February 23, 2013

HYDROGEOLOGICAL ASSESSMENT

Burwash Landing Solid Waste Disposal Facility

Submitted to: Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services YG PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

REPORT

Report Number: Distribution: 1114360073-505-R-Rev0-1700

2 Copies - Yukon Government Community Services

2 Copies - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Burwash Landing Solid Waste Disposal Facility (the "Facility" or "Site") is one of the sites included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

In summary, the information obtained during the Hydrogeological Assessment indicated the following:

- Site Description: The Burwash Landing Solid Waste Disposal Facility is located in the southwest portion of Yukon, within the Ruby Ranges Ecological Region, and in Kluane First Nation traditional territory, at latitude 61°18' north, and longitude 138°53' west. The Site is accessed by a gravel road off the east side of the Alaska Highway at kilometre 1750, and is located approximately 172 km southeast of the community of Beaver Creek and 128 km northwest of Haines Junction. The Facility served as a domestic solid waste disposal facility for the communities of Burwash Landing, Destruction Bay, and the nearby Kluane First Nation residents until its closure in October 2011. Although the Facility was closed at the time of the June 2012 drilling program, a garbage burning vessel along with an open garbage trench were still present at the Site. No evidence of chemical or fuel storage, above or below ground storage tanks, spills, discharges, or hazardous materials storage were observed during the Site reconnaissance.
- Site Topography: The Facility is at an elevation of approximately 800 m (2,600 feet) above sea level and lies within the Kluane Lake watershed. A cleared area of approximately 13,000 square meters, that is generally flat, is present at the Facility. Local surficial geology is characteristic of hummocky kame and kettle topography, consisting of gravely kame and kettle and alluvial fan deposits. Permafrost is present in parts of the Site and is mapped as being typical of alluvial fan deposits to the north and west of Kluane Lake. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes east towards Kluane Lake.
- Stratigraphy and Hydrogeology:
 - Topography at the Site is dominated by quaternary surficial deposits;
 - Subsurface conditions were investigated with the installation of three monitoring wells, including BU-MW12-01, BU-MW12-02, and BU-MW12-03, and one borehole (BU-BH12-03), which were completed on June 26 and 27, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
 - The Site stratigraphy, based on the depth drilled, consists of approximately 20 m of inter-bedded and well graded sand, gravel and silt;

- An unconfined aquifer was encountered during the drilling and installation of three monitoring wells at a depth of approximately 17 m below grade;
- A series of hydraulic response tests were performed on three monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 2 x 10⁻⁴ m/s and 8 x 10⁻⁴ m/s. These values are considered reasonable for sand and gravel;
- The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.07 m/m, sloping to the east;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between approximately 4 x 10⁻⁵ m/s to 2 x 10⁻⁴ m/s and (approximately 3 to 14 metres per day); and
- Based on the groundwater flow direction determined from the initial groundwater monitoring event, BU-MW12-02 is located directly downgradient of the waste disposal areas and BU-MW12-03 is located cross-gradient of the waste disposal areas. BU-MW12-01 is up-gradient of the Site. Therefore, the requirement of a minimum two downgradient wells has not been met.
- Groundwater Chemistry:
 - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life, drinking water, and livestock are applicable to the Site;
 - Groundwater samples were collected from monitoring wells BU-MW12-01, BU-MW12-02, and BU-MW12-03, and a surface water sample was collected from a small pond located approximately 825 m northeast of the Facility, during one sampling event on August 23, 2012; and
 - Results of groundwater sampling at the Site indicated either low or non-detect levels of all analytes, including those typically associated with landfill leachate contamination. The sample results indicated acceptable levels of relevant chemical parameters as defined by the CSR criteria for freshwater aquatic life, drinking water, and livestock. This suggests that landfill leachate influence on shallow groundwater underlying the Site is not evident.

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met.
- If further monitoring indicates that there is only one well located down-gradient of the waste disposal area an additional well should be installed down-gradient of the site; and
- Monitoring well locations and elevations should be surveyed by a professional land surveyor.

Study Limitations

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Burwash Landing Solid Waste Disposal Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, installation of monitoring wells, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0				
	1.1	Background	1	
	1.2	Purpose and Objectives	1	
	1.3	Scope and Sequence of Work	1	
	1.4	Qualifications of Assessors	2	
	1.5	Authorization	3	
2.0	SITE D	ESCRIPTION AND HISTORY	3	
	2.1	Site Location	3	
	2.2	Site History	3	
3.0	METHO	DDOLOGY	3	
	3.1	Preliminary Hydrogeological Assessment	3	
	3.1.1	Data Sources	4	
	3.1.2	Site Inspections	5	
	3.1.3	Background Geological Information Sources	5	
	3.1.4	Contaminated Sites Registry	5	
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	5	
	3.1.6	Review of Environment Yukon Information	6	
	3.2	Field Investigations	6	
	3.2.1	Scope of Field Investigations	6	
	3.2.2	Groundwater Monitoring Well Network	7	
	3.2.3	Monitoring Well Surveying	8	
	3.2.4	Groundwater Monitoring Event	9	
	3.2.5	Rising Head Hydraulic Response Tests	9	
	3.3	Laboratory Analysis	9	
	3.4	Quality Assurance / Quality Control1	0	
	3.5	Application of Applicable Water Quality Standards1	1	
4.0	CONC	EPTUAL HYDROGEOLOGICAL MODEL1	3	
	4.1	Setting1	3	

BURWASH LANDING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

	4.3	Geology and Hydrogeology	14	
	4.3.1	Geological Framework	14	
	4.3.2	Principal Aquifer	14	
	4.4	Groundwater Flow Systems	14	
	4.4.1	Regional Groundwater Flow	14	
	4.4.2	Local Groundwater Flow	14	
	4.5	Hydraulic Response Tests	15	
	4.6	Estimated Linear Groundwater Velocity	15	
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	16	
5.0	GROUM	NDWATER IMPACT ASSESSMENT	16	
	5.1	Review of Groundwater Chemistry	16	
	5.2	Interpretation of Groundwater Chemistry	18	
6.0	CONCL	USIONS	19	
7.0	RECOMMENDATIONS			
8.0	CLOSU	IRE	20	

BURWASH LANDING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

TABLES

FIGURES

Figure 1: Key Plan
Figure 2: Site Plan and Cross-Section Location
Figure 3: Regional Surficial Geology
Figure 4: Cross Section A-A'
Figure 5: Regional Drainage and Land Zoning
Figure 6: Monitoring Well Location Map and Groundwater Elevation
Figure 7: Schoeller Plot
Figure 8: Piper Plot

Figure 9: Stiff Diagram

APPENDICES

APPENDIX A Site Photographs

APPENDIX B Well Construction Logs

APPENDIX C Well Development and Sampling Sheets

APPENDIX D Slug Test Data

APPENDIX E Analytical Reports and Chain of Custody Forms

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Burwash Landing Solid Waste Disposal Facility (the "Facility" or the "Site") is one of the sites included in the program. This report presents the findings of our investigation.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7,2011, and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope of work was proposed to develop the conceptual hydrogeological model for the Site and installation of a monitoring well network. This work was performed in accordance with the Waste Management Permit (Permit No. 80-009 effective February 29, 2012 to December 31, 2014), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (Document Number 2011-0303-36-1).

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised the preparation of a draft of this Hydrogeological Assessment Report, documenting the results of this investigation.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P.Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P. Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012) and has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Burwash Landing Solid Waste Disposal Facility is in the southwest portion of Yukon, within the Ruby Ranges Ecological Region, and in the Kluane Lake Watershed. The Site is located in Kluane First Nation traditional territory at latitude 61°18' north and longitude 138°53' west. No civic address or legal description is available for the Site. It is accessed by a gravel road off the east side of the Alaska Highway at kilometre 1750, approximately 172 km southeast of the community of Beaver Creek, and 128 km northwest of Haines Junction (Figure 1).

2.2 Site History

The Burwash Landing Solid Waste Disposal Facility served exclusively as a domestic solid waste disposal facility for the communities of Burwash Landing, Destruction Bay, and the nearby Kluane First Nation residents until its closure in October 2011. The Facility received only domestic waste; no household hazardous waste, construction debris, waste oil, batteries, or white metals were accepted at this Site. No evidence of chemical or fuel storage, above or below ground storage tanks, spills, discharges, or hazardous materials storage were observed during the Site reconnaissance. Although the Facility was closed at the time of the June 2012 drilling program, a garbage burning vessel along with an open garbage trench were still present at the Site (Figure 2).

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review and interpretation of existing information, and an inspection of the Facility. The initial inspection of the Facility was conducted on October 23, 2011, and a follow up inspection was conducted on June 26, 2012. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods and equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Access Consulting Group and G. J. Bull and Associates Inc., *Solid Waste Management Plan Burwash Landing*, Prepared for Yukon Community Services, Community Development Branch. 2003.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2012-05-29, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., *Applied Hydrogeology*, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171, Schedule 3 - Generic Numerical Water Standards for Protection of Freshwater Aquatic Life.
- Government of Yukon, Yukon Community Services, Community Services and Infrastructure Branch, *Solid Waste Operation Plan: Burwash Landing*, 2011.
- Government of Yukon, Yukon Environment, *Protocol for the Contaminated Sites Regulation Under the Environment Act.* 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aquifermap.html
- Rampton, V.N., 1977. Surficial Geology and Geomorphology, Burwash Creek, Yukon Territory, Geological Survey of Canada, Map 6-1978, scale 1:100,000.
- Site inspections of October 23, 2011 and June 26, 2012.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: *http://atlas.nrcan.gc.ca/site/english/maps/topo/map* Map 115 K/2, scale 1:50,000.

3.1.2 Site Inspections

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the field work. The health and safety plan included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 23, 2011 and June 26, 2012. The initial Site visit was conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data. Proposed monitoring well locations were also reviewed for access constraints. During the second Site visit, the monitoring wells were drilled and installed. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Department of Energy Mines and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Data Catalogue did not identify water testing results within the vicinity of the Facility.

3.1.4 Contaminated Sites Registry

A Site Registry search was conducted by Yukon Environment on December 1, 2011. The search identified no contaminated site files or spill reports for the Burwash Landing Solid Waste Disposal Facility; however, it was noted that the Facility does not have any analytical results in the file to compare against Yukon Contaminated Site Regulation (CSR) standards to determine if any contamination exists. It was also noted that the Facility was largely unmonitored, and that there may have been opportunity for improper disposal and potentially unreported spillage of contaminants during its operation.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Waste Management Permit No. 80-009 was issued on February 29, 2012 for the Facility. It states that the Facility is to be closed in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Waste Management Permit 80-009 include:

- Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sampling of downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outlined in Section 3.5;

- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011 standards; and
- Submitting monitoring results to Environment Yukon by January 31 each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

Site	Site Disposal Facility Permit Number	Permit Type	Solid Waste Management Plan	Required Groundwater Monitoring
Burwash Landing Solid Waste Disposal Facility	80-009	Landfill; undergoing decommissioning	Community Services Operations and Programs (2011)	Twice Per Year

3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Burwash Landing Facility on the Yukon Environment and Socioeconomic Board (YESAB) online registry on October 3, 2012. Documents reviewed included: the most current waste facility permit issued for the Facility, the most current Solid Waste Operation Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

3.2 Field Investigations

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Four on-Site boreholes were drilled by Midnight Sun Drilling (three of which were completed as monitoring wells) under the supervision of Golder Associates on June 26 and 27, 2012;
- Monitoring wells were developed and sampled by Golder on August 23, 2012. The water level at each well was measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent to ALS Environmental Laboratory in Whitehorse, YT;
- Slug tests were carried out on all three newly installed monitoring wells to assess horizontal hydraulic conductivity and linear groundwater velocity at the Site; and
- Results of field and laboratory data are summarized and interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol (Yukon Environment, 2011).

Three (3) groundwater monitoring wells were proposed for installation at the Site to characterize groundwater conditions underlying the waste disposal Facility. A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. BU-MW12-01 was intended to characterize upgradient groundwater conditions, while BU-MW12-02 and BU-MW12-03 were intended to assess groundwater conditions downgradient of the landfill. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, Site topography, suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- BU-MW12-01 was installed in the southwest corner of the Site, and advanced to a depth of 20.4 m below grade (bg);
- BU-MW12-02 was installed on the east side of the Site, and advanced to a depth of 22.6 m bg;
- BU-MW12-03 was installed on the north side of the Site, and advanced to a depth of 20.4 m bg; and
- At the location of a fourth borehole (BU-BH12-03) along the north edge of the Site, permafrost was encountered at a depth of 3.7 m below grade; thus, the borehole was terminated.

Wells were installed using a Driltech Marlin 5 truck-mounted air rotary drill rig.

Coordinate locations of newly installed wells were obtained by Trimble handheld GPS to an accuracy of 0.5 m or better. Elevations for top of casing (TOC) for all wells were obtained by GPS to an accuracy of ± 0.6 m. In order to accurately determine groundwater elevation and flow direction, a level survey between wells was also carried out to an accuracy of ± 1 cm.

Grab samples of drill cuttings were taken at regular intervals to log the stratigraphy encountered in each borehole. Borehole logs, documenting observed stratigraphy, along with well construction details, are provided in Appendix B. A summary of the stratigraphy and well construction details is provided in Table 2.

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm, flush threaded Schedule 40 PVC casing;
- A 3 m long PVC, factory-slotted well screen (10-slot) was installed in all three monitoring wells;
- PVC casing was installed above the well screen to about 0.70 m above grade;

- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1 m above the top of the screened interval;
- A bentonite chip seal, approximately 1 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;
- Each well was covered with a PVC end-cap and a lockable steel protective casing was installed to protect the wellhead; and
- All wells were developed by removing a minimum of three well volumes using dedicated WaterraTM tubing and a HydroliftTM pump or hand bailer. Development logs are provided in Appendix C.

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)
BU-MW12-01	20.4	Sand (~50%) and Gravel (~50%)	50	17.4 – 20.4	16.2 – 20.4
BU-MW12-02	22.6	Sand (~50%) and Gravel (~50%)	50	19.2 – 22.3	18.3 – 22.3
BU-MW12-03	20.4	Sand (~75%) and Gravel (~25%)	50	17.1 – 20.1	16.2 – 20.1

Table 2: Well Construction Details

3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the vertical elevation to the top of the PVC wellhead (measuring point) for each well on June 27, 2012. Initial absolute elevation was surveyed relative to the top of PVC pipe at BU-MW12-01, which was obtained using a Trimble hand-held GPS instrument with a vertical accuracy of ± 0.6 m. However, relative elevation between wells, as determined from the level survey, has an accuracy of ± 1 cm. Table 3 presents a summary of survey data and water level measurements (recorded on August 23, 2012).

Table 3: Monitoring Well Locations and Groundwater Elevations August 23, 2012

Well ID	UTM Coordinates (Zone 7 North)	Top of PVC Casing Elevation (masl)	Standing Water Level (mbtoc)	Groundwater Elevation (masl)
BU-MW12-01	6798794.3 m N 613292.5 m E	806.09	17.71	788.38
BU-MW12-02	6798862.0 m N 613326.2 m E	803.55	17.96	785.59
BU-MW12-03	6798891.7 m N 613306.8 m E	804.49	17.13	787.36

3.2.4 Groundwater Monitoring Event

Golder developed monitoring wells BU-MW12-01 and BU-MW12-03 on June 27, 2012, immediately following installation. Due to logistical constraints, BU-MW12-02 could not be developed at this time, and was instead developed during the August 23, 2012 groundwater monitoring event.

All three wells were purged and sampled on August 23, 2012. The procedure used for sampling followed Contaminated Sites Regulation Protocol No. 7. Prior to purging each well, the water level was first measured with an electronic measuring tape. Approximately five well volumes were then purged from each well, using 5/8 in. high density polyethylene (HDPE) Waterra[™] tubing, a foot valve, and a Hydrolift[™] pump. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging continued until field parameters were stable before sampling. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the three groundwater monitoring wells that were sampled, a surface water sample was collected from a small pond located between the Site and Kluane Lake, approximately 825 m northeast of the Site.

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. Samples were kept in coolers with ice packs prior to their delivery, and were delivered within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025.

3.2.5 Rising Head Hydraulic Response Tests

Hydraulic response (slug) tests were performed on June 27 and August 23, 2012, to assess the hydraulic conductivity of the surficial aquifer underlying the Site. Tests were performed using a 1.5 m long, solid 38 mm diameter PVC slug and a Solinst Levelogger pressure transducer set to measure head fluctuations at one-second intervals. Manual water level measurements were also recorded throughout the tests.

Multiple rising head tests were completed for all wells. A summary of the analysis of these tests is provided in Section 4.5.

3.3 Laboratory Analysis

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Waste Management Permit (Permit No. 80-009).

Sampling and analysis were undertaken in general accordance with Yukon Contaminated Site Regulation (CSR) Protocols 2 and 5 (Government of Yukon, 2011).

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	VOCs
BU-MW12-01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BU-MW12-02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BU-MW12-03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Burwash Landing Surface Water	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Table 4: Parameters Analyzed in August 2012

3.4 Quality Assurance / Quality Control

Table 5 provides a detailed description of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

QA/QC Aspect	Evidence and Evaluation
Data Representativeness	
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.
Background Samples	No wells were shown to be directly upgradient of the Facility. BU-MW12-01 is located upgradient/cross-gradient of the Facility and may be used to provide background levels of physiochemical parameters.
Field Procedures	Monitoring wells were purged/developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox [™]) and distilled water. Surface water samples were collected using one-time-use syringes.
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.
Data Precision and Accuracy	
Blind Duplicate	One blind duplicate was collected from BC-MW12-04 (this well is located at the Beaver Creek Solid Waste Disposal Facility) during the August 2012 groundwater monitoring event. Of the 110 analyte pairs tested, RPD values could not be calculated for 90 of the pairs, as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, none exceeded the RPD ¹ acceptance criteria of ±30%. See: Report # 1114360073-1500
Trip Blanks	A trip blank was not collected during the August 2012 groundwater monitoring event.

Table 5: Review of QA/QC Procedures Taken

¹ RPD calculations are presented in Appendix E of Golder's draft report entitled Beaver Creek Solid Waste Disposal Facility Hydrogeological Assessment" dated October 19, 2012.

QA/QC Aspect	Evidence and Evaluation
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the lab report showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.
Holding Times	Samples were delivered outside the acceptable (24 hour) hold time for physical parameters, however field parameters were taken during sample collection to compensate. Sampling for VOC's took place six days outside the 14-day recommended hold time.
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and a downgradient surface water receptor were sampled and tested for the following parameters:

 Major ions (Ca, Mg, Na, K, Cl, SO₄, N, NO₂, NO₃ and P)

Dissolved Metals

- Bicarbonate
- 🔳 pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- VOCs

- Chemical oxygen demand
- Total Kjeldahl Nitrogen
- EPH_{w10-10} & VH_{w6-10}
- BTEX
- PAHs

Carbonate

Mercury

Hardness

Alkalinity

Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards, or to the Canadian Environmental Quality Guidelines for constituents where no Yukon standards were available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

BURWASH LANDING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment
Aquatic Life	Aquatic Life Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)		Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable

Table 6: Applicable Water Quality Standards

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

A search of the Yukon Lands viewer website, conducted by Golder September 5, 2012, showed several streams, small ponds, and Kluane Lake all falling within a 1 km radius of the Site, as specified in the CSR, under which aquatic life standards are applied. A review of Google Earth images from 2012, conducted by Golder on the same day, also identified several visible streams and ponds within 1 km of the Site. The nearest body of water was determined to be a small, unnamed pond located approximately 825 m northeast of the Site. It was determined therefore, that aquatic life standards were **applicable** for the Burwash Landing Facility.

Drinking Water

A search of drinking water wells on the Groundwater Information Network website and the Yukon Water Data Catalogue (accessed September 4, 2012) showed no drinking water wells located along the predicted downgradient direction between the Site and Kluane Lake, nor in any other area within a 1.5 km radius of the Site. However, a review of the Solid Waste Operation Plan for Burwash Landing indicated that the nearest dwelling to the Site was a seasonally occupied residence located approximately 1 km northwest of the Facility. Conservatively assuming the residence has a water supply well, it was deemed that CSR drinking water standards were **applicable** for the Burwash Landing Facility.

Irrigation

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on September 5, 2012, showed no irrigation wells on record for the Burwash Landing area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells in the area. A review of Google Earth Images from 2012, conducted by Golder on September 5, 2012, as well as several visits to the Facility conducted in May and June 2012 showed no agricultural land within 1.5 km of the Facility. It was therefore considered that CSR water quality standards for irrigation are **not applicable** to the Burwash Landing Facility.

Livestock

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on September 5, 2012, showed no wells on record as being for livestock use in the Burwash Landing area. It should be noted that this is not a complete record of all wells in the Yukon. However, the Solid Waste Operation Plan for Burwash Landing indicated that there is a grazing lease located approximately 1 km northwest of the Facility, and that this lease is currently in use. It was therefore considered that CSR standards for livestock are **applicable** to the Burwash Landing Facility.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 Setting

The Facility is at an elevation of approximately 800 m (2,600 feet) above sea level, and lies within the Kluane Lake watershed. Local topography is characteristic of hummocky kame and kettle topography, consisting of gravely kame and kettle and alluvial fan deposits. Permafrost was found in BU-BH12-03 in the northwest corner of the Site, and is mapped as being common to kame and kettle and alluvial fan deposits in the region north and west of Kluane Lake (Rampton, 1977). The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes east towards Kluane Lake. As of the June 2012 drilling program, the landfill at Facility was closed to the public. A cleared area of approximately 13,000 square meters, that is generally flat, is present at the Site.

4.2 Climate

Climate data at the Site is likely similar to that at the Burwash Airport climate station (Climate ID 2100182), located approximately 10 kilometres northwest of the Facility at an elevation of approximately 806.2 m above sea level. Average monthly precipitation reported at the Burwash Airport station ranges from a low average of 8.5 mm in April to a high average of 66.2 mm in July. The average annual precipitation is approximately 279.7 mm, including 106.4 cm as snowfall. Temperature ranges from a low average of -22° C in January to a high average of 12.8° C in July (Environment Canada, 2012).

Annual precipitation is relatively low (less than 300 mm per year). This suggests that the amount of infiltration of water through buried waste at the Site and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during the spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The southern Yukon, including the Burwash area, has undergone several episodes of glaciation, the most recent being the Quaternary Macauley glaciation and the Mirror Creek glaciation. During that period, sediments such as glacial till and glaciofluvial and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Shakwak Trench where the Burwash Landing Facility is located (Figure 3).

The Burwash Landing area is mapped as being underlain primarily by moraine deposits, alluvium, and glaciofluvial deposits of Quaternary origin. Ablation till, colluvial glacial debris, morainal deposits, and bedrock exposures are found at higher elevations in the mountains to the southwest of the Site.

Surficial geology maps published by the Yukon Geological Survey (YGS) indicate natural surficial materials at the Facility are gently sloping alluvial fan deposits and hummocky kame and kettle deposits influenced by modern permafrost. In general, deposits consist of well compacted to non-compacted sediments that are primarily gravel, with some sand, and a thin veneer of silt and peat. The thickness of the unconsolidated sediments was estimated to be between 3 and 60 m thick (Rampton, 1977).

4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a shallow, unconfined aquifer composed primarily of unconsolidated sand and gravel, with minor silt, and cobbles. For the purpose of this report, this aquifer has been named the Surficial Aquifer (Table 7).

Aquifer Name	Location	Aquifer Type	Comments
Surficial Aquifer	BU-MW12-01 BU-MW12-02 BU-MW12-03	Unconfined; unconsolidated porous media	Sand and gravelShallow aquiferHigh hydraulic conductivity

Table 7 Aquifer Units Encountered at the Site

4.4 Groundwater Flow Systems

4.4.1 Regional Groundwater Flow

Topography in the area surrounding the Facility slopes from the mountains, located to the southwest of the Site (elevation approximately 2000 m amsl), to the east towards Kluane Lake (elevation 895 m amsl). Regional groundwater flow is inferred to be to the east, with discharge to Kluane Lake.

4.4.2 Local Groundwater Flow

Golder used the groundwater depth data from August 23, 2012 and well survey elevation information collected in June 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations are presented in Table 3.

Local groundwater flow direction at the Site is inferred, from groundwater elevations in the newly installed monitoring well network, to be to the east (Figure 6), towards Lewis Creek, which flows into Kluane Lake. The horizontal hydraulic gradient at the Site was estimated to be approximately 0.07 m/m.

4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on the three newly installed monitoring wells at the Facility. The slug tests were analyzed using AQTESOLV version 4.5, and the results are included in Appendix D. Table 8 provides a summary of the findings.

Monitoring Well ID	Primary Hydrogeological Unit	Solution Used	Calculated Hydraulic Conductivity (m/s)
BU-MW12-01	Sand and Gravel	Bouwer-Rice (1976)	2 x 10 ⁻⁴
BU-MW12-02	Sand and Gravel	Bouwer-Rice (1976)	8 x 10 ⁻⁴
BU-MW12-03	Sand and Gravel	Bouwer-Rice (1976)	3 x 10⁻⁴

Table 8: Estimated Hydraulic Conductivity

4.6 Estimated Linear Groundwater Velocity

As determined from the slug tests summarized in Table 8, the hydraulic conductivity of the shallow aquifer underlying the Site is ranges between 2×10^{-4} m/s and 8×10^{-4} m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network, to be approximately 0.07 m/m to the east. A range of reasonable linear groundwater velocities is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s);
K: is the hydraulic conductivity in m/s as determined by slug testing;
i: is the horizontal hydraulic gradient (m/m); and
n: is the porosity which is estimated to be approximately 0.35 (Fetter, 1994) in sand and gravel.

The resulting groundwater velocity is estimated to be between 4×10^{-5} m/s to 2×10^{-4} m/s and (approximately 3 to 14 metres per day). Groundwater at the Site may travel faster or slower than these estimates due to inaccuracies or seasonal variations in these parameters.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation, and contaminant transport principals. Potential sources include:

Leachate from present and former domestic waste, commercial waste, metals, wood, construction debris, and any other potential waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO₃, NH₃), organic hydrocarbons (Fuels, PAH's, chlorinated hydrocarbons), and salts.

Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone.
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in section 3.2.4, one round of groundwater monitoring was conducted on the three newly installed monitoring wells at the Burwash Solid Waste Disposal Facility and one surface water sampling location downgradient from the Site on August 23, 2012. Chain of custody forms for the groundwater samples collected, the complete groundwater chemistry results, and QA/QC data can be found in Appendix E. Table 9 summarizes parameters from the groundwater chemistry results, which are used to identify potential leachate contamination.

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)	Sodium (mg/L)
BU-MW12-01	490	<0.50	<0.0050	204	<0.50	8.0
BU-MW12-02	498	<0.50	<0.0050	205	<0.50	8.0
BU-MW12-03	510	<0.50	<0.0050	207	<0.50	8.2
Surface Water	486	0.62	0.0057	194	1.83	8.2

Table 9: Important Groundwater Chemistry Results

Total Dissolved Solids

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃. Values of TDS in the monitoring well samples ranged from 490 mg/L to 510 mg/L, which is well within the normal range for naturally occurring groundwater. The TDS concentration in the surface water sample was slighter lower (486 mg/L). TDS concentrations in both groundwater and surface water samples showed no evidence of influence from landfill leachate.

Dissolved Organic Carbon

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. DOC levels from all monitoring wells at the Burwash Landing Site were below detectable levels. The level of DOC detected in the surface water sample (1.83 mg/L) was well within the range of values associated with naturally occurring surface water. DOC concentrations in both groundwater and surface water samples showed no evidence of influence from landfill leachate.

Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride might be expected due to degradation of waste with a high chloride concentration. Chloride levels from the monitoring well network were below the detection limit of 0.5 mg/L, while the chloride concentration measured in the surface water sample was slightly above the detection limit at 0.62 mg/L. These levels are considered to be very low (CSR drinking water standard is 250 mg/L) and well within the range expected in naturally occurring waters. Chloride levels in all of the samples did not show evidence of influence from landfill leachate.

Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater samples were below the detection limit of 0.005 mg/L and the ammonia concentration in the surface water sample was slightly above the detection limit (0.0057 mg/L), indicating no evidence of influence from landfill leachate.

Metals

Metals concentrations in surface water and groundwater samples were within the range expected in naturally occurring waters. No metals concentrations exceeded any standards set by the Yukon CSR for drinking water, freshwater aquatic life, or livestock.

Organics

Detectable levels of organic constituents are often a sign of leachate contamination. Of the hydrocarbons analyzed (BTEX, PAH, $EPH_{w10-10} \& VH_{w6-10}$, and chlorinated hydrocarbons), none were detected in any of the groundwater or surface water samples. Chlorinated hydrocarbons were analyzed outside of the recommended holding time, as summarized in Table 5.

5.2 Interpretation of Groundwater Chemistry

Factors that may affect natural groundwater quality include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;
- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in groundwater. The ionic composition of water can be used to classify the water into ionic types based on the dominant dissolved cation and anion, expressed in milliequivalents per litre (meq/L). These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to identify differences in water chemistry by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions, and may be used to identify different water types. Here, the Scheoller plot indicates that the chemistry in the water samples is similar, in that the plots generally overlap each other, except for chloride, which was below the detection limit in the monitoring well samples and slightly above the detection limit in the surface water sample.
- Piper: The Piper diagram (Figure 8) is used to compare the ratios of major ions and can be used to identify different water types. The Piper diagram illustrates that the groundwater and surface water samples have nearly identical chemistry. Water samples can be classified as a calcium bicarbonate-sulphate water type.
- Stiff: The stiff diagram allows for differences in groundwater chemistry to be presented and viewed spatially. Here, the stiff diagram shows that all of the samples have similar chemical composition.

A charge balance was calculated on all of the samples. The results indicated a charge balance error ranging between 1.3% and 3.5%.

None of the samples indicate that landfill leachate from the Facility is influencing groundwater or surface water chemistry.

