ? (circ			ide details)		Client / Project Information						(Indicate Filtered or Preserved, F/P)									
Company;	Copy of Invoice with Re	eport? (circle)	Yes or No		Job #: £	JOD#: ENUSWM03344-02.						\leq					42	\mathbb{Z}	\square	\geq	
Contact:					PO/AFE:			-	•												
Address:					LSD:					4											
Phone:	····	Fax;			Quote #:	OT	2-29	6		-	<u>د</u> .	2			:						Number of Containers
					ALS	<u>tx y.</u> /			1 0		4	3	T.							·	onta
ab Work Ord	0 Work Order # (lab use only)							Sampler: Kn	sten Range	time	D. Hetals	Heriuku	PAH/CPH	X	ú						วั ธ
Sample #		•	Identificatio			Dat		Time	Sample Type	130		,	푀	BTEX	VOCS					-	lber
	(Thi	s description	will appear on	the report)		(dd-mi	nm-yy)	(hh:mm)	Sample Type	<u> </u>	\square	P	4	60	\geq		-				Unu
	14MWO1					Oct	3,14	6:30 pr	Water	~	1	/	~		イ			\square		6	
	144002					(3:400m		~	~			/	~						6
	14MW03			•				7:20pm				7	オ	/						Ĩ	_
	DipOl						7	1 mpr			۲,				7			┝╼┈┤			
		······································												<u> </u>	-+		1:	╞──┤	<u> </u>	- 6	
													<u> </u>								
					<u>.</u>					-						_					
	· · · · · · · · · · · · · · · · · · ·																				
										_											
									· · · · · ·									\square			
		-																			
																					-
	· · · · · · · · · · · · · · · · · · ·						•••••											┝──╋	<u> </u>		
	Specia	I Instructions	/ Regulation	with water or la	nd use (CCM	I 1E- Fresh	water Ar	uatic Life/BC C	SR-Commercial/A	Bition	4_Not			10705		Vitetie		L	1		_
				A .							1 1140		<u> ()</u>	lazaru	ious L	Jetans :					<u> </u>
D. Mei	rarry & D.	Metals	Field	hlfred	e prese	evved															
	J		Failu	ire to complete a	all portions o	of this for	m may d	elay analysis. P	lease fill in this fo	orm LE	GIBL	ί.							· · · ·		-
	Byt	the use of this	s form the us	er acknowledge	s and agree	s with the	Terms a	and Conditions a	s specified on th	e back	page	of the	white	- repo	ort co	py.					
	SHIPMENT RELEA	SE (client use)		SHIPMENT RECEPTION (lab use only)					SHIPMENT VERIFICATION (lab use only)								┫			
Released by:	by: Date: Time: Receive									Verified by: Date: Time: Observation							۲				
						19.0CT	17.	10:35	0.2 °C									1	Yes / No		
REFE	R TO BACK PAGE FOR	ALS LOCATION	S AND SAMPI		DN	N WHITE - LABORATORY COPY					OW - C		COPY						If Yes a 18.01 F		┛
																		UCINE	10.01	IVIII	

Tetra Tech EBA Inc. ATTN: Gareth Earl 61 Wasson Place Whitehorse YT Y1A 0H7 Date Received:03-OCT-14Report Date:22-OCT-14 17:15 (MT)Version:FINAL REV. 2

Client Phone: 867-668-3068

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1527797 NOT SUBMITTED ENVSWM03344-02 10-218799 ABS LTF

Comments:

22-OCT-2014 This report replaces the previous version and contains additional analyses, as requested.

Brent Mack, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1527797 CONTD.... PAGE 2 of 3 22-OCT-14 17:15 (MT) Version: FINAL REV. 2

