

Hydrogeological Assessment Eagle Plains Solid Waste Management Facility

PRESENTED TO Government of Yukon, Site Assessment and Remediation Unit

MARCH 31, 2016 ISSUED FOR USE FILE: ENVH2O03173-01

> Tetra Tech EBA Inc. 61 Wasson Place Whitehorse, YT Y1A 0H7 CANADA Tel 867.668.3068 Fax 867.668.4349

CONSULTING ENGINEERS & SCIENTISTS - www.eba.ca

This page intentionally left blank.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Purpose and Objectives	1
	1.2	Location of Study Area	
2.0	PRE	EVIOUS WORK AND BACKGROUND INFORMATION REVIEW	
_	2.1	Background Geological, Hydrogeological and Permafrost Information	
	2.2	Review of Waste Management Permit	
3.0	FIEL	LD INVESTIGATIONS	
	3.1	Scope of Field Investigations	3
	3.2	Site Inspection and Site Infrastructure	3
	3.3	Groundwater Monitoring Well Network	4
	3.4	Monitoring Well Surveying	5
	3.5	Groundwater and Surface Water Sampling	
	3.6	Soil Sampling	
	3.7	Rising Head Hydraulic Response Testing	
4.0	RES	SULTS AND DISCUSSION	9
	4.1	Quality Control/Quality Assurance	9
	4.2	Application of Applicable Water Quality Standards	9
	4.3	Application of Applicable Soil Standards	
	4.4	Groundwater Quality Results	
		4.4.1 Dissolved Organic Carbon	11
		4.4.2 Total Dissolved Solids	
		4.4.3 Sulphate	
		4.4.4 Ammonia	12
		4.4.5 Organics	12
	4.5	Surface Water Quality Results	
	4.6	Soil Chemistry	
5.0	CON	NCEPTURAL HYDROGEOLOGICAL MODEL	15
	5.1	Setting	15
	5.2	Climate	
		5.2.1 Permafrost	15
		5.2.2 Surface Waterbodies	17
	5.3	Geology and Hydrogeology	
		5.3.1 Soils	
		5.3.2 Bedrock Geology	
	5.4	Groundwater Flow Regime	
		5.4.1 Local Groundwater Flow	
		5.4.2 Groundwater Elevations, Flow Direction, Hydraulic Gradient	
	5.5	Hydraulic Response Testing Results	
			-

6.0	POTENTIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS	. 19
7.0	SUMMARY AND CONCLUSIONS	. 20
	RECOMMENDATIONS 8.1 Recommended Monitoring Plan	
9.0	CLOSURE	. 24
REFE	ERENCES	. 25

LIST OF TABLES IN TEXT

Table 2-1: Summary of Current Permit Groundwater Monitoring Requirements	2
Table 3-1: Monitoring Well Construction Details	5
Table 3-2: Monitoring Well Survey Information	6
Table 3-3: Groundwater Monitoring Program Permit Requirements (2015)	7
Table 3-4: Surface Water Monitoring Program Permit Requirements (2015)	7
Table 4-1: Review of October 2015 Groundwater and Soil Sampling QA/QC	9
Table 4-2: Summary of Applicable Receptors	10
Table 4-3: Summary of Key Groundwater Quality Parameters	11
Table 4-4: Summary of Exceedances of Yukon CSR-AW Standards from Groundwater Sam	ples 11
Table 4-5: Summary of Exceedances of the Yukon CSR-AW Standards from Surface Water	Samples13
Table 4-6: Summary of Exceedances of Yukon CSR-IL Standards from Soil Samples	13
Table 5-1: Principal Aquifer	

LIST OF FIGURES IN TEXT

APPENDIX SECTIONS

TABLES

- Table 1Summary of Groundwater Monitoring Well Installation Details
- Table 2 Summary of Groundwater Analytical Results
- Table 3 Summary of Surface Water Analytical Results
- Table 4Summary of Soil Analytical Results
- Table 5
 Groundwater Sample Duplicate Results
- Table 6Soil Sample Duplicate Results

FIGURES

- Figure 1 Site Plan Showing Well Locations
- Figure 2 Site Plan Showing Proposed Well Locations in Waste Disposal Area
- Figure 3 Cross-section A A'
- Figure 4 Piper Plot of Surface Water and Groundwater Samples

PHOTOGRAPHS

- Photo 1 Pallets, tires and rims along northern boundary. Photo taken October 7, 2015 at 9:00 am.
- Photo 2 Empty fuel drums and tires along northern boundary. Photo taken October 7, 2015 at 9:00 am
- Photo 3 Large tires and scrap metal along northern boundary. Photo taken October 7, 2015 at 9:00 am.
- Photo 4 Scrap metal along northern boundary. Photo taken October 7, 2015 at 9:01 am.
- Photo 5 Refrigerators, washing machines and driers southeast of MSW burn trench. Photo taken October 7, 2015 at 9:02 am.
- Photo 6 Calcium bags stored on pallets. Photo taken October 7, 2015 at 9:03 am.
- Photo 7 Highway markers along southern boundary. Photo taken October 7, 2015 at 9:03 am.
- Photo 8 Culverts and highway markers along southern boundary. Photo taken October 7, 2015 at 9:04 am.
- Photo 9 Culverts along southern boundary. Photo taken October 7, 2015 at 9:04 am.
- Photo 10 Sandstone encountered at 15MW03 (1.5 2.2 m bg). Photo taken on October 7, 2015 at 12:10 pm.
- Photo 11 Saturated sand and gravel overlying fine grained silt and clay at 15MW04 at a depth of 0.7 to 1.5 m bg. Photo taken on October 7, 2015 at 2:30 pm.
- Photo 12 Organic rich shale bedrock encountered at 15MW01 a depth of 5.5 6.0 m bg. Photo taken October 7, 2015 at 4:12 pm.
- Photo 13 Organic rich shale encountered at 15MW06 at depth of 3.0 3.3 m bg. Photo taken on October 8, 2015 at 11:30 am.
- Photo 14 Organics, sand and gravel containing household garbage encountered at 15MW07 at a depth of 0 0.3 m bg. Photo taken on October 8, 2015 at 12:07 pm.
- Photo 15 Moist to saturated sand and gravel overlying fine grained silt and clay encountered at 15MW07 at a depth of 0.6 1.2 m bg. Photo taken on October 8, 2015 at 12:07 pm.
- Photo 16 15MW02 taken on October 10, 2015 at 11:57 am.
- Photo 17 15MW03 taken on October 10, 2015 at 12:02 pm.
- Photo 18 15MW06 taken on October 10, 2015 at 12:08 pm.
- Photo 19 15MW07 taken on October 10, 2015 at 12:12 pm.
- Photo 20 Empty fuel drums and 15MW07. Photo taken October 10, 2015 at 2:48 pm.
- Photo 21 15MW05 taken on October 10, 2015 at 2:51 pm.
- Photo 22 15MW01 taken October 10, 2015 at 11:54 am.
- Photo 23 SW1 taken on October 9, 2015 at 1:03 pm.
- Photo 24 SW2 taken on October 9, 2015 at 4:03 pm.

Photo 25 SW3 taken on October 9, 2015 at 5:27 pm. Photo 26 SW4 taken on October 10, 2015 at 2:15 pm.

APPENDICES

- Appendix A Tetra Tech's General Conditions
- Appendix B Eagle Plains SWF Permit (No. 80-011)
- Appendix C Groundwater Monitoring Well Logs
- Appendix D Groundwater Well Development and Sampling Field Sheets
- Appendix E Surface Water Sampling Sheets
- Appendix F Laboratory Analytical Results
- Appendix G Hydraulic Response Test Data And Analysis

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Yukon Government – Site Assessment and Remediation Unit and their agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Yukon Government – Site Assessment and Remediation Unit, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech EBA's Services Agreement. Tetra Tech EBA's General Conditions are provided in Appendix A of this report.

1.0 INTRODUCTION

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by the Government of Yukon (YG) – Site Assessment and Remediation Unit (SARU) under Standing Offer Agreement (SOA) No. SARU-2014-SOA-TETRA-TECH-EBA to install groundwater monitoring wells and conduct a hydrogeological assessment at the Eagle Plains Solid Waste Facility (SWF; herein referred to as the "Site"). The Site is located at approximately km 364 on the Dempster Highway, YT.

1.1 Purpose and Objectives

The purpose of the work was to provide professional and technical services for a hydrogeological assessment at the Site, including the installation and sampling of shallow monitoring wells within the supra-permafrost groundwater (active layer), ground temperature monitoring and surface water sampling. The work was conducted in accordance with the requirements of the Solid Waste Facility Permit (80-011). The scope of work was divided into the following tasks:

- Task 1 Information Collection and Project Preparation
- Task 2 Groundwater Monitoring Well Installation
- Task 3 Groundwater Sampling
- Task 4 Surface Water Sampling
- Task 5 Data Analysis and Hydrogeological Assessment Report

1.2 Location of Study Area

The Eagle Plains SWF is located approximately 407 km north of the City of Dawson and 4 km south of Eagle Plains at 136°44' W, 66°19' N on a 15.4 ha reserve to the Government of Yukon (Disposition No. 106107-008), see Figures 1 and 2.

2.0 PREVIOUS WORK AND BACKGROUND INFORMATION REVIEW

2.1 Background Geological, Hydrogeological and Permafrost Information

Golder (2012) prepared a preliminary hydrogeological assessment for the Eagle Plains SWF. This assessment was based on a desktop review of available information regarding the geological and hydrogeological conditions at the Site along with a site visit conducted in October 2011. The conceptual hydrogeological model developed by Golder (2012) consists of a regional sub-permafrost groundwater flow system in fractured bedrock with some seasonal flow within the active zone located at or near the ground surface. Shallow groundwater was identified to likely discharge into un-named streams and the Eagle River located down slope of the Site.

Additional intrusive work was conducted as part of the project documented in this report to confirm the conceptual hydrogeological model postulated by Golder (2012).

Tetra Tech EBA reviewed pertinent background information regarding the local surficial geological and permafrost conditions at the Site. This information included the report by Golder (2012), topographical and geological maps, and information from other projects conducted by Tetra Tech EBA in the Eagle Plains area (e.g., Tetra Tech EBA 2014). The information was used to assess geological and hydrogeological conditions at the Site and assist in the determination of potential drill sites and development of monitoring well specifications.

The main information gathered from Golder (2012), Tetra Tech EBA (2014), Yukon Ecoregions Working Group (2004), and other anecdotal information that affected the monitoring well locations and completion details are summarized below:

- No direct groundwater information is available for the Site.
- Overburden, if present, is very thin with a typical thickness of about less than 1 m.
- The Site is located in a region with continuous permafrost of significant thickness (>100 m).
- The active zone in undisturbed and vegetated areas is likely very thin (<1 m).
- The area of the SWF has been cleared and likely shows some permafrost degradation with an active zone that
 is more extensive compared to surrounding undisturbed areas. Anecdotal information suggests that the active
 zone may be in the order of up to 3 m thick.
- Groundwater flow is likely complex and controlled by the active zone thickness with no uniform flow direction. Monitoring wells should therefore be placed near and surrounding the main areas of potential environmental concern (e.g., burn trench).

2.2 Review of Waste Management Permit

The Facility's Waste Management Permit (Permit No: 80-011) was reviewed and used in conjunction with relevant background information to confirm monitoring requirements and develop a monitoring network in compliance with the permit. A summary of the main requirements of the permit pertinent to this hydrogeological assessment are outlined in Table 2-1.

Site	Waste Management Permit No.	Permit Requires Groundwater Monitoring	Permit Requires Surface Water Monitoring	Permit Specifies Analyte List	Monitoring Schedule
Eagle Plains SWF	80-011	Yes	Yes	Yes	Twice per year (Spring and late Summer)

Table 2-1: Summary of Current Permit Groundwater Monitoring Requirements

3.0 FIELD INVESTIGATIONS

3.1 Scope of Field Investigations

The scope of the hydrogeological assessment field investigation was as follows:

- Conduct site inspection with site operator;
- Seven boreholes were drilled by Boart Longyear using a sonic drill and six groundwater monitoring wells were
 installed under the supervision of Tetra Tech EBA on October 7 and 8, 2015. 15MW04, located near empty fuel
 drums, was decommissioned on October 8, 2015. 15MW01 and 15MW07 were developed on October 8 and 9,
 2015, respectively;
- Thermistor cables were installed into each borehole with exception of 15MW07;
- Grab samples of drill cuttings were collected during the drilling and the headspace was measured for field screening purposed. A total of seven soil samples were collected from 15MW01, 15MW04, 15MW06 and MW07 and submitted for analysis;
- Groundwater was encountered in three wells, 15MW01, 15MW02 and 15MW07. A full sample was collected from 15MW01 and a partial sample was collected from 15MW07. There was not enough water in 15MW02 to sample. The water levels at each location were measured prior to purging and sampling and physicochemical field parameters were tested at each monitoring well during sampling.
- Surface water samples were collected at four locations (SW1 through SW4).
- All samples were sent to AGAT which is an accredited laboratory conforming to ISO/IEC 17025 for analysis of soil and water; and,
- Hydraulic response tests were conducted on 15MW01 on October 9, 2015 in order to estimate the hydraulic conductivity of the aquifer.

3.2 Site Inspection and Site Infrastructure

Tetra Tech EBA attempted to conduct a site inspection with the Site Operator, however the Site Operator was not available during the time we were on Site. The site plan was reviewed with the gas attendant who has lived and worked in Eagle Plains for nearly 30 years and was very familiar with the Site. He provided useful updates to the stockpiled waste and any changes in recent time. Figure 2 provides a site map of the existing facility infrastructure and layout, which is described as follows:

- The scrap metals stockpile in the north end of the Site;
- Municipal solid waste (MSW) burn trench, which was constructed in the mid 1970s, adjacent to scrap metals stockpile constructed from blasted/excavated bedrock (34 m x 9 m footprint, 2 m deep);
- Stockpiles of tires, empty drums, wood pallets, and household hazardous waste along the northern edge of the facility;
- Small stockpile of refrigerators, washing machines and dryers southeast of MSW burn trench;
- Calcium bags stored on pallets south east of the burn trench;

• Stockpiles of autobodies, white metals and culverts, reflectors, etc. along the southern edge of the facility.

Photographs from the site inspection are presented in the attached photo log.

The general site layout and infrastructure is described in more detail in Tetra Tech EBA (2014) and has not changed significantly from the 2014 assessment.

There were no obvious signs of any spills or other indication of soil contamination, including the CaCl2 storage area. However, snow cover during the site visit did not allow a more detailed site inspection to be conducted.

3.3 Groundwater Monitoring Well Network

Five groundwater monitoring wells were proposed to be installed at the Site to assess potential groundwater contamination sourced from the SWF. Well 15MW05 was targeted to characterize up-gradient/background groundwater conditions while 15MW01, 15MW02, 15MW03, and 15MW04 were aimed to assess potential impact to the groundwater quality sourced from the SWF and stockpiled waste at the site. Since the groundwater flow regime was expected to be complex and variable depending on the extent of the active zone, the monitoring wells were placed near and surrounding areas of potential environmental concern, such as the burn trench or the fuel drum storage area.

A total of six monitoring wells were installed on October 7 and 8, 2015 by Boart Longyear using a sonic drill under the direction of Tetra Tech EBA to establish a groundwater monitoring network. Well 15MW04 was installed on October 7, 2015, decommissioned on October 8, 2015, and replaced with 15MW07 on October 8, 2015. Hydrocarbon contamination was encountered in well 15MW04 during the installation. Upon discussion between Ms. Kirsten Hogan and Tetra Tech EBA, 15MW04 was decommissioned and backfilled with bentonite to eliminate any potential pathway for contaminants from the shallow perched water into deeper overburden or shallow bedrock. Well 15MW04 was replaced with a shallower well 15MW07 that was terminated at the low-permeability silt layer where contamination was encountered.

An additional monitoring well 15MW06 was installed approximately halfway between the drum storage area and the burn trench in a low traffic area.

A site plan showing the approximate monitoring well locations and key site features is provided in Figures 1 and 2. Note that these wells have not been surveyed for location and are only approximate based on coordinates measured using a hand-held GPS.

Each borehole was completed with a groundwater monitoring well and a ground temperature cable with the exception of 15MW07, which has no ground temperature cables. Two 10 m ground temperature cables with eight beads were installed at 15MW01 and 15MW03 and three 4 m cables with one single bead were installed at 15MW02, 15MW04 and 15MW06.

The borehole logs indicating observed lithology and monitoring well completion details are included in Appendix C. Table 1 summarizes the well completion details.

Groundwater was encountered in 15MW01, 15MW02 and 15MW07.

The lithology encountered was similar at all locations (Table 3-1) and consistent with mapped lithological interpretations. Each borehole profile generally consisted overburden (sand, gravel and fine grained silt) overlying oxidized sandstone and organic rich shale.

All monitoring wells were completed as follows:

- All monitoring were drilled and screens placed aiming to be screened within the active layer;
- Monitoring wells were completed with 25-mm diameter Schedule 40 PVC pipes;
- A 3 m long well screen (0.010-slot) was installed at all monitoring wells, except at MW07 where a 0.4 m screen was installed, with the intent to intersect potential seasonal groundwater within the active zone;
- A solid un-slotted PVC pipe was installed above the well screen to about 0.9 m above grade;
- A silica sand pack was placed in the annulus between the well screen and the borehole wall. The sand pack was extended from the base of the borehole to about 0.3 m above the well screen;
- A bentonite seal was installed in the annulus above the sand pack to prevent surface water infiltration.
- Each well was capped with a PVC end-cap and the well PVC-standpipe protected and secured with a lockable steel protective casing with exception of 15MW07. The drilling contractor only had five casing protectors on site as that was the originally proposed number of monitoring wells. Tetra Tech EBA therefore recommends that the protective casing on 15MW07 be installed during the next sampling event.
- Each well where groundwater was encountered was developed by removing a minimum of three well volumes using a dedicated disposable bailer. Development logs are provided in Appendix D.
- Photographs of the completed monitoring wells are included in the attached photo log.