6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

- Stratigraphy and Hydrogeology:
 - Topography at the Site is dominated by quaternary surficial deposits;
 - Subsurface conditions were investigated with the installation of three monitoring wells, including BU-MW12-01, BU-MW12-02, and BU-MW12-03, and one borehole (BU-BH12-03), which were completed on June 26 and 27, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
 - The Site stratigraphy, based on the depth drilled, consists of approximately 20 m of interbedded and well graded sand, gravel and silt;
 - An unconfined aquifer was encountered during the drilling and installation of all three monitoring wells at a depth of approximately 17 m below grade;
 - A series of hydraulic response tests were performed on all three monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 2 x 10⁻⁵ m/s and 4 x 10⁻⁵ m/s. These values are considered reasonable for sand and gravel aquifers;
 - The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.07 m/m, sloping to the east;
 - Groundwater velocity in the surficial aquifer is estimated to range between approximately 2 and 3 metres per day; and
 - Based on the groundwater flow direction determined from the initial groundwater monitoring event, BU-MW12-02 is located downgradient of the Site. BU-MW12-01 is located up-gradient of the Site and BU-MW12-03 is located cross gradient of the Site. Therefore, the requirement of a minimum of two downgradient wells has been met.
- Groundwater Chemistry:
 - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life, drinking water, and livestock are all applicable to the Site;
 - Groundwater samples were collected from monitoring wells BU-MW12-01, BU-MW12-02, and BU-MW12-03, and a surface water sample was collected from a small pond located approximately 825 m northeast of the Facility, during one sampling event on August 23, 2012; and
 - Results of groundwater sampling at the Site indicated either low or non-detect levels of all analytes, including those typically associated with landfill leachate contamination. The sample results indicated acceptable levels of all relevant chemical parameters as defined by the CSR criteria for freshwater aquatic life, drinking water, and livestock. This suggests that landfill leachate influence on shallow groundwater underlying the Site is not evident.

7.0 RECOMMENDATIONS

The following recommendations are made based on the results of the hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate;
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met;
- If further monitoring indicates that there is only one well located down-gradient of the waste disposal area an additional well should be installed down-gradient of the site; and
- Monitoring well locations and elevations should be surveyed by a professional land surveyor.

8.0 CLOSURE

We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

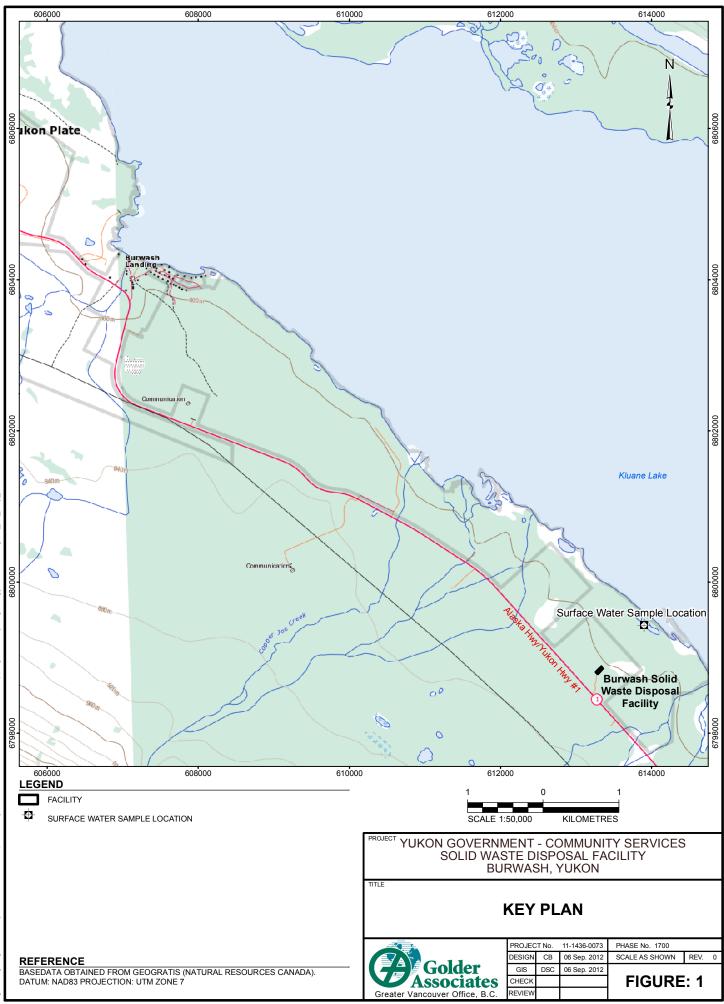
GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

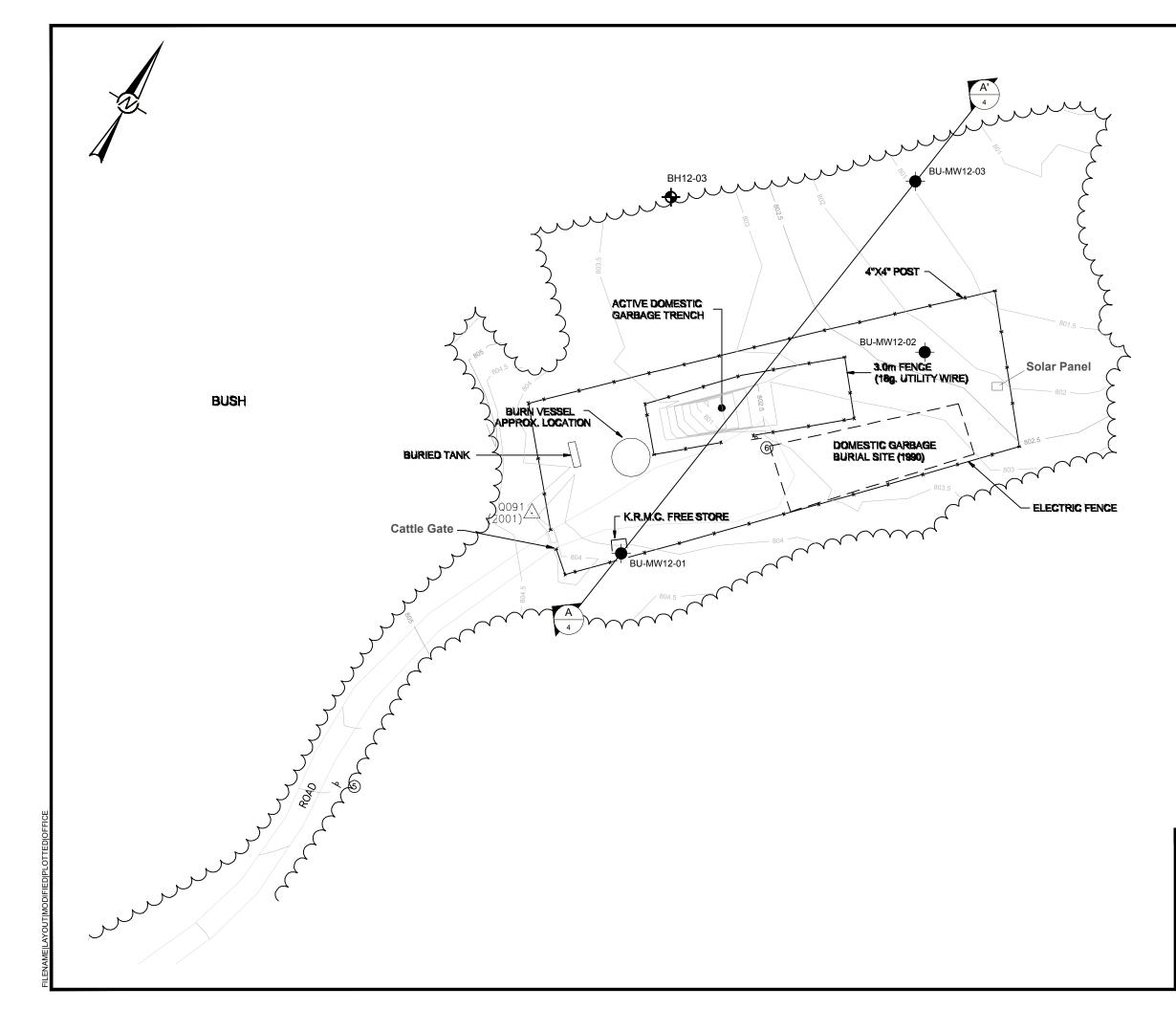
ORIGINAL SIGNED

Calvin Beebe, M.Sc. Hydrogeologist Gary Hamilton, P.Geo. Principal Hydrogeologist

Reviewed By:


ORIGINAL SIGNED

Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist


CB\GJG\GCP\syd

o:\final\2011\1436\11-1436-0073\1114360073-505-r-rev0-1700\1114360073-505-r-rev0-1700-hydrogeo assess 23feb_13.docx

\golder.gds\gal\BurnabylCAD-GlS\Bur-Graphics\Projects\2011\1436\11-1436-0073\GlS\Mapping\MXD\Hydrogeology\Burwash\Figure_01_Key_Plan.mxd

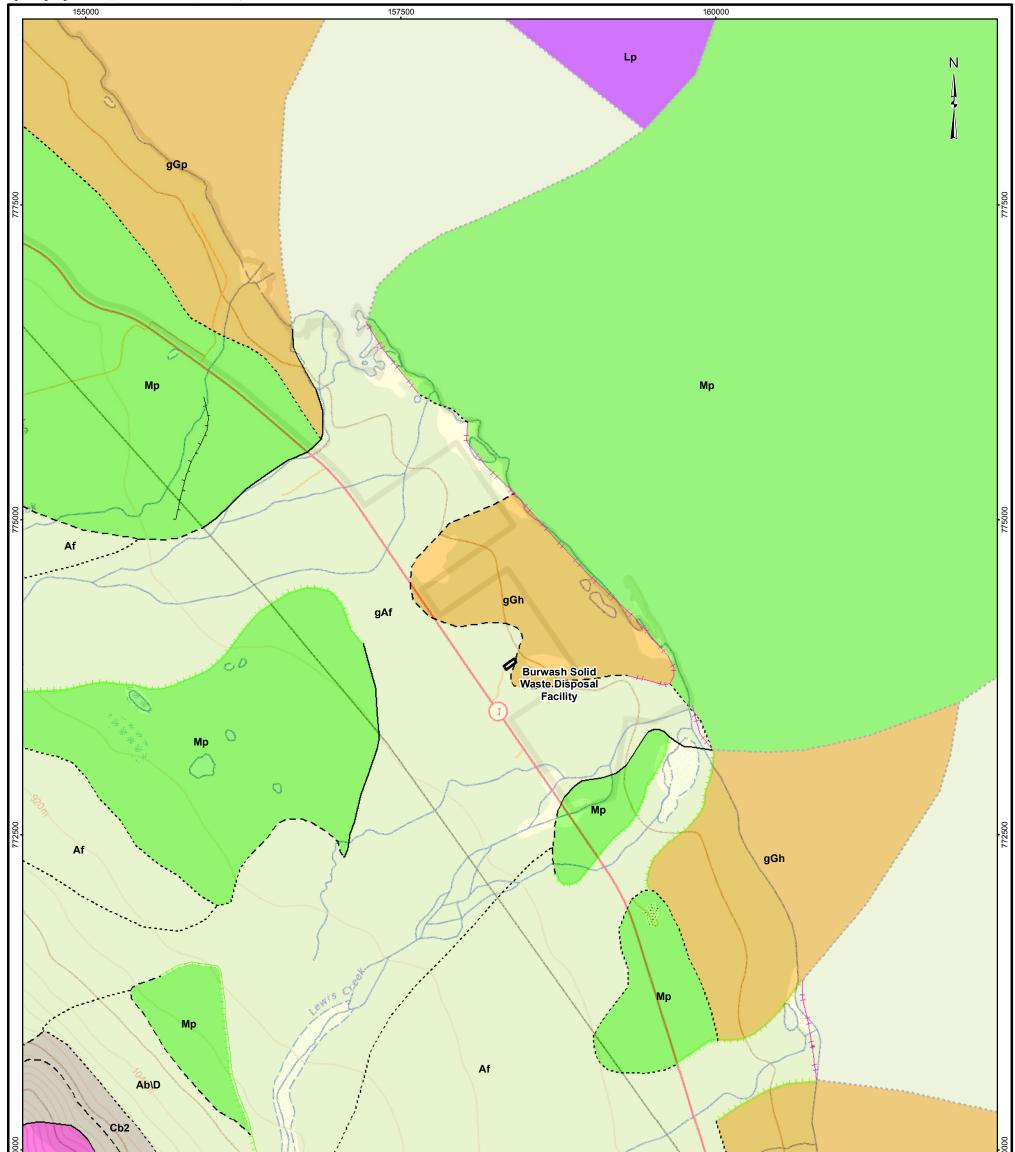
LEGEND

BOREHOLE LOCATION

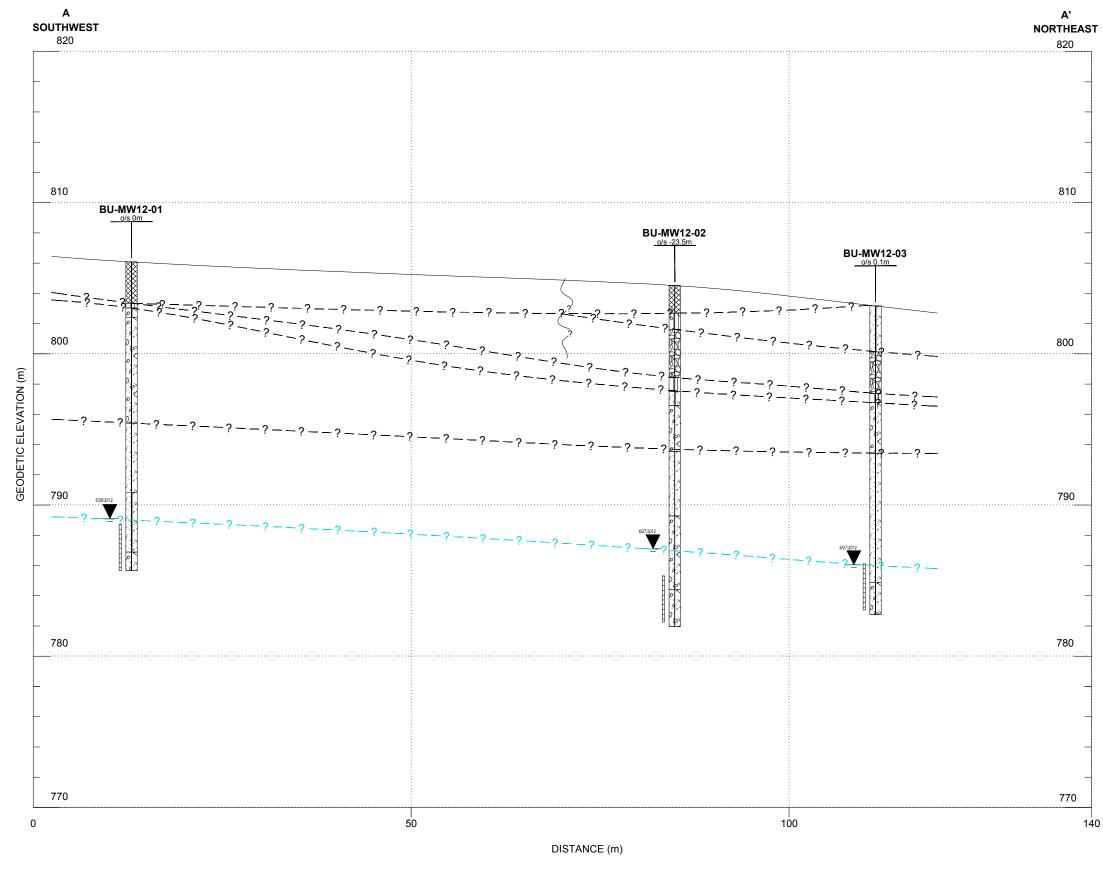
MONITORING WELL LOCATION FENCE EDGE OF CLEARING

REFERENCES

1. BASE PLAN PROVIDED BY QUEST ENGINEERING GROUP CAD FILE: DBAY2004.DWG DATED:2002.01.15

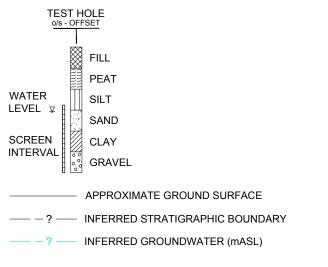

NOTES

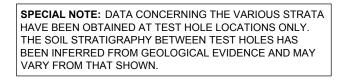
SITE PLAN IS NOT CONSISTENT WITH OBSERVED CONDITION DURING DRILLING, BUT IS INTENDED TO SHOW LOCATIONS OF NEWLY INSTALLED MONITORING WELLS IN RELATION TO BURIED STRUCTURES.



ROJECT YUKON GOVERNMENT-COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY BURWASH LANDING, YUKON TITLE SITE PLAN AND CROSS-SECTION LOCATION

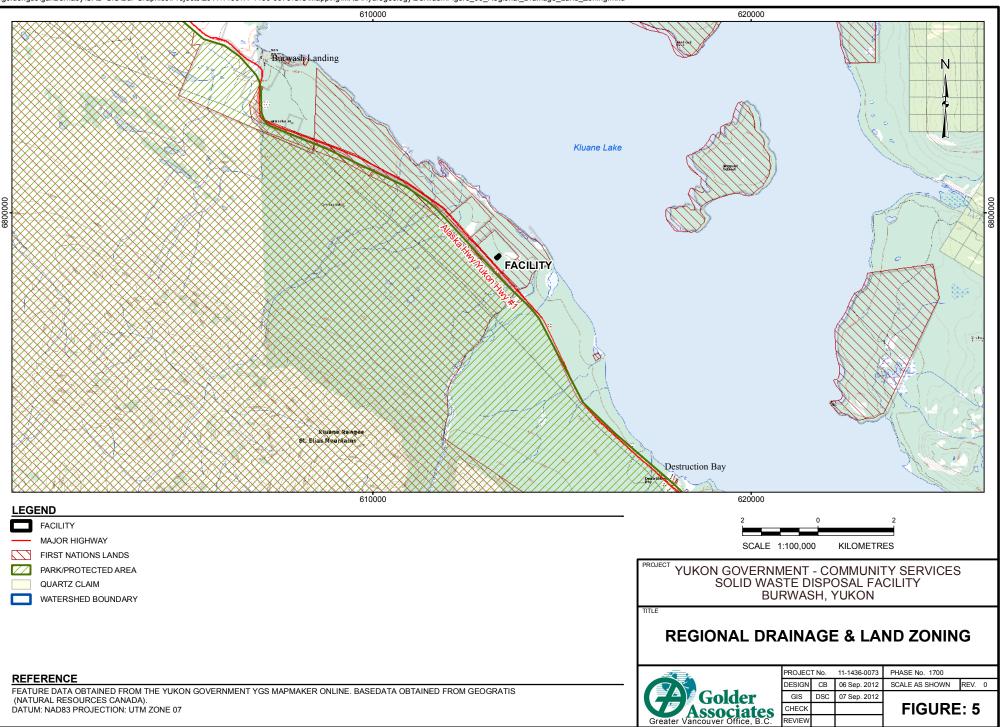
-	PROJECT N	lo. 1	1-1436-0073	FILE No.	1700-1760
	DESIGN	CB	30AUG12	SCALE	AS SHOWN
Golder	CADD	TS	12SEP12		
Associates	CHECK	GCP		FIGURE 2	
115500010005	REVIEW				

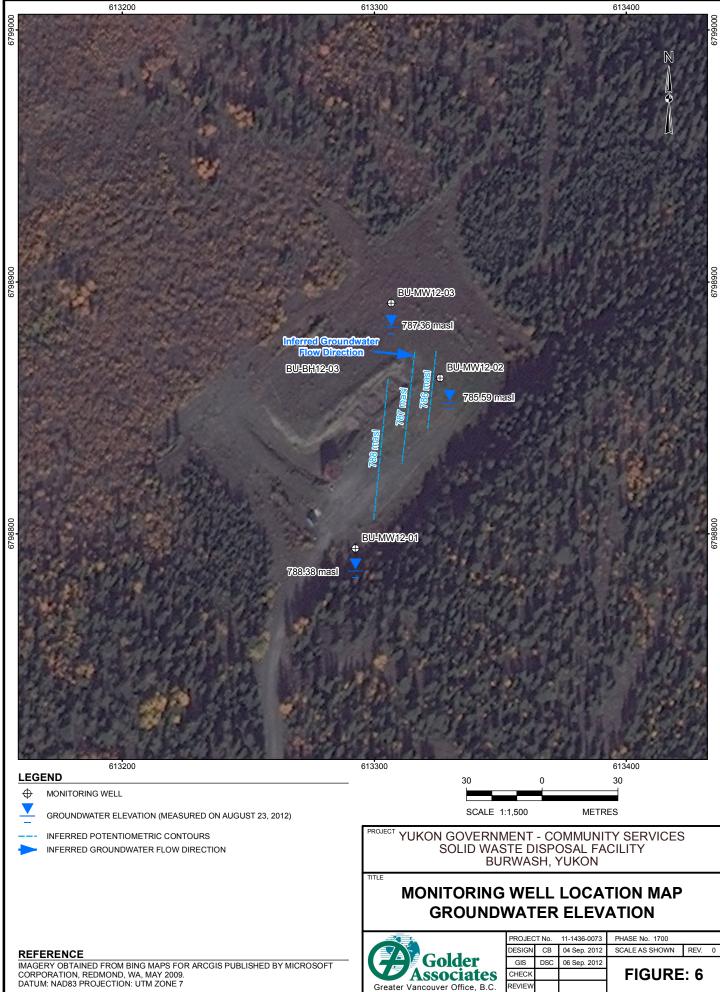



Rs	1) i	Martin Martin Martin Contraction					
			LANI	DFORM OR LANDSCAP	ΡĒ		
		MATERIAL	ORIGIN	TOP	OGRAPHY	СОММ	ENT
	Gp	Sand and Gravel with a thin blanket of silt or peat	Outwash plain	Flat to gently sloping, terraced in places, pitted. 3 to 60 m thick.		Usually underlain by till, lacustrine deposits, alluvium, and rarely bedrock.	
	Gh	Primarily gravel, some sand, with veneer of silt or peat.	Kame and kettle complex	Hummocky to undulat	ing or rolling. 13 to 60 m thick.	Generally adjacent to outwas plains	
	Мр	Sand, with some silt and stone	Till plain	Gently rolling to undulating with gentle to moderate slopes. Between 3 and 40 m thick.		Generally underlain by drift or alluvium.	
	Af	Gravel with a veneer of sand and silt.	Alluvial fan	Gently sloping. Between 3 and 35 m thick.		Common along edges of glaciated valleys.	
	11111111						g(
1550 EGEND	000		157500		160000		
FACILIT					1	0	1
BUILDI					SCALE 1:30,000		KILOMETRES
MAJOR WATER	COURSE				SOLID WA	MENT - COMMUNI STE DISPOSAL FA JRWASH, YUKON	
					TITLE		
					REGIONAL	SURFICIAL GI	EOLOGY
	AINED FROM GE	OGRATIS (NATURAL RESOURCES CANADA). FAINED FROM THE YUKON OVERNMENT, ENERGY, MINES AND			Golder	PROJECT No. 11-1436-0073 DESIGN CB 24 Aug. 2012 GIS DSC 06 Sep. 2012	PHASE No. 1700 SCALE AS SHOWN REV

LEGEND

TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).


TITLE


GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES BURWASH LANDING, Y.T.

CONCEPTUAL HYDROGEOLOGICAL **CROSS - SECTION A-A'**

	PROJECT No.		11-1436-0073	FILE No. 11-1436-0073-1700-1760-02	
	DESIGN	GJH	240CT12	SCALE	AS SHOWN
Golder	CADD	JHL	02NOV12		
Associates	CHECK	GCP		FIGURE 4	
115000000000	REVIEW				

\lgolder.gds\gal\Burnaby\CAD-GIS\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Burwash\Figure_05_Regional_Drainage_Land_Zoning.mxd

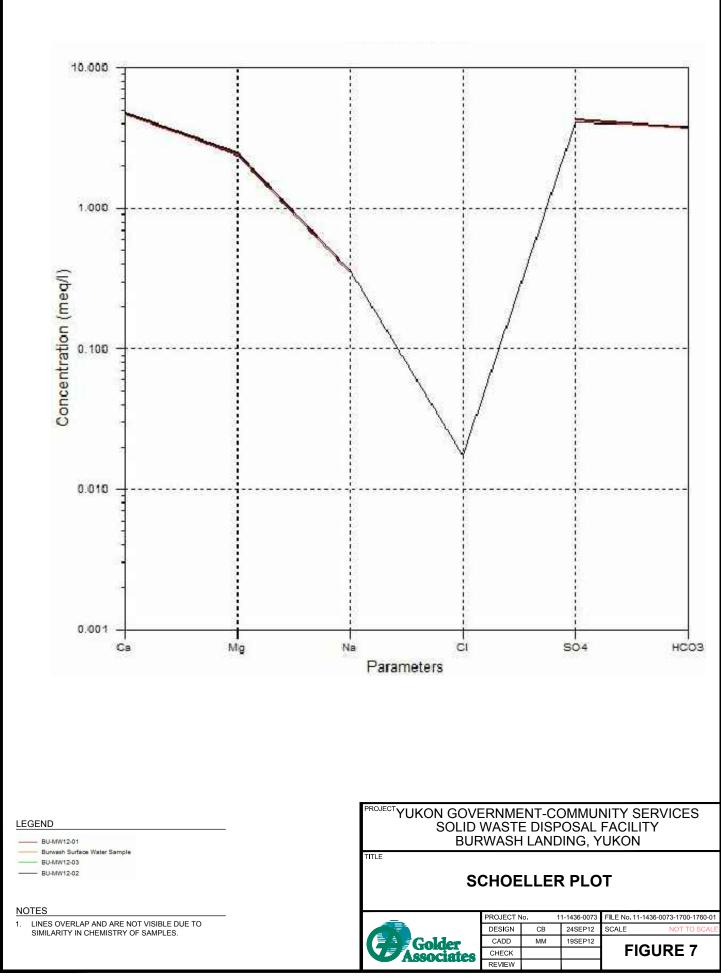
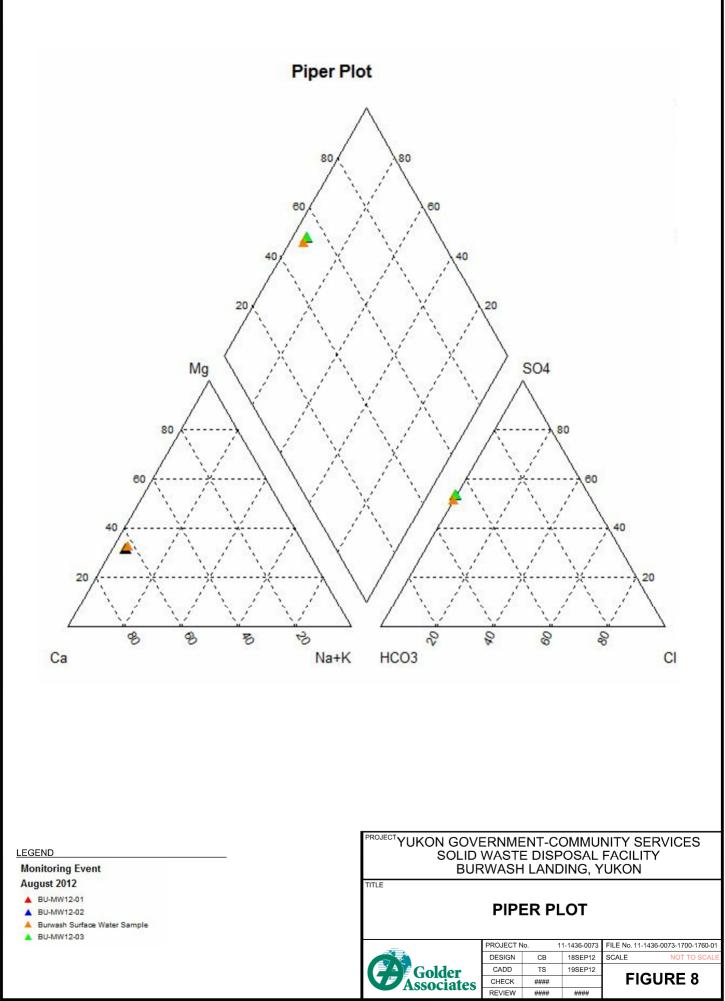
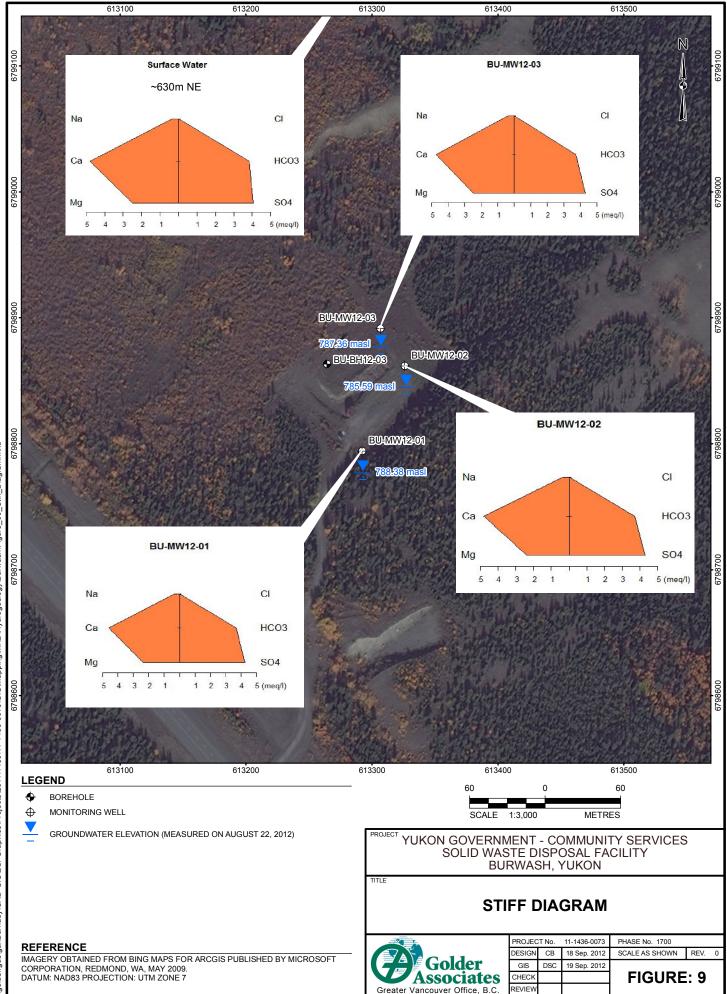




FIG 7 | Modified: MMatienzo 09/24/2012 1:34 PM | Plotted: MMatienzo 09/24/2012 ∢ | Layout: ANSI 1436-0073\Drafting\Phase 1700\1700-1760\11-1436-0073-1700-1760-01.dwg cts/2011/1436/11ics/Pr

tsemina 09/19/2012 Plotted: tsemina 09/19/2012 8:57 AM | ects\2011/1436/11-1436-0073\Drafting\Phase 1700/1700-1760\11-1436-0073-1700-1760 -01.dwg | Layout: ANS| A FIG 8 | Modified: Grar N-/B

APPENDIX A

Site Photographs

Photograph 1: Taken during the preliminary Site visit on October 23, 2011. A view from the entrance to the Facility looking north at the KRMC Free Store and burn vessel.