					on: Fir	
	Sample ID Description Sampled Date Sampled Time Client ID	L1527797-1 Groundwater 30-SEP-14 14MW01	L1527797-2 Groundwater 02-OCT-14 14MW02A			
Grouping	Analyte					
WATER						
Hydrocarbons	EPH10-19 (ug/L)	<250	<250			
-	EPH19-32 (ug/L)	<250	430			
	LEPH (ug/L)	<250	<250			
	HEPH (ug/L)	<250	430			
Polycyclic Aromatic Hydrocarbons	Acenaphthene (ug/L)	<0.050	<0.050			
	Acenaphthylene (ug/L)	<0.050	<0.050			
	Acridine (ug/L)	<0.050	<0.050			
	Anthracene (ug/L)	<0.050	<0.050			
	Benz(a)anthracene (ug/L)	<0.050	<0.050			
	Benzo(a)pyrene (ug/L)	<0.010	<0.010			
	Benzo(b)fluoranthene (ug/L)	<0.050	<0.050			
	Benzo(g,h,i)perylene (ug/L)	<0.050	<0.050			
	Benzo(k)fluoranthene (ug/L)	<0.050	<0.050			
	Chrysene (ug/L)	<0.050	<0.050			
	Dibenz(a,h)anthracene (ug/L)	<0.050	<0.050			
	Fluoranthene (ug/L)	<0.050	<0.050			
	Fluorene (ug/L)	<0.050	<0.050			
	Indeno(1,2,3-c,d)pyrene (ug/L)	<0.050	<0.050			
	Naphthalene (ug/L)	<0.050	<0.050			
	Phenanthrene (ug/L)	<0.050	<0.050			
	Pyrene (ug/L)	<0.050	<0.050			
	Quinoline (ug/L)	<0.050	<0.050			
	Surrogate: Acenaphthene d10 (%)	91.4	95.8			
	Surrogate: Acridine d9 (%)	97.7	102.9			
	Surrogate: Chrysene d12 (%)	94.6	93.9			
	Surrogate: Naphthalene d8 (%)	89.7	96.5			
	Surrogate: Phenanthrene d10 (%)	95.1	98.4			

L1527797 CONTD.... PAGE 3 of 3 22-OCT-14 17:15 (MT) Version: FINAL REV. 2

Test Method References: ALS Test Code Matrix Method Reference** **Test Description EPH-SF-FID-VA** Water EPH in Water by GCFID BC MOE EPH GCFID Analysis is in accordance with BC MOE Lab Manual method "Extractable Petroleum Hydrocarbons in Water by GC/FID", v2.1, July 1999. Whole water samples are extracted with DCM prior to gas chromatography with flame ionization detection (GC-FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH). LEPHs and HEPHs BC MOE LABORATORY MANUAL (2005) LEPH/HEPH-CALC-VA Water Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999). PAH-SF-MS-VA Water PAH in Water by GCMS FPA 3510, 8270 The entire water sample is extracted with dichloromethane, prior to analysis by gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(i)fluoranthene is reported as part of the benzo(b)fluoranthene parameter. PAH Surrogates for Waters EPA 3510, 8270 PAH-SURR-MS-VA Water Analysed as per the corresponding PAH test method. Known quantities of surrogate compounds are added prior to analysis to each sample to demonstrate analytical accuracy. ** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

10-218799

GLOSSARY OF REPORT TERMS

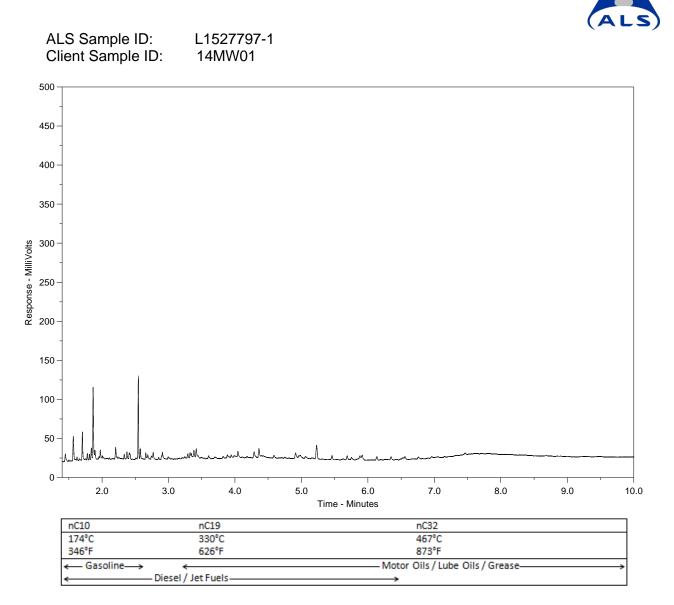
Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