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Screened Interval (m bg)		
15MW01	10.0	Shale and Sandstone	1.1 – 4.1		
15MW02	4.0	Sand, Silt and Sandstone	0.9 – 3.9		
15MW03	10.0	Shale and Sandstone	0.9 – 4.0		
15MW05	4.0	Silt and Shale	1.1 – 4.1		
15MW06	4.0	Shale and Sandstone	1.0 – 4.0		
15MW07	1.35	Sand and Sand and Gravel	0.8 – 1.2		

Table 3-1: Monitoring Well Construction Details

3.4 Monitoring Well Surveying

Tetra Tech EBA surveyed the vertical elevation of the top of the well PVC standpipe at each of the well locations on October 8, 2015. Elevations were surveyed relative to a local benchmark assigned an elevation of 100 m. The monitoring wells were not surveyed for location. Easting and northing shown in Table 3-2 were measured using a hand-held GPS.

Well ID	Easting	Northing	Top of PVC Elevation (m)	Stick up (m)	Depth to water (m btoc ¹)	Groundwater Elevation (m)
15MW01	422126	7357847	101.59	0.81	4.57	97.02
15MW02	421971	7357891	98.39	1.00	4.72	93.67
15MW03	421941	7357949	97.01	0.9	Dry	-
15MW05	422286	7357815	100.71	0.82	Dry	-
15MW06	422006	7357913	99.11	0.83	Dry	-
15MW07	422047	7537933	100.20	0.92	1.75	98.45

Table 3-2: Monitoring Well Survey Information

3.5 Groundwater and Surface Water Sampling

Groundwater monitoring wells 15MW01 and 15MW07 were sampled by Tetra Tech EBA on October 10, 2015 using methods in accordance with Yukon Contaminated Sites Regulation (CSR) Protocol No. 7: *Groundwater Monitoring Well Installation and Sampling*.

Prior to sampling, the static water level was measured in each well, using an electric measuring tape. Using small diameter Teflon tubing and a peristaltic pump, the two wells were sampled using low flow techniques. Groundwater was purged from the well until the physicochemical parameters (pH, temperature, specific conductivity (SPC), dissolved oxygen (DO), and oxidation-reduction (redox) potential) stabilized and with constant drawdown within the well. Groundwater Development and Sampling Field Sheets are provided in Appendix D.

Due to very slow recharge rates, a complete sample could not be collected from 15MW07. BTEX, PAH and routine bottles were filled and submitted to the lab.

Surface water samples were collected as grab samples in four locations along unnamed creeks, SW1 through SW4 (Figure 1). These locations were selected based on regional topography of the area. Prior to sampling, physicochemical parameters including pH, temperature, SPC, DO and redox potential were measured and recorded. Surface Water Sampling Sheets are present in Appendix E.

Each sample bottle was labeled with the location ID, project number and date. Sample containers and appropriate preservatives for each suite of tests were provided by the laboratory. Samples collected for dissolved metals analysis were field filtered using new, clean 0.45 µm filters and preserved with nitric acid. All samples were stored in coolers containing ice-bricks and delivered to the analytical laboratory (AGAT) under Chain of Custody and within appropriate holding times. The laboratory is certified by the Canadian Association for Laboratory Accreditation and are accredited as conforming to ISO/IEC 17025 for analysis.

The laboratory testing completed for the groundwater and surface water samples is summarized in Table 3-3 and Table 3-4, respectively. The list of analytes is in compliance with the requirements of the Site's Waste Disposal Facility Permit (Permit No. 80-011).

Sample ID	Ca, Mg, Na, K, Cl, SO4, NO3, NO2, PO4	Dissolved Metals, Hg, Hardness	Alkalinity, CO3, HCO3, pH, TDS, NH3, DOC	VOCs, COD, TKN, EPHW10-19	VHW6-10, BTEX, PAHs
15MW01	~	\checkmark	~	~	~
15MW07	×	\checkmark	\checkmark	~	~

Table 3-3: Groundwater Monitoring Program Permit Requirements (2015)

Table 3-4: Surface Water Monitoring Program Permit Requirements (2015)

Sample ID	Ca, Mg, Na, K, Cl, SO4, NO3, NO2, PO4	Total Metals, Hg, Hardness	Alkalinity, CO ₃ , HCO ₃ , pH, TDS, NH ₃ , DOC	VOCs, COD, BOD, TKN, EPH _{W10-19}	VHw6-10, BTEX, PAHs
SW01	~	\checkmark	\checkmark	\checkmark	~
SW02	~	\checkmark	\checkmark	\checkmark	✓
SW03	~	\checkmark	\checkmark	\checkmark	~
SW04	✓	√	\checkmark	\checkmark	✓

3.6 Soil Sampling

Field screening for hydrocarbons was performed on suspect soil samples by measuring headspace vapour readings using a MiniRAE 2000TM photoionization detector (PID), which measures the ionisable components of organic vapours. Soil samples for headspace vapour screening were placed into plastic bags, sealed, and allowed to volatilize for approximately 5 minutes. Vapour concentrations were then measured in parts per million (ppm) and recorded on the monitoring well log. These headspace vapour screening results are a semi-quantitative tool used to help identify potentially contaminated soils. However, given the local bedrock lithology with significant organic carbon content and the high temperatures caused by the sonic drilling, the PID readings may not be representative and may have yielded false high readings that are not related to anthropogenic soil contamination.

Soil samples for laboratory analysis were placed in sterile 120 mL glass jars with Teflon[™] lined lids as supplied by the lab. Soil samples were packed tightly into the jars to help prevent loss of volatile organic compounds into the jar headspace. Clean new nitrile gloves were worn during each sampling event and changed between samples to prevent cross contamination.

Soils samples were collected in accordance with Contaminated Site Regulation Protocol No. 3: *Soil Sampling Procedures at Contaminated Sites.* PID readings can be found on borehole logs in Appendix C.

3.7 Rising Head Hydraulic Response Testing

A rising head test was performed on 15MW01 at the Site to estimate hydraulic conductivity of the aquifer in the vicinity of the well location. Tests could not be conducted on 15MW07 due to ice build-up within the PVC standpipe. The rising head test was performed by rapidly removing approximately 100 mL of water from the well using 25 mm diameter dedicated polyethylene bailers. The recovery response in the well was monitored using the electronic water level sounder until the water level had recovered to at least 95% of its static water level. In addition to the

manual data, a Solinst Levelogger® was deployed in the well to automatically record the water level data at one second intervals.

4.0 **RESULTS AND DISCUSSION**

4.1 Quality Control/Quality Assurance

This section describes the Quality Assurance (QA) and Quality Control (QC) procedures undertaken to ensure sample integrity and representativeness, and the reliability and accuracy of analysis results.

Data validation is summarized in Table 4-1.

Table 4-1: Review of October 2015 Groundwater and Soil Sampling QA/QC

QA/QC Aspect	Evidence and Evaluation
Sample integrity	All samples were collected in new sample bottles provided by the laboratory (AGAT). All preservatives were also provided by the laboratory. The samples were shipped on ice with a Chain of Custody immediately following the completion of the fieldwork. All samples were received by the laboratory within appropriate holding times.
Field Procedures	Monitoring wells were sampled using dedicated Teflon tubing. All equipment that was re- used between wells was decontaminated using a three stage wash procedure (detergent, tap water, deionized water).
Calibration of Field Equipment	Calibration of field equipment was undertaken prior to each day of field work following the manufacturer instructions.
Blind Duplicates	Two blind duplicates sample was collected – one groundwater sampling from 15MW01 and one soil sample from 15MW01 from 9.8 to 10.0 m bg. All duplicate results are in reasonable agreement with the concentrations measured in the sample from the respective monitoring well (RPD<30%). The calculated RPD values are summarized in Tables 5 and 6 (attached).
Laboratory Internal QA/QC	Laboratory internal QA/QC is detailed within the laboratory reports (Appendix F). The laboratory showed acceptable testing frequency and results for method blanks, laboratory duplicates and matrix spikes.
Holding Times	All holding times for samples were in conformance with applicable ASTM and laboratory requirements.
Completeness of Test Program	The scope of work undertaken was generally consistent with the requirements of the Permit 80-011.
Laboratory Detection Limit	Laboratory reports indicate that the nominal detection limits for the October 2015 monitoring event were lower than the respective assessment criteria for all parameters, with exception of LEPH in surface water where the adjusted CSR-AW standard of 50 μ g/L is slightly lower than the detection limit of 100 μ g/L. However, all surface water samples showed LEPH concentrations below the detection limit and did not contain any other detectable hydrocarbons.
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater and therefore, the data set used as the basis for this assessment is considered valid and complete.

4.2 Application of Applicable Water Quality Standards

For the purposes of this report, potential receptor categories are limited to the following water uses: Drinking Water, Aquatic Life, Irrigation, and Livestock – as defined by the Yukon Contaminated Sites Regulation (CSR) Schedule 3. Table 4-2 summarizes receptors applicable to the SWF according to Yukon CSR Protocol No. 6: *Application of Water Quality Standards*.

Receptor	Criteria for Applicability	Applicable to SWF	Name and Location of Receptor
Aquatic Life	1 km radius (groundwater travel time of less than or equal to 50 years) of the nearest surface water potentially containing aquatic life.	Applicable	Eagle River (within 1 km)
Drinking Water	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest existing or probable future drinking water source.	Not Applicable	-
Irrigation	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest surface waterbody used for an irrigation water source.	Not Applicable	-
Livestock	1.5 km radius (groundwater travel time of less than or equal to 100 years) of the closest surface waterbody used as a source for drinking water for livestock.	Not Applicable	-

Table 4-2: Summary of Applicable Receptors

4.3 Application of Applicable Soil Standards

Soil analytical results from the samples collected during the monitoring well drilling were compared to the numeric standards stipulated in the Yukon CSR. Yukon CSR generic numerical soil standards are listed in Yukon CSR Schedule 1, while matrix-based numerical soil standards are listed in Yukon CSR Schedule 2. Generic standards depend solely on land use and matrix standards are risk-based standards that depend on land use and a number of site-specific factors.

The Site is a SWF and is fenced off and inaccessible to the general public. Accordingly, the Yukon CSR Industrial Land Use (IL) generic soil and matrix soil standards apply to the Site.

For parameters regulated under Schedule 2 (matrix numerical soil standards) of the Yukon CSR, the most stringent <u>applicable</u> IL standard was selected to assess the soil quality.

4.4 **Groundwater Quality Results**

The analytical results for the groundwater samples collected from monitoring wells 15MW01 and 15MW07 are summarized in Table 2. Copies of laboratory reports and Chain of Custody documentation are included in Appendix F. Tables 4-3 and 4-4 summarize some key water quality parameters and the exceedances of the Yukon CSR-AW standards, respectively. The key water quality parameters are discussed in more detail in the following sections.

Demonster	l la lí a	000 414	15MW01	15MW07
Parameter	Units	CSR - AW ⁴	10-Oct-2015	15MW07 10-Oct-2015 7400 64,000 <10
Sulphate (SO ₄)	µg/L	1,000,000	2900	7400
Total Dissolved Solids (TDS)	µg/L	-	52,000	64,000
Ammonia	µg/L	18,400-18,500 ²	20	<10
Dissolved Organic Carbon (DOC)	µg/L	-	1400	15,800

Table 4-3: Summary of Key Groundwater Quality Parameters

Table 4-4: Summary of Exceedances of Yukon CSR-AW Standards from Groundwater Samples

Parameter	Units	Yukon CSR - AW	15MW07
Toluene	µg/L	390	2380
EPH ₁₀₋₁₉	µg/L	5000	118,000
LEPH	µg/L	500	117,000
Naphthalene	µg/L	10	589
Phenanthrene	μg/L	3	8.26
Pyrene	μg/L	0.2	0.33

The groundwater encountered at 15MW01 and 15MW07 can be characterized as calcium-carbonate type waters. A trilinear Piper plot showing relative percentages of major ions of groundwater and surface water samples are presented in Figure 4.

A discussion of key groundwater parameters that potentially indicate impact to groundwater from the waste disposal facility and exceedances of relevant water quality standards are presented below.

4.4.1 Dissolved Organic Carbon

Dissolved Organic Carbon (DOC) concentrations can indicate organic matter sourced from a landfill impacting on groundwater. If a monitoring well is impacted by landfill leachate, DOC concentrations would be expected to show an increase to concentrations potentially in the hundreds or thousands of mg/L. DOC concentrations were an order of magnitude larger at 15MW07 than 15MW01 with reported concentrations at 15,800 µg/L (15.8 mg/L), indicating potential impact from poor waste storage on site.

4.4.2 Total Dissolved Solids

Total Dissolved Solids (TDS) can indicate groundwater contamination from a waste disposal facility, with dissolved constituents of the degradation of organic waste (typically NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, HCO₃) contributing to an increase in TDS concentration. TDS concentrations were relatively low and consistent between the two monitoring wells, with slightly higher concentrations reported at 15MW07 (64,000 µg/L), which does not suggest any impacts from landfilling activities.

4.4.3 Sulphate

Sulphate concentrations are typically elevated in landfill leachate and can range from <0.5 mg/L to 1,850 mg/L (Fetter, 1993). Sulphate concentrations were slightly higher at 15MW07 (7,400 μ g/L) than at 15MW01 (2,900 μ g/L) but are considerably lower than the Yukon CSR-AW guideline. Concentrations are believed representative of background conditions.

4.4.4 Ammonia

Ammonia is a typical constituent of landfill leachate and an indicator of contamination sourced from a landfill. Ammonia was reported at detectable concentrations at 15MW01 ($20 \mu g/L$) but below the detection limit ($10 \mu g/L$) at 15MW07, which does not suggest any impacts from landfilling activities.

4.4.5 Organics

There were no exceedances of the Yukon CSR-AW standards for the parameters analyzed at 15MW01. All hydrocarbon parameters analyzed were below the laboratory detection limit except for a detection of pyrene at 0.02 μ g/L. However, the observed concentration was at the detection limit and ten times below the CSR-AW standard.

Toluene, extractable petroleum hydrocarbons (EPH), light extractable petroleum hydrocarbons (LEPH), naphthalene, phenanthrene, and pyrene all exceeded the Yukon CSR-AW standards at 15MW07. This area has been impacted by soil contamination (see below) possibly sourced from the fuel drum storage adjacent to the well location.

No volatile organic compounds (VOCs) were detected at 15MW01 or 15MW07 during the October 2015 sampling event.

4.5 Surface Water Quality Results

The laboratory analytical results are summarized in Table 3 and the laboratory reports are provided in Appendix F. Table 4-5 summarizes the exceedances of the Yukon CSR-AW standards from surface water samples collected near the Site on October 9 and 10, 2015.

Surface water samples collected are characterized as calcium-magnesium-sulphate dominated waters. The relative major ion composition of the surface water samples is significantly different from the groundwater samples collected at the Site (see Figure 4). This suggests that the shallow groundwater at the Site is not the source of the water daylighting in the unnamed streams that the surface water samples SW1 through SW4 were collected from.

The concentration of various metals listed in Table 4-5 exceeded the Yukon CSR-AW standards at all sampling locations. The pH of all surface water was low ranging from 3.79 to 4.16. As described in Section 5.3.1, these observations are consistent with soil pH concentrations within the region which can be as low as 4.0. The low pH values, the exceedance for sulphate (in SW2) and exceedances for various metals in all samples suggest that the surface water quality at the sample locations to various extents is influenced by weathering of rock containing pyrite or other sulphide minerals.

Deveryorter	Unite	CSR - AW	SW1	SW2	SW3	SW4
Parameter	Units	CSR - AW	9-Oct-2015	9-Oct-2015	9-Oct-2015	10-Oct-2015
рН	pH Units	-	4.03	3.79	4.16	3.91
Sulphate (SO ₄)	µg/L	100,000	44,800	308,000	44,800	39,100
Cadmium	µg/L	0.03-0.06 ¹	0.16	1.50	0.20	0.76
Chromium	µg/L	1 ²	1.4	1.7	0.7	1.0
Cobalt	µg/L	0.9	16.5	92.9	14.2	17.3
Copper	µg/L	2-9 ¹	2.2	2.2	6.8	1.9
Nickel	µg/L	25-150 ¹	42.4	277	36.1	48.2
Zinc	µg/L	7.5-165 ¹	134	781	126	160
Pyrene	µg/L	0.02	<0.02	<0.02	<0.02	0.06

Table 4-5: Summary of Exceedances of the Yukon CSR-AW Standards from Surface Water Samples

Note:

¹ Standard varies with hardness. Values shown based on hardness range of 33.8 mg/L to 270 mg/L

² Standard is for Chromium (VI)

Pyrene was detected at SW4 at concentrations within the same order of magnitude as the laboratory detection limit. Additional sampling is recommended to confirm this result. There is a potential for the occurrence of natural hydrocarbons in the Eagle Plains area. The area has been explored for oil and gas resources for decades and there are several natural surface seepages of hydrocarbons that were identified in the Eagle Plains basin (Hannigan 2014).

No other hydrocarbons were detected at any surface water sampling location and it is therefore very unlikely that the detection of pyrene in sample SW4 is related to the Eagle Plains SWF.

Ammonia was detected at all surface water sampling locations at concentrations within the same order of magnitude as the detection limit. Nitrate concentrations were highest at SW1 (129 μ g/L), however these concentrations are much lower than the Yukon CSR-AW standard (40,000 μ g/L) and likely representative of natural background.

4.6 Soil Chemistry

The laboratory analytical results or the soil samples collected during the monitoring well drilling are summarized in Table 4 and the laboratory reports are provided in Appendix F. Table 4-6 summarizes the exceedances of the Yukon CSR-IL standards from soil samples collected near the Site on October 9 and 10, 2015.

Table 4-6: Summary of Exceedances of Yukon CSR-IL Standards from Soil Samples								
			15MW04	15MW07				

	Parameter	Units	Yukon CSR - IL	15MW04	15MW07
	Farameter	Units	TUKON COR - IL	1.1-1.2 m	1.1-1.2 m
ſ	LEPH	µg/g	2,000	2,830	2,830
	VPH C ₆₋₁₀	µg/g	200	972	411

LEPH and HEPH were detected at all sampling locations with the exception of 15MW06 from 0.3-0.4 m. However, concentrations were three orders of magnitude higher at 15MW04 and 15MW07 at a depth of 1.1-1.2 m and exceeded the CSR-IL standards.

Several PAHs were detected in all samples collected except 15MW06 from 0.3-0.4 m. PAH concentrations were below applicable CSR-IL standards.