Photograph 2: Taken during the preliminary Site visit on October 23, 2011. A view from the west corner of the Facility looking east at the burn vessel and garbage trench.

Photograph 3: Taken during the monitoring well installation program in June 2012. A view of the access road to the Facility, monitoring well BU-MW12-01, and mountains of the Kluane Ranges in the background.

Photograph 4: Taken during the monitoring well installation program in June 2012. A close-up of the open garbage trench.

o:\final\2011\1436\11-1436-0073\1114360073-505-r-rev0-1700\appendices\app a\site photos.docx

APPENDIX B

Well Construction Logs

	CLI PR LO	IENT: OJEC CATIC	T No.: 11-1436-0073 (1700) Yukon Government Community Services T: Yukon Landfill Assessment DN: Burwash Landing Solid Waste Disposal 863.53 E: ~613264.5		RECC	DR	D	OF	- E	DR	ILLING	HOL DATE: CONTF	June 2	7, 20	12					IEET 1 OF 1 JM: Local
_			8863.53 E: ~613264.5 Ing and Easting Coordinates have been determined by field and are approximate only. SOIL PROFILE			1	64	MPLI			PID									
	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER		۶		CORE RECOVERY %	ppm	I	1	15	20	WpH	 -0 ^W	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
-	0		Ground Surface (SM) SILTY SAND, some gravel, brown, moist.		0.00															
	1	M5 Dritlech Truck Mounted Auger Drill Rig Air Rotary	(GM) SILTY GRAVEL, some sand, brown, moist. - at 1.83m depth: wet. (GW) GRAVEL, some sand, some silt, grey-brown, wet.		1.22															
LB bdrozdiak 11/02	3		(CH) CLAY, trace silt, brown, wet. - at 3.66m depth: some ice (permafrost).		3.05															
any:BC REGION LIBRARY	4		End of Borehole.		3.66															
Template:BC REGION TEMPLATE BETA 2:GDT ULray:BC REGION LIBRARY.GLB bdrozdiak 11/02/12	5																			
00 BU).GPJ Output Form:BC_BOREHOLE (ENVIRO)	7																			
-ie.NiBUR-GRAPHICSPROJECTS20111/48611-1436-0073/DRAFTING/GINT/11-1436-0073 (1700 BU)/CP-J Output Form:BC_BOREHOLE (ENVIRO) Tempate:BC	8 9 10																			
File:N:\BUR-GRAPHICS		PTH \$ 50	SCALE			<u> </u>			6		G	olde ocia	r tes					ED: CE ED: GF		

N: Note GPS	~6 te: N S in 1	7987 lorthin the fie	N: Burwash Landing Solid Waste Disposa 94.34 E: -612022.5 g and Easting Coordinates have been determined by ald and are approximate only. SOIL PROFILE				SA	MPL	ES		ILLING PID ppm					⊕		 			<u>_</u> 0	PIEZOMETER, STANDPIPE	
METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	F	1	0	15	20		Wpł		/	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	2
0 1 2 3 4 5 6 7 8 9	M5 Drittech Truck Mounted Auger Drill Rig		Ground Surface Landfill (plastic bags, wood, metal), with CLAYEY SAND. (FILL) (ML) SILT, some clay, dark brown, moist. (SM-GM) SILTY SAND and GRAVEL, dark brown, moist. (GW-SW) GRAVEL and SAND, trace silt, brown, moist.		0.00																	Stickup = 0.71m Bentonite Seal	
10	F			ē ()			+ -	-		+ -				-	-+			 		<u> </u>		_	ШI

GP.	S in the	8794.34 E: ~613292.5 Ining and Easting Coordinates have been determined by field and are approximate only. SOIL PROFILE				SAI	MPLE	s	PID ppm					•						ں. ا	PIEZOMETER, STANDPIPE OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	CORE No.	PID ppm	1	0	15	20		Wpł				CENT H WI	ADDITIONAL LAB. TESTING	THERMISTOR INSTALLATION
10 11 12 13 14 15	M5 Drillech Truck Mounted Auger Drill Rig Ar Revision Ar Revision	(GW-SW) GRAVEL and SAND, trace silt, brown, moist. (continued) (SP) fine SAND, trace coarse sand, trace gravel, moist.		10.67					5				200	0							Bentonite Seal
16 17 18 19		(SW-GW) SAND and GRAVEL, dark brown, wet. - Sampled Sa 1.		19.20																	10/20 Silica Sand 06/26/2012 ∑ 51mm Slotted PVC Pipe
20	╘		• C	+	\vdash +	-	_	-+	 				-+			<u> </u>	<u> </u>	<u> </u>	<u> </u>		[:]

C P L	LIEN ROJE DCA	CT No.: 11-1436-0073 (1700) RE C: Yukon Government Community Services CT: Yukon Landfill Assessment ION: Burwash Landing Solid Waste Dispose 28794.34 E: ~613292.5 Ihing and Easting Coordinates have been determined by Field and are approximate only.		RD (OF	N	10	NI	DR		DATE:	June	26, 20)12			2-0 [,]	1				HEET 3 OF 3 JM: Local	
						SA	MPLI	ES		PID ppm					⊕						.0	PIEZOMET	ER,
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm 5		<u>0</u>	15 150	20		WpH		-0 ^W		CENT -I WI	ADDITIONAL LAB. TESTING	PIEZOMET STANDPI OR THERMIST INSTALLAT	OR ION
- 20		GSW-GW) SAND and GRAVEL, dark	, P																				
-		Image: Second state in the second	.0																			51mm Slotted PVC Pipe	
-		End of Monitoring Well.		20.42																			- 1211-11-1- -
-																							-
- 21 -																							-
-																							-
-																							-
- 22	2																						-
F																							-
E																							-
21/200																							-
																							-
																							-
																							-
- 24	ł																						
																							-
																							-
	;																						-
																							-
																							-
																							-
- 26	;																						-
																							-
																							-
27																							-
																							-
																							-
																							-
28	3																						
																							-
																							-
29																							-
																							-
																							-
																							-
30)																						
	EPTH : 50	ISCALE	-					(Ì	G	olde	r tes							LOGGI HECKE				

N: ^ Note GPS	~67 e: Noi 6 in th	\$798862 E: ~613326.2 Northing and Easting Coordinates have been determined by the field and are approximate only. B SOIL PROFILE	l Facil			SAI	MPL	ES	DR	PID			TUR:	ight Sun ⊕			 		.0	
MEIKES	BORING METH	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	5	10 100	15	 20 □ 200	Wp		/	CENT H WI	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
0 1 2 3		Ground Surface (SM) SILTY SAND, some gravel, brown, moist. (FILL) (ML) gravelly SILT, trace sand, brown, moist. (GW) GRAVEL, some sand, trace silt, brown, moist.		2.90	-															
4 5 6	M5 Drittech Truck Mounted Auger Drill Rig	(ML) SILT, some clay, grey-brown, moist.		6.10	-															Bentonite Seal
7		(SM) SILTY SAND, some gravel, grey-brown, moist. (SW-GW) SAND and GRAVEL, trace silt.		7.01																
9		- from 9.75m - 10.97m depth: dry.					_			·				 			 			

PR LO N: Note GPS	OJE CATI ~679 S in the	: Yukon Government Community Services CT: Yukon Landfill Assessment ON: Burwash Landfing Solid Waste Disposa 8862. E: ~613326.2 hing and Easting Coordinates have been determined by field and are approximate only. SOIL PROFILE	I Facili	ity		SAI	MPLE	S		DATE: CONTF				nt Sun [Drilling					1	JM: Local
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	CORE No.	CORE RECOVERY %			15 150	20		Wpł			/	CENT WI	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
- 10		(SW-GW) SAND and GRAVEL, trace silt. (continued)																			
- 11 - 12		(SP) fine SAND, trace gravel, grey-brown, dry. - from 11.28m - 11.58m depth: silty.		10.97																	
- 13		- from 12.19m - 15.24m depth: some gravel.																			Bentonite Seal
- 15	M5 Driltech Truck Mounted Auger Drill Rig Air Rotary	(GW-SW) GRAVEL and SAND, grey-brown, dry.		15.24	-																
- 17		- at 16.76m depth: wet.																			06/27/2012 文
- 19																					10/20 Silica Sand 51mm Slotted PVC Pipe
- 20	μL		~		┣		-	- +		 <u> </u>		-+-	-+		L –	<u> </u>	<u> </u>	<u> -</u> -			liBt

	CL PR LO	IENT OJE CAT	CT No.: 11-1436-0073 (1700) REC : Yukon Government Community Services CT: Yukon Landfill Assessment ION: Burwash Landing Solid Waste Disposal 18862 E: ~613326.2 hing and Easting Condinates have been determined by field and are approximate only.	CORD	OF	Μ	01	C	RIL	LING D	ATE:	June 27	, 2012			2-02	2				HEET 3 OF 3 JM: Local
			SOIL PROFILE			SAN	/IPLE	s		PID				Ð						0	PIEZOMETER,
	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No. CORE	/ERY %	5 5 PID 5pm 50	10			20 	WpH	ER CC	W		L CENT H WI 0	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	20 21 22	M5 Drittech Truck Mounted Auger Drill Rig			-																51mm Slotted PVC Pipe
	23 24 25 26 27 28 29 30		End of Monitoring Well.	22.56																	
FIRE IN VID ON - ON VID - VID	DE	:PTH : 50	SCALE				(Ĵ		Go	older ocia	tes	I		I			iged: Iecke			

		I	391.72 E: ~613306.8 Ig and Easting Coordinates have been determined by eld and are approximate only. SOIL PROFILE				SA	AMPL	.ES		PID ppm					Ð				ں _ا	
METRES		עוואס ואובו	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %		1) 1	15	20					ADDITIONAL LAB. TESTING	PIEZOMETEF STANDPIPE OR THERMISTOF INSTALLATIO
0		ň	Ground Surface	ST	(m)			BI		~	5	0 10	0 1	50	200				0		
1 2 3 4 5 6 7 8 9 10	M5 Drillech Truck Mourted Auger Drill Rig	Air Rotary	(SM) SILTY SAND, dark grey, moist some gravel from 1.52m - 3.05m depth. (GW) GRAVEL, some sand, trace silt, dark grey-brown, moist. (ML) SILT, dark grey, moist. (SW-GW) SAND and GRAVEL, trace silt, dark grey-brown, moist. (SW-GW) SAND and GRAVEL, trace silt, dark grey-brown, moist.		0.00 3.05 5.79 6.40																Bentonite Seal
J			CONTINUED NEXT PAGE																		

		I	391.72 E: ~613306.8 g and Easting Coordinates have been determined by eld and are approximate only. SOIL PROFILE				SA	MPL	ES		PID ppm					Ð		 			IC I	PIEZOMETER, STANDPIPE
METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm 5	1	1	5	20		Wpl		V	CENT	ADDITIONAL LAB. TESTING	OR THERMISTOR INSTALLATION
10 11 12 13 14 15 16 17 18 19	M5 Dritlech Truck Mounted Auger Dnill Rig		(SP) fine SAND, trace gravel, brown, moist. <i>(continued)</i>		18.29																	Bentonite Seal 10/20 Silica Sand 06/27/2012 ↓ 51mm Slotted PVC Pipe
20			CONTINUED NEXT PAGE					-							I	_						

C P L	LIE RO	JECT: Yukon Landfi ATION: Burwash La	nent Community Services ill Assessment nding Solid Waste Disposa		RD	OF	N	10		DR	ILLING	DATE: CONTR	June	27, 20)12				3				HEET 3 OF 3 JM: Local
No Gi	ote: N PS in	Northing and Easting Coord the field and are approxim	306.8 inates have been determined by ate only.														-						
щ		Q	SOIL PROFILE				SAI	MPLE	ES		PID ppm					\oplus						ں ۔	PIEZOMETER, STANDPIPE
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.		PID ppm	1	10	15	20		WpH				- WI	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	+			0)								<u>50 1</u>	00	150	200)	1	0 2	0 3	60 4	0		
- 20 - -)		RAVEL and SAND, dark vet. <i>(continued)</i>		1																		
-		End of Monito	oring Well.		20.42																		
- 21																							-
-																							-
-																							-
Ē																							-
- 22	2																						-
F																							
Ē																							-
																							Ξ
23	3																						-
																							-
																							-
24	•																						-
																							1
																							-
																							-
	ĺ																						-
																							-
																							-
- 26	5																						-
																							-
																							-
																							-
27	7																						-
																							-
																							-
																							-
28 28 - 28	5																						
																							-
																							-
29																							-
																							-
1430/																							-
																							-
30 																							-
APHICS										_													
	EP" : 5	TH SCALE							(G	olde ocia	r ites							-oggi Hecke			

APPENDIX C

Well Development and Sampling Sheets

					TER D				D				velopmen rging/San	
Well No.: <u>3</u> Location: <u>3</u> Weather:	سا و	mw bash	Landi	<u>~ q</u> _ Tempe	rature:		1	Project No Date: Complete	-	27-	136 - Jun-13 n Be	2 т	ime: 12	(1700) 0:45
Time of Measure Depth to product Depth to water E Depth to Bottom Diameter Standp	ement: t: Below T of Wel	→ O × Pro op of Casi	<u>%らく</u> oduct thick ng:	ness: A_I	<u> </u>	Or tres (B tres (B	dally Influ ne well vo -A)*2.0 = -A)*1.1 = ample inta	lume:			- for a 51 - for a 38) inch) diam 5 inch) diam	
EQUIPMENT pH and Temp. N Conductivity Met Dissolved Oxyge Pump: I Nor Pump Details:	feter: ter: en Mete	Mod Mod	D Perist	·	Se	erial No. erial No. erial No. ole		(Calibratic	n Buffen in Solutio hemet A Type:	ип: <u></u>	14 B 1413	7 □ 10 115/c	.m
WELL DEVE Purge Volume: Avg. Flow Rate:	W	MENT/P (ell. Vol. X し。のら		=	18	litres L/mir		Start:			Fin	ish:	•	
Time	Volun Remo		np. p C) (Ur		Cond. IS/cm)	Redox (mV)	Diss. O ₂ (mg/L)		Wate	4		Remai	rks	
10853	<u>-</u> Ľ	5.8			93		<u>or%</u>		<u>(m)</u>					
10:55	-5	5.5			96				1					
11:01	8	5.7			12									
11.03	ΠC			53 6	97									
11:07	12	4,9	3 7.	53 6	93				_					
									<u> </u>					
											<u> </u>			
						¦			-					
	ł <u></u>		<u> </u>		I			!						
Comments: Odour: Sheen: Turbidity:	□ Ye □ Ye Clear	s 🗆 No	lfyes Ifyes IIIIII	-					Silty					·
Analysis		Ту	pe	40 mL	100 mL	Co 250 mL	ntainer Size 500 mL	1L	21	41	Filte	red	Preserva	lives
	$\overline{}$	Plastic	D Glass		100 112	200 1112	out me		2 L	and the second s	D Yes	🛛 No		
		Plastic	Glass	1	-		and the second designed and th	and Western Contraction of the C			□ Yes	□ No		
		D Plastic	Glass		and the state of the second states	AB PHANNE					🗆 Yes	🗆 No		
		D Plastic	Glass								🗆 Yes	D No		
		D Plastic	Glass								🗆 Yes	🗆 No		
		D Plastic	🗆 Glass	ļ	<u> </u>						□ Yes	□ No		
·	- Carlon Contract	Plastic	D Giass		ļ <u> </u>	[in the second designed	🗇 Yes			
		D Plastic	D Glass	<u> </u>	<u> </u>			1]		"D'Yes-	D No		
SON No. Field Dup.		Cons	umables:		erra Tubing on Tubing			OPE/Tefio O. Ampou	-			roundwa	ter Filter	

C:\L/sers\BrMacdonald\Desktop\New Forms\GW Development and Purging Sampling Data Sheet.docm

r. and the

			IDWATEN NG/SAMF				D			•	velopment rging/Sampling
ell No.: <u>BU</u> cation: <u>Bu</u> ather:	-mwli rwash	2-03 Lan	L: ~ d Temperatur	2:	. 1	Project No Date: Complete	2	27-3	136-0 Jun-1	12 1	ime: <u>15 * 34</u>
ONITORING ime of Measurem epth to product: epth to water Belor epth to Bottom of iameter Standpip	ent: <u>~15</u> P ow Top of Cas Well Below To	:40 roduct thickn ing:	ess: <u>×</u> A 7. 29	 metres (metres (Fidally influe One well vo B-A)*2.0 = B-A)*1.1 = Sample inta	iume:	UYes	litres	- for a 51 - for a 38) inch) diameter well 5 inch) diameter well
EQUIPMENT L H and Temp. Meter onductivity Meter issolved Oxygen ump: D None ump Details:	er: Moo Moter: Moo DitWaterra	iel <u>75</u> 2	Ē	_ Seriał No. _ Serial Ño. _ Serial No. hersible			alibration alibration 3 D.O. Ci 3 Bailer 1	n Solutio hemet A	ר. ביות	*	27 □ 10 <i>sc 5/cm</i>
VELL DEVEL(urge Volume: .vg. Flow Rate:	DPMENT/P Well. Vol. X ろ		_ =8) litre L/m		Start:	<u>15 g</u>	45	Fir	nish:	16:03
	(* (L)	mp. pH C) (Unit		Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)		``````````````````````````````````````	Rema	rks
15:45	5 8.	4 7.4	19 768				1				
15:48	8 5,1	the second s							· · · · ·		
	15 5.6			_							
	25 5.0										
	30 5.0										
16:03 4	15 4.1	32 7.4	4 726	•							
				· ·	<u> </u>				-		
								<u> </u>			
· · · · · · · · · · · · · · · · · · ·											
					<u> </u>					<u> </u>	
Comments:											
	Yes 🗆 No	· -					<u> </u>				
•	IYes □ No	-	Hydrocarbon-			-like 🛛					
Turbidity: C	iear []]					Very S	Silty				
Analysis		уре			Container Size						
			40 mL 100	mL 250 mL	500 mL	1L	21	4 L	Filte	red	Preservalives
	D Plastic	Giass							D-YES		
	D Plastic	Glass			- <u> </u>		NATION OF CONTRACTOR OF CONTRACTOR	11/2 ⁻¹⁰	🗆 Yes	D No	
	D Plastic	D Glass				- Contraction			🗆 Yes	D No	
ļ	Plastic	D Glass		- TEMPERSON		-			D Yes	D No	
	D Piastic	Glass	and and the second s						🛛 Yes		
.[D Plastic	Giass				<u> </u>		Contraction of the local division of the loc	🗆 Yes		
			·····		<u> </u>	<u> </u>			D'Yes		
	D Piastic	D Glass	<u> </u>						🛛 Yes	D ND	
SCN4No.	Con	sumables:	Waterra T Silicon Tul			PE/Teflor	-		□G	roundwa	ter Filter
Field Dup.						0. Ampou					

Â

	EAS	NW R NASH	-01	_ Tempe	erature:	15.	°C	Project N Date: Complete	. 23	-1436- -AUG+1 + BAG	2 1	/1700 "ime: 15.2
e of Measurer th to product: th to water Be th to Bottom of meter Standpi	ment: elow To of Well	Pr	oduct thickn	ness:	<u>7.71</u> n <u>21(7</u> n n	netres in netres i	(B-A)*2.0 (B-A)*1.1	volume: = 3.46.2	7	litres - for a	51 mm (2. 38 mm (1.	0 inch) diameter we 5 inch) diameter we
UIPMENT and Temp. Me ductivity Mete olved Oxygen pp: Dona p Details: ELL DEVEI ge Volume:	eter: er: n Mete e D	Mod Mod r: Mod Waterra	el el D Perista	altic 🗆	Submers	Serial No. Serial Ño. Serial No.			Calibration Calibration D.O. Che Bailer Ty	Solution:	- 14	
Flow Rate:					50			Start	15:	25 1	inish:	1544
Time	Volume Remove (L)	ed (°C	C) (Un	its) (t	Cond. JS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %	-	Water Level (m)	100	Rema	rks
5:26	0.5	H			90							1.31
5:28	7		6 7.6	C 1 1 34	02				17:72			1
5:36	13	5.0	8 7.6		16				17.73			
5:40	30	5.			01				17.72			1.
13:44	27	5.1			57				17.77	the second se		
	2.1.			000	15		-		17.72	SAMP	LE.C	OLLECTED
						-		-		1		
		_						-				
2							1					
nments:											-	
	□ Yes		If yes									
	□ Yes Clear				rbon-like			lic-like			11.4	inv C
urbiaity.	Cical	111.	IIIIII	11111	1111	11111.		I Very	Silty	111111	TRUE	
Analysis		Ту	pe		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Container Si	ze				
		D Plastic	D Glass	40 mL	100 mL	250 mL	500 ml	- 1L	2 L	4L F	Itered	Preservatives
			D Glass	-				-		D Yes		
		D Plastic	D Glass			-	-			□ Yes		1
				1	1	-				🗆 Yes		
		D Plastic	Giass	11	1	-				□ Yes		
		D Plastic	Glass							Yes		
	1	D Plastic	D Glass							□ Yes		
· · · · · · · · · · · · · · · · · · ·		D Plastic	D Glass		1			-				2

-

ion: B	HRNS LEAR	NSH	1	emperature	:_12°0		Project No Date: Complete	23	-ANG	36 -01 -12	
on to produce oth to produce oth to water I oth to Bottom meter Stand	ement: t: Below Top n of Well Be	Produ	uct thicknes	s: A <u>17.96</u> B <u>22.16</u> C	metres metres	Tidally Influe One well vol (B-A)*2.0 = (B-A)*1.1 = Sample inta	lume: 5.21.2	10.5			0 inch) diameter well 5 inch) diameter well
QUIPMEN and Temp. M nductivity Me solved Oxyg mp: Do Mp Details: ELL DEVE rge Volume:	Meter: ter: en Meter: ne	Model Model Model aterra						Calibration I Calibration S D.O. Che Bailer Ty	Solution: met Ampo		
g. Flow Rate	:		- 6			nin. S	Start	(7):0	00	Finish:	17:23
Time	Volume Removed (L)	Temp. (°C)	pH (Units)	Cond. (uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)	1	Rema	arks
F:02	1	10.7	2 7.42	585				(11)			
7:03	0	7.6	7.53	572						-	
7:06	15	5.9	7.59	608				17.96	1		
7.09	22	5.0	7.57	and the second s							
17:11	30	14.8	17.57	615				17.96			
17:15	37	14.6	7.58	590				1			
17.117	45	4.5	7.57	605				17.96			
17 117	152	4.6	7.50	595							
	1.1		17.59	3 605				17.50	JAM.	PLE CO	ILLECTED
17:20	66	14.5									
17:20		4.5	1.5			and the second se					
17:20		4.5			-						
17:20		9.5									
17:20		□ No □ No	If yes	/drocarbon-li IIIIII		IIIIII	-like 🗆	Silty			
mments: Odour: Sheen:	□ Yes □ Yes Clear	□ No □ No	If yes If yes Hy IIIIIII		111111	IIIIII Container Size	Very	1		Filtered	Preservatives
mments: Odour: Sheen: Turbidity:	☐ Yes ☐ Yes ☐ Yes Clear	□ No □ No 1 1 1 1 1 Type	If yes If yes Hy IIIIIII	111111	111111	IIIIII Container Size		Silty 2 L	4L		Preservatives
mments: Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	□ No □ No I I I I I I Type Plastic 1	If yes If yes Hy IIIIII	111111	111111	IIIIII Container Size	Very	1	0	Yes 🗆 No	Preservatives
nments: Odour: Sheen: Turbidity:	U Yes U Yes Clear	□ No □ No I I I I I I Type Plastic I Plastic I	If yes If yes I I I I I I I Glass	111111	111111	IIIIII Container Size	Very	1		Yes 🗆 No Yes 🗇 No	Preservatives
nments: Odour: Sheen: Turbidity:	Clear	□ No □ No I I I I I I Type Plastic I Plastic I Plastic I	If yes	111111	111111	IIIIII Container Size	Very	1		Yes 🗆 No Yes 🗇 No Yes 🗇 No	Preservatives
nments: Odour: Sheen: Turbidity:	Clear	□ No □ No □ I I I I I Plastic I Plastic I Plastic I Plastic I Plastic I	If yes	111111	111111	IIIIII Container Size	Very	1		Yes INO Yes NO Yes NO Yes NO	Preservatives
mments: Odour: Sheen: Turbidity:	Clear	□ No □ No □ IIIIII Plastic II Plastic II Plastic II Plastic II Plastic II Plastic II	If yes	111111	111111	IIIIII Container Size	Very	1		Yes D No Yes No Yes No Yes No Yes No	Preservatives
mments: Odour: Sheen: Turbidity:	U Yes U Yes Clear	□ No □ No □ No □ I I I I I Plastic 1 Plastic 1 Plastic 1 0 Plastic 1 0 Plastic 1 0 Plastic 1 0 Plastic 1	If yes	111111	111111	IIIIII Container Size	Very	1		Yes INO Yes NO Yes NO Yes NO	Preservatives

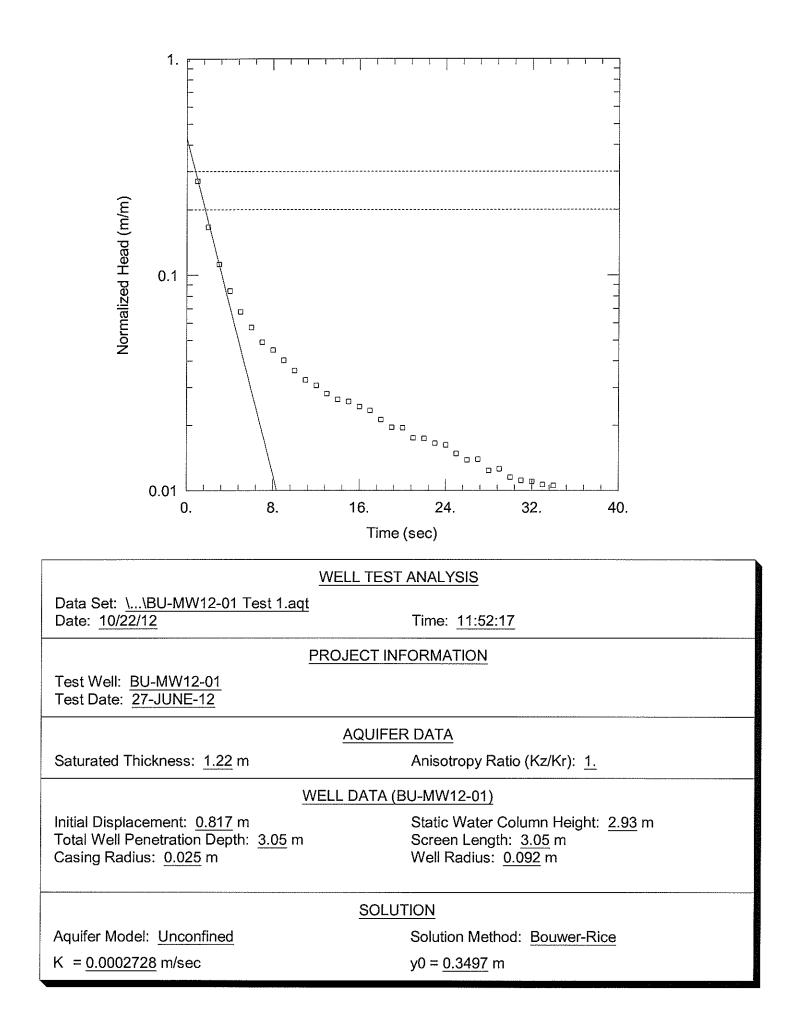
ion: Bu	U-MI RWAS EAR	in l	03	Temper	ature:	15°C		Project No Date: Complete	2	3-19	436-0 106-1-	Ti	11700 me: <u>16:05</u>
NITORING e of Measure th to product: th to water Be th to Bottom neter Standp	elow Top	(6: Proc of Casing	0 <u>S</u> duct thickn g:	ess:	7.13 m .12 m m	etres (etres (idally Influ Dne well vo B-A)*2.0 = B-A)*1.1 = Sample inta	3.55.2	3		for a 38		inch) diameter w inch) diameter w
UIPMENT and Temp. Me ductivity Meters solved Oxyge np:	eter: er: n Meter: e D W	NT/PU	D Perista	ltic 🗆	Submers			C	Calibration Calibration D.O. Ch Bailer Ty	Solutio	n:	4	7 🗆 10
ge Volume: . Flow Rate:	Well.	Vol. X	8.4	- =	37	litre		Start	16:	10	Fin	ish: (6:25
Time	Volume Removed (L)	Temp (°C)			ond. S/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Remark	
16:10	6.5	16.1	Territoria and the second		2							-	
6:11	3	7.5	And the second s		78	-			1 ×				
6.14	15	5.8			96				17.12	-			
16:17	22	5.1			85								
16:21	30	4.1	(+·(17/			1	1				
16.25	45	4.	7 7.		10	1			FIR	1	Bi. O	V.G.C	OLLECTED
									1710		INach	CIL C	ormer 160
		-											-
	-	-											
										1			
mments: Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	□ No □ No 1 1 1 1	If yes If yes	TONE CONCERNEN		OR	Metalii	c-like □ I Very	Silty		-	WS WS	
Analysis		Тур	e				Container Siz		1		Filte	han	Prospective
		Plastic	D Glass	40 mL	100 mL	250 mL	500 mL	1L	2L	4 L			Preservatives
		Piastic	D Glass								Yes Yes		
		Plastic	D Glass								D Yes		
		Plastic	Glass								D Yes		
		Plastic	D Glass								D Yes	D No	3
		Piastic	D Glass								🗆 Yes	D No	61
	0	Plastic	D Glass								D Yes	D No	
		Plastic	D Glass								The second s		and the second se