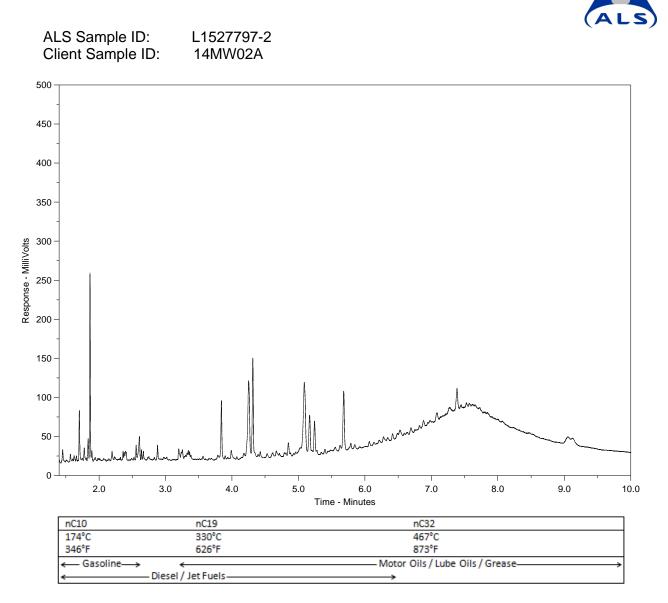
mg/L - milligrams per litre.


< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.


Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

										10.	- 21	.87	99		
ALS Environmental	(Chain of Custody / Canada Toli www.	/ Analytical Re Free: 1 800 668 alsglobal.com	quest 3 9878	 	52779)7-COF				Pi	age _	<u> </u>	л _	}
Report To	Report	Format / Distributio	n								ALS to co	ofirm TAT	 D		
Company: FBA	Standar				M	Regular (Standard Tumaround Times - Business Days)									
Sontact: Spreth Earl or ELIANE			Digital	Fax	¶ ^e ∠√	Priority(2-4 Business	Days)-509	% surchar	ge - Conta	ct ALS to c	confirm TA	г		
Address:		gareth, es			Emergency (1-2 8usiness Days)-100% Surcharge - Contact ALS to confirm TAT										
	Email 2:		1 R. C.W	stech.can	Same Day or Weekend Emergency - Contact ALS to confirm TAT										
Phone: Fax:			*)	<u></u>	Analysis Request										
nvoice To Same as Report ? (circle Yes) or No (if N	to, provide details) Client /	Project Information		<u> </u>	(indicate Filtered or Preserved, F/P)										
Copy of Invoice with Report? (circle) Yes	or No Job #:	ENVSWM	.03844	-02	\square			\square	\square		1 >		ス		
Company:	PO / AF	E:		;						· ·	- F	r r			
Dontact:	LSD:			· .	完全										
\ddress:	AB	S LTF			実								-		SIS
Phone: Fax:	Quote #	•]_ <u>S</u>	Þ				1. A.			17		aine
ab Work Order # (lab use only)	ALS Contact	t:	Sampler:	· · · · ·	Extra do only	ρ									of Cont
Sample # Sample Iden (This description will an		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Eta	N0LD	1.								Number of Containers
14,000		Sept. 30		annulut	\overline{X}	X									3
14 MW02A		0002		I MINAU MAAAAA	नि	1		- <u> -</u>			-		+		<u>3</u>
		0000			$\overline{\beta}$										
14MW03A	,,,,,,,	0001	·	¥	α	M								<u>-</u> +-	3
				· · · · · · · · · · · · · · · · · · ·	<u> </u>							\square			
			-	-					·		I			÷	
								·							
· · · · · · · · · · · · · · · · · · ·						1									
												\vdash	-+		
					<u> </u>			+ - +			- 	┝──┼-		+	
					<u> </u>	i					\perp	\square	\square		
					1										
Special Instructions / Re	gulation with water or land use (C	CME- Freshwater A	quatic Life/BC (CSR-Commercial/A	B Tie	r 1-Nat	ural/ETC)	/ Haza	rdous l	Details	 ·				
	Failure to complete all portion	a of this form man	deleu enclusia	Diana dill in this fa			7	•••••							
	m the user acknowledges and agr	ees with the Terms	and Conditions	as specified on the			of the wh				<u> </u>				
SHIPMENT RELEASE (client use)		SHIPMENT RECEPT	ION (lab use only	/)	1	•	SHIP	MENT	VERIFI	CATION	(lab us/	e only)	-		