BTEX compounds were also detected at concentrations below the CSR-IL standards in samples from 15MW04 and 15MW07. No other VOCs were detected in any of the soil samples.

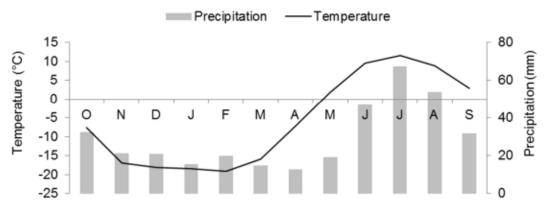
5.0 CONCEPTURAL HYDROGEOLOGICAL MODEL

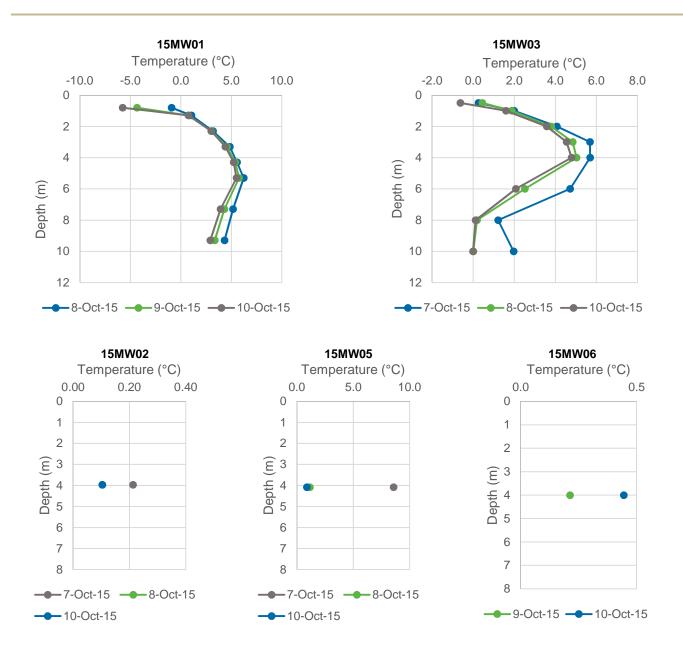
5.1 Setting

The Site is located at an elevation of approximately 750 m above mean sea level and is situation on a local topographic high, Corbett Hill (Figure 1). The Site is relatively flat but slopes gently to the northeast from 15MW01 toward 15MW03. The Site is located near a natural surface water flow divide. Surface water flow from the Site could be either to the northeast or southwest.

5.2 Climate

The nearest climate station is located approximately 4.5 km northeast from the SWF (Climate ID. 2100468). Figure 5-1 displays the average monthly temperature and precipitation data from 1976 to 2006 for this station.




Figure 5-1: Average Monthly Temperature and Precipitation Data (Year 1967–Year 2006)

As indicated in Figure 5-1, below 0°C temperatures are observed from late September to early May; whereas, above 0°C temperatures occur from late May to early September. Most groundwater recharge is expected to occur during late summer and fall months (June to September) when the seasonal frost has thawed from the active layer and precipitation can infiltrate into the shallow soils.

5.2.1 Permafrost

The site is located within the Eagle Plains ecoregion which forms part of the Taiga Cordillera ecozone. This ecoregion is situated within the continuous permafrost zone. The active layer with seasonal freeze/thaw cycles typically varies from 20 to 90 cm in undisturbed areas (Yukon Ecoregions Working Group, 2004).

To assess permafrost conditions in the cleared area at the Site, five ground temperature cables were installed at the Site as described in Section 3.3. Ground temperature readings were collected and the resulting ground temperature profiles are shown below (Figure 5-2).

The depth of the active layer appears to be greater than previously anticipated. However, using a sonic drill to drill through bedrock creates heat due to vibration and friction. It may therefore take several weeks for the ground temperature cables to fully equilibrate with the ambient soil temperatures. Tetra Tech EBA recommends additional monitoring to confirm the depth of the active layer.

The single bead thermistor cables installed at about 4 m below grade in monitoring wells 15MW02, 15MW05, and 15MW06 show ground temperatures to be much closer to freezing. The single ground temperature beads are much smaller in diameter and occupy less of the 1" PVC pipe they are installed into and are more likely to be affected by potential disturbance of the temperature profile on the well by air convection. If future readings suggest that air convection may be an issue, the PVC pipes can be filled with silicone oil which can prevent disturbance of the temperature profile in the well.

5.2.2 Surface Waterbodies

There are four small unnamed creeks located approximately 750 m north and northeast of the Site. These creeks flow into the Eagle River to the east and north of the Site.

5.3 Geology and Hydrogeology

5.3.1 Soils

Near surface permafrost is extensive in the Eagle Plains ecoregion (Yukon Ecoregions Working Group, 2004). Soils under open stands of white and black spruce are classified as Dystric Brunisols (Yukon Ecoregions Working Group, 2004). When associated with sandstone bedrock of the Eagle Plains Group, these soils may have a pH as low as 4 and contain large amounts of iron oxides (Yukon Ecoregions Working Group, 2004).

Soils were encountered at all monitoring wells except 15MW01. Soils generally consisted of a shallow layer of organics overlaying sand and gravel. Organics containing household garbage were observed at 15MW04 and 15MW07 and extended to a depth of 0.3 m bg. At 15MW03 and 15MW06, the sand and gravel directly overlaid bedrock (sandstone) and extended to a depth ranging from 0.5 to 0.7 m bg. At 15MW02, 15MW04, 15MW05 and 15MW07, the sand and gravel unit extended to a depth of 1.2 m and was underlain by a fine grained layer of silt and clay with variable thickness, ranging from 0.3 m at 15MW05 to 0.4 m at 15MW04. Bedrock was encountered below the silt and clay unit at these locations.

5.3.2 Bedrock Geology

The bedrock geology of the area is of Permian to Lower Carboniferous ages formed between 280 and 380 million years ago. (Yukon Geological Survey, 2015). The bedrock geology within 1 km of the Site is composed of three geological formations; the Ford Lake Shale, the Tuttle and Imperial Formations. The Ford Lake Shale Formation is of Upper Devonian to Permian age and consists of dark grey to black, silty pyritic shale and siltstone with sandstone, conglomerate and silty limestone (Yukon Geological Survey, 2015). The Tuttle formation consists of conglomerate and conglomeratic sandstone with siltstone, shale, and minor coal (Yukon Geological Survey, 2015). The Imperial Formation of Upper Devonian age consists of dark grey shale and siltstone overlain by dark grey fine grained lithic sandstone and siltstone (Yukon Geological Survey, 2015).

Rock types encountered during drilling included fine grained sandstone and organic rich shale with oxidation zones within both rock types. Cross section A-A', shown on Figure 3, illustrates the interpreted conceptual geological and hydrogeological model for the Site.

5.4 Groundwater Flow Regime

A conceptual hydrogeological model developed by Golder (2012) suggests regional groundwater flow within the fractured bedrock, with a seasonal discontinuous flow system developing at the overburden bedrock interface. As the Site is located within a zone of continuous permafrost, the majority of groundwater flow would occur within the bedrock fracture network below the permafrost. Some seasonal flow may also occur with the active zone located at or near ground surface. The principal aquifers identified are summarized in Table 5-1.

Table 5-1: Principal Aquifer

Aquifer Name	Location	Aquifer Type	Comment
Shallow supra- permafrost Aquifer (SA)	 Mapped as underlying and surrounding the Site 	 Intergranular, porous media and shallow fractured bedrock 	 Principal aquifer of interest to this assessment Discontinuous flow within active layer in both sand and gravel and fracture bedrock
Subpermafrost Aquifer (SPA)	 Mapped as underlying and surrounding the site 	 Fractured bedrock 	 Subpermafrost aquifer, likely >100 m deep Confined

5.4.1 Local Groundwater Flow

Local groundwater flow in the shallow supra-permafrost aquifer is likely primarily controlled by the thickness of the active layer with the top of the permafrost forming the base of the shallow aquifer. As the thickness of the active layer changes both spatially and temporally (seasonally) the shallow groundwater flow regime is complex and difficult to assess with respect to direction of flow, hydraulic gradient, and average linear flow velocity.

As the site is located up-gradient of the Eagle River on a topographical high, there is potential for local groundwater to flow towards tributaries of the Eagle River. However, based on the significant differences in groundwater and surface water chemistry, shallow groundwater originating at the Site does not seem to be the source of water in the Eagle River tributaries that were sampled as part of this assessment (surface water samples SW1 through SW4).

5.4.2 Groundwater Elevations, Flow Direction, Hydraulic Gradient

Groundwater was encountered in three wells on Site, 15MW01, 15MW02 and 15MW07. 15MW01 was completed in bedrock (shale and sandstone) and 15MW02 was completed in bedrock (shale and sandstone) and overburden (silt, sand and gravel). 15MW07 was completed above a confining silt lens with some shallow perched groundwater.

The observed depth to shallow groundwater in 15MW01 was about 3.8 m below grade. The depth to groundwater in 15MW02 of about 3.7 m below grade may not be representative due to the water level not reaching static conditions upon well completion and development due to slow recovery. The depth to groundwater recorded in 15MW07 was much shallower at about 0.8 m below grade; however, the water observed in this well was perched on top of a silt layer encountered at this location.

The groundwater flow direction cannot be determined based on the few locations were groundwater was encountered. Furthermore, as discussed above, the thickness of the active layer, which is variable in space and time, likely controls the shallow groundwater flow resulting in complex local flow cells and no uniform direction of groundwater flow. Given the fact that the Site is located within a cleared area that is likely characterized by a much thicker active layer than the surrounding undisturbed areas, off-site migration of shallow groundwater from the Site is likely very limited. The majority of the shallow groundwater is likely mostly stagnant within the 'thaw bulb' created in the cleared area.

5.5 Hydraulic Response Testing Results

Slug test results from 15MW01 were interpreted using the Bouwer and Rice (1976) analysis method implemented in AquiferTest[™] Pro (ver. 2014.1). The estimated mean hydraulic conductivity in the shale unit encountered at 15MW01 is about 7×10⁻⁷ m/s which is a typical value for fractured bedrock.

The slug test data analysis is attached in Appendix G.

6.0 POTENTIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS

The following identified potential sources of groundwater contamination are based on site history and inspection, anecdotal information and processes governing the generation and transport of leachate in landfills. Potential sources identified include:

- Leakage and spillage of hydrocarbons from onsite special waste storage areas;
- Leachate from landfilling activities within burn trench;
- Petroleum hydrocarbons and other organic compounds from stockpiled vehicles and refrigerators;
- Hydrocarbons from storage drums that were stockpiled and/or crushed and buried;
- Salt from salt storage on Site;
- There were no off-site sources of pollution identified which could be considered to have impacted upon the groundwater flowing beneath the site.

The main pathways for the transport of contaminants from the sources identified above to groundwater and downgradient receptors are:

- Percolation of liquids/leachates from surface spills at the Site through the underlying overburden and into the shallow bedrock;
- Transport of contaminants within the shallow supra-permafrost aquifer; however, as described above, the risk
 of off-site migration of contaminated groundwater is probably relatively low due to the discontinuous flow system
 occurring within the shallow active layer;
- The risk of contamination entering the deep sub-permafrost aquifer is small given the extent of the continuous permafrost present in the Eagle Plains area with a reported thickness of up to more than 200 m (Yukon Ecoregions Working Group 2004).

7.0 SUMMARY AND CONCLUSIONS

- Six monitoring wells 15MW01, 15MW02, 15MW03, 15MW05, 15MW06 and 15MW07 were installed on October 7 and 8, 2015 to establish a groundwater monitoring network at the Site. The lithology encountered was similar at all locations. Each borehole profile generally consisted of overburden (sand, gravel and fine grained silt) overlying oxidized sandstone and organic rich shale.
- Each borehole was completed with a groundwater monitoring well and a ground temperature cable with the exception of 15MW07. Two 10 m ground temperature cables with eight beads were installed at 15MW01 and 15MW03 and three 4 m cables with one single bead were installed at 15MW02, 15MW05 and 15MW06.
- Ground temperature cables had not stabilized by October 10, 2015, and further readings are required to establish the extent of the active layer at the Site.
- Eight soil samples were collected and analyzed for hydrocarbons and metals. Soil samples collected from 15MW04 and 15MW07 from depths of 1.1 to 1.2 m exceeded the Yukon CSR-IL standards for LEPH and VPH C6-10. There were no other exceedances of the Yukon CSR-IL standards in any of the soil samples collected.
- Groundwater was encountered at 15MW01, 15MW02 and 15MW07 on October 10, 2015. The remaining wells were dry.
- Groundwater samples were collected from 15W01 and 15MW07. Only a partial sample could be collected from 15MW07 due to slow recharge rates. An insufficient amount of water was present in 15MW02 to collect a sample. There were no exceedances of the Yukon CSR-AW standards for the parameters analyzed at 15MW01. Toluene, extractable petroleum hydrocarbons (EPH), light extractable petroleum hydrocarbons (LEPH), naphthalene, phenanthrene, and pyrene all exceeded the Yukon CSR-AW standards at 15MW07. These results agree with the observed soil contamination at this location. The soil and groundwater results suggest that a fuel spill has occurred in the vicinity of wells 15MW04 and 15MW07, possibly originating from the adjacent fuel drum storage area. However, further assessment is required to delineate the extent of the contaminated soil and groundwater, and to identify the source of the hydrocarbons.
- Four surface water samples (SW1, SW2, SW3 and SW4) were collected from unnamed creeks to the northeast and west of the Site. Surface water samples collected had low pH values and high concentrations of metals. The concentration of the following parameters exceeded the Yukon CSR-AW standards:
 - Sulphate at SW2
 - Cadmium at SW1, SW2, SW3 and SW4
 - Chromium at SW1 and SW2
 - Cobalt at SW1, SW2, SW3 and SW4
 - Copper at SW1 and SW2
 - Nickel at SW1, SW2 and SW3
 - Zinc at SW1, SW2, SW3 and SW4
 - Pyrene at SW4

- The exceedance for sulphate (in SW2), the low pH and exceedances for various metals in all samples suggest that the surface water quality at the Site is possibly influenced by weathering of bedrock containing pyrite and other sulphide minerals.
- The relative major ion composition of the groundwater and surface water samples was significantly different suggesting that the shallow groundwater originating at the Site is not the source of water daylighting in nearby creeks. The exceedances of CSR-AW standards in the surface water samples are likely naturally occurring and representative of background conditions.
- Shallow groundwater flow occurs within the active layer above continuous permafrost. The shallow groundwater flow regime is complex due to the spatial and temporal variability of the active zone thickness which likely controls shallow groundwater flow. Assuming that the active layer is considerably thicker within the cleared area of the SWF compared to the surrounding undisturbed land, most shallow groundwater would likely be confined to the Site with little potential for offsite migration. However, additional readings from the ground temperature cables and seasonal monitoring of the shallow groundwater are required to better determine the extent of the active layer and presence of shallow groundwater at the Site.

8.0 **RECOMMENDATIONS**

The following recommendations are made based on the findings of the 2015 hydrogeological assessment:

- A protective casing on 15MW07 should be installed during the next sampling event
- Additional ground temperature and groundwater monitoring is required to better determine the extent of the active zone and shallow groundwater at the Site.
- If the ground temperature readings suggest issues with air convection that disturb the temperature profile in the well, the ground temperature cables should be removed, the PVC pipe filled with silicone oil, and the cables redeployed. This will minimize potential disturbance of the temperature profile in the monitoring well and is an accepted method to complete observation wells with ground temperature cables.
- Ongoing groundwater, surface water, and ground temperature monitoring should be conducted in accordance with the requirements stipulated in Permit 80-011; however, based on the results of this hydrogeological assessment we recommend a revised monitoring plan for the Eagle Plains SWF that could be implemented through a Permit amendment. The recommended monitoring plan is further outlined below.

8.1 Recommended Monitoring Plan

Groundwater Monitoring

- Pressure transducer with dataloggers should be installed in monitoring wells 15MW01 and 15MW02 to monitor seasonal changes in groundwater levels for the period of two summers (assuming that the wells freeze completely during the winter). Future sampling events should be conducted once per year at the time of maximum groundwater elevations.
- Groundwater levels should be measured in all monitoring wells at the Site.
- Groundwater samples should be collected from all monitoring wells containing sufficient water and should be analyzed for the suite of parameters stipulated in Permit 80-011.

Surface Water Monitoring

- Surface water samples should be collected from sample locations SW1 through SW4 during the next monitoring
 event in spring/summer 2016 to confirm the results presented in this report. If the samples collected during the
 next monitoring event are similar to the previous results and confirm the interpretation that shallow groundwater
 originating from the Site is unlikely a source for the nearby surface water bodies based on significantly different
 water chemistry, surface water should be excluded from regular future monitoring events.
- Surface water samples should only be collected during future sampling events if ongoing groundwater monitoring at the Site indicates the presence of contaminated groundwater potentially migrating off site.

Ground Temperature Monitoring

 Ground temperatures should be monitored on a weekly basis from May to October 2016. Ideally the ground temperature monitoring should be conducted by YG staff based at Eagle Plains and would require about half an hour per week not including travel to and from the Site. If this is not feasible, the possibility of connecting dataloggers to the ground temperature cables in 15MW01 and 15MW03 should be explored. However, dataloggers for ground temperature cables are costly and manual readings would therefore be preferred. The weekly ground temperature readings should be used to determine the vertical extent of the active layer within the cleared area and the time of maximum thickness of the active zone. Future groundwater monitoring should be conducted when the active layer reaches its maximum seasonal thickness which is assumed to occur in the fall and should roughly coincide with the time of the highest groundwater levels.