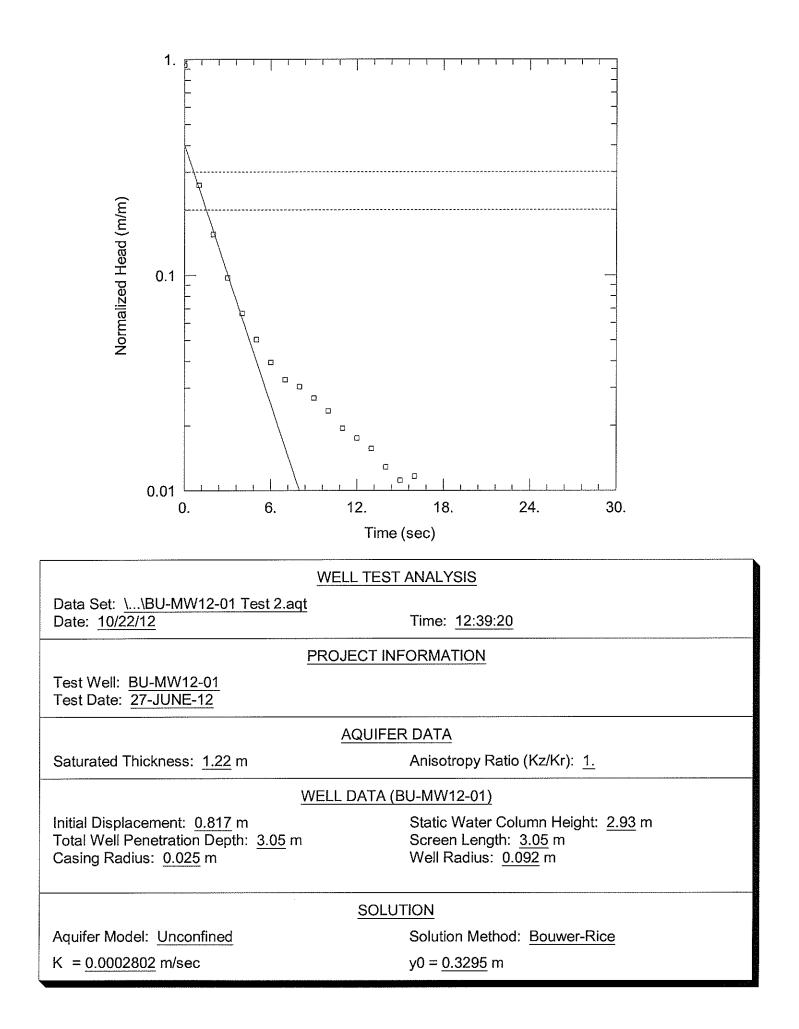
-

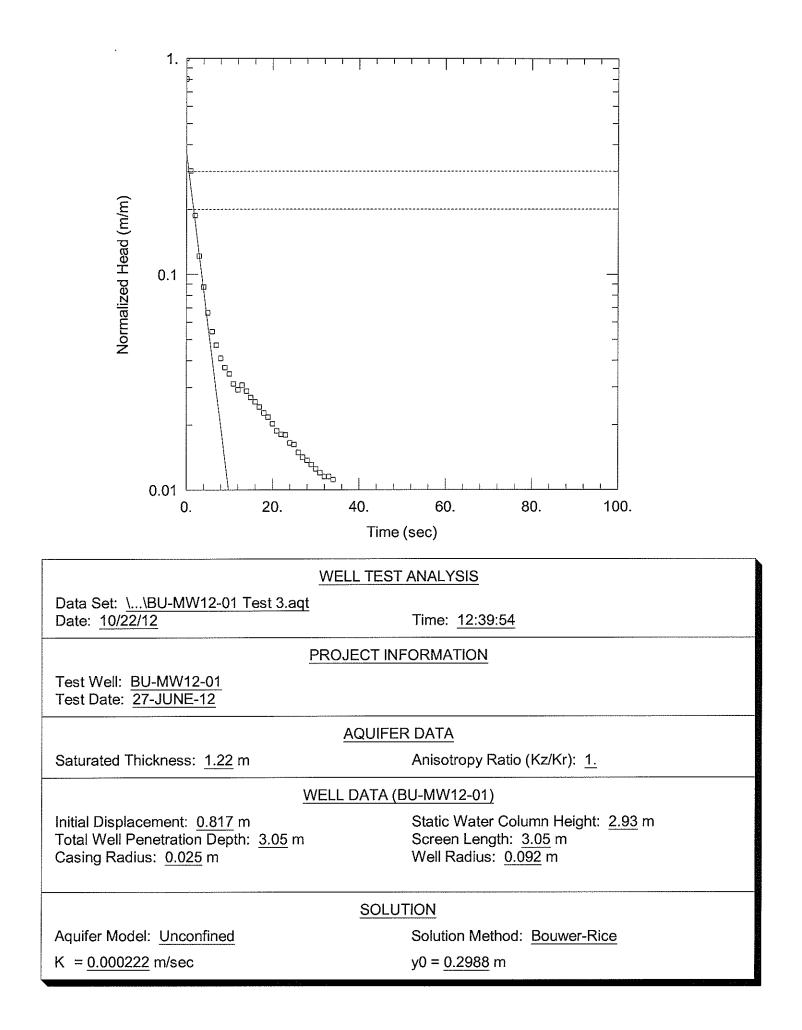
Surface Water Sampling Data Sheet

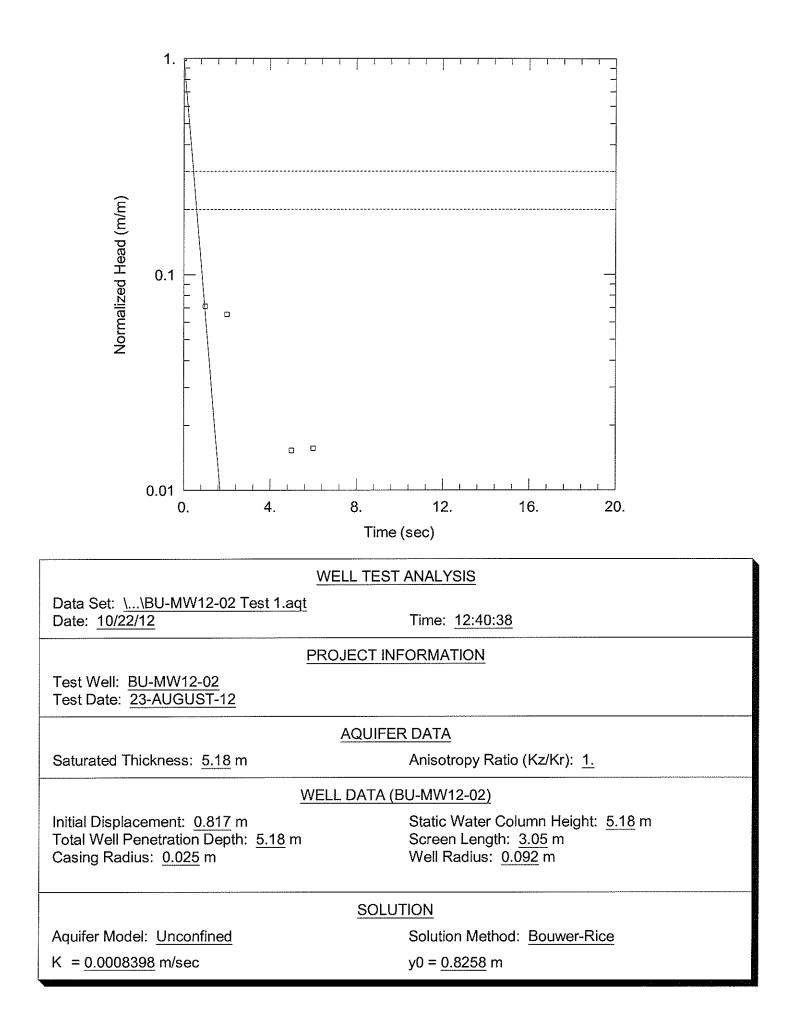
Field Characterization

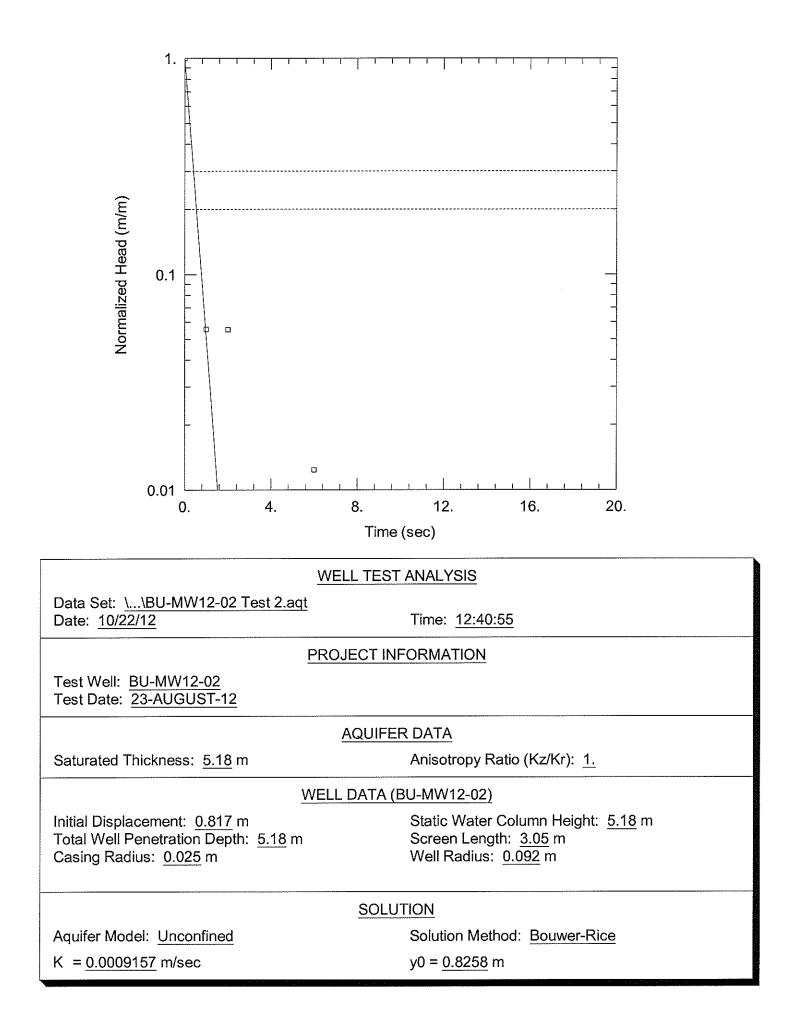
Sampling

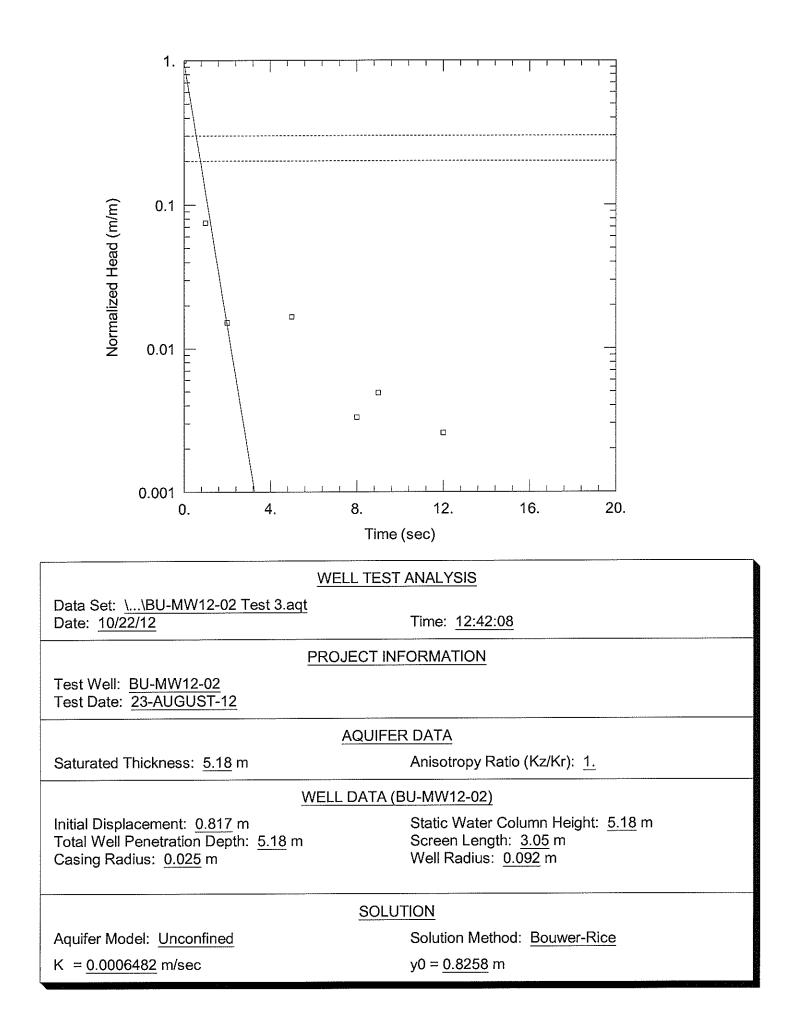

IRFACE WAT	Mode Mode Waterra SMR TER SAN	el D Perista	altic 🗆 S	S	erial No. erial No. erial No. ole Bed (m\	ox	C	Calibratio Calibratio] D.O. C] None	n Solutio hemet A	on: mpoule ainless St	a 4 🔯 1413 teel 🗆	
JRFACE WAT	TER SAN	APLING Temp. (°C)	pH (Units)	(uS/cm) (m\				•	Re	emarks	k
lime Rem	noved (L)	(°C)	(Units)	(uS/cm) (m\				•	R	emarks	
			A starter and									
							- 4					
mments: Odour: □ Y Sheen: □ Y Turbidity: Clea	es 🗆 No	If yes If yes	11111	11111	11111	11111	Very S	ilty	2	j	1.	
Other:	1		1		Cor	ntainer Size		-/-			1	
Analysis	Ту	pe	40 mL	100 mL	250 mL	500 mL	1L	2L	4 L	Filte	ered	Preservatives
	Plastic	Glass								□ Yes	D No	
	D Plastic	Glass				-				□ Yes	D No	
	D Plastic	Glass				1				C Yes	□ No	
	D Plastic	Glass								C Yes	□ No	
	Plastic	Glass								□ Yes	□ No	
	D Plastic	Glass								□ Yes	□ No	
	Plastic	Glass								□ Yes	No .	
	Plastic	Glass					1			□ Yes	□ No	

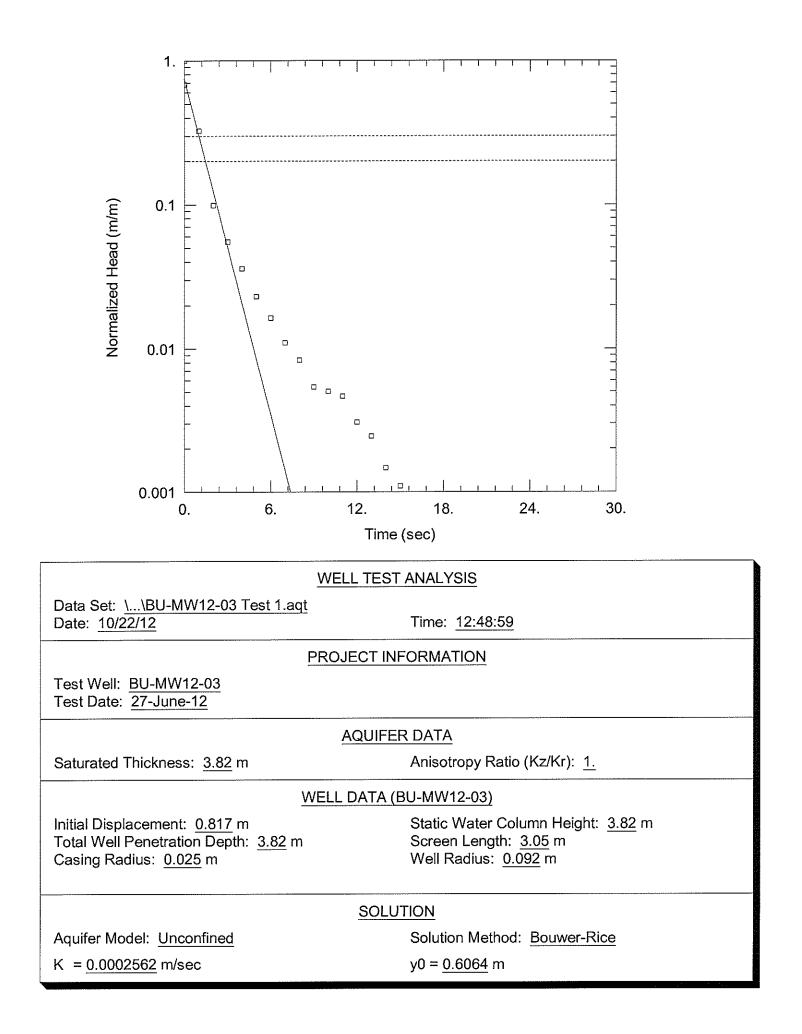


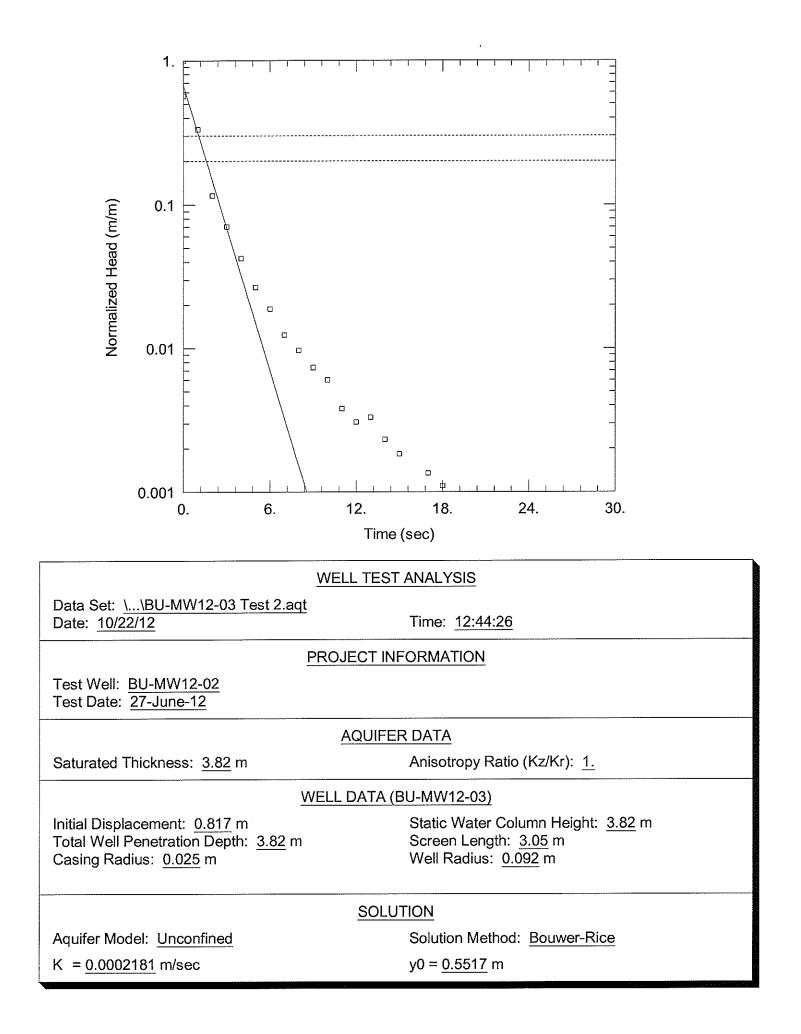

APPENDIX D

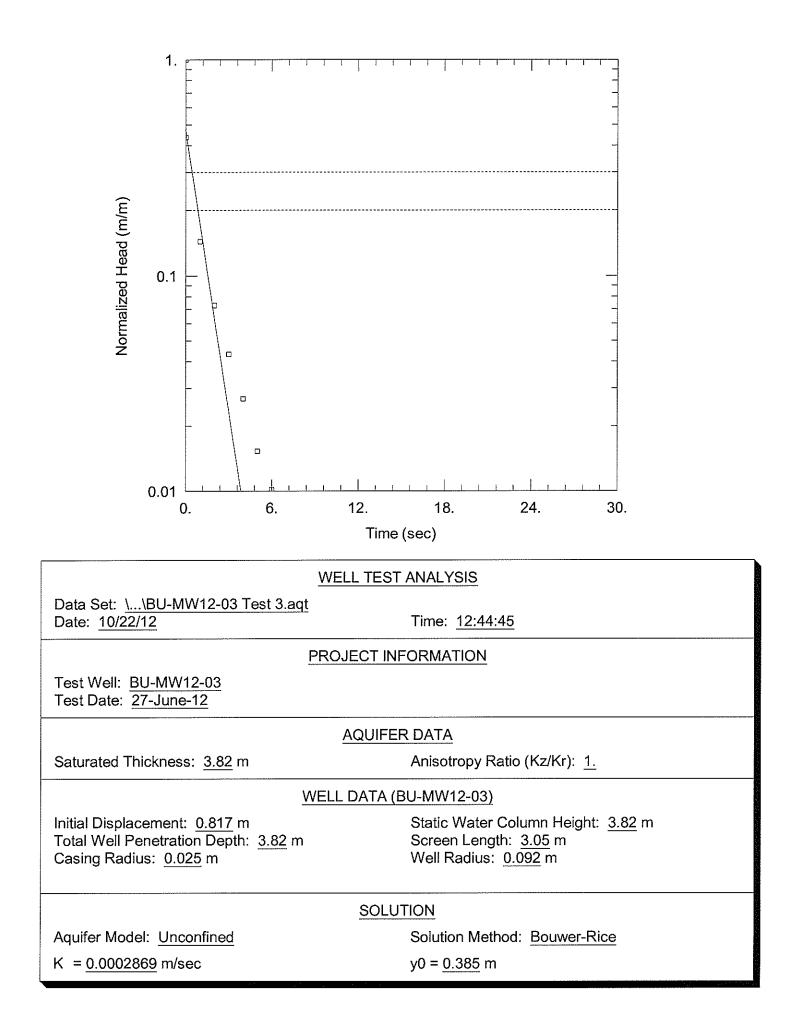

Slug Test Data











Single-well Response Test **Rising Head Data Sheet** Falling Head BU - MWIZ-02 Well No .: Location: BURWASH Project No .: 11-1436 -0073 (1700) Completed By: ABADGER Date: 23-AUG-12 Time: 17:30 MONITORING WELL INFORMATION Depth to water below top of casing: 17.96 meters Depth to bottom of well below top of casing: 23.16 meters Distance from top of pipe to ground surface: 0.55 meters Well casing diameter: 0-05 meters (1 inch = 0.025 meters) Borehold diameter: meters Screen length: meters (1 foot = 0.3048 meters) Screened unit: (eg: sand, silt, clay) EQUIPMENT LIST ·Slug Bailer Mass: Water column height: kilograms meters Length: 1.5 meters Inside diameter: meters Diameter: 0-0375 meters and/or Volume of water removed: litres 0051050342 Pressure transducer serial #: Sampling Interval: seconds or minutes (circle one) SINGLE-WELL RESPONSE TEST Start time: 17:33 Finish time: 18 4 Time Elapsed Time Water Level (m) Comments 17:33 Tx 20 cm 270 'IA BUTTOM 37 17.96 SLUG IN : 42 26 17 SLUG out 47 SLUG IN 17:52 SLUG ONE SLUG. IN 57 3:02 scho one 07 SCUG IP 8: 8: 12 JLUG OUT 9:14 Tx one

Singl	e-well Re	esponse	Test			· F	Rising Head	ł
-	Sheet						Falling Hea	d
	Well No.: Location: Project No.: Completed By: Date: Time:		Beebe		-			
MONITOR	ING WELL INF							
MONITOR	Depth to water Depth to bottor	below top of ca n of well below top of pipe to gr meter:	top of casing:	17.29 21.11 0.051 0.184 3.05	meters meters meters meters meters meters (eg: sand, s	(1 inch = 0.0 (1 foot = 0.30 ilt, clay)		
EQUIPME								
X	Slug Mass: - Length: Diameter:	1.5	kilograms meters meters	and/or	Inside dia	lumn height: meter: f water remov	ed	meters meters litres
	Pressure trans		Solinst Levella	<u>1998</u>	-	f water added	and the second se	litres
SINGLE-V	VELL RESPON							
	Start time:	15:55	Finish time:	16:34				
	Time 15:55 15:57 15:57 15:57 16:04 16:04 16:04 16:14 16:24 16:24 16:34	Elapsed Time \bigcirc 3. min 4. min 14. min 14. min 19. min 24. min 3.9. min 3.9. min 3.9. min	Water Level (m)	Transduc Static Slug in Slug in Slug in Slug ou Slug ou Transdu Static	rer In pt but t cer or		· · · · · · · · · · · · · · · · · · ·	

Single-well Re	esponse	Test			F	Rising Head	1
Data Sheet						Falling Head	Ł
Well No.: Location: Project No.: Completed By: Date: Time:	11-1436 (alvin	N12-01 sh Land -0073 (Beebe n-12	1720)	- - - -			
MONITORING WELL INF	ORMATION						
Depth to botto	eter:	top of casing:	18.25 21.18 0.051 0.184 3.05	meters meters meters meters meters meters (eg: sand, s	(1 inch = 0.0) (1 foot = 0.30 ilt, clay)		
EQUIPMENT LIST							
Slug Mass: Length: Diameter:	1.5 0.0381	kilograms meters meters	and/or	Inside dia	umn height:	ed:	meters meters litres
Pressure trans Sampling Inter	ducer serial #: val:	Solinst Level logo	;«	-	F-water added:	le one)	_litres
SINGLE-WELL RESPON Start time:	SE TEST	Finish time:	13:20	-			
Time	Elapsed Time	Water Level (m)		Corr	nments		
11 % 56	\bigcirc		Transduce	nin			
12:08 12:15 12:20	12 min 19 min 24 min	18.23	Static Slug in Slug Ou)			-
12:25	29 min 32 min	18.23	Stafic Slug in	3			-
12:35	39 min 44 min 51 min		Slug Out Slug in Slug ou				
12:47 12:54 13:01	58 min 1:05		Slug in Slug out				-
13:07 13:14 13:20	1:11 1:18 1:24		Sivy in Sivy out Transdue		^		-

-Ð

		WATER D				D				vəlopn rging/S	nent Sampling
Well No.: <u>BU-MU</u> Location: <u>Burwash</u> Weather:	12-01 Landing Ti	emperature:		E	roject No ate: completer	_	27-5	- N	-00 2 T 2ebe	ime:	(1700) 10:45
MONITORING WELL INFO	DRMATION っちつ roduct thickness ing:	:: <u>×</u> А <u>1 %,25</u> me	Tie Or otres (B stres (B	dally Influe ne well vol -A)*2.0 = -A)*1.1 = ample intal	ume:	□ Yes ~ ~		for a 38			iameter well iameter well
Pump Details: <u>Hy/r</u>	$\begin{array}{c} 1 & \underline{\gamma 5 I} \\ 1 & \underline{\gamma 5 I} \\$	S(erial No. erial No. erial No. ble			Calibration Calibration D.O. Ch Bailer T	Solutio	n:	14 B 1413		
WELL DEVELOPMENT/P Purge Volume: Well. Vol. X Avg. Flow Rate: 1.05	_	= 18	litres	ı. S	Start:			Fir	nish:	•••	· · · · · · · · · · · · · · · · · · ·
	np. pH C) (Units)	Cond. (uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Rema	rks	
10:53 2 5.6		693									
	52 7.58	696									
11:01 8 5		697				+					
11207 18 4,4											
											······
						<u> </u>					
						-					
Comments:						1					
Odour: □Yes □No Sheen: □Yes □No Turbidity: Clear III		drocarbon-like		Metallic-		Silty			WP4 <u>6 8 18 1</u>		
Analysis T	/pe		Co	ntainer Size						-	without the second second second
	40) mL 100 mL	250 mL	500 mL	1 L	21_	4 L	Filte		r-165	ervatives
			i	and the second second	10 100	and the second		□ Yes			
Plastic			and the second s		<u> </u>			□ Yes □ Yes			
D Plastic		AND	 		-			I Yes			
	Glass							□ Yes			
DPlastic	🗇 Glass							D Yes		1	
· D Plastic	🗆 Glass							□ Yes	🗆 No		
Plastic	Glass		<u> </u>					"D"Yes			
SGN No Cons Field Dup		Waterra Tubing Silicon Tubing			PE/Tefior D. Ampoul	-			roundwa	ter Filter	
r C:\Users\BrMacdonald\Desktop\New Forms\	GW Development an	d Purging Sampling	Data Sheet.d	ocm							

an.