SHIPMENT RELEASE (client use)			SHIPMENT RECEPTION (lab use only)				SHIPMENT VERIFICATION (lab use only)						
Released by:	Octo,3	Time: 2: ISpm	Received by:	Date: 3-0ct-14	Time: 2:15	Temperature: 3 3 °C	Verified by:	Date:	Time:	Observations: Yes / No ? If Yes add SIF			
REFER TO BACK PAC	GE FOR ALS LOCATIONS	S AND SAMPLING I			WHITE - L	ABORATORY COPY	YELLOW - CLIEN	I COPY		GENF 18.01 Front			

Tetra Tech EBA Inc. ATTN: Gareth Earl 61 Wasson Place Whitehorse YT Y1A 0H7 Date Received: 26-SEP-14 Report Date: 09-OCT-14 15:20 (MT) Version: FINAL

Client Phone: 867-668-9222

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1524111 NOT SUBMITTED ENVSWM03344-02 10-152932

Mack

Brent Mack Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1524111 CONTD.... PAGE 2 of 6 09-OCT-14 15:20 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1524111-1 Groundwater 26-SEP-14 11:10 ML-LTF-WELL#4		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	633		
	Hardness (as CaCO3) (ug/L)	373000		
	рН (рН)	7.53		
Anions and Nutrients	Chloride (Cl) (ug/L)	3040		
	Nitrate (as N) (ug/L)	3260		
	Nitrite (as N) (ug/L)	1.4		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD		
	Dissolved Metals Filtration Location	FIELD		
	Aluminum (AI)-Dissolved (ug/L)	<10		
	Antimony (Sb)-Dissolved (ug/L)	<0.50		
	Arsenic (As)-Dissolved (ug/L)	<1.0		
	Barium (Ba)-Dissolved (ug/L)	143		
	Beryllium (Be)-Dissolved (ug/L)	<5.0		
	Boron (B)-Dissolved (ug/L)	<100		
	Cadmium (Cd)-Dissolved (ug/L)	<0.050		
	Calcium (Ca)-Dissolved (ug/L)	127000		
	Chromium (Cr)-Dissolved (ug/L)	0.79		
	Cobalt (Co)-Dissolved (ug/L)	<0.50		
	Copper (Cu)-Dissolved (ug/L)	1.1		
	Iron (Fe)-Dissolved (ug/L)	<30		
	Lead (Pb)-Dissolved (ug/L)	<1.0		
	Lithium (Li)-Dissolved (ug/L)	<50		
	Magnesium (Mg)-Dissolved (ug/L)	13700		
	Manganese (Mn)-Dissolved (ug/L)	<10		
	Mercury (Hg)-Dissolved (ug/L)	<0.20		
	Molybdenum (Mo)-Dissolved (ug/L)	1.2		
	Nickel (Ni)-Dissolved (ug/L)	<5.0		
	Selenium (Se)-Dissolved (ug/L)	<1.0		
	Silver (Ag)-Dissolved (ug/L)	<0.050		
	Sodium (Na)-Dissolved (ug/L)	5700		
	Thallium (TI)-Dissolved (ug/L)	<0.20		
	Titanium (Ti)-Dissolved (ug/L)	<50		
	Uranium (U)-Dissolved (ug/L)	1.22		
	Vanadium (V)-Dissolved (ug/L)	<30		
	Zinc (Zn)-Dissolved (ug/L)	<5.0		
Volatile Organic Compounds	Benzene (ug/L)	<0.50		