9.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Cange

Prepared by: Kristen Range, B.Sc., Geol. I. T. Hydrogeologist Direct Line: 867.668.9225 Kristen.Range@tetratech.com

Steplan KCr

Reviewed by: Stephan Klump, Ph.D. Senior Hydrogeologist, Team Lead Direct Line: 867.668.9220 Stephan.Klump@tetratech.com

REFERENCES

- Environment Yukon. 2011. Contaminated Sites Regulation Protocol 7. Groundwater Monitoring Well Installation, Sampling and Decommissioning.
- Environment Yukon. 2012a. Contaminated Sites Regulation Protocol 2. Petroleum Hydrocarbon Analytical Methods and Standards.
- Environment Yukon. 2012b. Contaminated Sites Regulation Protocol 5. Analysis of Samples Taken in Relation to the Contaminated Sites Regulation.
- Fetter, CW. 1993. Contaminant Hydrogeology. MacMillian Publishing Company, New York.
- Golder Associates Ltd. 2012. Options and Recommendations, Eagle Plains Solid Waste Disposal Facility, Eagle Plains, Yukon. Project No. 11-1436-0073. Dated February 9, 2012.
- Tetra Tech EBA Inc. 2014. Eagle Plains Solid Waste Management Facility, Solid Waste Management Plan 2012-2023. Revision Number: 01. Project Number W23103023. Dated September 16, 2014.
- Yukon Ecoregions Working Group. 2004. Eagle Plains Taiga Cordillera Ecozone, In: *Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes*, C.A.S. Smith, J.C. Meikle and C.F. Roots (eds.), Agriculture and Agri-Food Canada, PARC technical Bulletin No. 04-01, Summerland, British Columbia. p. 131-138.

Yukon Geological Survey. 2015. YGS MapMaker Online. http://mapservices.gov.yk.ca/YGS/

TABLES

- Table 1 Summary of Groundwater Monitoring Well Installation Details
- Table 2
 Summary of Groundwater Analytical Results
- Table 3
 Summary of Surface Water Analytical Results
- Table 4 Summary of Soil Analytical Results
- Table 5Groundwater Sample Duplicate Results
- Table 6 Soil Sample Duplicate Results

Well ID	Easting	Northing	Ground Elevation	Top of PVC Elevation		Elevation of Bottom of Well	Stick Up	Casing Diameter	Screened Interval	Filter Pack Interval	Annular Bentonite Seal	Depth to Water	Groundwater Elevation
			(m)	(m)	(m btoc)	(m)	(m)	(mm)	(m bg)	(m bg)	(m bg)	(m btoc)	(m)
15MW01	422126	7357847	100.78	101.59	4.12	97.47	0.81	25	1.1 - 4.1	0.7 - 4.1	0.0 - 0.7	4.57	97.02
15MW02	421971	7357891	97.39	98.39	3.85	94.54	1.00	25	0.9 - 3.9	0.7 - 4.0	0.0 - 0.7	4.72	93.67
15MW03	421941	7357949	96.11	97.01	3.98	93.03	0.90	25	0.9 - 4.0	0.7 - 4.0	0.0 - 0.7	dry	-
15MW05	422286	7357815	99.90	100.71	4.14	96.58	0.81	25	1.0 - 4.1	0.7 - 4.1	0.0 - 0.7	dry	-
15MW06	422006	7357913	98.28	99.11	4.00	95.11	0.83	25	1.0 - 4.0	0.7 - 4.0	0.0 - 0.7	dry	-
15MW07	422047	7357933	99.26	100.20	1.21	98.99	0.94	25	0.8 - 1.2	0.6 - 1.35	0.0 - 0.6	1.75	98.45

Table 1: Summary of Monitoring Well Installation Details

Note:

All elevations are relative to arbitrary benchmark.

- 'm bg' denotes meters below ground

- 'm btoc' denotes meters below top of pvc casing

Parameter	Units	Units RDL CSR - AW ¹		15MW01	15MW07	
i arameter	Onits	NDL		10-Oct-2015	10-Oct-2015	
Physical Parameters						
рН	pH Units	0.01	-	7.05	6.62	
Chloride (Cl)	μg/L	50	-	9440	5330	
Sulphate (SO ₄)	µg/L	500	1,000,000	2900	7400	
Total Dissolved Solids (TDS)	µg/L	5000	-	52,000	64,000	
Hardness as $CaCO_3$	µg/L	100	-	29,100	51,300	
Orthophosphate (as P)	µg/L	1	-	8	<1	
Alkalinity (Bicarbonate)	µg/L		-	25000	38000	
Alkalinity (Carbonate)	μg/L		-	<1000	<1000	
Alkalinity (total as CaCO3)	μg/L		_	25000	38000	
Nutrients	P*3* -					
Ammonia	μg/L	10	18,400-18,500 ²	20	<10	
Total Kjeldahl Nitrogen (TKN)	μg/L	100	-	400	1800	
Nitrate (as N)	μg/L	5	400,000	94	140	
Nitrite (as N)		5	600-1000 ³	<5	<5	
Carbon	µg/L	5	000-1000	N 0	~0	
Dissolved Organic Carbon (DOC)		500	-	1400	15 000	
	µg/L	500	-	1400	15,800	
Demand Parameters		40000		40.000	450.000	
Chemical Oxygen Demand (COD)	µg/L	10000	-	13,000	158,000	
Dissolved Metals					0.5	
Aluminum	µg/L	2	-	3	63	
Antimony	µg/L	0.2	200	<0.2	<0.2	
Arsenic	µg/L	0.1	50	0.3	0.3	
Barium	µg/L	0.2	10,000	22.6	90.9	
Beryllium	µg/L	0.01	53	<0.01	<0.01	
Boron	µg/L	2	50,000	7	19	
Cadmium	μg/L	0.01	0.1-0.3 ⁴	0.02	0.3	
Calcium	µg/L	50	-	9400	15,700	
Calcium	µg/L	50	-	9400	15,700	
Chromium	µg/L	0.5	10 ⁵	<0.5	<0.5	
Cobalt	µg/L	0.05	9	0.23	1.12	
Copper	μg/L	0.2	20-30 ⁴	0.3	2.3	
Iron	μg/L	10	-	<10	46	
Lead	μg/L	0.05	40-50 ⁴	<0.05	< 0.05	
_ithium	μ <u>g</u> /L	0.5	-	1.0	<0.5	
Magnesium	μg/L	50		1360	2930	
Magnesium	μg/L	50	-	1360	2930	
Vagnesium	μg/L	1		48	150	
-		0.01	- 1	40 <0.01	<0.01	
Mercury Melubdopum	μg/L					
Molybdenum	μg/L	0.05	10,000	0.47	0.43	
Nickel	µg/L	0.2	250 ⁴	0.6	3.9	
Potassium	µg/L	50	-	433	545	
Selenium	µg/L	0.5	10	<0.5	<0.5	
Silver	µg/L	0.02	0.5 4	<0.02	<0.02	
Sodium	µg/L	50	-	2400	2020	
Sodium	µg/L	50	-	2400	2020	
Thallium	µg/L	0.01	3	<0.01	0.01	
Fitanium	µg/L	0.5	1000	0.8	3.9	
Jranium	µg/L	0.01	3000	0.05	0.04	
√anadium	µg/L	0.5	-	<0.5	<0.5	
Zinc	μg/L	2	75 ⁴	<2	3	
BTEXS & MTBE						
Benzene	µg/L	0.5	4000	<0.5	179	
Toluene	μg/L	0.5	390	<0.5	2380	
Ethylbenzene	μg/L	0.5	2000	<0.5	278	

Table 2: Groundwater Analytical Results

Ethylbenzene	µg/L	0.5	2000	<0.5	278
Xylene (m)	µg/L	0.5	-	<0.5	1560
Xylene (o)	µg/L	0.5	-	<0.5	833
Xylenes Total	µg/L	1	-	<1	2390
Styrene	µg/L	0.5	720	<0.5	<0.5
МТВЕ	µg/L	1	-	<1	<1
Hydrocarbons					
EPH ₁₀₋₁₉	µg/L	100	5000	<100	118,000
EPH ₁₉₋₃₂	µg/L	100	-	<100	4000
LEPH	µg/L	100	500	<100	117,000
HEPH	µg/L	100	-	<100	3960

CONSULTING ENGINEERS & SCIENTISTS + www.eba.ca

Table 2_6_Monitoring Plan

Parameter	Units	RDL	CSR - AW ¹	15MW01	15MW07	
	Unite	NDE		10-Oct-2015	10-Oct-2015	
Polycyclic Aromatic Hydrocarbons (PAHs)						
Acenaphthene	µg/L	0.05	60	<0.05	<5	
Acenaphthylene	µg/L	0.05	-	<0.05	<5	
Acridine	µg/L	0.05	0.5	<0.05	<0.05	
Anthracene	µg/L	0.05	1	<0.05	<0.05	
Benz(a)anthracene	µg/L	0.05	1	<0.05	<0.05	
Benzo(a) pyrene	µg/L	0.01	0.1	<0.01	<0.01	
Benzo(b)fluoranthene	µg/L	0.05	-	<0.05	0.13	
Benzo(b+j)fluoranthene	µg/L	0.1	-	<0.1	0.1	
Benzo(g,h,i)perylene	µg/L	0.05	-	<0.05	0.15	
Benzo(k)fluoranthene	µg/L	0.05	-	<0.05	<0.05	
Chrysene	µg/L	0.05	-	<0.05	0.09	
Dibenz(a,h)anthracene	µg/L	0.05	-	<0.05	<0.05	
Fluoranthene	µg/L	0.05	2	<0.05	0.2	
Fluorene	µg/L	0.05	120	<0.05	13	
Indeno(1,2,3-c,d)pyrene	µg/L	0.05	-	<0.05	<0.05	
Naphthalene	µg/L	0.05	10	<0.05	589	
Phenanthrene	µg/L	0.05	3	<0.05	8.26	
Pyrene	µg/L	0.02	0.2	0.02	0.33	
Quinoline	µg/L	0.1	34	<0.1	<10	
Volatile Organic Compounds (VOCs)						
1,1,1,2-tetrachloroethane	µg/L	1	-	<1	<1	
1,1,1-trichloroethane	µg/L	1	-	<1	<1	
1,1,2,2-tetrachloroethane	µg/L	1	-	<1	<1	
1,1,2-trichloroethane	µg/L	1	-	<1	<1	
1,1-dichloroethane	µg/L	1	-	<1	<1	
1,1-dichloroethene	µg/L	1	-	<1	<1	
1,2,4-trichlorobenzene	µg/L	1	240	<1	<1	
1,2-dibromoethane	µg/L	0.3	-	<0.3	<0.3	
1,2-dichlorobenzene	µg/L	0.5	-	<0.5	<0.5	
1,2-dichloroethane	µg/L	1	1000	<1	<1	
1,2-dichloropropane	µg/L	1	-	<1	<1	
1,3-dichlorobenzene	µg/L	0.5	1500	<0.5	<0.5	
1,4-dichlorobenzene	µg/L	0.5	260	<0.5	<0.5	
4-Methyl-2-pentanone	µg/L	10	-	<10	<10	
Acetone	µg/L	10	-	<10	<10	
Bromodichloromethane	µg/L	1	-	<1	<1	
Bromoform	µg/L	1	-	<1	<1	
Bromomethane	µg/L	1	-	<1	<1	
Carbon tetrachloride	µg/L	0.5	130	<0.5	<0.5	
Chlorobenzene	µg/L	1	13	<1	<1	
Chloroethane	µg/L	1	-	<1	<1	
Chloroform	µg/L	1	20	<1	<1	
Chloromethane	µg/L	1	-	<1	<1	
cis-1,2-dichloroethene	µg/L	1	-	<1	<1	
cis-1,3-dichloropropene	µg/L	1	-	<1	<1	
Dibromochloromethane	µg/L	1	-	<1	<1	
Dichloromethane	µg/L	1	980	<1	<1	
Methyl Ethyl Ketone	µg/L	10	-	<10	<10	
Tetrachloroethene	µg/L	1	1100	<1	<1	
trans-1,2-dichloroethene	µg/L	1	-	<1	<1	
trans-1,3-dichloropropene	µg/L	1	-	<1	<1	
Trichloroethene	µg/L	1	200	<1	<1	
Trichlorofluoromothono		1		-1	-1	

Table 2: Groundwater Analytical Results

Trihalomethanes	µg/L	2	-	<2	<2
Vinyl chloride	µg/L	1	-	<1	<1
Laboratory Work Order Number				15V029854	15V029854
Laboratory Identification Number				7080691	7080699

1

-

<1

<1

µg/L

Notes:

¹ Environment Act. Contaminated Sites Regulation (CSR) (2002). Schedule 3, Generic Numerical Water Standards for Aq

² Standard varies with pH. Values shown based on pH range of 6.62 to 7.05

³ Standard varies with chloride. Values shown based on chloride range of 5.33 mg/L to 9.44 mg/L

⁴ Standard varies with hardness. Values shown based on hardness range of 28.7 mg/L to 51.3 mg/L

⁵ Standard is for Chromium VI

"-" No applicable standard or not analyzed

BOLD - Greater than CSR Standard

N/A - Not applicable

Trichlorofluoromethane

CONSULTING ENGINEERS & SCIENTISTS · www.eba.ca

Table 3: Surface Water Analytical Results

Table 3: Surface Water Analytical Res			1	SW1	SW2	SW3	SW4
Parameter	Units	RDL	CSR - AW ¹	9-Oct-2015	9-Oct-2015	9-Oct-2015	10-Oct-2015
Physical Parameters		1					
рН	pH Units		-	4.03	3.79	4.16	3.91
Chloride (CI)	µg/L	50	-	90	25,100	6360	46,200
Sulphate (SO ₄)	µg/L	500	100,000	44,800	308,000	44,800	39,100
Total Dissolved Solids (TDS)	µg/L	5000	-	80,000	462,000	88,000	195,000
Hardness as CaCO ₃	µg/L	100	-	33,800	270,000	41,100	79,100
Orthophosphate (as P)	µg/L	1	-	<1	7	<1	1
Alkalinity (Bicarbonate)	µg/L		-	<1000	<1000	<1000	<1000
Alkalinity (Carbonate)	µg/L		-	<1000	<1000	<1000	<1000
Alkalinity (total as CaCO3)	µg/L		-	<1000	<1000	<1000	<1000
Nutrients			2				
Ammonia	µg/L	10	1840 ²	20	50	30	40
Total Kjeldahl Nitrogen (TKN)	µg/L	100	-	600	600	600	500
Nitrate (as N)	µg/L	5	40,000	129	20	28	9
Nitrite (as N)	µg/L	5	20-200 ³	<5	<5	<5	<5
Carbon	"						
Dissolved Organic Carbon (DOC)	µg/L	500	-	9000	5700	5500	8500
Demand Parameters		4000		4000	4000	4000	4000
Biochemical Oxygen Demand (BOD)	µg/L	4000	-	<4000	<4000	<4000	<4000
Chemical Oxygen Demand (COD)	µg/L	10000	-	33,000	24,000	19,000	31,000
Total Metals				4700	40.400	000	4770
Aluminum Total	ug/L	5	-	1780	10,100	899	1770
Antimony	µg/L	0.5	20	<0.5	<0.5	<0.5	<0.5
Arsenic	µg/L	0.1	5	0.5	0.6	0.2	0.3
Barium	µg/L	0.5	1000	56.1	39.6	114	238
Beryllium	µg/L	0.05	5.3	0.34	1.96	0.34	0.47
Boron	µg/L	5	5000	12	27	21	8
Cadmium	µg/L	0.01	0.03-0.06 4	0.16	1.50	0.20	0.76
Calcium	µg/L	50	- 1 ⁵	5570	60,100	9760	22,700
Chromium	µg/L	0.5	·	1.4	1.7	0.7	1.0
Cobalt	µg/L	0.05	0.9	16.5	92.9	14.2	17.3
Copper	µg/L	0.5	2-9 ⁴	2.2	6.8	1.9	3.1
Iron	µg/L	10	-	1160	1590	559	901
	µg/L	0.05	4-11 ⁴	0.38	0.35	0.14	0.27
Lithium	µg/L	0.5	-	7.1	30.3	9.4	11.3
Magnesium	µg/L	50	-	4830	29,000	4060	5450
Manganese	µg/L	1	-	145	1140	174	225
Mercury	µg/L	0.01	0.1	<0.01	<0.01	<0.01	<0.01
Molybdenum	µg/L	0.1	1000	<0.1	0.1	<0.1	<0.1
Nickel	µg/L	0.5	25-150 ⁴	42.4	277	36.1	48.2
Potassium Selenium	µg/L	100 0.5	- 1	252 <0.5	1170 <0.5	287 <0.5	191 <0.5
Silver	µg/L	0.02		<0.02	<0.02	<0.02	0.02
Sodium	µg/L	100	0.05, 1.5 ⁴	<0.02 810	4010	<0.02 1060	1190
Thallium	µg/L	0.02	0.3	<0.02	0.02	<0.02	<0.02
Titanium	µg/L	1	100	6	0.02 7	1	3
Uranium	µg/L	0.01	300	0.05	0.06	0.01	0.02
Vanadium	µg/L	1	-	2	2	<1	1
Zinc	µg/L	5	7.5-165 ⁴	134	781	126	160
BTEXS & MTBE	µg/L	5	C01-C.1	104	701	120	100
Benzene	µg/L	0.5	400	<0.5	<0.5	<0.5	<0.5
Toluene	μg/L μg/L	0.5	39	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	μg/L μg/L	0.5	200	<0.5	<0.5	<0.5	<0.5
Xylene (m)	μg/L μg/L	0.5	-	<0.5	<0.5	<0.5	<0.5
Xylene (o)	μg/L	0.5	-	<0.5	<0.5	<0.5	<0.5
Xylenes Total	μg/L	0.5	-	<0.5	<0.5	<0.5	<0.5
Styrene	μg/L	0.5	- 72	<0.5	<0.5	<0.5	<0.5
MTBE	μg/L μg/L	0.5	-	<0.5	<0.5	<0.5	<0.5
Hydrocarbons	μ <u>9</u> /L		-				<u> </u>
	µg/L	100	500	<100	<100	<100	<100
			500	<100	<100	<100	<100
	1.0/	100			<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<100	<100
EPH ₁₉₋₃₂	µg/L	100	-				
EPH ₁₀₋₁₉ EPH ₁₉₋₃₂ LEPH	μg/L μg/L	100	50	<u><100</u>	<u><100</u>	<u><100</u>	<u><100</u>
EPH ₁₉₋₃₂ LEPH HEPH	μg/L μg/L μg/L	100 100	-	<u><100</u> <100	<u><100</u> <100	<u><100</u> <100	<u><100</u> <100
EPH ₁₉₋₃₂ LEPH	μg/L μg/L	100		<u><100</u>	<u><100</u>	<u><100</u>	<u><100</u>

CONSULTING ENGINEERS & SCIENTISTS + www.eba.ca

Parameter	Units	its RDL CSR - AW ¹		SW1	SW2	SW3	SW4	
Falameter	Onits	NDL	CSR - AW	9-Oct-2015	9-Oct-2015	9-Oct-2015	10-Oct-2015	
Polycyclic Aromatic Hydrocarbons (PAH	5)							
Acenaphthene	µg/L	0.05	6	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Acridine	µg/L	0.05	0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/L	0.05	0.1	<0.05	<0.05	<0.05	<0.05	
Benz(a)anthracene	µg/L	0.05	0.1	<0.05	<0.05	<0.05	<0.05	
Benzo(a) pyrene	µg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Benzo(b)fluoranthene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Benzo(b+j)fluoranthene	µg/L	0.1	-	<0.1	<0.1	<0.1	<0.1	
Benzo(g,h,i)perylene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/L	0.05	0.2	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/L	0.05	12	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-c,d)pyrene	µg/L	0.05	-	<0.05	<0.05	<0.05	<0.05	
Naphthalene	µg/L	0.05	1	0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/L	0.05	0.3	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/L	0.02	0.02	<0.02	<0.02	<0.02	0.06	
Quinoline	µg/L	0.1	3.4	<0.1	<0.1	<0.1	<0.1	
Laboratory Work Order Number	-			15V029854	15V029854	15V029854	15V029854	
Laboratory Identification Number				7080701	7080702	7080703	7080704	

Table 3: Surface Water Analytical Results

Notes:

¹ Environment Act. Contaminated Sites Regulation (CSR) (2002). Schedule 3, Generic Numerical Water Standards for Freshwater Aquatic Life (AW). Standards have been decreased by a magnitude of 10.