APPENDIX E

Analytical Reports and Chain of Custody Forms

Table E-1Results of Water Analyses - MetalsYTG Landfill Monitoring, Burwash, Yukon

	CON					L1199825-14	L1199825-15	L1199825-16	L1199825-17
	SCN Legation	7		A our-41- T *P					
	Location	Livestock	Drinking Water CSR -	Aquatic Life		BU-MW12-01	BU-MW12-02	BU-MW12-03	BU-SURFACE
	QA/QC	CSR- LW	DW	CSR-AW		23-AUG-12	23-AUG-12	23-AUG-12	23-AUG-12
	Date			(freshwater)	Notes	23-AUG-12	23-AUG-12	23-AUG-12	23-AUG-12
					notes				
Parameters									
pH (field)						7.62	7.58	7.68	8.24
Temperature °C						5.00	4.5	4.70	16.3
Conductivity (uS/cm)						597	605	610	570
Dissolved Oxygen (mg/L)						-	-	-	-
Laboratory Parameters									
pH (laboratory)						8.05	7.97	8.06	8.34
Hardness (as CaCO3)						351	360	361	365
total dissolved solids						490	498	510	486
Aggregate Organics									
COD						<20	<20	<20	<20
dissolved organic carbon						<0.50	<0.50	<0.50	1.83
C									
Dissolved Metals									
aluminum		5	0.2			<0.010	<0.010	<0.010	0.020
antimony			0.006	0.2		< 0.00050	<0.00050	<0.00050	<0.00050
arsenic		0.025	0.025	0.05		0.00014	0.00014	0.00018	0.00056
barium			1	10		0.060	0.060	0.058	0.039
beryllium		0.1	1	0.053		< 0.0050	<0.0050	<0.0050	< 0.0050
bismuth						<0.20	<0.20	<0.20	<0.20
boron		5	5			<0.10	<0.10	<0.10	0.11
cadmium		0.08	0.005	0.0001 - 0.0006	Н	<0.00020	<0.00020	<0.00020	<0.00020
calcium		1000	-			92.6	96.5	94.9	96.2
chromium		0.05	0.05	$0.010^{\text{VI}}, 0.090^{\text{III}}$	v	0.0032	0.0030	0.0034	<0.0020
cobalt		0.03	0.05	0.009	v	< 0.010	< 0.010	< 0.010	< 0.010
		0.3	- 1		ш	<0.0010	<0.0010	<0.0010	0.0013
copper		0.5		0.020 - 0.090	Н	<0.030	< 0.030	<0.0010	0.032
iron		0.1	0.3	0.040 0.160		<0.00050	<0.00050	< 0.00050	< 0.002
lead		0.1	0.01	0.040 - 0.160	Н			<0.00050 <0.010	
lithium		5	100			<0.010	<0.010		<0.010
magnesium			100			29.1	28.8	30.0	30.2
manganese		0.000	0.05	0.001		< 0.0020	0.0054	0.0168	0.0106
mercury		0.002	0.001	0.001		<0.00020	<0.00020	<0.00020	<0.00020
molybdenum		0.05	0.250	10		< 0.030	< 0.030	< 0.030	< 0.030
nickel		1		0.250 - 1.5	Н	<0.050	<0.050	<0.050	<0.050
phosphorus						< 0.30	< 0.30	< 0.30	< 0.30
potassium			-			1.37	1.38	1.42	1.86
selenium		0.05	0.01	0.01		0.0083	0.0083	0.0084	0.0063
silicon						4.36	4.21	4.18	4.93
silver				0.0005 - 0.015	Н	<0.010	<0.010	<0.010	<0.010
sodium			200			8.0	8.0	8.2	8.2
strontium						0.327	0.324	0.330	0.337
thallium				0.003		< 0.20	< 0.20	< 0.20	< 0.20
tin						< 0.030	< 0.030	< 0.030	< 0.030
titanium			-	1		0.012	0.012	0.012	0.013
uranium		0.2	0.1	3		0.00053	0.00057	0.00061	0.00053
vanadium		0.1	4			< 0.030	< 0.030	< 0.030	< 0.030
zinc		2	5	0.075 - 2.4	Н	<0.050	<0.050	<0.050	<0.050
Other Inora									
Other Inorganics						101	186	188	400
bicarbonate (CaCO3)						184 <2.0	186 <2.0	<2.0	192 2.7
carbonate (CaCO3)						<2.0 <2.0	<2.0 <2.0		
hydroxide (CaCO3)						<2.0 184	<2.0 186	<2.0 188	<1.0 195
total alkalinity (CaCO3)				1.31 - 18.5	лU	<0.0050	<0.0050	<0.0050	0.0057
ammonia			250	1.51 - 18.5	pН	<0.0050 <0.50	<0.0050 <0.50	<0.0050 <0.50	0.0057
chloride			1.5	2 2	TT	<0.50 0.054	<0.50 0.061	<0.50 0.058	0.02
chloride fluoride				2 - 3	Н	0.004	0.001		
fluoride		1				0 426	0 116	0 157	0 125
fluoride nitrate (as N)		100	10	400		0.436	0.446 <0.0010	0.457	0.135
fluoride nitrate (as N) nitrite (as N)					Cl	<0.0010	<0.0010	0.0039	<0.0010
fluoride nitrate (as N)		100	10	400	Cl				

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.
Land Use abbreviations: LW (Livestock), DW (Drinking Water) and AW (Aquatic Life).
H = standard is Hardness dependent
CL = standard is chloride dependent
pH = standard is pH dependent
V = Standard is valence dependent VI refers to chromium VI and III refers to chromium III
T = standard varies with temperature
FDA = field duplicate available
FD = field duplicate
QA/QC = quality assurance/quality control
SCN = sample control number *Italics indicates standard is below detection limit.*COC = Chain of Custody

Table E-2 **Results of Water Analyses - Hydrocarbons** YTG Landfill Monitoring, Burwash, Yukon

	SCN Location	Livestock	Duinling W-4-	Aquatia Lifa		L1199825-14 BU-MW12-01	L1199825-15 BU-MW12-02	L1199825-16 BU-MW12-03	L1199825-17 BU-SURFACE
	QA/QC	Livestock CSR- LW	Drinking Water CSR - DW	Aquatic Life CSR-AW					
	Date			(freshwater)	Notes	23-AUG-12	23-AUG-12	23-AUG-12	23-AUG-12
Monoaromatic Hydrocarbons									
benzene			0.005	4		<0.00050	<0.00050	<0.00050	<0.00050
ethylbenzene			0.0024	2		<0.00050	<0.00050	<0.00050	<0.00050
styrene				0.72		<0.00050	<0.00050	<0.00050	<0.00050
toluene			0.024	0.390		<0.00050	<0.00050	<0.00050	<0.00050
ortho-xylene						<0.00050	<0.00050	<0.00050	<0.00050
meta- & para-xylene			0.2			<0.00050 <0.00075	<0.00050 <0.00075	<0.00050 <0.00075	<0.00050 <0.00075
total xylene VHw ₆₋₁₀		15	0.3 15	15		<0.10	<0.10	<0.10	<0.10
VPHw		15	15	15 1.5		<0.10	<0.10	<0.10	<0.10
Polycyclic Aromatic Hydrocarbons									
acenaphthene						<0.000050	<0.000050	<0.000050	<0.00020
acenaphthylene						<0.000050	<0.000050	<0.000050	<0.00020
acridine				0.0005		<0.000050	<0.000050	<0.000050	<0.00020
anthracene				0.001		<0.000050	<0.000050	<0.000050	<0.00020
benzo(a)anthracene			0.00001	0.001		< 0.000050	<0.000050	< 0.000050	< 0.00020
benzo(a)pyrene			0.00001	0.0001		<0.000010 <0.000050	<0.000010 <0.000050	<0.000010 <0.000050	<0.000040 <0.00020
benzo(b)fluoranthene benzo(g,h,i)perylene						<0.000050 <0.000050	<0.000050	<0.000050	<0.00020
benzo(k)fluoranthene						<0.000050	<0.000050	<0.000050	<0.00020
chrysene						<0.000050	<0.000050	<0.000050	<0.00020
dibenzo(a,h)anthracene						<0.000050	<0.000050	<0.000050	<0.00020
fluoranthene				0.002		<0.000050	<0.000050	<0.000050	<0.00020
fluorene				0.12		<0.000050	<0.000050	<0.000050	<0.00020
indeno(1,2,3-c,d)pyrene						<0.000050	<0.000050	<0.000050	<0.00020
naphthalene				0.01		< 0.000050	<0.000050	< 0.000050	<0.00020
phenanthrene				0.003 0.0002		<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.00020 <0.00020
pyrene quinoline				0.034		<0.000050	<0.000050	<0.000050	<0.00020
Other Hydrocarbons									
EPHw ₁₀₋₁₉		5	5	5		<0.25	<0.25	<0.25	<1.0
EPHw ₁₉₋₃₂						<0.25	<0.25	<0.25	<1.0
LEPHw				0.5		<0.25	<0.25	<0.25	<1.0
HEPHw				0.5		<0.25	<0.25	<0.25	<1.0
Miscellaneous Organics									
<i>Miscellaneous Organics</i> methyl tertiary butyl ether (MTBE)						<0.00050	<0.00050	<0.00050	<0.00050
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons								<0.00050	
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons bromodichloromethane (BDCM)		ÂI				<0.0010	<0.0010	<0.00050	<0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform)		0.1				<0.0010 <0.0010	<0.0010 <0.0010	<0.00050 <0.0010 <0.0010	<0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride)		0.1 0.005	0.005	0.13		<0.0010 <0.0010 <0.00050	<0.0010 <0.0010 <0.00050	<0.00050 <0.0010 <0.0010 <0.00050	<0.0010 <0.0010 <0.00050
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene)		0.005	0.005 0.03	0.13 0.013		<0.0010 <0.0010 <0.00050 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010	<0.00050 <0.0010 <0.0010 <0.00050 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM)						<0.0010 <0.0010 <0.00050 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.00050 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride)		0.005	0.03	0.013		<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform)		0.005				<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride)		0.005	0.03 0.1	0.013		<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene		0.005	0.03	0.013		<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070	<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride)		0.005	0.03 0.1 0.003	0.013 0.02 1.5		<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene		0.005	0.03 0.1	0.013		<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010	<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene		0.005	0.03 0.1 0.003 0.001 0.005	0.013 0.02 1.5		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethane		0.005	0.03 0.1 0.003 0.001	0.013 0.02 1.5 0.26		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane		0.005	0.03 0.1 0.003 0.001 0.005	0.013 0.02 1.5 0.26		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene		0.005	0.03 0.1 0.003 0.001 0.005	0.013 0.02 1.5 0.26		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,1-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene (1,3-dichloropropene dichloromethane (methylene chloride)		0.005	0.03 0.1 0.003 0.001 0.005	0.013 0.02 1.5 0.26		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0050	<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride)		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0050 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0050 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) cis-1,3-Dichloropropylene		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (nethyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons promodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) 1,2-dichloropropylene trans-1,3-Dichloropropylene 1,1,1,2-tetrachloroethane		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
nethyl tertiary butyl ether (MTBE) Chlorinated Hydrocarbons promodichloromethane (BDCM) ribromomethane (bromoform) etrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) libromochloromethane (DBCM) chloroethane (ethyl chloride) richloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) cis-1,3-Dichloropropylene rans-1,3-Dichloropropylene 1,1,2,2-tetrachloroethane		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014 0.05	0.013 0.02 1.5 0.26 1 0.98		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropylene trans-1,3-Dichloropropylene 1,1,2,2-tetrachloroethane 1,1,2,2-tetrachloroethane 1,1,2,2-tetrachloroethane		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014	0.013 0.02 1.5 0.26 1		<0.0010 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00070 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,3-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene 1,3-dichloropropene dichloromethane (methylene chloride)		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014 0.05	0.013 0.02 1.5 0.26 1 0.98		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.001	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene (1,2-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1,1-trichloroethane		0.005 0.1 0.1	0.03 0.1 0.003 0.001 0.005 0.014 0.05	0.013 0.02 1.5 0.26 1 0.98		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.001	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010
methyl tertiary butyl ether (MTBE) <i>Chlorinated Hydrocarbons</i> bromodichloromethane (BDCM) tribromomethane (bromoform) tetrachloromethane (carbon tetrachloride) monochlorobenzene (chlorobenzene) dibromochloromethane (DBCM) chloroethane (ethyl chloride) trichloromethane (chloroform) chloromethane (methyl chloride) 1,2-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethylene (1,1-dichloroethene) 1,2-dichloroethylene (trans) (1,2-dichloroethene (1,2-dichloropropene dichloromethane (methylene chloride) 1,2-dichloropropane (propylene dichloride) cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-trichloroethane		0.005 0.1 0.1 0.005	0.03 0.1 0.003 0.001 0.005 0.014 0.05 0.05	0.013 0.02 1.5 0.26 1 0.98		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.001	<0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00	<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: LW (Livestock), DW (Drinking Water) and AW (Aquatic Life).

Italics indicates standard is below detection limit.

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19} = extractable petroleum hydrocarbons, carbon range 10-19$

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for EPHw₁₀₋₁₉ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} =$ volatile hydrocarbons, carbon range 6-10

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

GOLDER ASSOCIATES LTD. ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received:24-AUG-12Report Date:13-SEP-12 15:40 (MT)Version:FINAL REV. 2

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L1199825

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 11-1436-0073/1600 1, 2

Comments: This report contains missing VOC data.

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1199825 CONTD.... PAGE 2 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	160	161	157	162	163
	рН (рН)	8.01	8.08	8.01	7.91	7.96
	Total Dissolved Solids (mg/L)	220	220	209	219	224
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	132	134	130	139	139
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	132	134	130	139	139
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	0.0106	<0.0050	<0.0050
	Chloride (Cl) (mg/L)	0.62	0.63	0.59	0.61	0.62
	Fluoride (F) (mg/L)	0.038	0.035	0.038	0.038	0.036
	Nitrate (as N) (mg/L)	0.275	0.283	0.305	0.337	0.337
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.051	<0.050	0.099	0.054	0.051
	Sulfate (SO4) (mg/L)	39.5	39.9	38.9	39.3	39.5
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	0.69	0.54	0.52	0.74	0.71
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.012
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00083	0.00078	0.00089	0.00086	0.00085
	Barium (Ba)-Dissolved (mg/L)	0.025	0.021	0.023	0.024	0.024
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	52.2	52.7	49.4	53.3	53.4
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	7.13	7.14	8.30	7.10	7.19
	Manganese (Mn)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 3 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	157	68.5	60.8	220	306
	рН (рН)	8.04	7.17	7.65	7.66	8.09
	Total Dissolved Solids (mg/L)	192	106	112	328	449
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	148	67.9	59.5	216	161
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	148	67.9	59.5	216	161
	Ammonia, Total (as N) (mg/L)	0.0063	0.0074	0.0337	0.0747	0.0054
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	1.78	<0.50
	Fluoride (F) (mg/L)	0.039	0.062	0.048	0.071	0.058
	Nitrate (as N) (mg/L)	0.0512	0.106	0.243	<0.0050	0.398
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.156	0.537	0.91	0.650	0.052
	Sulfate (SO4) (mg/L)	21.5	2.48	2.72	55.8	186
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.28	13.6	11.8	7.00	1.92
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	0.043	0.091	0.081	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00071	0.00043	0.00043	0.00033	0.00021
	Barium (Ba)-Dissolved (mg/L)	0.027	<0.020	0.023	0.081	0.034
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	49.7	21.4	18.9	61.3	77.6
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	0.0032
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	0.0015	0.0114	0.0096	0.0012	<0.0010
	Iron (Fe)-Dissolved (mg/L)	0.074	0.062	0.152	0.084	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	8.01	3.65	3.30	16.3	27.3
	Manganese (Mn)-Dissolved (mg/L)	0.0342	0.0065	0.0614	0.0326	<0.0020
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 4 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	318	320	130	351	360
	рН (рН)	8.03	8.08	8.17	8.05	7.97
	Total Dissolved Solids (mg/L)	465	457	180	490	498
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	154	155	87.8	184	186
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	154	155	87.8	184	186
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0054	<0.0050	<0.0050	<0.0050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.058	0.057	0.070	0.054	0.061
	Nitrate (as N) (mg/L)	0.316	0.358	0.0058	0.436	0.446
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050	0.069	<0.050	<0.050
	Sulfate (SO4) (mg/L)	195	195	56.8	204	205
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	0.50	1.38	<0.50	<0.50
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00016	0.00020	0.00040	0.00014	0.00014
	Barium (Ba)-Dissolved (mg/L)	0.026	0.028	0.025	0.060	0.060
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	80.9	82.5	36.5	92.6	96.5
	Chromium (Cr)-Dissolved (mg/L)	0.0031	0.0031	<0.0020	0.0032	0.0030
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	28.1	27.7	9.53	29.1	28.8
	Manganese (Mn)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	0.0054
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 5 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	361	365	351	223	258
	рН (рН)	8.06	8.34	7.91	8.15	8.07
	Total Dissolved Solids (mg/L)	510	486	526	345	328
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	188	192	245	175	219
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	2.7	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	188	195	245	175	219
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0057	0.0201	0.147	0.168
	Chloride (Cl) (mg/L)	<0.50	0.62	15.3	<0.50	<0.50
	Fluoride (F) (mg/L)	0.058	0.068	0.116	0.137	0.109
	Nitrate (as N) (mg/L)	0.457	0.135	0.125	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	0.0039	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.085	0.146	0.170	0.415	0.198
	Sulfate (SO4) (mg/L)	207	194	129	83.7	71.1
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	1.83	1.78	1.43	<0.50
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	0.020	<0.010	0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00018	0.00056	0.00080	0.00600	0.00570
	Barium (Ba)-Dissolved (mg/L)	0.058	0.039	0.042	0.026	0.028
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	0.11	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	94.9	96.2	65.3	35.8	43.6
	Chromium (Cr)-Dissolved (mg/L)	0.0034	<0.0020	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	0.0013	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	0.032	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	30.0	30.2	45.6	32.5	36.2
	Manganese (Mn)-Dissolved (mg/L)	0.0168	0.0106	0.0984	0.354	0.0796
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

GroupingAnalyteWATERPhysical TestsHardness (as CaCO3) (mg/L) pH (pH)884 8.09Total Dissolved Solids (mg/L)1150Anions and NutrientsAlkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L)<2.0 <2.0 336Alkalinity, Total (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L)<2.0 <336
Physical Tests Hardness (as CaCO3) (mg/L) 884 pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0 Alkalinity, Hydroxide (as CaCO3) (mg/L) <2.0
pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Alkalinity, Hydroxide (as CaCO3) (mg/L) <2.0
Alkalinity, Total (as CaCO3) (mg/L) 336
Ammonia, Total (as N) (mg/L) <0.0050
Chloride (Cl) (mg/L) <5.0
Fluoride (F) (mg/L) <0.20
Nitrate (as N) (mg/L) DLA <0.050
Nitrite (as N) (mg/L) DLA <0.010
Total Kjeldahl Nitrogen (mg/L) 0.166
Sulfate (SO4) (mg/L) 557
Drganic / Dissolved Organic Carbon (mg/L) 5.95
Dissolved Metals Dissolved Metals FIELD
Aluminum (Al)-Dissolved (mg/L)
Antimony (Sb)-Dissolved (mg/L)
Arsenic (As)-Dissolved (mg/L) 0.00074
Barium (Ba)-Dissolved (mg/L) 0.074
Beryllium (Be)-Dissolved (mg/L) <0.0050
Bismuth (Bi)-Dissolved (mg/L) <0.20
Boron (B)-Dissolved (mg/L)
Cadmium (Cd)-Dissolved (mg/L) <0.00040
Calcium (Ca)-Dissolved (mg/L) 225
Chromium (Cr)-Dissolved (mg/L)
Cobalt (Co)-Dissolved (mg/L) <0.010
Copper (Cu)-Dissolved (mg/L)
Iron (Fe)-Dissolved (mg/L) 0.076
Lead (Pb)-Dissolved (mg/L) <0.0010
Lithium (Li)-Dissolved (mg/L) <0.010
Magnesium (Mg)-Dissolved (mg/L) 78.5
Manganese (Mn)-Dissolved (mg/L) 0.248
Mercury (Hg)-Dissolved (mg/L) <0.00020
Molybdenum (Mo)-Dissolved (mg/L) <0.030
Nickel (Ni)-Dissolved (mg/L) <0.050

L1199825 CONTD.... PAGE 7 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.28	1.27	1.47	1.33	1.36
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	6.33	6.34	6.29	6.42	6.45
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	3.6	3.6	3.7	3.6	3.6
	Strontium (Sr)-Dissolved (mg/L)	0.167	0.170	0.171	0.167	0.168
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00034	0.00032	0.00036	0.00033	0.00033
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	<20	<20	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 8 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.51	0.99	1.10	1.42	1.43
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	0.0071
	Silicon (Si)-Dissolved (mg/L)	5.81	4.66	4.50	4.87	4.65
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	3.9	<2.0	<2.0	4.3	8.0
	Strontium (Sr)-Dissolved (mg/L)	0.158	0.0440	0.0430	0.210	0.301
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	< 0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.011
	Uranium (U)-Dissolved (mg/L)	0.00033	<0.00010	<0.00010	0.00082	0.00053
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	54	79	42	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 9 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.40	1.40	2.24	1.37	1.38
	Selenium (Se)-Dissolved (mg/L)	0.0073	0.0075	<0.0010	0.0083	0.0083
	Silicon (Si)-Dissolved (mg/L)	4.56	4.59	1.77	4.36	4.21
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	8.0	8.2	2.6	8.0	8.0
	Strontium (Sr)-Dissolved (mg/L)	0.295	0.298	0.207	0.327	0.324
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.011	0.011	<0.010	0.012	0.012
	Uranium (U)-Dissolved (mg/L)	0.00054	0.00053	0.00080	0.00053	0.00057
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	<20	<20	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 10 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.42	1.86	4.42	3.59	3.32
	Selenium (Se)-Dissolved (mg/L)	0.0084	0.0063	0.0014	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	4.18	4.93	7.01	8.05	9.85
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	8.2	8.2	8.7	10.9	7.6
	Strontium (Sr)-Dissolved (mg/L)	0.330	0.337	0.450	0.278	0.347
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.012	0.013	0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00061	0.00053	0.00149	0.00104	0.00077
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	32	45	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 11 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
WATER				
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30		
	Potassium (K)-Dissolved (mg/L)	7.52		
	Selenium (Se)-Dissolved (mg/L)	DLA <0.0020		
	Silicon (Si)-Dissolved (mg/L)	5.34		
	Silver (Ag)-Dissolved (mg/L)	<0.010		
	Sodium (Na)-Dissolved (mg/L)	5.0		
	Strontium (Sr)-Dissolved (mg/L)	0.952		
	Thallium (TI)-Dissolved (mg/L)	<0.20		
	Tin (Sn)-Dissolved (mg/L)	<0.030		
	Titanium (Ti)-Dissolved (mg/L)	0.018		
	Uranium (U)-Dissolved (mg/L)	0.00236		
	Vanadium (V)-Dissolved (mg/L)	<0.030		
	Zinc (Zn)-Dissolved (mg/L)	DLA <0.10		
Aggregate Organics	COD (mg/L)	<20		
Volatile Organic Compounds	Benzene (mg/L)	<0.00050		
	Bromodichloromethane (mg/L)	<0.0010		
	Bromoform (mg/L)	<0.0010		
	Carbon Tetrachloride (mg/L)	<0.00050		
	Chlorobenzene (mg/L)	<0.0010		
	Dibromochloromethane (mg/L)	<0.0010		
	Chloroethane (mg/L)	<0.0010		
	Chloroform (mg/L)	<0.0010		
	Chloromethane (mg/L)	<0.0050		
	1,2-Dichlorobenzene (mg/L)	<0.00070		
	1,3-Dichlorobenzene (mg/L)	<0.0010		
	1,4-Dichlorobenzene (mg/L)	<0.0010		
	1,1-Dichloroethane (mg/L)	<0.0010		
	1,2-Dichloroethane (mg/L)	<0.0010		
	1,1-Dichloroethylene (mg/L)	<0.0010		
	cis-1,2-Dichloroethylene (mg/L)	<0.0010		
	trans-1,2-Dichloroethylene (mg/L)	<0.0010		
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014		
	Dichloromethane (mg/L)	<0.0050		
	1,2-Dichloropropane (mg/L)	<0.0010		
	cis-1,3-Dichloropropylene (mg/L)	<0.0010		
	trans-1,3-Dichloropropylene (mg/L)	<0.0010		

L1199825 CONTD.... PAGE 12 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	87.3	84.8	86.0	85.6	86.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.3	85.0	84.9	85.2	84.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	113.3	104.9	105.6	103.4	105.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 13 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	86.4	85.4	83.5	86.5	86.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.1	84.9	85.5	84.9	85.4
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	101.2	108.7	99.4	104.9	101.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 14 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	84.8	86.0	85.7	85.3	84.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.0	84.9	85.0	84.9	84.8
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	99.6	101.2	100.8	100.8	93.8
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 15 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	83.3	83.6	83.7	84.5	83.5
	Surrogate: 1,4-Difluorobenzene (SS) (%)	84.6	84.9	85.1	84.6	84.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	93.8	99.4	89.9	95.1	89.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000040	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 16 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
WATER				
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050		
	Styrene (mg/L)	<0.00050		
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010		
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010		
	Tetrachloroethylene (mg/L)	<0.0010		
	Toluene (mg/L)	<0.00050		
	1,1,1-Trichloroethane (mg/L)	<0.0010		
	1,1,2-Trichloroethane (mg/L)	<0.0010		
	Trichloroethylene (mg/L)	<0.0010		
	Trichlorofluoromethane (mg/L)	<0.0010		
	Vinyl Chloride (mg/L)	<0.0010		
	ortho-Xylene (mg/L)	<0.00050		
	meta- & para-Xylene (mg/L)	<0.00050		
	Xylenes (mg/L)	<0.00075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	85.0		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	84.9		
Hydrocarbons	EPH10-19 (mg/L)	<0.25		
	EPH19-32 (mg/L)	<0.25		
	LEPH (mg/L)	<0.25		
	HEPH (mg/L)	<0.25		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10		
	VPH (C6-C10) (mg/L)	<0.10		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	99.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050		
	Acenaphthylene (mg/L)	<0.000050		
	Acridine (mg/L)	<0.000050		
	Anthracene (mg/L)	<0.000050		
	Benz(a)anthracene (mg/L)	<0.000050		
	Benzo(a)pyrene (mg/L)	<0.000010		
	Benzo(b)fluoranthene (mg/L)	<0.000050		
	Benzo(g,h,i)perylene (mg/L)	<0.000050		
	Benzo(k)fluoranthene (mg/L)	<0.000050		
	Chrysene (mg/L)	<0.000050		
	Dibenz(a,h)anthracene (mg/L)	<0.000050		
	Fluoranthene (mg/L)	<0.000050		

L1199825 CONTD.... PAGE 17 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Wate 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
VATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	91.3	90.0	92.0	92.8	95.5
	Surrogate: Acridine d9 (%)	91.9	95.4	94.1	94.4	90.4
	Surrogate: Chrysene d12 (%)	88.1	87.4	86.0	87.6	86.4
	Surrogate: Naphthalene d8 (%)	89.7	87.9	88.6	90.4	94.6
	Surrogate: Phenanthrene d10 (%)	92.2	93.4	94.0	93.6	94.2

L1199825 CONTD.... PAGE 18 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Wate 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	86.7	92.2	96.8	100.1	96.0
	Surrogate: Acridine d9 (%)	85.5	94.0	91.4	102.8	97.9
	Surrogate: Chrysene d12 (%)	82.0	85.3	89.2	92.8	91.1
	Surrogate: Naphthalene d8 (%)	86.2	89.4	93.4	103.3	92.9
	Surrogate: Phenanthrene d10 (%)	89.5	94.1	93.8	100.5	97.6

L1199825 CONTD.... PAGE 19 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

ng/L) 3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%) Phenanthrene d10 (%)	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7 94.7	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2 99.1	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3 95.0	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6 98.0	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2 94.8
3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
e (mg/L) ne (mg/L) /L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
/L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 92.0 91.1 87.2 89.2
ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 92.6 93.1 90.4 89.7	<0.000050 95.7 98.3 90.6 92.2	<0.000050 91.4 101.1 87.2 89.3	<0.000050 95.9 98.2 89.6 93.6	<0.000050 92.0 91.1 87.2 89.2
Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	92.6 93.1 90.4 89.7	95.7 98.3 90.6 92.2	91.4 101.1 87.2 89.3	95.9 98.2 89.6 93.6	92.0 91.1 87.2 89.2
Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	93.1 90.4 89.7	98.3 90.6 92.2	101.1 87.2 89.3	98.2 89.6 93.6	91.1 87.2 89.2
Chrysene d12 (%) Naphthalene d8 (%)	90.4 89.7	90.6 92.2	87.2 89.3	89.6 93.6	87.2 89.2
Naphthalene d8 (%)	89.7	92.2	89.3	93.6	89.2
Phenanthrene d10 (%)	94.7	99.1	95.0	98.0	94.8
	0			00.0	0110

L1199825 CONTD.... PAGE 20 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Wate 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	92.3	SOL:P P 31.6	98.4	93.7	100.4
	Surrogate: Acridine d9 (%)	96.2	SOL:P P 31.7	94.5	96.5	102.4
	Surrogate: Chrysene d12 (%)	86.2	SOL:P P 28.1	90.5	82.0	91.7
	Surrogate: Naphthalene d8 (%)	88.6	SOL:P P	95.2	97.8	103.3
	Surrogate: Phenanthrene d10 (%)	95.1	15.5 SOL:P	103.6	96.3	105.2

L1199825 CONTD.... PAGE 21 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
NATER				
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050		
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050		
	Naphthalene (mg/L)	<0.000050		
	Phenanthrene (mg/L)	<0.000050		
	Pyrene (mg/L)	<0.000050		
	Quinoline (mg/L)	<0.000050		
	Surrogate: Acenaphthene d10 (%)	99.5		
	Surrogate: Acridine d9 (%)	102.8		
	Surrogate: Chrysene d12 (%)	92.4		
	Surrogate: Naphthalene d8 (%)	97.4		
	Surrogate: Phenanthrene d10 (%)	101.8		

L1199825 CONTD.... PAGE 22 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Aluminum (Al)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chromium (Cr)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chromium (Cr)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Selenium (Se)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Zinc (Zn)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chloride (CI)	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-4
Matrix Spike	Sulfate (SO4)	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9

 Qualifiers for Individual Parameters Listed:

 Qualifier
 Description

 DLA
 Detection Limit Adjusted For required dilution

 MS-B
 Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

 SOL:PP
 Surrogate recovery outside acceptable limits due to prep process

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
2	0.	•	Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
2	0.	•	Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. OR This analysis is carried	out using proce	dures adapted from APHA Method 2320 "A	calinity". Total Alkalinity is determined using the methyl orange Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ANIONS-CL-IC-WR	Water	Chloride by Ion Chromatography	EPA 300.1
2	0.		etermination of Inorganic Anions by Ion Chromatography", Revision ers Using a Hydroxide-Selective Column", Application Note 154 v.19
ANIONS-F-IC-WR	Water	Fluoride by Ion Chromatography	EPA 300.1

L1199825 CONTD.... PAGE 23 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-NO2-IC-WR Water Nitrite Nitrogen by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-NO3-IC-WR Water Nitrate Nitrogen by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR Water Sulphate by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

CARBONS-DOC-VA Water Dissolved organic carbon by combustion

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

COD-COL-VA Water Chemical Oxygen Demand by Colorimetric

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

EPH-SF-FID-VA Water EPH in Water by GCFID

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

HARDNESS-CALC-VA Water Hardness

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-CVAFS-VA Water Dissolved Mercury in Water by CVAFS

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA Water LEPHs and HEPHs

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Ammonia in Water by Fluorescence

NH3-F-VA Water

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al

PAH-SF-MS-VA

Water PAH in Water by GCMS

EPA 3510, 8270

APHA 2340B

BCMOE EPH GCFID

EPA 300.1

FPA 300 1

EPA 300.1

EPA SW-846 3005A & EPA 245.7

BC MOE LABORATORY MANUAL (2005)

APHA 5310 TOTAL ORGANIC CARBON (TOC)

APHA 5220 D. CHEMICAL OXYGEN DEMAND

.