L1524111 CONTD.... PAGE 3 of 6 09-OCT-14 15:20 (MT) Version: FINAL

		1		Veis	1 1114
	Sample ID Description Sampled Date Sampled Time Client ID	L1524111-1 Groundwater 26-SEP-14 11:10 ML-LTF-WELL#4			
Grouping	Analyte				
WATER	•				
Volatile Organic Compounds	Ethylbenzene (ug/L)	<0.50			
	Methyl t-butyl ether (MTBE) (ug/L)	<0.50			
	Styrene (ug/L)	<0.50			
	Toluene (ug/L)	<0.50			
	ortho-Xylene (ug/L)	<0.50			
	meta- & para-Xylene (ug/L)	<0.50			
	Xylenes (ug/L)	<0.75			
	Surrogate: 4-Bromofluorobenzene (SS) (%)	102.0			
	Surrogate: 1,4-Difluorobenzene (SS) (%)	100.4			
Hydrocarbons	EPH10-19 (ug/L)	<250			
	EPH19-32 (ug/L)	<250			
	LEPH (ug/L)	<250			
	HEPH (ug/L)	<250			
	Volatile Hydrocarbons (VH6-10) (ug/L)	<100			
	VPH (C6-C10) (ug/L)	<100			
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	107.7			
Polycyclic Aromatic Hydrocarbons	Acenaphthene (ug/L)	<0.050			
-	Acenaphthylene (ug/L)	<0.050			
	Acridine (ug/L)	<0.050			
	Anthracene (ug/L)	<0.050			
	Benz(a)anthracene (ug/L)	<0.050			
	Benzo(a)pyrene (ug/L)	<0.010			
	Benzo(b)fluoranthene (ug/L)	<0.050			
	Benzo(g,h,i)perylene (ug/L)	<0.050			
	Benzo(k)fluoranthene (ug/L)	<0.050			
	Chrysene (ug/L)	<0.050			
	Dibenz(a,h)anthracene (ug/L)	<0.050			
	Fluoranthene (ug/L)	<0.050			
	Fluorene (ug/L)	<0.050			
	Indeno(1,2,3-c,d)pyrene (ug/L)	<0.050			
	Naphthalene (ug/L)	<0.050			
	Phenanthrene (ug/L)	<0.050			
	Pyrene (ug/L)	<0.050			
	Quinoline (ug/L)	<0.050			
	Surrogate: Acenaphthene d10 (%)	98.5			
	Surrogate: Acridine d9 (%)	100.8			

L1524111-1 Sample ID Description Groundwater Sampled Date 26-SEP-14 11:10 Sampled Time ML-LTF-WELL#4 Client ID Analyte Grouping WATER Surrogate: Chrysene d12 (%) Polycyclic 98.7 Aromatic Hydrocarbons Surrogate: Naphthalene d8 (%) 94.4 Surrogate: Phenanthrene d10 (%) 102.9

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1524111 CONTD.... PAGE 4 of 6 09-OCT-14 15:20 (MT) Version: FINAL