² Standard varies with pH. Value shown based on pH range of 3.79 to 4.16

³ Standard varies with chloride. Values shown based on chloride range of 0.09 mg/L to 46.2 mg/L

⁴ Standard varies with hardness. Values shown based on hardness range of 33.8 mg/L to 270 mg/L

⁵ Standard is for Chromium VI

"-" No applicable standard or not analyzed

BOLD - Greater than CSR Standard

Italic - Detection limit greater than CSR standard

CONSULTING ENGINEERS & SCIENTISTS - www.eba.ca

Table 2_6_Monitoring Plan

Table 4: Soil Analytical Results

Physical Parameters Processor		
Physical Parameters Physical Parameters Physical Parameters Physical Parameters BH Physical Parameters 0.1 - 4.8 4.4 3.4 4.5 5.3 5.4 Metals Affering p.90 0.1 2.0 32.0 38.7 37.5 7.4 10.5 5.3 Affering p.90 0.5 2.00 2.4 38.0 4.00 75.1 11.4 4.4 4.4 4.0 5.3 1.0 0.3 1.1 4.4 4.4 4.0 7.1 10.5 5.3 1.0 0.0 1.0 0.2 1.0 0.0 1.0 0.2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0	ct-2015 8	1.1-1.2 m 8-Oct-2015
Metais		
Animosy μg/g 0.1 20.8 0.5 0.5 0.3 0.4 0.3 D Barun μg/g 0.6 2000 244 380 400 75.1 114 44.0 Barun μg/g 0.6 2000 244 380 400 75.1 114 44.0 Cadmium μg/g 0.61 2.3 0.66 0.65 0.09 0.68 0.11 0.7 Cadmium μg/g 0.1 300 1.6 0.68 0.65 0.09 0.11 0.02 Cadmium μg/g 0.1 50.7 1.61 3.7 1.61 3.7 Cade μg/g 0.1 50.7 1.62 1.7.6 18.4 6.7 6.3 3.2 Meany μg/g 0.61 1.60 0.7 6.6 0.3 0.1 0.6 0.3 Start μg/g 0.61 1.62 1.63 1.67 0.5 0.61 <th< td=""><td>4.9</td><td>5.3</td></th<>	4.9	5.3
Sarium jpg 0.5 2000 244 380 400 75.1 114 44.0 Benjlum jpg 0.1 2.5 0.06 0.05 0.08 0.11 0.02 Cohum jpg 0.1 2.5 0.06 0.05 0.08 0.11 0.02 Cohum jpg 0.1 900 1.8 0.6 0.6 1.5 2.8 0.7 0.1 3.7 Cada jpg 0.1 100 ²³ 11.6 0.8 0.6 1.5 2.8 0.7 0.1 1.3 0.3 0.4 0.11 0.02 Cada jpg 0.2 4.00 0.5 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.02 0.01 0.05 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 <	0.4	0.2
Senjium µgg 0.1 8 0.6 1.1 1.1 0.3 0.4 0.1 Cadnakan µgg 0.01 2 ²⁻³ 0.06 0.05 0.08 0.01 0.02 Chronhum µgg 0.1 60 ⁷ 24 32 32 12 11 4 Cabal µgg 0.1 100 ⁷³ 31.4 63.1 70.0 5.7 10.1 3.7 Cabal µgg 0.1 150 ² 0.12 70.6 0.68 -0.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 40.01 -0.01 -0.02 -0.0	7.7	6.0
Cardmum µg/g 0.01 2. ¹³ 0.06 0.05 0.08 0.11 0.02 Chorbit µg/g 1 80.7 2 42 32 12 11 44 Cobat µg/g 0.1 80.07 16. 6.8 6.8 1.5 2.8 0.7 Card µg/g 0.2 90.01 15.0 6.8 6.8 1.5 2.8 0.7 Lad Operation µg/g 0.2 40.01 1.61 7.7 0.6 0.3 Mexing µg/g 0.5 40.0 9.07 0.7 0.6 0.3 Stein µg/g 0.1 0.0 2.6 1.3 1.7 0.3 0.7 0.2 Stein µg/g 0.1 0.2 0.0 0.8 0.8 0.8 0.3 0.2 0.2 Tailum µg/g 0.2 0.0 0.6 0.8 0.8 0.3 0.2 0.2 <	119 0.3	79.0 0.2
Oxnomium μμg0 1 60 ² 24 32 32 12 11 4 Cobalt μg0 0.1 60 ² 90-100 ^{2,43} 31.4 53.1 70.0 5.7 10.1 3.7 Lead μg0 0.1 150 ²³ 16.2 17.6 18.4 6.7 6.9 3.2 Mecay μg0 0.2 40 0.9 0.7 0.7 0.6 0.01 -0.01	0.3	0.2
Copper μp/g 0.2 0p-00/3 31.4 63.1 70.0 5.7 10.1 3.7 Lead μp/g 0.11 150 ²³ 16.2 17.6 18.4 6.7 6.9 3.2 Mercuy μp/g 0.2 10.2 0.05 -0.05 -0.01 0.01 -0.01 Noke μp/g 0.2 40 0.9 0.7 0.7 0.7 0.6 0.3 Silver μp/g 0.5 500 15.7 42.6 40.9 5.7 13.0 0.7 0.2 0.2 Thallum μp/g 0.1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.7 1.0 -0.1 <	16	7
Lead µg/g 0.01 150 ²³ 16.2 17.6 18.4 6.7 6.9 3.2 Example Medvadrum µg/g 0.01 160 ² 0.12 0.05 0.05 -0.01 0.01 0.06 0.3 1 Medvadrum µg/g 0.5 500 15.7 42.6 40.9 5.7 13.0 0.7 0.2 1.3 1.7 0.3 0.7 0.2 1.0 1.0 2.6 -0.5 </td <td>3.1</td> <td>1.5</td>	3.1	1.5
Mecay µgg 0.01 160 ² 0.12 0.05 -0.05 -0.01 0.01 -0.0	9.9 6.9	4.8 5.4
Note ypg 0.5 500 15.7 42.6 40.9 5.7 13.0 3.3 Silver ypg 0.1 10 2.8 1.3 1.7 0.3 0.7 0.2 Silver ypg 0.1 0.2 0.2 0.2 c0.5 c0.5 <th< td=""><td>0.02</td><td><0.01</td></th<>	0.02	<0.01
Selenium ygg 0.1 10 2.6 1.3 1.7 0.3 0.7 0.2 Silver ygg 0.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.1 40.1 Tnallum ygg 0.2 300 0.6 0.8 0.2 40.1	0.6	0.3
Silver jpg'g 0.5 4.0 4.0.5 4.	11.1	5.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5 <0.5	0.4 <0.5
Upanium µg/g 0.2 - 1.0 1.2 1.3 0.4 0.5 0.2 Vanadium µg/g 1 - 62 82 82 34 29 11 Dr Pg/g 1 150 ^{2.3} 39 87 89 20 53 12 BTEX8 ATBE Berzene µg/g 0.05 25 ² <0.05	<0.1	<0.1
Vanadum µg'q 1 - 62 82 82 34 29 11 Znc µg'q 1 150 ²³ 38 87 89 20 53 12 Berzse µg'q 0.02 10 ² <0.02	0.3	<0.2
Zinc μg/g 1 150 ⁻²³ 39 87 89 20 53 12 BTEX8 & MTBE Berzene μg/g 0.02 10 ⁻² <0.02	0.5 32	0.3
BFEXS ANTEE Benzene µg/g 0.02 10 ² <0.02 <0.02 0.03 1.02 <0.02 Toluene µg/g 0.05 2.5 ² <0.05 <0.05 <0.05 1.16 5.31 <0.05 Ethylenzene µg/g 0.05 2.0 ² <0.05 <0.05 <0.05 0.12 2.18 <0.05 Xylene (m) µg/g 0.05 - <0.05 <0.05 <0.05 0.12 2.18 <0.05 Xylene (n) µg/g 0.05 - <0.05 <0.05 <0.05 0.11 9.53 <0.05 Stylenes (n) µg/g 0.2 5.0 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>34</td> <td>18</td>	34	18
Taluene μg/g 0.05 25 ² <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <t< td=""><td></td><td></td></t<>		
Ethylbenzene μg/g 0.05 20 ² <0.05 <0.05 <0.05 0.12 2.18 <0.05 Xylene (m) μg/g 0.05 - <0.05	:0.02	0.02
Xylene (m) µg/g 0.05 - <	0.07	6.47
Xylene (a) μg/g 0.05 - <0.05 <0.05 1.18 9.53 <0.05 Xylenes Total μg/g 0.2 50 ² <0.2	0.05 0.08	4.19 24.5
Xylenes Total μg/g 0.2 50 ² <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.08	10.7
MTBE μg/g 0.1 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	<0.2	35.2
Hydrocarbons LEPH μg/g 20 2000 23 62 63 29 2830 <20 LEPH μg/g 20 5000 78 111 111 65 178 <20	:0.05	0.37
LEPH μg/g 20 2000 23 62 63 29 2830 <20 HEPH μg/g 20 5000 78 111 111 65 178 <20	<0.1	<0.1
HEPH μg/g 20 5000 78 111 111 65 178 <20 VPH C ₆₁₀ μg/g 10 200 <10	28	2830
VPH C ₆₋₁₀ µg/g 10 200 <10 <10 <10 54 972 <10 Polycyclic Aromatic Hydrocarbons (PAHs) 1-methylnaphthalene µg/g 0.01 - <0.01	28	63
1-methylnaphthalene μg/g 0.01 - <0.01 0.05 0.06 0.04 12.5 <0.01 2-methylnaphthalene μg/g 0.01 - <0.01	<10	411
2-methylnaphthalene μg/g 0.01 - <0.01 0.04 0.05 0.05 17.2 <0.01 Acenaphthene μg/g 0.01 - <0.01	0.06	11 7
Acenaphthene µg/g 0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <t< td=""><td>0.06</td><td>11.7 18.5</td></t<>	0.06	11.7 18.5
Acenaphthylene μg/g 0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	:0.01	<0.1
Benz(a)anthracene μg/g 0.02 10 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	:0.01	<0.1
Benzo(a) pyrene ug/g 0.05 10 ² <0.05 0.06 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	:0.02	<0.02
Benzo(b)fluoranthene μg/g 0.02 10 0.12 0.09 0.12 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.05	<0.02 <0.05
Benzo(g,h,i)perylene μg/g 0.05 - 0.23 0.7 0.89 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	:0.03	<0.03
Chrysene μg/g 0.05 - 0.11 0.08 0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	:0.05	<0.05
Diberz(a,h)anthracene µg/g 0.02 10 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	:0.02	<0.02
Fluoranthene μg/g 0.05 - 0.07 0.08 0.09 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <th<< td=""><td>:0.05</td><td>< 0.05</td></th<<>	:0.05	< 0.05
Fluorene μg/g 0.02 - <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	<0.02 <0.05	<0.02 <0.05
Naphthalene µg/g 0.01 50 <0.01 <0.01 0.01 7.3 <0.01 Phenanthrene µg/g 0.02 50 0.06 0.13 0.15 <0.02	:0.02	0.3
Phenanthrene µg/g 0.02 50 0.06 0.13 0.15 <0.02 0.56 <0.02 Pyrene µg/g 0.02 100 0.09 0.15 0.16 <0.02	:0.02	<0.02
Pyrene µg/g 0.02 100 0.09 0.15 0.16 <0.02 0.02 <0.02	0.02	8.8
	:0.02 :0.02	0.23 <0.02
	0.02	40.0Z
	:0.05	<0.05
	:0.05	<0.05
	<0.05 <0.05	<0.05 <0.05
	:0.05	<0.05
1,1-dichloroethene µg/g 0.05 50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	:0.05	<0.05
	0.05	<0.05
	<0.05 <0.05	<0.05 <0.05
	:0.05	<0.05
1,2-dichloropropane µg/g 0.05 50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	:0.05	<0.05
	:0.05	<0.05
	<0.05 <0.5	<0.05 <0.5
$\mu g/g$ 0.5 $ < 0.5$ < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 > 0.5 >	<0.5 <0.5	<0.5 <0.5
	:0.05	<0.05
Bromoform μg/g 0.05 - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	:0.05	<0.05
	0.05	<0.05
	:0.02 :0.05	<0.02 <0.05
	:0.05	<0.05
Chloroform μg/g 0.05 50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	:0.05	<0.05
	:0.05	<0.05
	<0.05 <0.05	<0.05 <0.05
	:0.05	<0.05
	:0.05	<0.05
Methyl Ethyl Ketone μg/g 0.5 - <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5	<0.5
	0.05	<0.05
	<0.05 <0.05	<0.05 <0.05
	:0.05	<0.05
	:0.05	<0.05
	:0.05	<0.05
Organics	-0.6	
Total Tetrachlorodibenzodioxins ng/kg 0.5 - <0.5 <0.8 <1 3 <1 <0.9 Total Tetrachlorodibenzofurans ng/kg 0.5 - 0.9 <0.6	<0.6 0.9	<1 <0.8
Total PCDDs and PCDFs (TEQ) ng/kg 2500 0.319 0.433 0.514 1.46 1.03 1.97	1.53	0.201
Laboratory Work Order Number 15V029854 15V029	029854 1	15V029854
Laboratory Identification Number 7079507 7079503 7079508 7079510 7079509 7079506 7079506	79505	7079504

Notes:

¹ Environment Act. Contaminated Sites Regulation (CSR) (2002). Schedule 1 - Generic Numerical Soil Standards and Schedule 2 - Matrix Numerical Soil Standards for Industrial (IL) land use ² Schedule 2 Parameter. Pathways included:

Intake of contaminated soil

Toxicity to soil invertebrates and plants

Groundwater flow to surface water used by freshwater aquatic life

 $^{\rm 3}$ Standard varies with pH. Values shown based on pH range 4.3 to 5.4

"-" No applicable standard or not analyzed BOLD - Greater than CSR Standard

Table 5: Groundwater Quality Assurance/Quality Control Analytical Results

Parameter	Units	RDL	15MW01	Dup 01	RPD	
	Sinta		10-00	t-2015		
Physical Parameters						
рН	pH Units	0.01	7.05	7.03	0.1	
Chloride (Cl)	μg/L	50	9440	9260	1	
Sulphate (SO ₄)	μg/L	500	2900	2900	0	
Fotal Dissolved Solids (TDS)	μg/L	5000	52,000	42,000	11	
Hardness as CaCO ₃	μg/L	100	29,100	28,700	1	
Orthophosphate (as P)	μg/L	1	8	7	7	
Nutrients						
Ammonia	µg/L	10	20	20	-	
Total Kjeldahl Nitrogen (TKN)	μg/L	100	400	400	-	
Nitrate (as N)	μg/L	5	94	100	3	
Nitrite (as N)	μg/L	5	<5	<5	-	
Carbon						
Dissolved Organic Carbon (DOC)	μg/L	500	1400	900	-	
Demand Parameters						
Chemical Oxygen Demand (COD)	μg/L	10000	13,000	12,000	-	
Dissolved Metals						
Aluminum	μg/L	2	3	3	-	
Antimony	μg/L	0.2	<0.2	<0.2	-	
Arsenic	μg/L	0.1	0.3	0.3	-	
Barium	μg/L	0.2	22.6	22.6	0	
Beryllium	μg/L	0.01	<0.01	<0.01	-	
Boron	µg/L	2	7	7	-	
Cadmium	µg/L	0.01	0.02	0.01	-	
Calcium	µg/L	50	9400	9310	0.5	
Calcium	µg/L	50	9400	9310	0.5	
Chromium	µg/L	0.5	<0.5	<0.5	-	
Cobalt	μg/L	0.05	0.23	0.24	-	
Copper	µg/L	0.2	0.3	0.4	-	
Iron	µg/L	10	<10	<10	-	
Lead	µg/L	0.05	<0.05	<0.05	-	
Lithium	μg/L	0.5	1.0	1.2	-	
Magnesium	μg/L	50	1360	1320	1	
Magnesium	μg/L	50	1360	1320	1	
Manganese	μg/L	1	48	46	2	
Mercury	μg/L	0.01	<0.01	<0.01	-	
Molybdenum	μg/L	0.05	0.47	0.41	7	
Nickel	μg/L	0.2	0.6	0.6	-	
Potassium	μg/L	50	433	424	1	
Selenium	μg/L	0.5	<0.5	<0.5	-	
Silver	μg/L	0.02	<0.02	<0.02	-	
Sodium	μg/L	50	2400	2470	1	
Sodium	μg/L	50	2400	2470	1	
Thallium	μg/L	0.01	<0.01	<0.01	-	
Titanium	μg/L	0.5	0.8	0.7	-	
Uranium	μg/L	0.01	0.05	0.05	0	
Vanadium	μg/L	0.5	<0.5	<0.5	-	
Zinc	μg/L	2	<2	<2	-	
BTEXS & MTBE	r v –		<u> </u>			
Benzene	µg/L	0.5	<0.5	<0.5	-	
Toluene	μg/L	0.5	<0.5	<0.5	_	
Ethylbenzene	μg/L	0.5	<0.5	<0.5	_	
Kylene (m)	μg/L	0.5	<0.5	<0.5	-	
Xylene (o)	μg/L	0.5	<0.5	<0.5	-	
Kylenes Total	μg/L	1	<1	<1	-	
Styrene	μg/L	0.5	<0.5	<0.5	-	
MTBE		<u> </u>	<0.5	<0.5	-	
	µg/L	I	<1		-	
Hydrocarbons		100	<100	<100		
EPH ₁₀₋₁₉	µg/L				-	
EPH ₁₉₋₃₂	µg/L	100	<100	<100	-	
LEPH	μg/L	100	<100	<100	-	