L1199825 CONTD.... PAGE 24 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

		h dichloromethane, prior to analysis by gas chromatogr dily chromatographically separated, benzo(j)fluoranther	
PAH-SURR-MS-VA	Water	PAH Surrogates for Waters	EPA 3510, 8270
Analysed as per the corresp demonstrate analytical accu	0	I test method. Known quantities of surrogate compound	Is are added prior to analysis to each sample to
PH-MAN-WR	Water	pH by Meter	АРНА 4500-Н (В)
"This analysis is carried out electrode."	using proce	dures adapted from APHA Method 4500-H ""pH Value"	". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
		dures adapted from APHA Method 2540 "Solids". Solids ple through a glass fibre filter, TDS is determined by ev	
TKN-F-VA	Water	TKN in Water by Fluorescence	APHA 4500-NORG D.
		dures adapted from APHA Method 4500-Norg D. "Block stion followed by Flow-injection analysis with fluorescer	
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	B.C. MIN. OF ENV. LAB. MAN. (2009)
		, is heated in a sealed vial to equilibrium. The headspace and n-decane are measured and summed together usin	
VH-SURR-FID-VA	Water	VH Surrogates for Waters	B.C. MIN. OF ENV. LAB. MAN. (2009)
VOC-HSMS-VA	Water	VOCs in water by Headspace GCMS	EPA8260B, 5021
		, is heated in a sealed vial to equilibrium. The headspace easured using mass spectrometry detection.	e from the vial is transferred into a gas chromatograph.
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA8260B, 5021
		, is heated in a sealed vial to equilibrium. The headspace easured using mass spectrometry detection.	e from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA8260B, 5021
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	rbons in Soli , in solids, Si	to the British Columbia Ministry of Environment Analyti ds or Water". The concentrations of specific Monocyclic tyrene) are subtracted from the collective concentration	c Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylenes	3		
		rations of the ortho, meta, and para Xylene isomers. Rule no less than the square root of the sum of the square	
* ALS test methods may inco	rporate mod	ifications from specified reference methods to improve	performance.
The last two letters of the abo	ove test code	e(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:
Laboratory Definition Code	Labora	tory Location	
WR	ALS EN	IVIRONMENTAL - WHITEHORSE, YUKON, CANADA	
VA		VIRONMENTAL - VANCOUVER, BRITISH COLUMBIA	A, CANADA

Chain of Custody Numbers:

2

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorde	er: L119982	5 Re	eport Date:	13-SEP-12	Pa	ge 1 of 22
Client: Contact:	GOLDER ASSOCIATES # 201B, 170 Titanium W Whitehorse YT Y1A 00 Andrea Badger	/ay						
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch	R2431168							
WG1540768 Alkalinity, T	3-10 CRM fotal (as CaCO3)	VA-ALK-PC	CT-CONTROL 105.0		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-11 CRM fotal (as CaCO3)	VA-ALK-PC	CT-CONTROL 105.0		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-12 CRM fotal (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.7		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	B-13 CRM fotal (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.9		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-14 CRM fotal (as CaCO3)	VA-ALK-PC	CT-CONTROL 102.3		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-15 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.5		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-16 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.7		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-9 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.8		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-31 DUP fotal (as CaCO3)	L1199825- 195	17 198		mg/L	1.5	20	06-SEP-12
Alkalinity, B	licarbonate (as CaCO3)	192	195		mg/L	1.2	20	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)	2.7	3.2		mg/L	18	25	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	20	06-SEP-12
WG1540768 Alkalinity, T	B-1 MB fotal (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, B	icarbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768			.1.0					
-	otal (as CaCO3) iicarbonate (as CaCO3)		<1.0 <1.0		mg/L		1	06-SEP-12
-	Carbonate (as CaCO3)		<1.0 <1.0		mg/L		1	06-SEP-12
	lydroxide (as CaCO3)		<1.0 <1.0		mg/L mg/L		1	06-SEP-12
WG1540768			~1.0		mg/∟		1	06-SEP-12
	otal (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, B	licarbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768 Alkalinity, T	B-4 MB fotal (as CaCO3)		<1.0		mg/L		1	06-SEP-12

		Workorder:	L119982	25	Report Date: 1	3-SEP-12	Pa	age 2 of 22
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch R243	81168							
WG1540768-4 I Alkalinity, Bicarbo	MB		<1.0		~~~~/l		4	
Alkalinity, Carbon			<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona			<1.0		mg/L mg/L		1	06-SEP-12
			<1.0		ilig/L		1	06-SEP-12
WG1540768-5 I Alkalinity, Total (a	MB s CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo	nate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbon	ate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768-6	МВ							
Alkalinity, Total (a	s CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo	nate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona	ate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
	MB							
Alkalinity, Total (a			<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo			<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona			<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768-8 I Alkalinity, Total (a			<1.0		ma/l		4	
Alkalinity, Bicarbo			<1.0 <1.0		mg/L mg/L		1 1	06-SEP-12
Alkalinity, Carbon			<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi			<1.0		mg/L		1	06-SEP-12 06-SEP-12
	, , , , , , , , , , , , , , , , , , ,		<1.0		ilig/L		I	06-3EP-12
ALK-SCR-VA	Water							
	26042							
WG1535785-2 Alkalinity, Total (a	CRM s CaCO3)	VA-ALKL-COI	98.6		%		85-115	28-AUG-12
WG1535785-5 Alkalinity, Total (a	CRM s CaCO3)	VA-ALKM-CO	NTROL 104.7		%		85-115	28-AUG-12
WG1535785-11 I Alkalinity, Total (a		L1199825-19 175	178		mg/L	2.0	20	28-AUG-12
WG1535785-1 I Alkalinity, Total (a	MB s CaCO3)		<2.0		mg/L		2	28-AUG-12
WG1535785-4 I Alkalinity, Total (a	MB s CaCO3)		<2.0		mg/L		2	28-AUG-12
WG1535785-7 I	MB							

					-	-			
			Workorder:	L119982	25	Report Date: 1	3-SEP-12	Pa	age 3 of 22
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SCR-VA		Water							
Batch	R2426042								
WG1535785-7	7 МВ								
Alkalinity, Tot	al (as CaC	03)		<2.0		mg/L		2	28-AUG-12
ANIONS-CL-IC-V	VR	Water							
Batch	R2430124								
WG1534216-7	7 DUP		L1199825-2						
Chloride (Cl)			0.63	0.61		mg/L	1.8	20	24-AUG-12
WG1534216-2	2 LCS								
Chloride (CI)				102.3		%		85-115	24-AUG-12
WG1534216-6	6 LCS								
Chloride (Cl)	5 203			102.1		%		85-115	24-AUG-12
				102.1		70		05-115	24-800-12
WG1534216-1 Chloride (Cl)	I MB			<0.50		mg/L		0.5	24 4110 42
				<0.50		ing/∟		0.5	24-AUG-12
WG1534216-	5 MB			0.50					
Chloride (Cl)				<0.50		mg/L		0.5	24-AUG-12
WG1534216-4	4 MS		L1199540-2						
Chloride (CI)				102.9		%		75-125	24-AUG-12
WG1534216-8	B MS		L1199825-2						
Chloride (CI)				95.7		%		75-125	24-AUG-12
ANIONS-F-IC-WI	R	Water							
Batch	R2430124								
WG1534216-7	7 DUP		L1199825-2						
Fluoride (F)			0.035	0.035		mg/L	0.0	20	24-AUG-12
WG1534216-2	2 LCS					-			
Fluoride (F)				95.9		%		85-115	24-AUG-12
				00.0		70		00-110	24-800-12
WG1534216-6 Fluoride (F)	6 LCS			92.9		%		05 445	04 4110 40
				92.9		70		85-115	24-AUG-12
WG1534216-1	I MB					"			
Fluoride (F)				<0.020		mg/L		0.02	24-AUG-12
WG1534216-	5 MB								
Fluoride (F)				<0.020		mg/L		0.02	24-AUG-12
WG1534216-8	B MS		L1199825-2						
Fluoride (F)				87.3		%		75-125	24-AUG-12
ANIONS-NO2-IC	-WR	Water							
Batch	R2430124								
WG1534216-7			L1199825-2						
Nitrite (as N)			<0.0010	<0.0010	RPD-	NA mg/L	N/A	20	24-AUG-12
WG1534216-2	2 LCS								
110-100-110-1	00								

					-	•			
			Workorder:	L119982	5	Report Date: 13	-SEP-12	Pa	age 4 of 22
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-NO2-IC-V	V R	Water							
Batch R2	2430124								
WG1534216-2 Nitrite (as N)	LCS			96.3		%		85-115	24-AUG-12
WG1534216-6 Nitrite (as N)	LCS			102.5		%		85-115	24-AUG-12
WG1534216-1 Nitrite (as N)	MB			<0.0010		mg/L		0.001	24-AUG-12
WG1534216-5 Nitrite (as N)	MB			<0.0010		mg/L		0.001	24-AUG-12
WG1534216-8 Nitrite (as N)	MS		L1199825-2	99.6		%		75-125	24-AUG-12
ANIONS-NO3-IC-V	VR	Water							
Batch R2	2430124								
WG1534216-7 Nitrate (as N)	DUP		L1199825-2 0.283	0.282		mg/L	0.4	20	24-AUG-12
WG1534216-2 Nitrate (as N)	LCS			103.5		%		85-115	24-AUG-12
WG1534216-6 Nitrate (as N)	LCS			103.6		%		85-115	24-AUG-12
WG1534216-1 Nitrate (as N)	MB			<0.0050		mg/L		0.005	24-AUG-12
WG1534216-5 Nitrate (as N)	MB			<0.0050		mg/L		0.005	24-AUG-12
WG1534216-4 Nitrate (as N)	MS		L1199540-2	102.5		%		75-125	24-AUG-12
WG1534216-8 Nitrate (as N)	MS		L1199825-2	97.2		%		75-125	24-AUG-12
ANIONS-SO4-IC-W	/R	Water							
Batch R2	2430124								
WG1534216-7 Sulfate (SO4)	DUP		L1199825-2 39.9	39.9		mg/L	0.1	20	24-AUG-12
WG1534216-2 Sulfate (SO4)	LCS			103.4		%		85-115	24-AUG-12
WG1534216-6 Sulfate (SO4)	LCS			106.3		%		85-115	24-AUG-12
WG1534216-1 Sulfate (SO4)	MB			<0.50		mg/L		0.5	24-AUG-12
WG1534216-5 Sulfate (SO4)	MB			<0.50		mg/L		0.5	24-AUG-12

		Workorder:	L119982	:5 Re	eport Date: 1	3-SEP-12	Pa	ge 5 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-SO4-IC-WR	Water							
Batch R2430124								
WG1534216-4 MS Sulfate (SO4)		L1199540-2	N/A	MS-B	%		-	24-AUG-12
WG1534216-8 MS Sulfate (SO4)		L1199825-2	92.7		%		75-125	24-AUG-12
CARBONS-DOC-VA	Water							
Batch R2427184								
WG1537210-15 CRM Dissolved Organic Carbor	ı	VA-DOC-C-C	AFFEINE 99.2		%		80-120	29-AUG-12
WG1537210-2 CRM Dissolved Organic Carbor	ı	VA-DOC-C-C	AFFEINE 99.4		%		80-120	29-AUG-12
WG1537210-4 CRM Dissolved Organic Carbor	ı	VA-DOC-C-C	AFFEINE 99.9		%		80-120	29-AUG-12
WG1537210-6 CRM Dissolved Organic Carbor	ı	VA-DOC-C-C	AFFEINE 100.6		%		80-120	29-AUG-12
WG1537210-9 DUP Dissolved Organic Carbor	ı	L1199825-14 <0.50	<0.50	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1537210-1 MB Dissolved Organic Carbor	ı		<0.50		mg/L		0.5	29-AUG-12
WG1537210-14 MB Dissolved Organic Carbor	n		<0.50		mg/L		0.5	29-AUG-12
WG1537210-3 MB Dissolved Organic Carbor	ı		<0.50		mg/L		0.5	29-AUG-12
WG1537210-5 MB Dissolved Organic Carbor	ı		<0.50		mg/L		0.5	29-AUG-12
WG1537210-10 MS Dissolved Organic Carbor	ı	L1199896-3	N/A	MS-B	%		-	29-AUG-12
WG1537210-12 MS Dissolved Organic Carbor	ı	L1199911-5	N/A	MS-B	%		-	29-AUG-12
Batch R2429154								
WG1539205-2 CRM Dissolved Organic Carbor	ì	VA-DOC-C-C/	AFFEINE 95.6		%		80-120	31-AUG-12
WG1539205-4 CRM Dissolved Organic Carbor	ı	VA-DOC-C-C	AFFEINE 98.0		%		80-120	31-AUG-12
WG1539205-1 MB Dissolved Organic Carbor	ı		<0.50		mg/L		0.5	31-AUG-12
WG1539205-3 MB Dissolved Organic Carbor			<0.50		mg/L		0.5	31-AUG-12
WG1539205-6 MS		L1201634-5			-			

		Workorder:	L119982	5 R	eport Date:	13-SEP-12	Pa	ige 6 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-DOC-VA	Water							
Batch R2429154	Ļ							
WG1539205-6 MS Dissolved Organic Carl	bon	L1201634-5	N/A	MS-B	%		-	31-AUG-12
COD-COL-VA	Water							
Batch R2426372	2							
WG1536259-10 LCS COD			103.8		%		85-115	29-AUG-12
WG1536259-2 LCS COD			106.0		%		85-115	29-AUG-12
WG1536259-6 LCS COD			105.8		%		85-115	29-AUG-12
WG1536259-1 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-5 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-9 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-12 MS COD		L1200185-1	94.0		%		75-125	29-AUG-12
WG1536259-4 MS COD		L1199717-9	104.3		%		75-125	29-AUG-12
WG1536259-8 MS COD		L1200103-9	104.6		%		75-125	29-AUG-12
EPH-SF-FID-VA	Water							
Batch R2426236	5							
WG1535548-1 MB								
EPH10-19			<0.25		mg/L		0.25	29-AUG-12
EPH19-32			<0.25		mg/L		0.25	29-AUG-12
Batch R2426306	5							
WG1535548-3 MB			0.07		r.			
EPH10-19			<0.25		mg/L		0.25	30-AUG-12
EPH19-32			<0.25		mg/L		0.25	30-AUG-12
IG-DIS-CVAFS-VA	Water							
Batch R2427021								
WG1535973-8 DUP Mercury (Hg)-Dissolved	Ł	L1199825-12 <0.00020	<0.00005	0 RPD-NA	mg/L	N/A	20	30-AUG-12
WG1537425-2 LCS Mercury (Hg)-Dissolved	Ŀ		97.4		%		80-120	30-AUG-12

		Workorder:	L1199825	i	Report Date: 13-	-SEP-12	Pa	ge 7 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IG-DIS-CVAFS-VA	Water							
Batch R2427021								
WG1537425-1 MB Mercury (Hg)-Dissolved			<0.000050	I	mg/L		0.00005	30-AUG-12
WG1535973-4 MS Mercury (Hg)-Dissolved		L1199751-1	83.0		%		70-130	30-AUG-12
WG1535973-5 MS Mercury (Hg)-Dissolved		L1200298-2	81.9		%		70-130	30-AUG-12
Batch R2427960 WG1538442-2 LCS Mercury (Hg)-Dissolved			94.0		%		80-120	31-AUG-12
WG1538442-1 MB Mercury (Hg)-Dissolved			<0.000050	1	mg/L		0.00005	31-AUG-12
Batch R2429147 WG1535973-6 MS Mercury (Hg)-Dissolved		L1198788-2	122.8		%		70-130	04-SEP-12
Batch R2426332 WG1535973-2 CRM	1	VA-HIGH-WA			9/		00.400	
Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved	1		98.1 100.0		%		80-120	29-AUG-12
			96.1		%		80-120	29-AUG-12
Cobalt (Co)-Dissolved Iron (Fe)-Dissolved			101.8		%		80-120	29-AUG-12
Lithium (Li)-Dissolved			101.8		%		80-120 80-120	29-AUG-12 29-AUG-12
Molybdenum (Mo)-Disso	lved		99.6		%		80-120	29-AUG-12 29-AUG-12
Nickel (Ni)-Dissolved	ived		98.9		%		80-120	29-AUG-12 29-AUG-12
Phosphorus (P)-Dissolve	ed		100.5		%		80-120	29-AUG-12 29-AUG-12
Silicon (Si)-Dissolved			101.5		%		80-120	29-AUG-12 29-AUG-12
			100.6		%		80-120	29-AUG-12
Silver (Ag)-Dissolved					/0			
Silver (Ag)-Dissolved Sodium (Na)-Dissolved			99.8		%		80-120	29-AUG-12
	1		99.8 100.7				80-120 80-120	
Sodium (Na)-Dissolved	I				%			29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved	I		100.7		% %		80-120	29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved	I		100.7 98.0		% % %		80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved			100.7 98.0 100.5		% % %		80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved			100.7 98.0 100.5 104.2		% % % %		80-120 80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved Vanadium (V)-Dissolved			100.7 98.0 100.5 104.2		% % % %		80-120 80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12

		Workorder:	L119982	5 Re	eport Date: 1	13-SEP-12	Pa	age 8 of 22
lest I	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2426332								
WG1535973-1 MB			0.040					
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Molybdenum (Mo)-Dissolv	red		<0.030		mg/L		0.03	29-AUG-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	29-AUG-12
Phosphorus (P)-Dissolved			<0.30		mg/L		0.3	29-AUG-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	29-AUG-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	29-AUG-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	29-AUG-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	29-AUG-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Batch R2427019								
WG1535973-4 MS		L1199751-1						
Iron (Fe)-Dissolved			105.9		%		70-130	29-AUG-12
Sodium (Na)-Dissolved			114.3		%		70-130	29-AUG-12
Titanium (Ti)-Dissolved			115.7		%		70-130	29-AUG-12
Batch R2427206								
WG1535973-5 MS		L1200298-2	404 7		0/			
Iron (Fe)-Dissolved			101.7		%		70-130	30-AUG-12
Sodium (Na)-Dissolved			108.5		%		70-130	30-AUG-12
Titanium (Ti)-Dissolved			119.6		%		70-130	30-AUG-12
Batch R2427313								
WG1535973-11 DUP Beryllium (Be)-Dissolved		L1199825-1 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Bismuth (Bi)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Cobalt (Co)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Iron (Fe)-Dissolved		<0.030	< 0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Lithium (Li)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12 29-AUG-12
Molybdenum (Mo)-Dissolv	red	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12 29-AUG-12
Nickel (Ni)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	
Phosphorus (P)-Dissolved		<0.30	<0.30					29-AUG-12
				RPD-NA	mg/L	N/A	20	29-AUG-12
Silicon (Si)-Dissolved		6.33	6.30		mg/L	0.5	20	29-AUG-12

	Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	age 9 of 22
Fest Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA Water							
Batch R2427313							
WG1535973-11 DUP	L1199825-1	0.040		4			
Silver (Ag)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Sodium (Na)-Dissolved	3.6	3.5		mg/L	1.0	20	29-AUG-12
Strontium (Sr)-Dissolved	0.167	0.166		mg/L	0.7	20	29-AUG-12
Thallium (TI)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Tin (Sn)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Titanium (Ti)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Vanadium (V)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-8 DUP Beryllium (Be)-Dissolved	L1199825-12 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Bismuth (Bi)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Cobalt (Co)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Iron (Fe)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Lithium (Li)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Molybdenum (Mo)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Nickel (Ni)-Dissolved	<0.050	<0.050	RPD-NA	mg/L	N/A	20	29-AUG-12
Phosphorus (P)-Dissolved	<0.30	<0.30	RPD-NA	mg/L	N/A	20	29-AUG-12
Silicon (Si)-Dissolved	4.59	4.59		mg/L	0.1	20	29-AUG-12
Silver (Ag)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Sodium (Na)-Dissolved	8.2	8.2		mg/L	0.2	20	29-AUG-12
Strontium (Sr)-Dissolved	0.298	0.300		mg/L	0.7	20	29-AUG-12
Thallium (TI)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Tin (Sn)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Titanium (Ti)-Dissolved	0.011	0.011		mg/L	2.0	20	29-AUG-12
Vanadium (V)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-3 MS	L1199825-13			-			
Iron (Fe)-Dissolved		96.2		%		70-130	29-AUG-12
Sodium (Na)-Dissolved		103.8		%		70-130	29-AUG-12
Titanium (Ti)-Dissolved		107.0		%		70-130	29-AUG-12
MET-DIS-LOW-MS-VA Water							
Batch R2427074							
WG1535973-4 MS Aluminum (Al)-Dissolved	L1199751-1	95.9		%		70-130	29-AUG-12
Antimony (Sb)-Dissolved		97.0		%		70-130	29-AUG-12
Arsenic (As)-Dissolved		107.2		%		70-130	29-AUG-12
Barium (Ba)-Dissolved		N/A	MS-B	%		-	29-AUG-12

	Workord	er: L119982	5 R	eport Date: 1	3-SEP-12	Pa	ge 10 of 2
Fest Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA W	later						
Batch R2427074							
WG1535973-4 MS	L1199751			0/			
Boron (B)-Dissolved		94.2		%		70-130	29-AUG-12
Cadmium (Cd)-Dissolved		102.8		%		70-130	29-AUG-12
Calcium (Ca)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Chromium (Cr)-Dissolved		99.1		%		70-130	29-AUG-12
Copper (Cu)-Dissolved		99.98		%		70-130	29-AUG-12
Lead (Pb)-Dissolved		96.9		%		70-130	29-AUG-12
Magnesium (Mg)-Dissolved		87.2		%		70-130	29-AUG-12
Manganese (Mn)-Dissolved		110.5		%		70-130	29-AUG-12
Potassium (K)-Dissolved		99.5		%		70-130	29-AUG-12
Selenium (Se)-Dissolved		106.4		%		70-130	29-AUG-12
Uranium (U)-Dissolved		97.2		%		70-130	29-AUG-12
Zinc (Zn)-Dissolved		100.1		%		70-130	29-AUG-12
Batch R2427075							
WG1535973-1 MB		<0.0030		~~~/l		0.000	00 4110 40
Aluminum (Al)-Dissolved				mg/L		0.003	29-AUG-12
Antimony (Sb)-Dissolved		<0.00010		mg/L		0.0001	29-AUG-12
Arsenic (As)-Dissolved		<0.00010	-	mg/L		0.0001	29-AUG-12
Barium (Ba)-Dissolved		<0.00005	J	mg/L		0.00005	29-AUG-12
Boron (B)-Dissolved		<0.010		mg/L		0.01	29-AUG-12
Cadmium (Cd)-Dissolved		<0.000050	0	mg/L		0.00005	29-AUG-12
Calcium (Ca)-Dissolved		<0.020		mg/L		0.02	29-AUG-12
Chromium (Cr)-Dissolved		<0.00050		mg/L		0.0005	29-AUG-12
Copper (Cu)-Dissolved		<0.00050		mg/L		0.0005	29-AUG-12
Lead (Pb)-Dissolved		<0.00005	C	mg/L		0.00005	29-AUG-12
Magnesium (Mg)-Dissolved		<0.0050		mg/L		0.005	29-AUG-12
Manganese (Mn)-Dissolved		<0.00005	C	mg/L		0.00005	29-AUG-12
Potassium (K)-Dissolved		<0.050		mg/L		0.05	29-AUG-12
Selenium (Se)-Dissolved		<0.0010		mg/L		0.001	29-AUG-12
Uranium (U)-Dissolved		<0.00001	C	mg/L		0.00001	29-AUG-12
Zinc (Zn)-Dissolved		<0.0030		mg/L		0.003	29-AUG-12
Batch R2427170							
WG1535973-2 CRM	VA-HIGH-						
Aluminum (Al)-Dissolved		100.1		%		80-120	29-AUG-12
Antimony (Sb)-Dissolved		100.6		%		80-120	29-AUG-12

		Workorder:	L1199825	5 F	Report Date: 1	3-SEP-12	Pa	age 11 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2427170								
WG1535973-2 CRM		VA-HIGH-WA						
Arsenic (As)-Dissolved			103.3		%		80-120	29-AUG-12
Barium (Ba)-Dissolved			99.1		%		80-120	29-AUG-12
Boron (B)-Dissolved			96.8		%		80-120	29-AUG-12
Cadmium (Cd)-Dissolve	d		102.5		%		80-120	29-AUG-12
Calcium (Ca)-Dissolved			98.8		%		80-120	29-AUG-12
Chromium (Cr)-Dissolve	d		103.9		%		80-120	29-AUG-12
Copper (Cu)-Dissolved			97.7		%		80-120	29-AUG-12
Lead (Pb)-Dissolved			101.4		%		80-120	29-AUG-12
Magnesium (Mg)-Dissol	ved		103.4		%		80-120	29-AUG-12
Manganese (Mn)-Dissol	ved		101.1		%		80-120	29-AUG-12
Potassium (K)-Dissolved	ł		102.3		%		80-120	29-AUG-12
Selenium (Se)-Dissolved	b		100.2		%		80-120	29-AUG-12
Uranium (U)-Dissolved			101.2		%		80-120	29-AUG-12
Zinc (Zn)-Dissolved			99.9		%		80-120	29-AUG-12
Batch R2427183								
WG1535973-11 DUP Aluminum (Al)-Dissolved	ł	L1199825-1 <0.010	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
Antimony (Sb)-Dissolved		<0.00050	<0.00010	RPD-NA		N/A	20	29-AUG-12
Arsenic (As)-Dissolved		0.00083	0.00080		mg/L	4.0	20	29-AUG-12
Barium (Ba)-Dissolved		0.025	0.0251		mg/L	1.0	20	29-AUG-12
Boron (B)-Dissolved		<0.10	0.020		mg/L	1.3	20	29-AUG-12
Cadmium (Cd)-Dissolve	d	<0.00020	< 0.000050	RPD-NA		N/A	20	29-AUG-12
Calcium (Ca)-Dissolved		52.2	51.4		mg/L	1.5	20	29-AUG-12
Chromium (Cr)-Dissolve	d	<0.0020	0.00054		mg/L	7.8	20	29-AUG-12
Copper (Cu)-Dissolved	-	<0.0010	<0.00050	RPD-NA		N/A	20	29-AUG-12
Lead (Pb)-Dissolved		<0.00050	<0.000050			N/A	20	29-AUG-12
Magnesium (Mg)-Dissol	ved	7.13	7.11		mg/L	0.3	20	29-AUG-12 29-AUG-12
Manganese (Mn)-Dissol		<0.0020	0.000225		mg/L	6.0	20	29-AUG-12 29-AUG-12
Potassium (K)-Dissolved		1.28	1.27		mg/L	0.0	20	29-AUG-12 29-AUG-12
Selenium (Se)-Dissolved		<0.0010	<0.0010					
Uranium (U)-Dissolved	<i>.</i>	0.00034	0.000327	RPD-NA	mg/L	N/A 3.8	20 20	29-AUG-12 29-AUG-12
Zinc (Zn)-Dissolved		<0.00034	<0.000327		-			
			<u><u></u>0.0030</u>	RPD-NA	, mg/L	N/A	20	29-AUG-12
WG1535973-8 DUP Aluminum (Al)-Dissolved	ł	L1199825-12 <0.010	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
Antimony (Sb)-Dissolved		<0.00050	<0.00010	RPD-NA		N/A	20	29-AUG-12
						1 1/7 1		20700-12