L1524111 CONTD PAGE 5 of 6 09-OCT-14 15:20 (MT) Version: FINAL

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L1524111-1
•		· · · ·		
Qualifiers for Individua Qualifier Descrip		Listed:		
•				
MS-B Matrix S	Spike recovery	v could not be accurately calculated d	ue to high analyte	background in sample.
est Method Reference	es:			
LS Test Code	Matrix	Test Description		Method Reference**
NIONS-CL-IC-WR	Water	Chloride by Ion Chromatography		EPA 300.1
				n of Inorganic Anions by Ion Chromatography", Revision Hydroxide-Selective Column", Application Note 154 v.1
NIONS-NO2-IC-WR	Water	Nitrite Nitrogen by Ion Chromatogr	aphy	EPA 300.1
	"Determinatio	n of Inorganic Anions in Environment		n of Inorganic Anions by Ion Chromatography", Revision Hydroxide-Selective Column", Application Note 154 v.1
NIONS-NO3-IC-WR	Water	Nitrate Nitrogen by Ion Chromatog	raphy	EPA 300.1
	"Determinatio	n of Inorganic Anions in Environment		n of Inorganic Anions by Ion Chromatography", Revision Hydroxide-Selective Column", Application Note 154 v.1
C-MAN-WR	Water	Conductivity by Meter		APHA 2510 (B)
This analysis is carried o	out using proce	edures adapted from APHA Method 2	510 "Conductivity"	. Conductivity is determined using an electrode.
PH-SF-FID-VA	Water	EPH in Water by GCFID		BC MOE EPH GCFID
Analysis is in accordance samples are extracted w	ith DCM prior	E Lab Manual method "Extractable Pe	ization detection (bons in Water by GC/FID", v2.1, July 1999. Whole wat GC-FID). EPH results include Polycyclic Aromatic im Hydrocarbons (LEPH/HEPH).
ARDNESS-CALC-VA	Water	Hardness		APHA 2340B
		ess) is calculated from the sum of Cal ncentrations are preferentially used for		ium concentrations, expressed in CaCO3 equivalents. Iculation.
G-DIS-CVAFS-VA	Water	Dissolved Mercury in Water by CV	AFS	EPA SW-846 3005A & EPA 245.7
American Public Health / States Environmental Pr involves a cold-oxidation	Association, a otection Agen of the acidifie	nd with procedures adapted from "Te cy (EPA). The procedures may involv	st Methods for Eva ve preliminary sam e prior to reductior	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United pple treatment by filtration (EPA Method 3005A) and n of the sample with stannous chloride. Instrumental rophotometry (EPA Method 245.7).
EPH/HEPH-CALC-VA	Water	LEPHs and HEPHs		BC MOE LABORATORY MANUAL (2005)
Environment, Lands, and Solids or Water". Accord Extractable Petroleum H and Phenanthrene are si Fluoranthene, and Pyren	d Parks Analyt ding to this me ydrocarbon re ubtracted from le are subtract	tical Method for Contaminated Sites "(ethod, LEPH and HEPH are calculated sults. To calculate LEPH, the individu n EPH(C10-19). To calculate HEPH, t	Calculation of Ligh d by subtracting se ual results for Ace the individual resul xtractable Petroleu	according to the British Columbia Ministry of t and Heavy Extractable Petroleum Hydrocarbons in elected Polycyclic Aromatic Hydrocarbon results from naphthene, Acridine, Anthracene, Fluorene, Naphthalen Its for Benz(a)anthracene, Benzo(a)pyrene, um Hydrocarbons adheres to all prescribed elements of , July 20, 1999).
IET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPO	DES	EPA SW-846 3005A/6010B
American Public Health	Association, a otection Agen	nd with procedures adapted from "Te cy (EPA). The procedure involves filt	st Methods for Eva	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United of 3005A) and analysis by inductively coupled plasma -
ET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPI	MS(Low)	EPA SW-846 3005A/6020A
American Public Health States Environmental Pr	Association, a otection Agen	nd with procedures adapted from "Te	st Methods for Eva reliminary sample	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United treatment by filtration (EPA Method 3005A). 20A).
AH-SF-MS-VA	Water	PAH in Water by GCMS		EPA 3510, 8270
				graphy with mass spectrometric detection (GC/MS). one is reported as part of the benzo(b)fluoranthene

PAH-SURR-MS-VA

PAH Surrogates for Waters Water

EPA 3510, 8270

Analysed as per the corred demonstrate analytical actions of the corred demonstrate actions of		H test method. Known quantities of surrogate compo	ounds are added prior to analysis to each sample to							
PH-MAN-WR	Water	pH by Meter	АРНА 4500-Н (В)							
"This analysis is carried or electrode."	ut using proc	edures adapted from APHA Method 4500-H ""pH Va	alue"". The pH is determined in the laboratory using a pH							
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	B.C. MIN. OF ENV. LAB. MAN. (2009)							
The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.										
VH-SURR-FID-VA	Water	VH Surrogates for Waters	B.C. MIN. OF ENV. LAB. MAN. (2009)							
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA8260B, 5021							
		s, is heated in a sealed vial to equilibrium. The head neasured using mass spectrometry detection.	space from the vial is transfered into a gas chromatograph.							
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA8260B, 5021							
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)							
Volatile Petroleum Hydroc	arbons in So d, in solids, S	olids or Water". The concentrations of specific Monoc	nalytical Method for Contaminated Sites "Calculation of cyclic Aromatic Hydrocarbons (Benzene, Toluene, ation of Volatile Hydrocarbons (VH) that elute between n-							
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION							
Calculation of Total Xylend	es									
		ntrations of the ortho, meta, and para Xylene isomers lue no less than the square root of the sum of the sq	s. Results below detection limit (DL) are treated as zero. puares of the DLs of the individual Xylenes.							
** ALS test methods may inc	orporate mo	difications from specified reference methods to impre	ove performance.							
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed analytica	al analysis for that test. Refer to the list below:							