CONSULTING ENGINEERS & SCIENTISTS + www.eba.ca

Table 5: Groundwater Quality Assurance/Quality Control Analytical Results

Parameter	Units	RDL	15MW01	Dup 01	RPD
			10-Oc	t-2015	
Polycyclic Aromatic Hydrocarbons (PAHs)				I	
Acenaphthene	µg/L	0.05	< 0.05	<0.05	-
Acenaphthylene	µg/L	0.05	< 0.05	<0.05	-
Acridine	μg/L	0.05	< 0.05	< 0.05	-
	µg/L	0.05	< 0.05	< 0.05	-
Benz(a)anthracene	µg/L	0.05	< 0.05	< 0.05	-
Benzo(a) pyrene	μg/L	0.01	<0.01	<0.01	-
Benzo(b)fluoranthene Benzo(b+j)fluoranthene	µg/L	0.05	<0.05	<0.05 <0.1	-
Benzo(g,h,i)perylene	μg/L	0.05	<0.1	<0.1	
Benzo(k)fluoranthene	μg/L μg/L	0.05	<0.05	<0.05	-
Chrysene	μg/L	0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	μg/L	0.05	<0.05	<0.05	-
Fluoranthene	μg/L	0.05	<0.05	<0.05	-
Fluorene	μg/L	0.05	<0.05	<0.05	-
Indeno(1,2,3-c,d)pyrene	μg/L	0.05	<0.05	<0.05	-
Naphthalene	μg/L	0.05	<0.05	<0.05	-
Phenanthrene	μg/L	0.05	<0.05	<0.05	-
Pyrene	μg/L	0.02	0.02	<0.02	-
Quinoline	μg/L	0.1	<0.1	<0.1	_
Volatile Organic Compounds (VOCs)	– ^{رو} ۲۰				
1,1,1,2-tetrachloroethane	μg/L	1	<1	<1	-
1,1,1-trichloroethane	μg/L	1	<1	<1	-
1,1,2,2-tetrachloroethane	μg/L	1	<1	<1	-
1,1,2-trichloroethane	μg/L	1	<1	<1	-
1,1-dichloroethane	µg/L	1	<1	<1	-
1,1-dichloroethene	µg/L	1	<1	<1	-
1,2,4-trichlorobenzene	µg/L	1	<1	<1	-
1,2-dibromoethane	µg/L	0.3	<0.3	<0.3	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
1,2-dichloroethane	µg/L	1	<1	<1	-
1,2-dichloropropane	µg/L	1	<1	<1	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
1,4-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
Methyl Ethyl Ketone	µg/L	10	<10	<10	-
4-Methyl-2-pentanone	µg/L	10	<10	<10	-
Acetone	µg/L	10	<10	<10	-
Bromodichloromethane	µg/L	1	<1	<1	-
Bromoform	μg/L	1	<1	<1	-
Bromomethane	μg/L	1	<1	<1	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-
Chlorobenzene	μg/L	1	<1	<1	-
Dibromochloromethane	µg/L	1	<1	<1	-
Chloroethane	μg/L	1	<1	<1	-
Chloroform	µg/L	1	<1	<1	-
Chloromethane	µg/L	1	<1	<1	-
cis-1,2-dichloroethene	μg/L	1	<1	<1	-
cis-1,3-dichloropropene	µg/L	1	<1	<1	-
Dichloromethane Trichloroethene	µg/L	1	<1	<1 <1	-
I richloroethene	μg/L	<u> </u>	<1	<1 <1	-
I etrachioroethene Trihalomethanes	μg/L				-
I rinaiometnanes trans-1,2-dichloroethene	μg/L	2	<2 <1	<2	-
trans-1,2-dichloroethene	μg/L	<u> </u>	<1	<1 <1	-
Trichlorofluoromethane	μg/L	1	<1	<1	
Vinyl chloride	μg/L	1	<1	<1	-
Laboratory Work Order Number	µg/L	I	15V029854	<1 15V029854	-

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (abs(C1-C2)/average(C1+C2))*100

N/A - Not applicable

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results are less than detection limits or within 5 times the detection limits.

BOLD - RPD value greater than 30%

CONSULTING ENGINEERS & SCIENTISTS · www.eba.ca

Table 6: Soil Quality Assurance/Quality Control Analytical Results

Parameter	Units	RDL	15MW01 9.8-10 m 7-Oct	DUP 01	RPD
Physical Parameters				2010	
DH	pH Units	0.1	4.4	4.3	1
Metals			-		
Antimony	hð\d	0.1	0.5	0.5	0
Arsenic	hð/ð	0.1	38.7	37.5	2
Barium	hð/ð	0.5	380	400	3
Beryllium	µg/g	0.1	1.1	1.1	0
	µg/g	0.01	0.05	0.09	29
	µg/g	1	32	32	0
Cobalt	µg/g	0.1	6.8	6.8	0
Copper _ead	µg/g	0.2	53.1 17.6	70 18.4	<u>14</u> 2
Lead Mercury	µg/g	0.01	0.05	0.05	0
Molybdenum	hð\ð	0.2	0.05	0.05	-
Nickel	μg/g	0.5	42.6	40.9	2
Selenium	μg/g	0.1	1.3	1.7	13
Silver	μg/g	0.5	<0.5	<0.5	-
Thallium	hð\d	0.1	0.2	0.2	-
Tin	μg/g	0.2	0.2	0.8	-
Jranium	μg/g	0.2	1.2	1.3	4
Vanadium	μg/g	1	82	82	0
Zinc	μg/g	1	87	89	1
BTEXS & MTBE	r 3 3	-			
Benzene	µg/g	0.02	<0.02	<0.02	-
Toluene	µg/g	0.05	< 0.05	<0.05	-
Ethylbenzene	µg/g	0.05	<0.05	<0.05	-
Xylene (m)	hâ/à	0.05	<0.05	<0.05	-
Xylene (o)	hð/ð	0.05	<0.05	<0.05	-
Xylenes Total	µg/g	0.2	<0.2	<0.2	-
Styrene	µg/g	0.05	<0.05	<0.05	-
ИТВЕ	µg/g	0.1	<0.1	<0.1	-
Hydrocarbons					
_EPH	µg/g	20	62	63	-
HEPH	µg/g	20	111	111	0
VPH C ₆₋₁₀	µg/g	10	<10	<10	-
Polycyclic Aromatic Hydrocarbons (PAHs)					
2-methylnaphthalene	µg/g	0.01	0.04	0.05	-
Acenaphthene	µg/g	0.01	<0.01	<0.01	-
Acenaphthylene	µg/g	0.01	<0.01	<0.01	-
Anthracene	µg/g	0.02	<0.02	<0.02	-
Benz(a)anthracene	hð/ð	0.02	<0.02	<0.02	-
Benzo(a) pyrene	ug/g	0.05	0.06	0.08	-
Benzo(b)fluoranthene	hð/ð	0.02	0.09	0.12	-
Benzo(g,h,i)perylene	hð/ð	0.05	0.70	0.89	12
Benzo(k)fluoranthene	hð\d	0.02	0.02	0.02	-
Chrysene	µg/g	0.05	0.08	0.08	-
Dibenz(a,h)anthracene	µg/g	0.02	< 0.02	<0.02	-
Fluoranthene	µg/g	0.05	0.08	0.09	-
Fluorene	µg/g	0.02	<0.02	<0.02 0.06	-
ndeno(1,2,3-c,d)pyrene Naphthalene	µg/g	0.02	<0.04	0.06 <0.01	-
Vapntnalene Phenanthrene	µg/g	0.01	0.13	<0.01 0.15	- 7
Pyrene	hð\ð	0.02	0.13	0.15	3
/olatile Organic Compounds (VOCs)	PA/A	0.02	0.15	0.10	3
1,1,2-tetrachloroethane	hð\d	0.05	< 0.05	<0.05	-
I,1,1-trichloroethane	μg/g	0.05	<0.05	<0.05	
1,1,2,2-tetrachloroethane	μg/g	0.05	<0.05	<0.05	
1,1,2-trichloroethane	μg/g	0.05	<0.05	<0.05	
I,1-dichloroethane	μg/g	0.05	<0.05	<0.05	-
I,1-dichloroethene	hð\ð	0.05	<0.05	<0.05	-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	μg/g	0.05	<0.05	<0.05	-
,2-dibromoethane	μg/g	0.05	<0.05	<0.05	-
I,2-dichlorobenzene	μg/g	0.05	<0.05	<0.05	-
I,2-dichloroethane	μg/g	0.05	<0.05	<0.05	-
1,2-dichloropropane	μg/g	0.05	<0.05	<0.05	-
1,3-dichlorobenzene	hð\d	0.05	<0.05	<0.05	-
1,4-dichlorobenzene	μg/g	0.05	<0.05	<0.05	-
-Methylnaphthalene	hð\d	0.01	0.05	0.06	9
Methyl Ethyl Ketone	hð\ð	0.5	<0.5	<0.5	-
	MA, A	0.0	-0.0	-0.0	

CONSULTING ENGINEERS & SCIENTISTS + www.eba.ca

Table 2_6_Monitoring Plan

			15MW01	DUP 01	
Parameter	Units RDL		9.8-10 m	DUP 01	RPD
			7-Oct	-2015	
Acetone	µg/g	0.5	<0.5	<0.5	-
Bromodichloromethane	µg/g	0.05	<0.05	<0.05	-
Bromoform	µg∕g	0.05	<0.05	<0.05	-
Bromomethane	µg/g	0.05	<0.05	<0.05	-
Carbon tetrachloride	µg/g	0.02	<0.02	<0.02	-
Chlorobenzene	µg/g	0.05	<0.05	<0.05	-
Dibromochloromethane	µg∕g	0.05	<0.05	<0.05	-
Chloroethane	µg/g	0.05	<0.05	<0.05	-
Chloroform	µg/g	0.05	<0.05	<0.05	-
Chloromethane	µg/g	0.05	<0.05	<0.05	-
cis-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-
cis-1,3-dichloropropene	µg/g	0.05	<0.05	<0.05	-
Dichloromethane	µg/g	0.05	<0.05	<0.05	-
Trichloroethene	µg/g	0.01	<0.01	<0.01	-
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	-
trans-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-
trans-1,3-dichloropropene	µg/g	0.05	<0.05	<0.05	-
Trichlorofluoromethane	µg∕g	0.05	<0.05	<0.05	-
Vinyl chloride	µg/g	0.05	<0.05	<0.05	-
Organics				·	
Total Tetrachlorodibenzodioxins	ng/kg	0.5	<0.8	<1	-
Total Tetrachlorodibenzofurans	ng/kg	0.5	<0.6	<1	-
Total PCDDs and PCDFs (TEQ)	ng/kg	-	0.433	0.514	9
Laboratory Work Order Number			15V029854	15V029854	
Laboratory Identification Number			7079507	7079508	

Table 6: Soil Quality Assurance/Quality Control Analytical Results

Notes:

RDL - Reportable detection limit

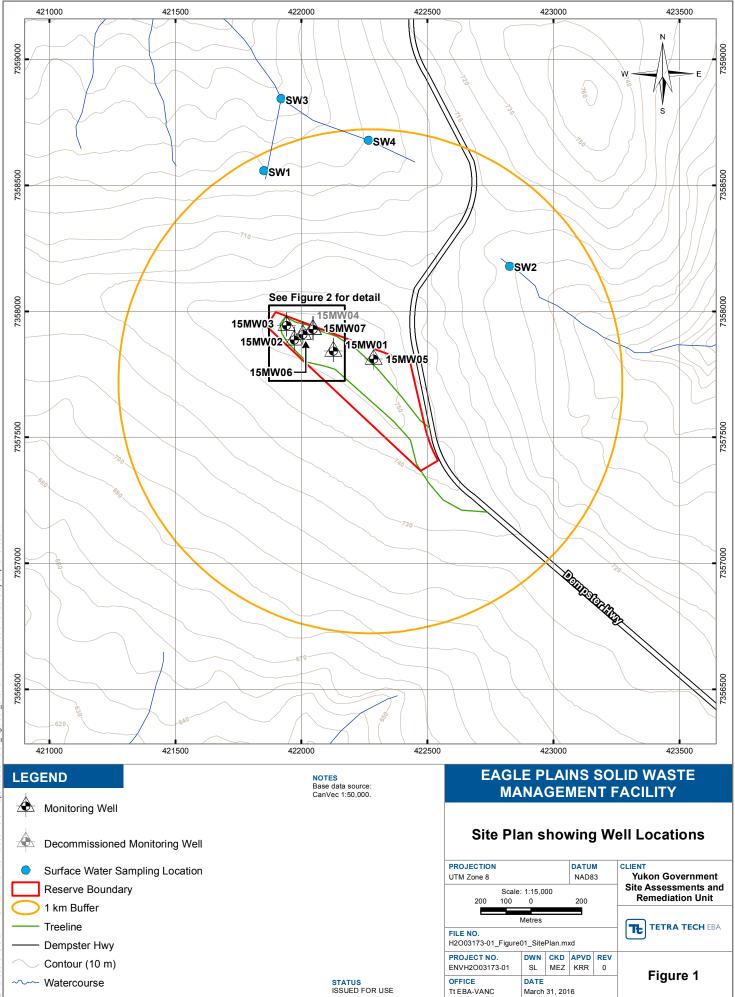
RPD - Relative percent difference calculated as (abs(C1-C2)/average(C1+C2))*100

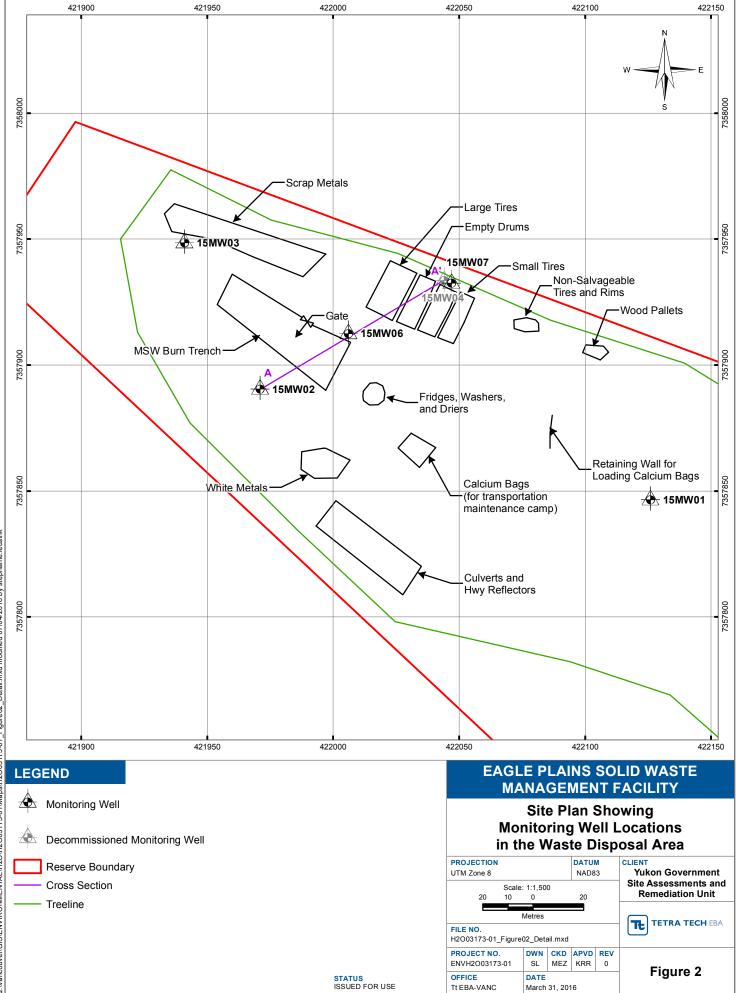
N/A - Not applicable

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results are less than detection limits or within 5 times the detection limits.