	Workorder	: L1199825	Re	port Date: 1	3-SEP-12	Pa	age 12 of 2
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA W	ater						
Batch R2427183							
WG1535973-8 DUP	L1199825-12						
Arsenic (As)-Dissolved	0.00020	0.00018		mg/L	13	20	29-AUG-12
Barium (Ba)-Dissolved	0.028	0.0276		mg/L	1.0	20	29-AUG-12
Boron (B)-Dissolved	<0.10	0.091		mg/L	0.8	20	29-AUG-12
Cadmium (Cd)-Dissolved	<0.00020	<0.000050	RPD-NA	mg/L	N/A	20	29-AUG-12
Calcium (Ca)-Dissolved	82.5	82.4		mg/L	0.1	20	29-AUG-12
Chromium (Cr)-Dissolved	0.0031	0.00304		mg/L	3.5	20	29-AUG-12
Copper (Cu)-Dissolved	<0.0010	<0.00050	RPD-NA	mg/L	N/A	20	29-AUG-12
Lead (Pb)-Dissolved	<0.00050	<0.000050	RPD-NA	mg/L	N/A	20	29-AUG-12
Magnesium (Mg)-Dissolved	27.7	28.4		mg/L	2.3	20	29-AUG-12
Manganese (Mn)-Dissolved	<0.0020	0.00109		mg/L	1.0	20	29-AUG-12
Potassium (K)-Dissolved	1.40	1.39		mg/L	0.4	20	29-AUG-12
Selenium (Se)-Dissolved	0.0075	0.0075		mg/L	0.4	20	29-AUG-12
Uranium (U)-Dissolved	0.00053	0.000519		mg/L	2.3	20	29-AUG-12
Zinc (Zn)-Dissolved	<0.050	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-3 MS Aluminum (Al)-Dissolved	L1199825-13	i 119.8		%		70-130	29-AUG-12
Antimony (Sb)-Dissolved		105.6		%		70-130	29-AUG-12
Arsenic (As)-Dissolved		124.0		%		70-130	29-AUG-12
Barium (Ba)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Boron (B)-Dissolved		94.7		%		70-130	29-AUG-12
Cadmium (Cd)-Dissolved		122.1		%		70-130	29-AUG-12
Calcium (Ca)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Chromium (Cr)-Dissolved		118.0	-	%		70-130	29-AUG-12
Copper (Cu)-Dissolved		119.7		%		70-130	29-AUG-12 29-AUG-12
Lead (Pb)-Dissolved		102.7		%		70-130	29-AUG-12 29-AUG-12
Magnesium (Mg)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Magnese (Mn)-Dissolved		117.0		%		- 70-130	29-AUG-12 29-AUG-12
Selenium (Se)-Dissolved		97.2		%		70-130	29-AUG-12 29-AUG-12
Uranium (U)-Dissolved		84.3		%		70-130	29-AUG-12 29-AUG-12
Zinc (Zn)-Dissolved		117.3		%		70-130	29-AUG-12 29-AUG-12
	ater	117.5		70		10-130	29-AUG-12
Batch R2427382							
WG1537645-10 CRM Ammonia, Total (as N)	VA-NH3-F	99.6		%		85-115	30-AUG-12
WG1537645-2 CRM	VA-NH3-F						

		Workorder:	L1199825	i Re	eport Date: 1	3-SEP-12	Pa	ge 13 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-VA	Water							
Batch R2427382								
WG1537645-2 CRM Ammonia, Total (as N)		VA-NH3-F	102.9		%		85-115	30-AUG-12
WG1537645-4 CRM Ammonia, Total (as N)		VA-NH3-F	95.4		%		85-115	30-AUG-12
WG1537645-6 CRM Ammonia, Total (as N)		VA-NH3-F	99.5		%		85-115	30-AUG-12
WG1537645-8 CRM Ammonia, Total (as N)		VA-NH3-F	100.2		%		85-115	30-AUG-12
WG1537645-11 DUP Ammonia, Total (as N)		L1199825-21 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	30-AUG-12
WG1537645-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-12 MS Ammonia, Total (as N)		L1199825-21	95.6		%		75-125	30-AUG-12
WG1537645-14 MS Ammonia, Total (as N)		L1200094-1	99.5		%		75-125	30-AUG-12
PAH-SF-MS-VA	Water							
Batch R2427369								
WG1535548-2 LCS								
Acenaphthene			91.5		%		60-130	30-AUG-12
Acenaphthylene			91.6		%		60-130	30-AUG-12
Acridine			88.2		%		60-130	30-AUG-12
Anthracene			93.3		%		60-130	30-AUG-12
Benz(a)anthracene			88.5		%		60-130	30-AUG-12
Benzo(a)pyrene			82.1		%		60-130	30-AUG-12
Benzo(b)fluoranthene			79.7		%		60-130	30-AUG-12
Benzo(g,h,i)perylene			96.6		%		60-130	30-AUG-12
Benzo(k)fluoranthene			102.4		%		60-130	30-AUG-12
Chrysene			101.6		%		60-130	30-AUG-12

		Workorder	: L119982	5	Report Date: 13	-SEP-12	Pa	ge 14 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2427369)							
WG1535548-2 LCS					0/			
Dibenz(a,h)anthracene			93.0		%		60-130	30-AUG-12
Fluoranthene			94.7		%		60-130	30-AUG-12
Fluorene			90.1		%		60-130	30-AUG-12
Indeno(1,2,3-c,d)pyren	e		87.9		%		60-130	30-AUG-12
Naphthalene			86.8		%		50-130	30-AUG-12
Phenanthrene			94.4		%		60-130	30-AUG-12
Pyrene			93.6		%		60-130	30-AUG-12
Quinoline			91.2		%		60-130	30-AUG-12
WG1535548-1 MB Acenaphthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acenaphthylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acridine			<0.00005	0	mg/L		0.00005	30-AUG-12
Anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benz(a)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(a)pyrene			<0.00001	0	mg/L		0.00001	30-AUG-1
Benzo(b)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-1
Benzo(g,h,i)perylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(k)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Chrysene			<0.00005	0	mg/L		0.00005	30-AUG-12
Dibenz(a,h)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Fluorene			<0.00005	0	mg/L		0.00005	30-AUG-12
Indeno(1,2,3-c,d)pyren	е		<0.00005	0	mg/L		0.00005	30-AUG-12
Naphthalene			<0.00005	0	mg/L		0.00005	30-AUG-12
Phenanthrene			<0.00005	0	mg/L		0.00005	30-AUG-12
Pyrene			<0.00005	0	mg/L		0.00005	30-AUG-12
Quinoline			<0.00005	0	mg/L		0.00005	30-AUG-12
WG1535548-3 MB								
Acenaphthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acenaphthylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acridine			<0.00005	0	mg/L		0.00005	30-AUG-12
Anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benz(a)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(a)pyrene			<0.00001	0	mg/L		0.00001	30-AUG-12
Benzo(b)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12

		Workorder:	L1199825		Report Date: 13-	SEP-12	Pa	ge 15 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2427369								
WG1535548-3 MB Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	30-AUG-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	30-AUG-12
Chrysene			<0.000050		mg/L		0.00005	30-AUG-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	30-AUG-12
Fluoranthene			<0.000050		mg/L		0.00005	30-AUG-12
Fluorene			<0.000050		mg/L		0.00005	30-AUG-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	30-AUG-12
Naphthalene			<0.000050		mg/L		0.00005	30-AUG-12
Phenanthrene			<0.000050		mg/L		0.00005	30-AUG-12
Pyrene			<0.000050		mg/L		0.00005	30-AUG-12
Quinoline			<0.000050		mg/L		0.00005	30-AUG-12
PH-MAN-WR	Water							
Batch R2430231 WG1534970-4 DUP		L1199825-1						
рН		8.01	8.02		рН	0.1	25	27-AUG-12
WG1534970-1 LCS рН			99.9		%		70-130	27-AUG-12
WG1534970-3 LCS рН			99.9		%		70-130	27-AUG-12
TDS-VA	Water							
Batch R2427807								
WG1536565-6 DUP Total Dissolved Solids		L1199825-15 498	510		mg/L	2.5	20	29-AUG-12
WG1536565-2 LCS Total Dissolved Solids			104.4		%		85-115	29-AUG-12
WG1536565-5 LCS Total Dissolved Solids			101.3		%		85-115	29-AUG-12
WG1536565-1 MB Total Dissolved Solids			<10		mg/L		10	29-AUG-12
WG1536565-4 MB Total Dissolved Solids			<10		mg/L		10	29-AUG-12
TKN-F-VA	Water				-			
Batch R2427212								
WG1536242-3 DUP Total Kjeldahl Nitrogen		L1199825-10 0.052	0.074	J	mg/L	0.022	0.1	30-AUG-12
WG1536242-2 LCS								

WG1536242-2 LCS

	Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	ige 16 of 22
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-VA Water							
Batch R2427212							
WG1536242-2 LCS Total Kjeldahl Nitrogen		98.7		%		75-125	30-AUG-12
WG1536242-5 LCS Total Kjeldahl Nitrogen		93.2		%		75-125	30-AUG-12
WG1536242-1 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	30-AUG-12
WG1536242-4 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	30-AUG-12
VH-HSFID-VA Water							
Batch R2426189							
WG1537421-3 DUP Volatile Hydrocarbons (VH6-10)	L1199825-21 <0.10	<0.10	RPD-NA	mg/L	N/A	50	31-AUG-12
WG1537421-2 LCS Volatile Hydrocarbons (VH6-10)		105.7		%		70-130	31-AUG-12
WG1537421-1 MB Volatile Hydrocarbons (VH6-10)		<0.10		mg/L		0.1	31-AUG-12
VOC-HSMS-VA Water							
Batch R2428608							
WG1544270-3 DUP Bromodichloromethane	L1199825-21 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Bromoform	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Carbon Tetrachloride	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-SEP-12
Chlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Dibromochloromethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Chloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
Chloroform	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Chloromethane	<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	12-SEP-12
1,2-Dichlorobenzene	<0.00070	<0.00070	RPD-NA	mg/L	N/A	30	12-SEP-12
1,3-Dichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,4-Dichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1-Dichloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,2-Dichloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
cis-1,2-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
trans-1,2-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12

		Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	age 17 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608								
WG1544270-3 DUP		L1199825-21	0.0040					
1,2-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
cis-1,3-Dichloropropylen		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
trans-1,3-Dichloropropyl		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,1,2-Tetrachloroethar		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,2,2-Tetrachloroethar	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Tetrachloroethylene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,1-Trichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,2-Trichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Trichloroethylene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Trichlorofluoromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
Vinyl Chloride		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
WG1544270-2 LCS Bromodichloromethane			87.1		%		70-130	12-SEP-12
Bromoform			100.4		%		70-130	12-SEP-12
Carbon Tetrachloride			100.8		%		70-130	12-SEP-12
Chlorobenzene			96.4		%		70-130	12-SEP-12
Dibromochloromethane			100.0		%		70-130	12-SEP-12
Chloroethane			84.5		%		60-140	12-SEP-12
Chloroform			89.2		%		70-130	12-SEP-12
Chloromethane			74.1		%		60-140	12-SEP-12
1,2-Dichlorobenzene			96.9		%		70-130	12-SEP-12
1,3-Dichlorobenzene			98.3		%		70-130	12-SEP-12
1,4-Dichlorobenzene			96.6		%		70-130	12-SEP-12
1,1-Dichloroethane			82.0		%		70-130	12-SEP-12
1,2-Dichloroethane			78.2		%		70-130	12-SEP-12
1,1-Dichloroethylene			71.2		%		70-130	12-SEP-12
cis-1,2-Dichloroethylene			94.3		%		70-130	12-SEP-12
trans-1,2-Dichloroethyle			80.1		%		70-130	12-SEP-12
Dichloromethane			83.3		%		60-140	12-SEP-12
1,2-Dichloropropane			84.5		%		70-130	12-SEP-12
cis-1,3-Dichloropropylen	e		87.3		%		70-130	12-SEP-12
trans-1,3-Dichloropropyl			80.5		%		70-130	12-SEP-12
1,1,1,2-Tetrachloroethar			104.2		%		70-130	12-SEP-12
1,1,2,2-Tetrachloroethar			81.6		%		70-130	12-SEP-12 12-SEP-12

		Workorder	: L119982	25	Report Date: 1	3-SEP-12	Pa	age 18 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608								
WG1544270-2 LCS			105.0		0/		70.400	
Tetrachloroethylene			94.1		%		70-130	12-SEP-12
1,1,1-Trichloroethane							70-130	12-SEP-12
1,1,2-Trichloroethane			89.1		%		70-130	12-SEP-12
Trichloroethylene			105.6		%		70-130	12-SEP-12
Trichlorofluoromethane			100.7		%		60-140	12-SEP-12
Vinyl Chloride			83.1		%		60-140	12-SEP-12
WG1544270-1 MB Bromodichloromethane			<0.0010		mg/L		0.001	12-SEP-12
Bromoform			<0.0010		mg/L		0.001	12-SEP-12
Carbon Tetrachloride			<0.00050)	mg/L		0.0005	12-SEP-12
Chlorobenzene			<0.0010	,	mg/L		0.0003	12-SEP-12
Dibromochloromethane			<0.0010		mg/L		0.001	12-SEP-12
Chloroethane			<0.0010		mg/L		0.001	12-SEP-12
Chloroform			<0.0010		mg/L		0.001	12-SEP-12
Chloromethane			< 0.0050		mg/L		0.001	12-SEP-12
1,2-Dichlorobenzene			<0.00070	J	mg/L		0.0007	12-SEF-12
1,3-Dichlorobenzene			<0.0010	,	mg/L		0.0007	12-SEP-12
1,4-Dichlorobenzene			<0.0010		mg/L		0.001	12-SEP-12
1,1-Dichloroethane			<0.0010		mg/L		0.001	12-SEP-12
1,2-Dichloroethane			<0.0010		mg/L		0.001	12-SEP-12 12-SEP-12
1,1-Dichloroethylene			<0.0010		mg/L		0.001	12-SEP-12
cis-1,2-Dichloroethylene	2		<0.0010		mg/L		0.001	12-SEP-12
trans-1,2-Dichloroethyle			<0.0010		mg/L		0.001	12-SEP-12
Dichloromethane			<0.0010		mg/L		0.001	12-SEP-12
1,2-Dichloropropane			<0.0010		mg/L		0.003	12-SEP-12
cis-1,3-Dichloropropyler	he		<0.0010		mg/L		0.001	12-SEP-12
trans-1,3-Dichloropropy			<0.0010		mg/L		0.001	12-SEP-12 12-SEP-12
1,1,1,2-Tetrachloroetha			<0.0010		mg/L		0.001	12-SEP-12
1,1,2,2-Tetrachloroetha			<0.0010		mg/L		0.001	12-SEP-12
Tetrachloroethylene	-		<0.0010		mg/L		0.001	12-SEP-12
1,1,1-Trichloroethane			<0.0010		mg/L		0.001	12-SEP-12
1,1,2-Trichloroethane			<0.0010		mg/L		0.001	12-SEP-12
Trichloroethylene			<0.0010		mg/L		0.001	12-SEP-12
Trichlorofluoromethane			<0.0010		mg/L		0.001	12-SEP-12

		Workorder:	L1199825	5 Re	port Date: 1	3-SEP-12	Pa	ige 19 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608 WG1544270-1 MB Vinyl Chloride			<0.0010		mg/L		0.001	12-SEP-12
VOC7-HSMS-VA	Water							
Batch R2425830								
WG1537421-3 DUP Benzene		L1199825-21 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Methyl t-butyl ether (MT	BE)	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
meta- & para-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
ortho-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
WG1537421-2 LCS Benzene			103.5		%		70-130	30-AUG-12
Ethylbenzene			102.1		%		70-130	30-AUG-12
Methyl t-butyl ether (MTI	BE)		102.8		%		70-130	30-AUG-12
Styrene	,		103.3		%		70-130	30-AUG-12
Toluene			101.8		%		70-130	30-AUG-12
meta- & para-Xylene			101.1		%		70-130	30-AUG-12
ortho-Xylene			103.3		%		70-130	30-AUG-12
WG1537421-1 MB								
Benzene			<0.00050		mg/L		0.0005	30-AUG-12
Ethylbenzene			<0.00050		mg/L		0.0005	30-AUG-12
Methyl t-butyl ether (MT	BE)		<0.00050		mg/L		0.0005	30-AUG-12
Styrene			<0.00050		mg/L		0.0005	30-AUG-12
Toluene			<0.00050		mg/L		0.0005	30-AUG-12
meta- & para-Xylene			<0.00050		mg/L		0.0005	30-AUG-12
ortho-Xylene			<0.00050		mg/L		0.0005	30-AUG-12

Workorder: L1199825

Report Date: 13-SEP-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1199825

Report Date: 13-SEP-12

Page 21 of 22

Hold Time Exceedances:

	Sample							
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie	
Physical Tests								
pH by Meter								
p	1	22-AUG-12 11:35	27-AUG-12 15:48	24	124	hours	EHTR	
	2	22-AUG-12 13:00	27-AUG-12 15:48	24	123	hours	EHTR	
	3	22-AUG-12 14:10	27-AUG-12 15:48	24	122	hours	EHTR	
	4	22-AUG-12 09:30	27-AUG-12 15:48	24	126	hours	EHTR	
	5	22-AUG-12 09:30	27-AUG-12 15:48	24	126	hours	EHTR	
	6	22-AUG-12 09:30	27-AUG-12 15:48	24	120	hours	EHTR	
	7	22-AUG-12 15:20 22-AUG-12 17:00	27-AUG-12 15:48 27-AUG-12 15:48	24 24	120	hours	EHTR	
	8	22-AUG-12 17:00 22-AUG-12 18:15	27-AUG-12 15:48 27-AUG-12 15:48	24 24	118	hours	EHTR	
	9			24 24	116			
	9 10	22-AUG-12 19:30	27-AUG-12 15:48	24 24	98	hours	EHTR EHTR	
		23-AUG-12 14:10	27-AUG-12 15:48			hours		
	11	23-AUG-12 11:30	27-AUG-12 15:48	24	100	hours	EHTR	
	12	23-AUG-12 12:30	27-AUG-12 15:48	24	99	hours	EHTR	
	13	24-AUG-12 09:30	27-AUG-12 15:48	24	78	hours	EHTL	
	14	23-AUG-12 15:45	27-AUG-12 15:48	24	96	hours	EHTR	
	15	23-AUG-12 17:20	27-AUG-12 15:48	24	95	hours	EHTR	
	16	23-AUG-12 16:40	27-AUG-12 15:48	24	95	hours	EHTR	
	17	23-AUG-12 18:30	27-AUG-12 15:48	24	93	hours	EHTR	
	18	24-AUG-12 14:00	27-AUG-12 15:48	24	74	hours	EHTL	
	19	24-AUG-12 13:00	27-AUG-12 15:48	24	75	hours	EHTL	
	20	24-AUG-12 11:50	27-AUG-12 15:48	24	76	hours	EHTL	
	21	24-AUG-12 14:40	27-AUG-12 15:48	24	73	hours	EHTL	
/olatile Organic Compounds								
VOCs in water by Headspace		00 4110 40 44 05					EU T	
	1	22-AUG-12 11:35	11-SEP-12 16:49	14	20	days	EHT	
	2	22-AUG-12 13:00	11-SEP-12 16:49	14	20	days	EHT	
	3	22-AUG-12 14:10	11-SEP-12 16:49	14	20	days	EHT	
	4	22-AUG-12 09:30	11-SEP-12 16:49	14	20	days	EHT	
	5	22-AUG-12 09:30	11-SEP-12 16:49	14	20	days	EHT	
	6	22-AUG-12 15:20	11-SEP-12 16:49	14	20	days	EHT	
	7	22-AUG-12 17:00	11-SEP-12 16:49	14	20	days	EHT	
	8	22-AUG-12 18:15	11-SEP-12 16:49	14	20	days	EHT	
	9	22-AUG-12 19:30	11-SEP-12 16:49	14	20	days	EHT	
	10	23-AUG-12 14:10	11-SEP-12 16:49	14	19	days	EHT	
	11	23-AUG-12 11:30	11-SEP-12 16:49	14	19	days	EHT	
	12	23-AUG-12 12:30	11-SEP-12 16:49	14	19	days	EHT	
	13	24-AUG-12 09:30	11-SEP-12 16:49	14	18	days	EHT	
	14	23-AUG-12 15:45	11-SEP-12 16:49	14	19	days	EHT	
	15	23-AUG-12 17:20	11-SEP-12 16:49	14	19	days	EHT	
	16	23-AUG-12 16:40	11-SEP-12 16:49	14	19	days	EHT	
	17	23-AUG-12 18:30	11-SEP-12 16:49	14	19	days	EHT	
	18	24-AUG-12 14:00	11-SEP-12 16:49	14	18	days	EHT	
	19	24-AUG-12 13:00	11-SEP-12 16:49	14	18	days	EHT	
						J -		
	20	24-AUG-12 11:50	11-SEP-12 16:49	14	18	days	EHT	

Legend & Qualifier Definitions:

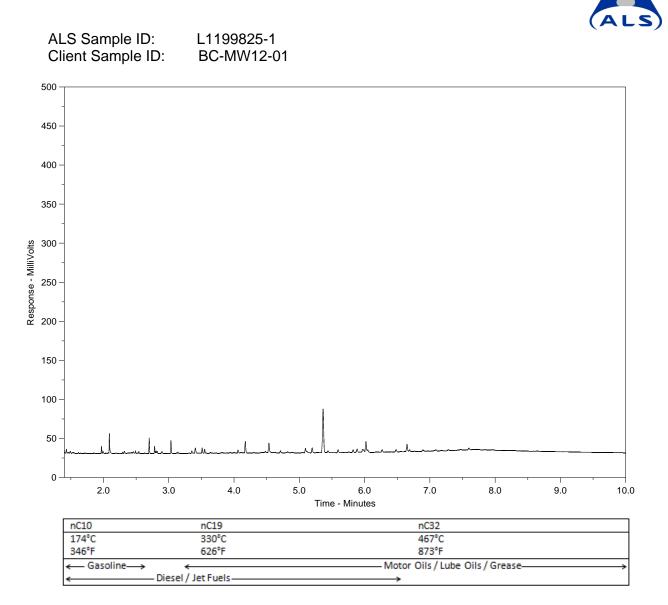
EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

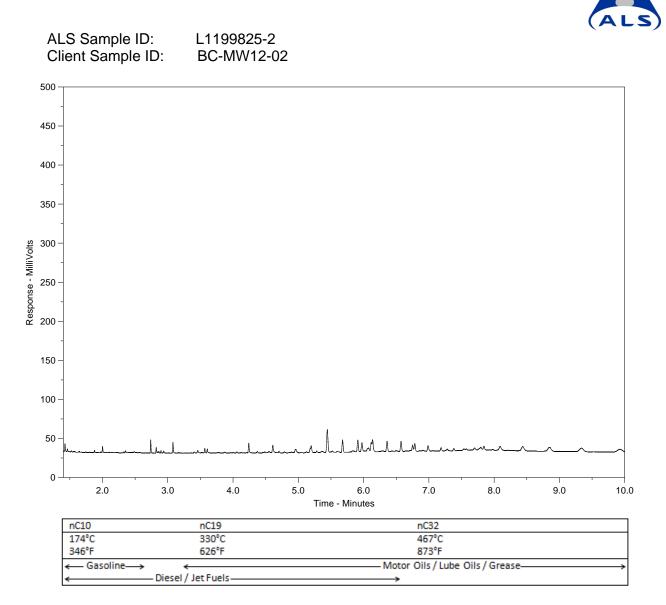
Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1199825 were received on 24-AUG-12 19:50. Workorder: L1199825


Report Date: 13-SEP-12

Page 22 of 22

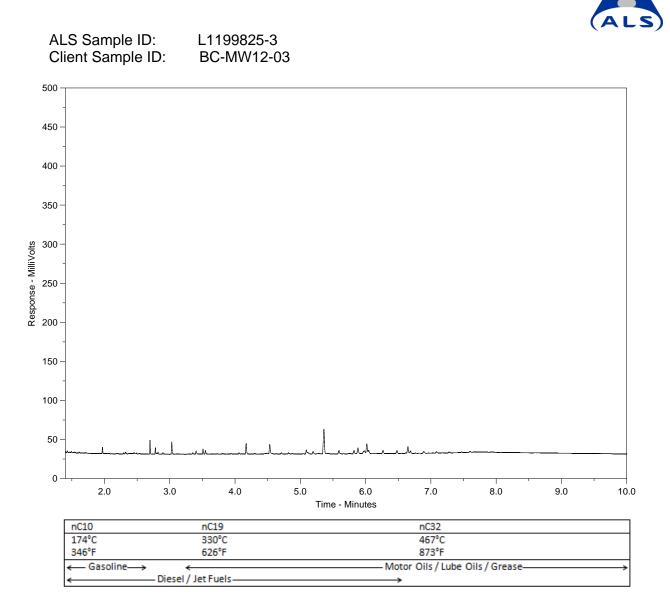
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

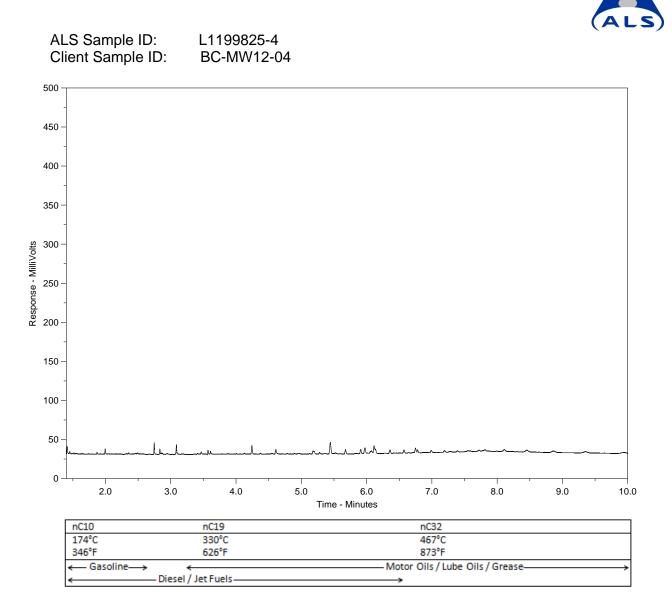
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

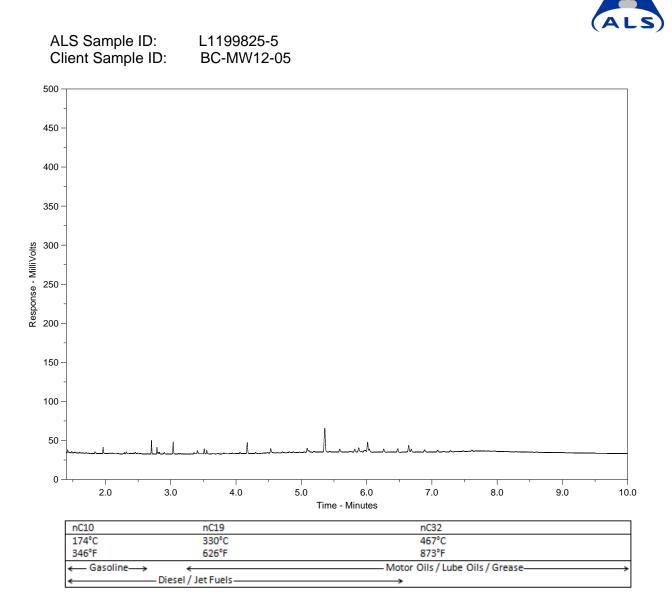
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

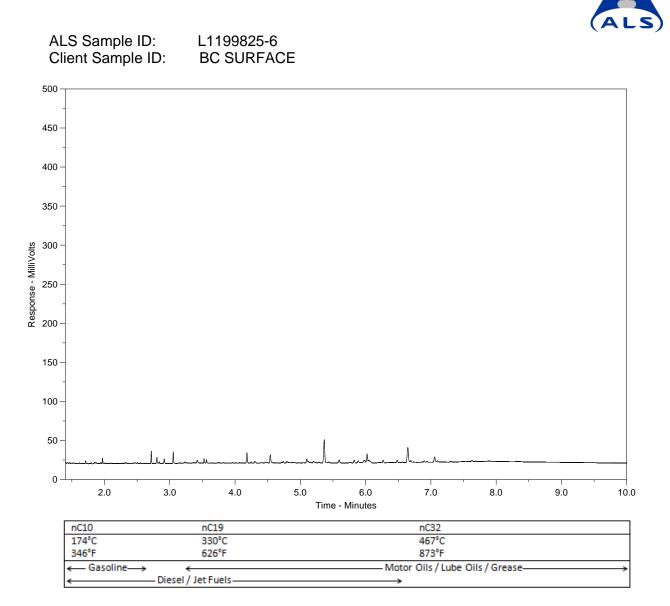
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

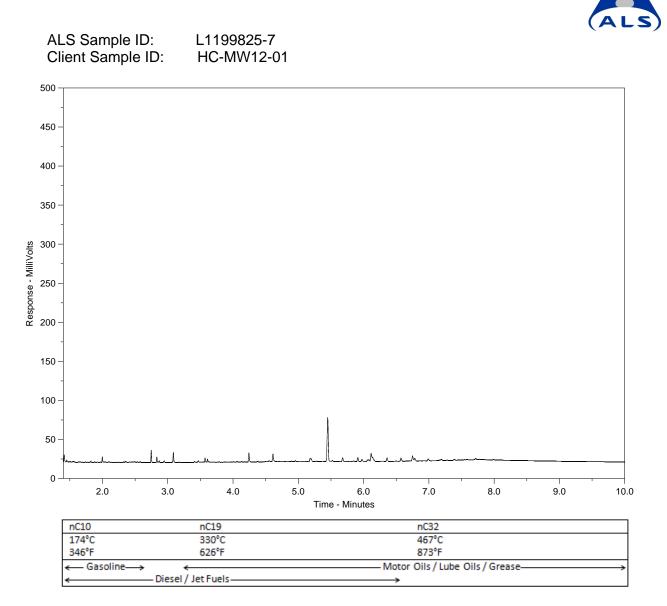
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