Laboratory Definition Code	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

10-152932

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

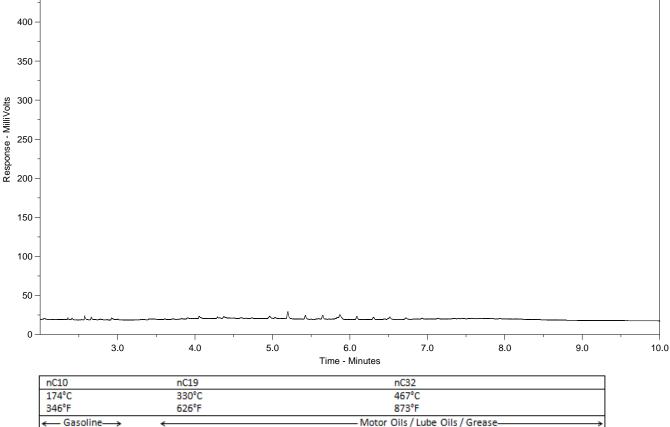
mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Sample ID: L1524111-1 Client Sample ID: ML-LTF-WELL#4

Diesel / Jet Fuels

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

Chain of Custody / Analytical Reques Canada Toll Free: 1 800 668 987 www.alsglobai.com

Environmental

L1524111-COFC

Page i of

10-152932

.

Report To		Report Format / Distribution Service Request:(Rush subject to availability - Contact ALS to confirm TAT)															
And a second	TETRICHERA	Standard		······		Regular (Standard Turnaround Times - Business Days)											
Contact: 0	aroth Fail	Select: CDD Carbon Specify):					Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT										
Address: J			Jareth. ea	10 UTRH	rax		Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT										
		Email 2:	Jester In Car	nes tento	<u></u>				Veekend Em								
Phone: Ly (27	-3067 Fax:			· · · · · ·			-				leques						
Invoice To	Same as Report ? (circle) Sor No (if No, provide details)	Client / Pr	oject Information			(Indicate Filtered or Preserved, F/P)											
	Copy of Invoice with Report? (circle) Yes or No	Job #: F	NUSWMO	3344-02		\square	1/	∇		17	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >	\mathbb{Z}	Ń	Ċ	オフ	1	
Company:		PO/AFE:				ľ				1		r				1	
Contact:		LSD:															
Address:						1										ers	
Phone:	Fax:	Quote #:	<u>Q4738</u>	<u>36</u>												tai	
Lab Work Ord	der # (lab use only)	ALS Contact:		Sampler:			5				b	6	1-1	207		of Con	
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Α	5	per		Wet	4	A	17	396	2	Number of Containers	
	ML-LTF-Well#4		Sect. 26	11:10 AM	azundwiten					+	1					(e)	
			act inde		<u>PRODUCED WOND 1</u>				·	-		+		<u> </u>	<u> </u>	U	
									-								
															_	Ļ	
<u>kan di sakan kan kan k</u> an kan kan kan kan kan kan kan kan kan k						<u> </u>									_		
					····-												
<u> </u>		· .															
						-				ľ							
											1						
	· · · · · · · · · · · · · · · · · · ·																
										-							
															_		
800 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 80 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	Special Instructions / Regulation with water or la	und use (CCN	F. Freshwater Ar	watic Life/BC CS	P.Commercial/Al		d Mai		TOVIE			- 19 -					
<u>ktok est per oktor veri s</u>			in restricted Ac	fuanc Enerbo or	Stoon interclairA	2 1101	I-Iva	ui al/c	појла	zardou	S Deta	1115		148-14	<u></u>		
					· · · · · · · · · · · · · · · · · · ·												
	Failure to complete a																
	By the use of this form the user acknowledge					back	page										
Released by:	SHIPMENT RELEASE (client use)		PMENT RECEPTIC	ON (lab use only) Time:		Verie	<u></u>		HIPMEN		FICAT						
EHF.	net Sept. 26 III 45AM	<u>A' MA'</u>	Date: U-5€1-14	11:45	Temperature:	veriti	ed by:		Dai	e:		Time:		Yes	servation s / No ? 'es add S		
REFI	ER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATIC	ON .		WHITE - LABO	RATORY COPY	YELLO	ow - c	LIENT	COPY				G	SENF 18.0			

÷