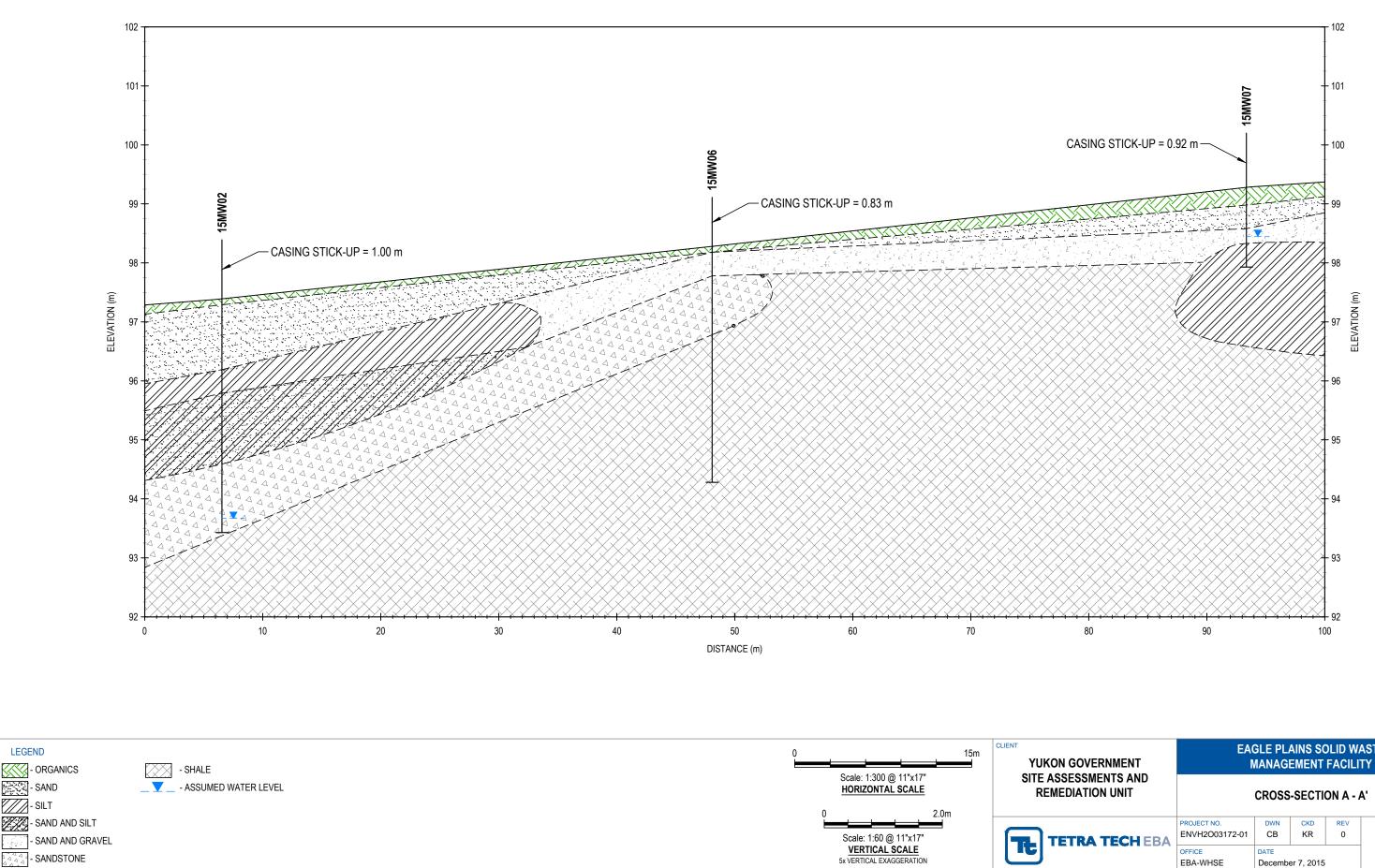
BOLD - RPD value greater than 30%

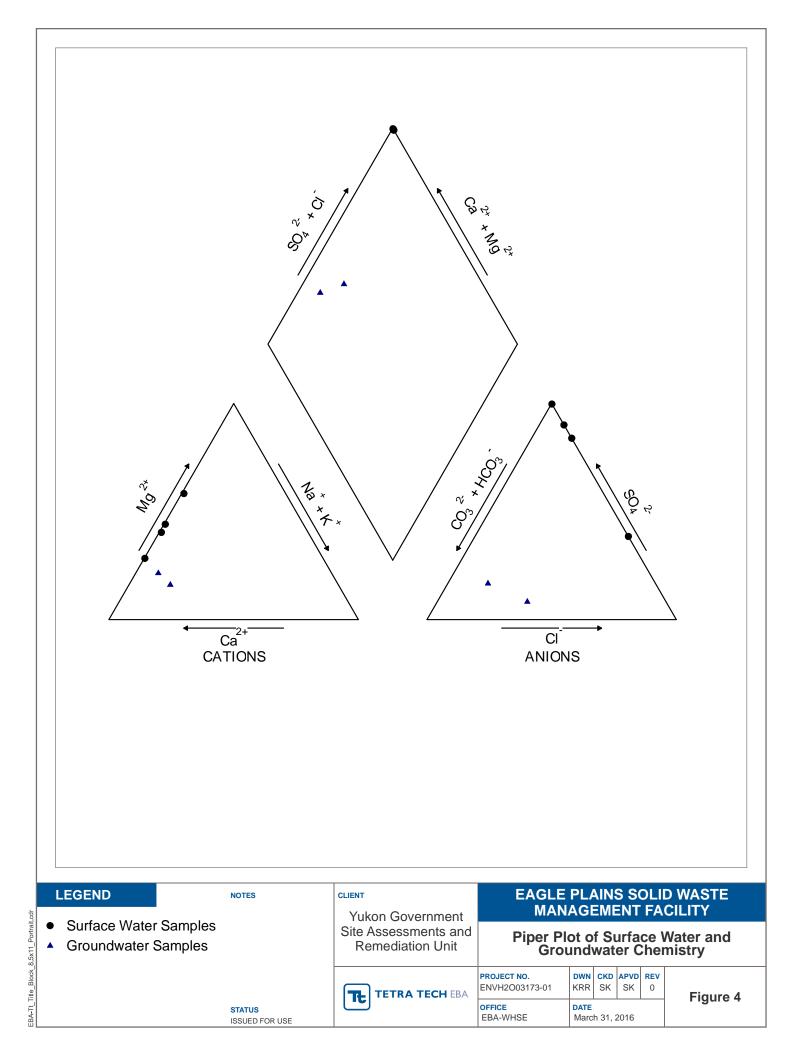
CONSULTING ENGINEERS & SCIENTISTS · www.eba.ca


Table 2_6_Monitoring Plan



FIGURES


- Figure 1 Site Plan Showing Well Locations
- Figure 2 Site Plan Showing Proposed Well Locations in Waste Disposal Area
- Figure 3 Cross-section A A'
- Figure 4 Piper Plot of Surface Water and Groundwater Samples



Q:\Vancouver\GIS\ENVIRONMENTAL\H20\H2003173-01\Maps\H2003173-01_Figure02_Detail.mxd modified 07/04/2016 by stephanie.leusink

GOVERNMENT		GLE PL/ /IANAGI			
SESSMENTS AND EDIATION UNIT		CROSS	-SECTI	ON A - /	A '
TRA TECH EBA	PROJECT NO. ENVH2O03172-01	DWN CB	ско KR	REV 0	Figure 3
	OFFICE EBA-WHSE	DATE Decembe	er 7, 2015		J H H H

PHOTOGRAPHS

Photo 1	Pallets, tires and rims along northern boundary. Photo taken October 7, 2015 at 9:00 am.
Photo 2	Empty fuel drums and tires along northern boundary. Photo taken October 7, 2015 at 9:00 am
Photo 3	Large tires and scrap metal along northern boundary. Photo taken October 7, 2015 at 9:00 am.
Photo 4	Scrap metal along northern boundary. Photo taken October 7, 2015 at 9:01 am.
Photo 5	Refrigerators, washing machines and driers southeast of MSW burn trench. Photo taken October 7, 2015 at 9:02 am.
Photo 6	Calcium bags stored on pallets. Photo taken October 7, 2015 at 9:03 am.
Photo 7	Highway markers along southern boundary. Photo taken October 7, 2015 at 9:03 am.
Photo 8	Culverts and highway markers along southern boundary. Photo taken October 7, 2015 at 9:04 am.
Photo 9	Culverts along southern boundary. Photo taken October 7, 2015 at 9:04 am.
Photo 10	Sandstone encountered at 15MW03 (1.5 – 2.2 m bg). Photo taken on October 7, 2015 at 12:10 pm.
Photo 11	Saturated sand and gravel overlying fine grained silt and clay at 15MW04 at a depth of 0.7 to 1.5 m bg. Photo taken on October 7, 2015 at 2:30 pm.
Photo 12	Organic rich shale bedrock encountered at 15MW01 a depth of 5.5 – 6.0 m bg. Photo taken October 7, 2015 at 4:12 pm.
Photo 13	Organic rich shale encountered at 15MW06 at depth of 3.0 – 3.3 m bg. Photo taken on October 8, 2015 at 11:30 am.
Photo 14	Organics, sand and gravel containing household garbage encountered at 15MW07 at a depth of 0 – 0.3 m bg. Photo taken on October 8, 2015 at 12:07 pm.
Photo 15	Moist to saturated sand and gravel overlying fine grained silt and clay encountered at 15MW07 at a depth of 0.6 – 1.2 m bg. Photo taken on October 8, 2015 at 12:07 pm.
Photo 16	15MW02 taken on October 10, 2015 at 11:57 am.
Photo 17	15MW03 taken on October 10, 2015 at 12:02 pm.
Photo 18	15MW06 taken on October 10, 2015 at 12:08 pm.
Photo 19	15MW07 taken on October 10, 2015 at 12:12 pm.
Photo 20	Empty fuel drums and 15MW07. Photo taken October 10, 2015 at 2:48 pm.
Photo 21	15MW05 taken on October 10, 2015 at 2:51 pm.

- Photo 22 15MW01 taken October 10, 2015 at 11:54 am.
- Photo 23 SW1 taken on October 9, 2015 at 1:03 pm.
- Photo 24 SW2 taken on October 9, 2015 at 4:03 pm.
- Photo 25 SW3 taken on October 9, 2015 at 5:27 pm.
- Photo 26 SW4 taken on October 10, 2015 at 2:15 pm.

Photo 1: Pallets, tires and rims along northern boundary. Photo taken October 7, 2015 at 9:00 am.

Photo 2: Empty fuel drums and tires along northern boundary. Photo taken October 7, 2015 at 9:00 am.

Photo 3: Large tires and scrap metal along northern boundary. Photo taken October 7, 2015 at 9:00 am.

Photo 4: Scrap metal along northern boundary. Photo taken October 7, 2015 at 9:01 am.

Photo 5: Refrigerators, washing machines and driers southeast of MSW burn trench. Photo taken October 7, 2015 at 9:02 am.

Photo 6: Calcium bags stored on pallets. Photo taken October 7, 2015 at 9:03 am.

Photo 7: Highway markers along southern boundary. Photo taken October 7, 2015 at 9:03 am.

Photo 8: Culverts and highway markers along southern boundary. Photo taken October 7, 2015 at 9:04 am.

Photo 9: Culverts along southern boundary. Photo taken October 7, 2015 at 9:04 am.

Photo 10: Sandstone encountered at 15MW03 (1.5 – 2.2 m bg). Photo taken on October 7, 2015 at 12:10 pm.

Photo 11: Saturated sand and gravel overlying fine grained silt and clay at 15MW04 at a depth of 0.7 to 1.5 m bg. Photo taken on October 7, 2015 at 2:30 pm.

Photo 12: Organic rich shale bedrock encountered at 15MW01 a depth of 5.5 – 6.0 m bg. Photo taken October 7, 2015 at 4:12 pm.

Photo 13: Organic rich shale encountered at 15MW06 at depth of 3.0 – 3.3 m bg. Photo taken on October 8, 2015 at 11:30 am.

Photo 14: Organics, sand and gravel containing household garbage encountered at 15MW07 at a depth of 0 - 0.3 m bg. Photo taken on October 8, 2015 at 12:07 pm.

Photo 15: Moist to saturated sand and gravel overlying fine grained silt and clay encountered at 15MW07 at a depth of 0.6 – 1.2 m bg. Photo taken on October 8, 2015 at 12:07 pm.

Photo 16: 15MW02 taken on October 10, 2015 at 11:57 am.

Photo 17: 15MW03 taken on October 10, 2015 at 12:02 pm.

Photo 18: 15MW06 taken on October 10, 2015 at 12:08 pm.

Photo 19: 15MW07 taken on October 10, 2015 at 12:12 pm.

Photo 20: Empty fuel drums and 15MW07. Photo taken October 10, 2015 at 2:48 pm.

Photo 21: 15MW05 taken on October 10, 2015 at 2:51 pm.

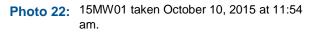


Photo 23: SW1 taken on October 9, 2015 at 1:03 pm.

Photo 24: SW2 taken on October 9, 2015 at 4:03 pm.

Photo 25: SW3 taken on October 9, 2015 at 5:27 pm.

Photo 26: SW4 taken on October 10, 2015 at 2:15 pm.

APPENDIX A TETRA TECH'S GENERAL CONDITIONS

GEOENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of Tetra Tech EBA's client. Tetra Tech EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. The Client warrants that Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA. The use and alteration of raw data (data submitted in Excel format and AutoCAD files) provided to the Client as part of this project (e.g., for inclusion into an external database) is permitted at the sole risk of the Client. Tetra Tech EBA does not accept any responsibility for the accuracy of any further product or analysis completed by others based on the raw data provided.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by Tetra Tech EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

APPENDIX B EAGLE PLAINS SWF PERMIT (NO. 80-011)

WASTE MANAGEMENT PERMIT

Issued for the Operation of a Waste Disposal Facility and a Special Waste Management Facility Pursuant to the *Environment Act*, the *Solid Waste Regulations* and the *Special Waste Regulations*

Permittee:	Yukon govern	Yukon government, Highways & Public Works				
Mailing Address:	Box 2703 (W-	Box 2703 (W-12), Whitehorse, YT Y1A 2C6				
Site Location:	Waste disposal facilities listed in Appendix A					
Authorized Repres Phone/Fax: Email:		Michael McArthur (867) 667-5452 / (867) 667-5761 Michael.McArthur@gov.yk.ca				
Effective Date: Expiry Date:	Date of Director's Signature December 31, 2023					

This permit replaces permit #80-011 issued on August 26, 2013.

Scope of Authorization: In accordance with your application, you are authorized to:

- a. operate the waste disposal facilities listed in Appendix A; and
- b. operate a special waste management facility for the collection and storage of all special wastes, excluding those in Class 1 and Class 7 as defined in the *Transportation of Dangerous Goods Act* (Canada), at the above site location (the "site"); and
- c. transport: all special wastes, excluding those in Class 1 and Class 7 as defined in the *Transportation of Dangerous Goods Act* (Canada), to and from the above site location (the "site"), as set out in the terms and conditions of this permit.

day of October 2015 Dated this 🗙

Director, Environmental Programs Branch Environment Yukon

DEPARTMENT OF ENVIRONMENT **ENVIRONMENTAL PROGRAMS** Whitehorse, Yukon Certified true copy of original 2. Initia

1. DEFINITIONS

DEPARTMENT OF /IRONMENT ENVIRONMENTAL PROGRAMS Whitchorse, Yukon Certified true copy of original Date 27.004.15 Initials

1. In this permit,

"Act" means the Environment Act, R.S.Y. 2002, c. 76;

"alternative cover material" means cover material approved by an environmental protection analyst that is not earthen material and is placed over exposed waste in a cell on a permanent or temporary basis;

"approved plan" means a plan that is submitted by the permittee and approved by an environmental protection analyst under this permit and includes any terms and conditions specified by the environmental protection analyst in the approval;

"associated personnel" means all employees, contractors and volunteers involved in the permitted activities;

"Branch" means the Environmental Programs Branch, Environment Yukon;

"cell" means a discrete area of a facility in which solid waste is deposited for permanent disposal, and includes such areas that are no longer used for that purpose;

"closure" means activities undertaken to reduce the environmental impact of a facility when a cell reaches capacity or the facility is no longer accepting waste, such as placing final cover material over cells or restricting public access to the site, and may refer to closure of an individual cell or closure of an entire facility;

"construction and demolition waste" means the debris generated during the construction, renovation, and demolition of buildings, structures, roads, and bridges (e.g., concrete, wood, drywall, metals, glass, and salvaged building components);

"contaminated material" means any soil, snow, sediment or water that has one or more parameters in excess of applicable standards in the *Contaminated Sites Regulation*, O.I.C. 2002/171;

"dangerous wildlife" means wildlife so defined in the Wildlife Act, R.S.Y. 2002, c. 229;

"designated materials" means all materials identified in Schedule A of the *Designated Materials Regulation*, O.I.C. 2003/184;

"disposal areas" means the location(s) of the cell(s);

"environmental protection analyst" means an employee of the Branch so designated by the Minister of Environment under the Act;

"environmental protection officer" means an employee of the Government of Yukon so designated by the Minister of Environment under the Act;

"facility" means the waste disposal facility and the special waste management facility located at the site;

"landfill" means a facility authorized to accept waste for final disposal, and does not include transfer stations or modified transfer stations;

"modified transfer station" means a waste disposal facility where construction and demolition waste is permanently disposed on site and all other types of waste are removed from the site for recycling or disposal at another location permitted to accept those wastes;

"ODS" means an ozone-depleting substance or other halocarbon identified in the *Ozone-Depleting Substances and Other Halocarbons Regulation, O.I.C. 2000/127;*

"putrescible waste" means food- or plant-based waste which can decompose or rot;

"qualified professional" means a person with a post-secondary education and/or professional experience in a relevant field that is technically capable of performing the work in the opinion of an environmental protection analyst;

"Regulations" means any or all of the *Air Emissions Regulations*, O.I.C. 1998/207, the *Solid Waste Regulations*, O.I.C. 2000/11, the *Contaminated Sites Regulation*, O.I.C. 2002/171, the *Designated Materials Regulation*, O.I.C. 2003/184, the *Ozone Depleting Substances and Other Halocarbons Regulation*, O.I.C. 2000/127, the *Storage Tank Regulations*, O.I.C. 1996/194, the *Spills Regulations*, O.I.C. 1996/193, and the *Special Waste Regulations*, O.I.C. 1995/047, as applicable;

"solid waste" includes waste which originates from residential, commercial, industrial or institutional sources or from the demolition or construction of buildings or other structures, or which is specified in a solid waste management plan to be solid waste and for greater certainty includes litter, as defined in the *Act*, but does not include untreated brush or wood products that are not mixed with other materials;

"special waste management facility" means an operation which handles or disposes special wastes generated by other persons or operations, and includes without limitation a community collection system which is intended to collect or transport special waste to a special waste management facility in the Yukon;

"service area" means the population that is anticipated to be served by a facility, whether or not that population resides entirely within municipal or other boundaries;

"spill" means a spill in excess of the amounts specified in Schedule A of the *Spills Regulations*, O.I.C. 1996/193, or that is abnormal in quantity or quality in light of all the circumstances of the release;

"storage tank" means a closed container with a capacity of more than 230 litres that is designed to be installed in a fixed location, and includes either an aboveground storage tank or an underground storage tank;

"substance" means a hazardous substance, pesticide, contaminant, or special waste;

"texas gate" means an electrified metal grid on the ground that can be passed over by vehicles but will prevent entry by animals;

"transfer station" means a waste disposal facility where no waste is permanently disposed on site, and all types of waste are removed from the site for recycling or disposal at another location permitted to accept those wastes;

"vehicle" has the same meaning as in the Motor Vehicles Act, R.S.Y. 2002, c. 153; and

"waste manifest" means the shipping document required to be completed by the permittee as set out in this permit in the form approved by an environmental protection OFENVIRONMENT ENVIRONMENTAL PROGRAMS

714

Date

Whitehorse, Yukon Certified true copy of original 2. Any term not defined in this permit that is defined in the Act or the Regulations has the same meaning as in the Act or the Regulations.