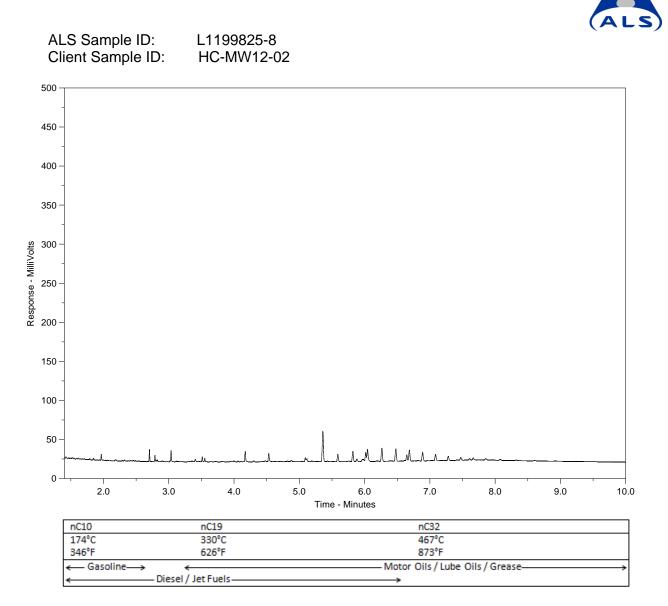
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

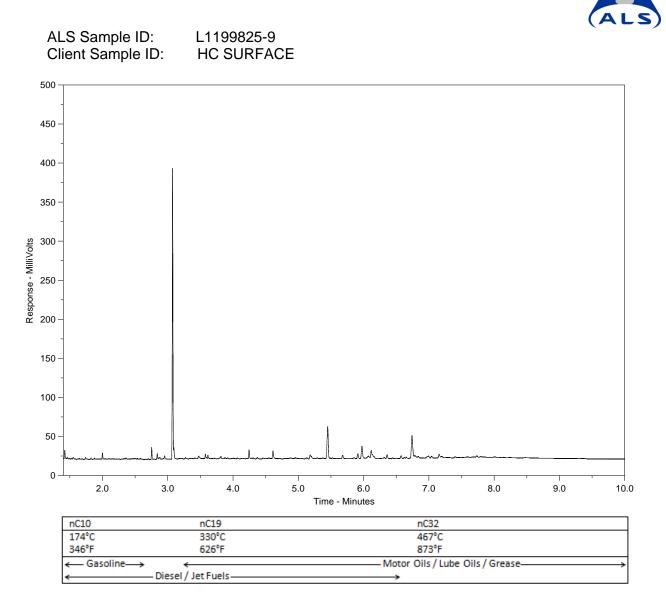
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

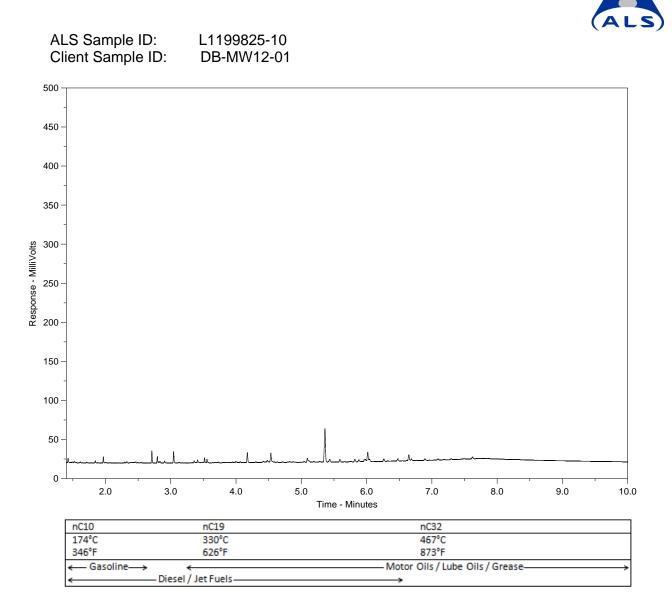
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

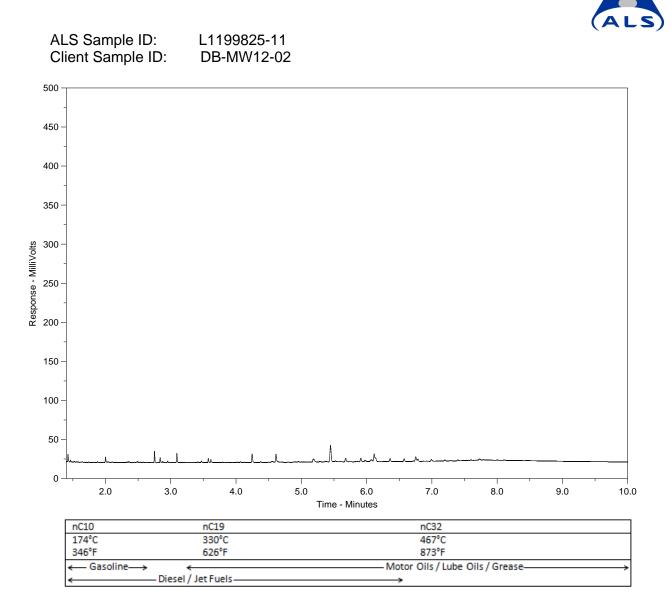
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

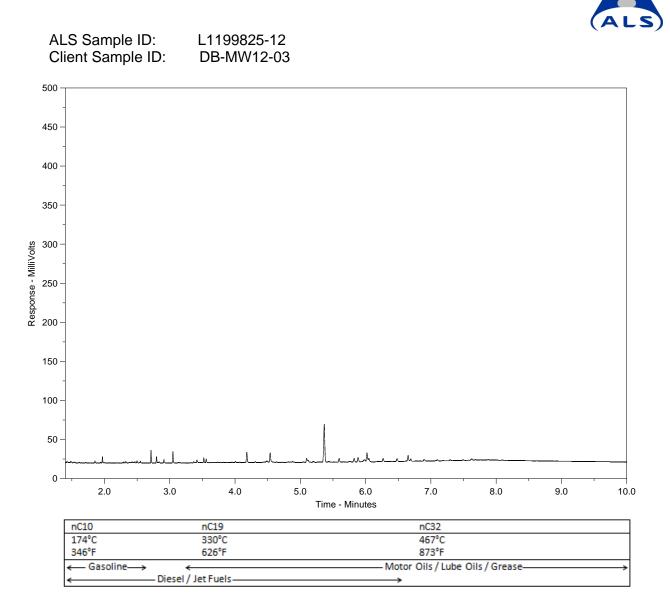
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

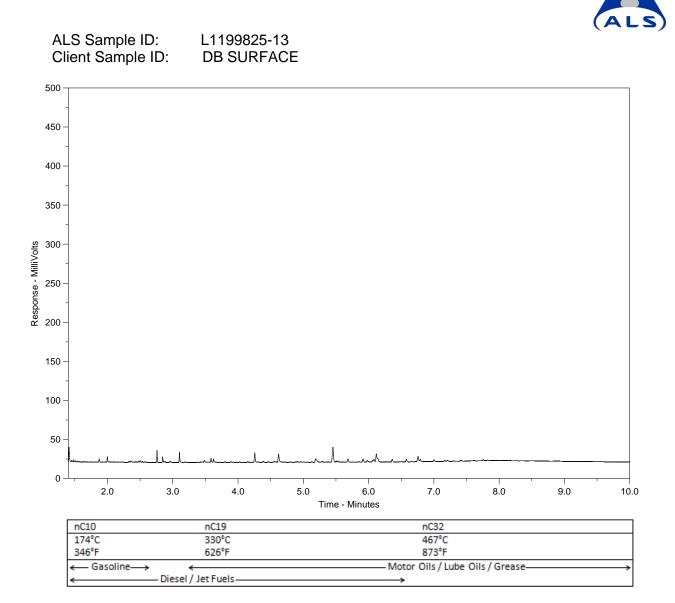
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

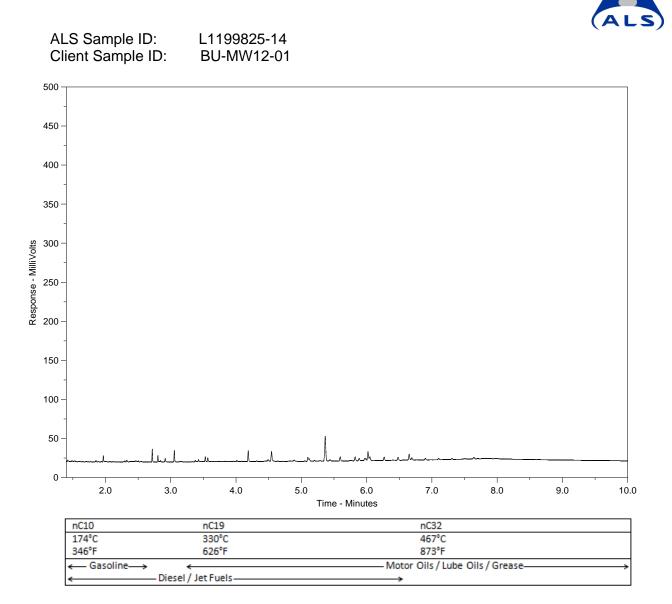
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

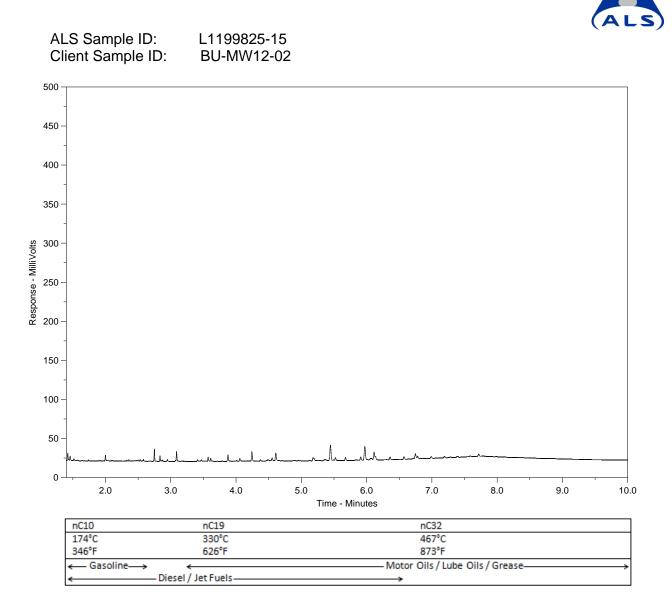
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

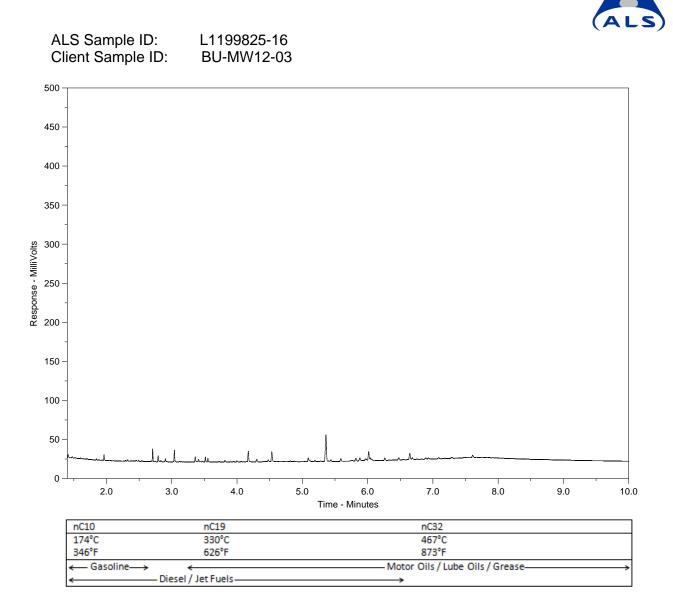
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

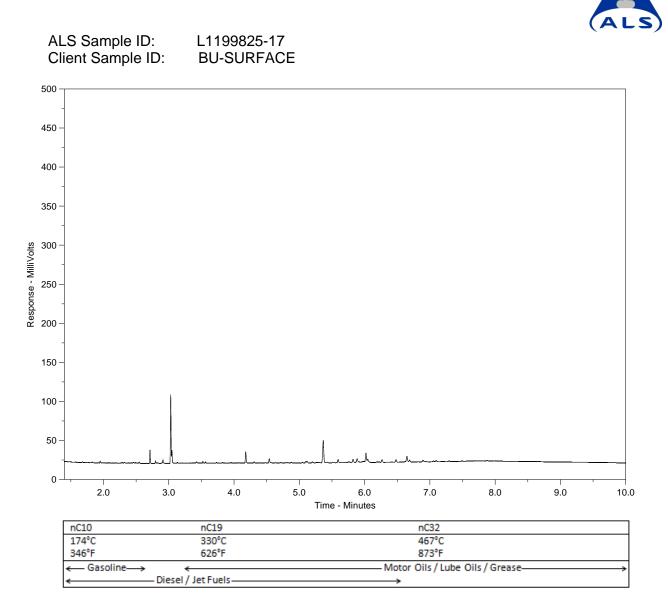
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

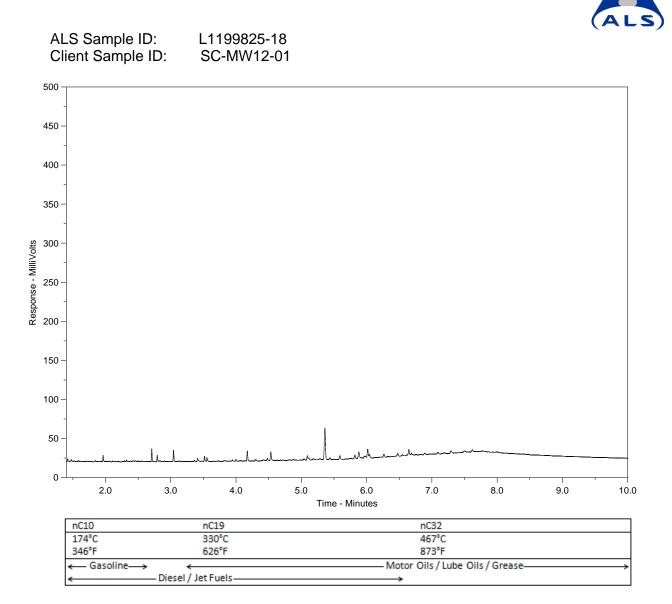
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

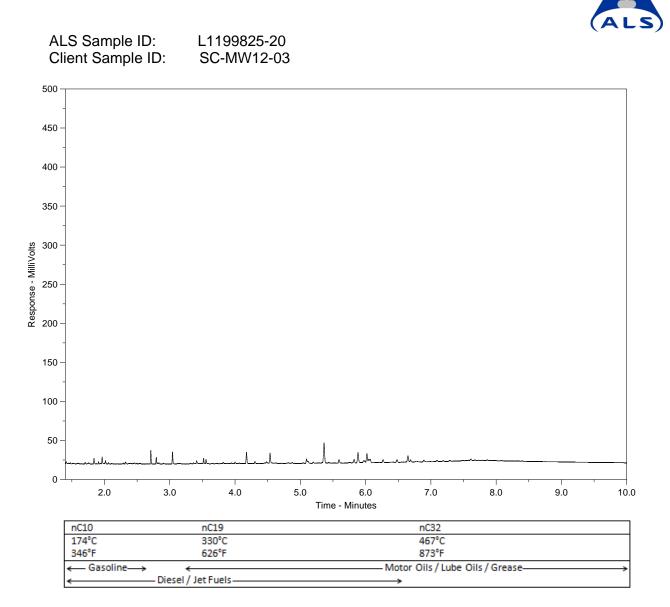
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

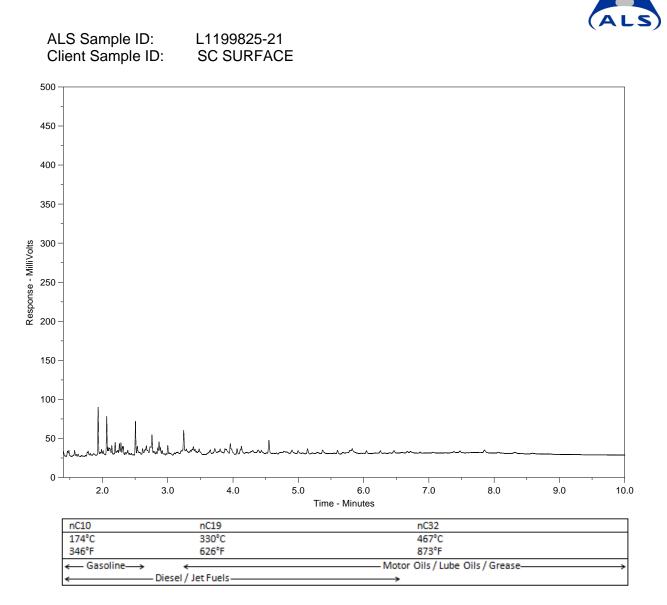
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 <u>www.alsglobal.com</u>

COC # _____

Page <u>2</u> of <u>2</u>

-

ALS Environmental Report Format / Distribution Service Requested (Rush for routine analysis reques	
Seport 10 Image: Standard Image:	Devel
company: Golder Associates Golder Associates O Priority (2-4 Business Days) - 50% Surcharge - contact: Andrea Badger PDF Excel Digital Fax O Emergency (1-2 Bus. Days) - 100% Surcharge - ddress: 201B 170 Titanium Way Email 1: andrea_badger@golder.com O Same Day or Weekend Emergency - Contact AL Whitehorse, YT Y1A 0G1 Email 2: gary_hamilton@golder.com O Same Day or Weekend Emergency - Contact AL hone: 867-633-6076 Fax: Email 3: calvin beebe@golder.com Please indicate below Filtered, Preserv voice To Same as Report ? Yes No Job #: 11-1436-0073/1600 Please indicate below Filtered, Preserv iardcopy of Invoice with Report? Yes No Job #: 11-1436-0073/1600 Image: Contact: Voider #: contact: LSD: LSD: Sampler: Vione: Fax: Quote #: Vione: Vione: Fax: Quote #: Vione: Vione: Vione: Fax: Vione: Vione:<	Jays)
ontact: Andrea Badger Differ Detect O Emergency (1-2 Bus. Days) - 100% Surcharge- defers: 201B 170 Titanium Way Email 1: andrea_badger@golder.com O Same Day or Weekend Emergency - Contact AL Whitehorse, YT Y1A 0G1 Email 2: gary hamilton@golder.com O Same Day or Weekend Emergency - Contact AL hone: 867-633-6076 Fax: Email 3: calvin beebe@golder.com Please indicate below Filtered, Preserv nvoice To Same as Report ? Yes No Client / Project Information Please indicate below Filtered, Preserv lardcopy of Invoice with Report? Yes No Job #: 11-1436-0073/1600 V V V company: Optionatt: LSD: Some calvin beetee V	ontact ALS to Confirm TAT
ddress: 2018 170 mentalinondy Email 2: gary_hamilton@golder.com O same Day or Weekend Emergency - Contact AL Whitehorse, YT Y1A 0G1 Email 2: gary_hamilton@golder.com Analysis Requirements hone: 867-633-6076 Fax: Email 2: gary_hamilton@golder.com Please indicate below Filtered, Preservic nvoice To Same as Report ? ? Yes No Job #: 11-1436-0073/1600 Please indicate below Filtered, Preservic ardcopy of Invoice with Report? Yes No Job #: 11-1436-0073/1600 Image: State Stat	Contact ALS to Confirm TAT
WriteHolse, HTHAOST Email 3: calvin beebe@golder.com Analysis Requirements hone: 867-633-6076 Fax: Email 3: calvin beebe@golder.com Please indicate below Filtered, Preserv tvoice To Same as Report ? Yes No Client / Project Information Please indicate below Filtered, Preserv ardcopy of Invoice with Report? Yes No Job #: 11-1436-0073/1600 Image: Company: Im	to Confirm TAT
hone: 867-633-607/6 Fax: No Client / Project Information Please indicate below Filtered, Preserv nvoice To Same as Report ? Yes No Job #: 11-1436-0073/1600 Image: Company: Image: Company: </td <td></td>	
Noice 16 Same as Report : ardcopy of Invoice with Report? Yes PO / AFE: company: contact: contact: ddress: Phone: Fax: Quote #: ALS Contact: (lab use only) Line as Report?	d or both (F, P, F/P)
ardcopy of Invoice with Report? If yes PO / AFE: company: contact:	
ompany: LSD: Sontact: contact:	
	a a a a a a a a a a a a a a a a a a a
	Nimber of Containers
Sample (dd-mmm-yy) (hh:mm) Sample ype g	
# (This description will appear on the report) (dammin-yy) (minin) 24-Aug-12 9:30 Surface Water X	3
DB Surface 23-Aug-12 15:45 Groundwater X	8
BU-MVV12-01 23-Aug-12 17:20 Groundwater X	
BU-MW12-02 16:40 Groundwater X	
BU-MW12-03 23-Aug-12 18:30 Surface Water X Image: Control of the second seco	
BU Surface 24-Aug-12 14:00 Groundwater X I	
SC-MW12-01 24 Aug-12 13:00 Groundwater X	
SC-MW12-02 24-Aug-12 11:50 Groundwater X	
SC-MW12-03	
SC Surface 24-Aug-12 14:40 Surface Water X	
the USA COMMERCIAL AND A	us Details
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardo	
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	
the supplied on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / instance	N (lab use only)
SHIPMENT RELEASE (client use) SHIPMENT RECEIPTION Temperature: Verified by: Date:	ime: Observation
Released by: Date (dd-mmm-yy) Time (hh-mm) Received by: Date: Time: Temperature: Verified by: Date:	Yes / No ? If Yes add :
Andrea Badger 24-Aug-12 19:00	GENF 18.01 Front

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page <u>1</u> of <u>2</u>.

÷

ompany: Golder Associates I Standard Other Regular (Standard Turnaround Times - Business Days) ontact: Andrea Badger I PDF Excel Digital Fax Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT ddress: 201B 170 Titanium Way Email 1: andrea badger@golder.com Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT Whitehorse, YT Y1A 0G1 Email 2: gary hamilton@golder.com Same Day or Weekend Emergency - Contact ALS to Confirm TAT hone: 867-633-6076 Fax: Email 3: calvin beebe@golder.com Analysis Request nvoice To Same as Report ? Yes No Client / Project Information Please indicate below Filtered, Preserved or both (F, P, F/P) lardcopy of Invoice with Report? Yes No Job #: 11-1436-0073/1600 Imail 2:	eport To				Re	port Fo	rmat / Distributi	on		Servi	ice Re	ques	ted (Ru	ush for re	outine a	nalysis s	subject t	o availability	y)		
Image: Second control in the second contro																					
ddress: 201B 170 Titanium Way Email 1: andrea badger@qolder.com O Energency (1-2 Bus. Day) - 100% sucharger. Contract ALS to Confirm YAT Whitehorse, YT YIA 0G1 Email 2: gary hemitlon@golder.com O same Day or Weeked Encegnecy - Contract ALS to Confirm YAT hone 967-633-6076 Fax: Email 2: gary hemitlon@golder.com Analysis Request voice To Same as Report ? ? vs. Email 2: gary hemitlon@golder.com Analysis Request voice To Same as Report ? ? vs. Inc Job # 11-1436-0073/1800 Inc Job # 1	ompany																				
Windlices Fax: Entent: Gall Output Bases Analysis Request Noice To Same as Report? I vis No Client / Project Information Please indicate below Filteret, Preserved or both (F, P, F/P) ardcopy of Invoice with Report? Vis No Client / Project Information Please indicate below Filteret, Preserved or both (F, P, F/P) ardcopy of Invoice with Report? Vis No Dis #: 11-1436-0073/1600 Image: Non-Instructure Image: No		201B 170 Titanium W	lay		En																
BD:10:: BP:203-0070 Pax Intel : Clinit / Project Information Please Indicate below Filtered, Preserved or both (F, P, F/P) Iardcopy of Invoice with Report? I vs Iso Job #: 11-1436-0073/1600 Please Indicate below Filtered, Preserved or both (F, P, F/P) Iardcopy of Invoice with Report? I vs Job #: 11-1436-0073/1600 Please Indicate below Filtered, Preserved or both (F, P, F/P) iornes: PO / AFE: USD: USD: Iso Iso <td>1</td> <td colspan="4"></td> <td colspan="5"></td> <td colspan="10"></td>	1																				
Worke for Same as report? Tree Disk Disk <thd< td=""><td>hone:</td><td>867-633-6076</td><td>Fax:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> I</td><td></td><td></td><td>-</td><td></td><td></td><td><u>.</u></td></thd<>	hone:	867-633-6076	Fax:										I			-			<u>.</u>		
and 0.010* D1 res D0 / AFE: company: D0 / AFE: contact: LSD: ddress: Quole # tab. Voik Order # ALS (tab. use only) JAGG Market Bample Ysample Identification (tab. use only) Jagg Market BC-MW12-01 22-Aug-12 BC-MW12-02 22-Aug-12 BC-MW12-04 22-Aug-12 BC-MW12-01 22-Aug-12 BC-MW12-01 22-Aug-12 HC-MW12-01 22-Aug-12 HC-MW12-01 22-Aug-12 HC-Surface <	nvoice To	Same as Report ?	🗹 Yes	No No						Plea	ase inc	licate	below		a, Pres	ervea		$\frac{(\Gamma, P, \Gamma)P}{\Gamma}$	긱		
Sumpley: LSD: Sumpley: Sum	lardcopy of Ir	nvoice with Report?	Yes	No No			11-1436-0073/10	500										+- +	-		
Sample Sample Identification (This description will appear on the report) Date (dd-mmm-yy) Time (th:mm) Sample Type a g a g a g a g a g a g a g a g a g a g a g a g a g a g a g	Company:									ğ											
Sample Sample Identification (This description will appear on the report) Date (dd-mmm-yy) Time (th:mm) Sample Type a g a g a g a g a g a g a g a g a g a g a g a g a g a g a g	Contact:					iD:				20						1			2		
Sample Sample Identification (This description will appear on the report) Date (dd-mmm-yy) Time (th:mm) Sample Type a g a g a g a g a g a g a g a g a g a g a g a g a g a g a g	ddress:									200									Containers		
Sample Sample Identification (This description will appear on the report) Date (dd-mmm-yy) Time (th:mm) Sample Type a g a g a g a g a g a g a g a g a g a g a g a g a g a g a g	Phone:		Fax:	www.com.com.com.com.com.com.com.com.com.com	NUMBER AND AND A					36-									Sont		
Sample 'Sample identification (This description will appear on the report) Date (dd-mmm-yy) Time (th.rmm) Sample Type E I			11996	125	Contraction of the second s			Sampler:		11-14									്		
BC-MW12-01 22-Aug-12 11:35 Groundwater X I	Sample		Sample Id	entification	report)				Sample Type	As per			E						Number		
BC-MW12-02 22-Aug-12 13:00 Groundwater X I							22-Aug-12	11:35	Groundwater										8		
BC-MW12-03 22-Aug-12 14:10 Groundwater X I							22-Aug-12	13:00	Groundwater	X									8		
BC-MW12-04 22-Aug-12 9:30 Groundwater X I							22-Aug-12	14:10	Groundwater	X									8		
BC-MW12-03 22-Aug-12 15:20 Surface Water X		BC-MW12-04					22-Aug-12	9:30	Groundwater	X									8		
BC Surface 22-Aug-12 17:00 Groundwater X <thx< th=""> X X</thx<>		BC-MW12-05	······································			_	22-Aug-12	9:30	Groundwater	X									8		
HC-MW12-01 22-Aug-12 18:15 Groundwater X Image: Control of the state		BC Surface					22-Aug-12	15:20	Surface Water	X		_							8		
HC-MW12-02 Links Links <thlinks< th=""></thlinks<>		HC-MW12-01					22-Aug-12	17:00	Groundwater	X					-				8		
DB-MW12-01 23-Aug-12 14:10 Groundwater X X X DB-MW12-02 23-Aug-12 11:30 Groundwater X X X X DB-MW12-03 23-Aug-12 11:30 Groundwater X X X X X		HC-MW12-02					22-Aug-12	18:15	Groundwater	X									8		
DB-MW12-01 23-Aug-12 11:30 Groundwater X Image: Constraint of the second sec		HC Surface	· · ·				22-Aug-12	19:30	Surface Water	X				_		-			8		
DB-MW12-02 23-Aug-12 12:30 Groundwater X		DB-MW12-01					23-Aug-12	14:10	Groundwater	X									8		
		DB-MW12-02					23-Aug-12	11:30	Groundwater						_			_	8		
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details		DB-MW12-03																	8		
Special instructions / Regulations with water of have do (or the resent of the second	<u>- ಬಿಲ್ಲಿಕ್ಕೆ ಸಂಕರ್ಷಕರಿಗೆ ಸ್ಥ</u>	Special Instru	ctions / Regu	lations with wa	ater or land u	se (CCN	iE-Freshwater /	Quatic Life/B	C CSR - Commer	cial/A	B Tie	r 1 - Ň	atural	l, etc) /	Hazar	dous C)etails				
		•••••		Failure to co	mplete all po	rtions o	f this form may	delay analysi	s. Please fill in th	iis foi	rm LE	GIBL	Ý.								
Eailure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.			By the use of	this form the	user acknow	ledaes a	ind agrees with	the Terms an	d Conditions as p	provic	ied or	n a se	parate	e Excel e table	tab. for co	mmon	analys	ses.			
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab.						SHIP	MENT RECEPT	ION (lab use o	nly)		(S) so her	SĤ	IPMEN		RIFICA	TION (ab use	oniy)			
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RECEPTION (lab use only) SHIPMENT RECEPTION (lab use only)	Released by						Date:	Time:	Temperature:	Verified by:			ſ	Date:				Yes / N	No ?		
By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RELEASE (client use) SHIPMENT RELEASE (client use) Time (nh-mm) Released by: Date (dd-mmm-yy) Date (dd-mmm-yy) Time (nh-mm) Received by: Date: Time: Temperature: Verified by: Date: Time: Observatio Observati			24-Aug-12	19:00	Egen.		24-Aug-12	19:50	71 °C	1						1		If Yes a	add Sl		

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada T: +1 (604) 296 4200