2. GENERAL

- 1. No condition of this permit limits the applicability of any other law or bylaw.
- 2. The permittee shall ensure that all activities authorized by this permit occur on property that the permittee has the right to enter upon and use for that purpose.
- 3. The permittee shall ensure that all associated personnel:
 - a) have access to a copy of this permit;
 - b) are knowledgeable of the terms and conditions of this permit; and
 - c) receive the appropriate training for the purposes of carrying out the requirements of this permit.
- 4. The permittee shall provide notice in writing to an environmental protection analyst prior to any significant change of circumstances at the site, including without limitation:
 - a) closure of the facility;
 - b) change of ownership of the facility;
 - c) discontinuation of any regulated activity;
 - d) collecting or transporting special wastes other than those authorized by this permit; or
 - e) a change to the mailing address or phone number of the permittee.
- 5. Where conflicts exist between this permit, the permit application or elements of any plan pertaining to any activity regulated under the Act, this permit shall prevail.
- 6. If an inspection reveals that the facility or equipment is in any way not in compliance with this permit or approved plans developed in accordance with this permit, the permittee shall repair the damage or take other actions as required to bring the facility or equipment into compliance.
- 7. For clarity, all obligations of the permittee under this permit survive the expiry.

3. PLANS

- 1. The document entitled "Swift River Solid Waste Management Facility Solid Waste Management Plan 2013-2023," prepared by Tetra Tech EBA and dated July 2014, is a waste management plan approved by the Branch that will expire on June 30, 2023.
- 2. The permittee shall amend the document entitled "Drury Creek Solid Waste Management Facility Solid Waste Management Plan 2013-2023," prepared by Tetra Tech EBA and dated July 2014, in accordance with the letter from the Branch regarding the Drury Creek waste management plan dated December 4, 2014, and shall submit the amended waste management plan to an environmental protection analyst by January 31, 2016. DEPARTMENT OF ENVIRONMENT

ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date: 27.00415. Initials

- 3. The permittee shall amend the document entitled "Eagle Plains Solid Waste Management Facility Solid Waste Management Plan 2013-2023," prepared by Tetra Tech EBA and dated July 2014, in accordance with the letter from the Branch regarding the Eagle Plains waste management plan dated December 4, 2014, and shall submit the amended waste management plan to an environmental protection analyst by January 31, 2016.
- 4. The permittee shall submit an updated waste management plan to the Branch one year in advance of the expiry of an approved waste management plan for the facility, or as otherwise directed in writing by an environmental protection analyst.
- 5. When the permittee is required to submit a plan, report or other document under this permit, the permittee shall:
 - a) ensure the plan, report or other document meets the requirements for that type of plan, report or other document as established by the Branch in writing;
 - b) submit the plan, report or other document in writing to an environmental protection analyst;
 - c) not undertake any of the activities described in the plan, report or other document until it is approved in writing by an environmental protection analyst;
 - d) implement the plan, report or other document as of the date it is approved in writing by an environmental protection analyst; and
 - e) ensure that all associated personnel are familiar with the plan, report or other document.
- 6. If the permittee wants to amend an approved plan, report or other document, the permittee shall submit the proposed amendment to an environmental protection analyst as if the amendment were a plan, report or other document under section 3.5 of this permit.
- 7. If an environmental protection analyst directs in writing and with reasons that an approved plan, report or other document be amended, the permittee must prepare the required amendment and submit it as if it were a plan, report or other document referred to in section 3.5 of this permit.

4. FENCING AND SECURITY

- 1. The permittee shall install and maintain, in accordance with written guidelines developed by the Branch, an electric exclusion fence(s) and gates that encompass all putrescible waste storage and disposal areas at each facility. The permittee shall ensure that all substances that are an attractant to animals are stored within the perimeter of the electric fence or shall expand the electric fence to encompass the storage areas for those substances. The fence and gates shall be adequate to prevent dangerous wildlife from entering the encompassed areas of the facility.
- 2. The fences and gates referenced in paragraph 4.1 above must be:

- b) activated between December 1 and March 31 of each year if there are tracks or other signs of dangerous wildlife attempting to access the facility; and
- c) activated upon the written direction of an environmental protection officer.
- 3. If the permittee wishes to deactivate the electric fence for any length of time during the period of operation referenced in paragraph 4.2, except as required for routine fence maintenance, the permittee shall obtain prior written or verbal approval from an environmental protection officer.
- 4. The permittee shall conduct weekly inspections of all electric fences and shall maintain them as necessary during periods of activation as specified in paragraph 4.2 to ensure that:
 - a) the fence is sufficiently charged to deter dangerous wildlife;
 - b) the fence has not been breached by wildlife and there are no signs of digging underneath the fence by dangerous wildlife;
 - c) there is no vegetation, windblown litter or other items along the perimeter of the fence, or contacting the fence, that may act as a ground; and
 - d) there are no trees or snow drifts near the fence that would allow dangerous wildlife to enter the facility over the fence.
- 5. During the weekly inspections referred to in paragraph 4.4, the permittee shall inspect the fence perimeter for tracks or other signs of dangerous wildlife attempting to access the facility.
- 6. If the facility is open to the public when staff are not on site, the permittee shall install and maintain a texas gate at each entrance and exit of each facility.
- 7. If the facility is closed to the public when staff are not on site, the permittee shall install and maintain either a texas gate or an electrified rigid swinging gate at each entrance and exit of each facility. Any rigid swinging gates are to be closed and secured every time staff leave the facility.
- 8. The permittee shall install and maintain fencing or other comparable measures to prevent the release of solid waste from the facility.
- 9. The permittee shall install and maintain signs marking the areas, if any, of the facility that are not to be accessed by the public and erect or construct fencing, gates or other similar structures to prevent public access to these areas.
- 10. The permittee shall report any incidents involving dangerous wildlife to the Government of Yukon, Conservation Officer Services Branch or the TIPP line (**1-800-661-0525**).

5. SIGNAGE AND SEGREGATION

The permittee shall install and maintain signs at the facility visible to the public containing the telephone contact numbers for the facility manager, the local fire protection services, the district conservation officer, and the 24-hour Yukon Spill Report Centre (867-667-7244).
 DEPARTMENT OF ENVIRONMENT CF ENVIRONMENT ENVIRONMENTAL PROGRAMS

Whitehorse, Yukon Certified true copy of original Date: 27. OCH 2. Initials:

- 2. The permittee shall:
 - a) establish and maintain separate areas for the collection of each type of solid waste, special waste, and designated materials accepted at the facility, including, but not limited to, electronic and electrical waste;
 - b) install and maintain appropriate signs identifying each of these areas; and
 - c) ensure that the facility is maintained to enable vehicles to access each of these areas.
- 3. The permittee shall conduct weekly visual site inspections to verify correct segregation of wastes and shall transfer all improperly segregated wastes to their appropriate areas, with the exception of removing wastes from the area where waste originating from domestic sources is disposed of.
- 4. The permittee shall install and maintain signs, no later than June 30, 2016, identifying appropriate disposal information, or phone number(s) or website(s) to consult for appropriate disposal information, for common special wastes including, but not limited to:
 - Waste oil
 - Waste antifreeze
 - Waste batteries
 - Waste solvents
 - Waste fuels

- Waste pesticides
- Waste fluorescent tubes
- Waste aerosol cans
- Waste cleaners

6. SOLID WASTE OPERATIONS

- 1. The permittee shall ensure that all solid waste to be disposed of at the facility is deposited into a cell in accordance with this permit.
- 2. The permittee shall ensure that all putrescible solid waste to be transferred offsite is collected and stored in containers and that it is not stored for a period of greater than fourteen days prior to being transferred offsite.
- 3. The permittee shall receive written authorization from the operator of any municipal or Yukon government solid waste disposal facility prior to transferring any waste to that facility.
- 4. The permittee shall cover any exposed solid waste in a cell that could be moved by animals or wind with soil or other comparable material to a depth of 0.1 metres, or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds:
 - a) every day the facility is used if the facility has a service area of more than 5,000 people;
 - b) every seven days if the facility has a service area of 500 to 5,000 people;
 - c) every 21 days if the facility has a service area of less than 500 people; or
 - d) after every 0.5 metres of solid waste is deposited,

whichever occurs first.

DEPARTMENT OF ENVIRONMENT **ENVIRONMENTAL PROGRAMS** Whitehorse, Yukon Certified true copy of original Date 27.001.15. Initials

- 5. Paragraph 6.4 does not apply between November 15 and April 15 of each year if soil or other comparable cover material cannot be obtained within the service area. Should weather conditions preclude obtaining cover material outside the aforementioned dates, the permittee shall obtain written or verbal approval from an environmental protection officer.
- 6. The permittee may comply with paragraph 6.4 by covering exposed solid waste in a cell with an alternative cover material.
- 7. The permittee shall ensure that animal carcasses and animal parts (excluding carcasses, bones, etc. that are included with domestic food wastes) are buried at a landfill or modified transfer station at least 2 metres below the surface of the land, or by other means made inaccessible to animals, or transported to a permitted landfill or modified transfer station.
- 8. The permittee shall ensure that snow is stockpiled in a manner that will minimize the generation of leachate from active and closed cells.
- 9. The permittee shall submit to an environmental protection analyst for approval copies of all laboratory analytical results of any contaminated material before accepting it at the facility for deposition into a cell, and shall not allow materials containing contaminants in excess of the industrial land use standards in the *Contaminated Sites Regulation*, O.I.C. 2002/171, to be deposited into a cell.

7. FACILITY SPECIFICATIONS

- 1. The permittee shall submit a cell siting and construction plan for approval in accordance with written guidelines developed by the Branch prior to developing any new cells.
- 2. The permittee shall ensure that the bottoms and sides of all transfer bins are sealed and maintained to prevent the release of solid waste into the natural environment.
- 3. The permittee shall ensure that transfer bins are equipped with lids to prevent infiltration of precipitation and scavenging by birds and other animals.
- 4. The permittee shall ensure that all cells or portions of cells no longer used for the disposal of solid waste are covered with a geomembrane or a clay or composite liner that meets the thickness and permeability requirements for final cover material as established by the Branch in writing.
- 5. The permittee shall conduct inspections and maintenance of all cells or portions of cells that have been covered with final cover material as described in paragraph 7.2, as required to ensure the integrity of the cover material placed over the closed cells or portions of cells.

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date 27.004.15. Initials:

- 6. The permittee shall divert surface water from flowing into or pooling in or on active and closed cells through the use of controls such as trenches, berms, and grading techniques. For clarity, the permittee is not required to remove precipitation that falls on active or closed cells.
- 7. The permittee shall submit a closure plan for approval in accordance with written guidelines developed by the Branch and pepty for the Remoit any facility.
 ENVIRONMENTAL PROGRAMS

8. MONITORING

Whitehorse, Yukon Certified true copy of original Date: 2.7001 15 Initials:

- 1. The permittee shall install and maintain, at minimum, one monitoring well upgradient and two monitoring wells downgradient of the facility suitable for the detection of impacts to groundwater from the facility or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch. All active groundwater monitoring wells shall be maintained in good operating condition.
- 2. The permittee shall submit for approval, no later than March 31, 2016, a hydrogeological assessment of the Eagle Plains facility. The hydrogeological assessment must include the installation of one upgradient and two downgradient groundwater monitoring wells, at minimum, suitable for the detection of impacts to groundwater. The hydrogeological assessment shall include an evaluation of groundwater flow direction and gradient, estimated groundwater travel time to nearby receptors, and preparation of a conceptual hydrogeological model for the site. The report shall include a ground temperature monitoring plan for the site that will adequately monitor impacts to permafrost.
- 3. The permittee shall ensure that any groundwater monitoring wells that are damaged, obstructed, or otherwise compromised are rehabilitated or decommissioned in accordance with the *Contaminated Sites Regulation*, O.I.C. 2002/171, Protocol 7: Groundwater Monitoring Well Installation, Sampling and Decommissioning, and replaced if necessary in accordance with paragraph 8.1.
- 4. The permittee shall conduct the work described in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch, in accordance with all applicable protocols pursuant to the *Contaminated Sites Regulation*, O.I.C. 2002/171 and prior to the due date for the work.
- 5. The permittee shall submit records of the work identified in paragraph 8.4 within 60 days of conducting the work, including borehole logs, water elevation data, and geographic coordinates for each groundwater monitoring well or surface water monitoring location, as applicable. The permittee shall include a statement as to whether information gathered during the work changes the conclusions of the hydrogeological assessment report previously prepared for the facility.
- 6. If information gathered during the work identified in paragraph 8.4 changes the conclusions of the hydrogeological assessment report previously prepared for the

facility, the permittee shall update the hydrogeological assessment, including, but not limited to, groundwater flow direction and gradient, estimated groundwater travel time to nearby receptors, and the conceptual hydrogeological model. The permittee shall submit any updated hydrogeological assessments for approval within 90 days of conducting the work.

- 7. The permittee shall ensure that samples are collected and analyzed from all active groundwater monitoring wells at each facility in accordance with the facility-specific monitoring details in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch. The water level in all monitoring wells shall be recorded at each sampling event. Samples shall be taken twice each year the permit is in effect, once in the spring after the wells have thawed and once in the fall prior to the wells freezing, or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.
- 8. The permittee shall ensure that samples are collected and analyzed, using generally-accepted sampling practice, from all downgradient surface water bodies within 1 km of the facility that are identified in the hydrogeological assessment as being potentially impacted by the facility, in accordance with Appendix B, as updated from time to time by the Director of the Environmental Programs Branch. Samples shall be taken twice each year the permit is in effect, once in the spring and once in the fall, concurrently with each groundwater sampling event if possible, or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.
- 9. All water quality sampling must be conducted in accordance with all applicable protocols pursuant to the *Contaminated Sites Regulation*, O.I.C. 2002/171, that pertain to sampling and analysis. Sample collection must be carried out by trained personnel using appropriate equipment and procedures. All water samples shall be analyzed at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011.
- 10. All groundwater samples shall be analyzed for the following parameters in the field:
 - Temperature
 - Specific conductance
 - Oxidation-reduction potential
 - Dissolved oxygen
 - pH

and the following parameters in the lab:

- Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
- Dissolved metals
- Hardness
- Alkalinity
- Carbonate
- Bicarbonate
- pH

DEPARTMENT OF ENVIRONMEN ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Dater 2.7.0005. Initials

- Specific conductance
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- Volatile organic compounds
- Chemical oxygen demand
- LEPH_w (Light Extractable Petroleum Hydrocarbons in Water)
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- VPH_W (Volatile Petroleum Hydrocarbons in Water)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)
- or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.

11. All surface water samples shall be analyzed for the following parameters in the field:

- Temperature
- Specific conductance
- Oxidation-reduction potential
- Dissolved oxygen
- pH

and the following parameters in the lab:

- Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
- Total metals
- Hardness
- Alkalinity
- Carbonate
- Bicarbonate
- pH
- Specific conductance
- Total dissolved solids
- Ammonia
- Total organic carbon
- Chemical oxygen demand
- Biochemical oxygen demand
- LEPH_w (Light Extractable Petroleum Hydrocarbons in Water)
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- VPH_w (Volatile Petroleum Hydrocarbons in Water)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)

or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date: 2.7.024.15... Initials:

- 12. If the results of the analyses required under paragraphs 8.10 or 8.11 show deteriorating water quality with respect to any of the substances set out in Schedule 3 of the *Contaminated Sites Regulation*, O.I.C. 2002/171, as described in CSR Protocol 13: Adaptive Management, the permittee shall submit an adaptive management plan to address the contamination in accordance with that Protocol.
- 13. The permittee shall submit for approval a groundwater and surface water monitoring plan for each facility, prepared by a qualified professional, that includes, but is not limited to, recommended monitoring locations, monitoring frequency, and parameters, no later than January 31, 2017.
- 14. The permittee shall conduct ground temperature monitoring at the Eagle Plains facility in accordance with an approved ground temperature monitoring plan and the facility-specific monitoring details in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.

9. TRANSFER STATIONS

- 1. Following the conversion of a landfill or modified transfer station to a transfer station, the permittee shall submit a follow up report for approval documenting the cell closure activities conducted at the facility in accordance with written guidelines developed by the Branch.
- The permittee shall conduct water quality monitoring at the Eagle Plains facility in accordance with Part 8 of this permit for twenty-five years following approval of the follow up report submitted in accordance with paragraph 9.1, or as otherwise directed in Appendix B, as updated from time to time by the Director of the Environmental Programs Branch.
- 3. At the end of the sampling period specified in paragraph 9.2, the permittee shall ensure that all groundwater monitoring wells are decommissioned in accordance with the *Contaminated Sites Regulation*, O.I.C. 2002/171, Protocol 7: Groundwater Monitoring Well Installation, Sampling and Decommissioning.

10. STORAGE AND HANDLING OF SPECIAL WASTE

- 1. The permittee shall not handle special wastes other than those authorized by this permit.
- 2. The permittee shall not discard, destroy, treat, process, incinerate, or recycle special wastes unless specifically authorized by this permit, except for mixing or dilution authorized by an environmental protection officer as an acceptable treatment or disposal option for the special waste.
- 3. The permittee shall not combine different types of special waste in the same container.

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date 2.7,024,5... Initials

- 4. The permittee shall ensure that special wastes are stored and handled in such a manner as to prevent their release into the environment.
- 5. The permittee shall ensure that:
 - a. all drums and other portable containers containing special wastes are covered or stored out of inclement weather;
 - b. all drums and other portable containers containing special wastes are stored off the ground;
 - c. all containers used to store special waste are closed at all times during storage;
 - d. special wastes are stored in a manner that will prevent incompatible substances from reacting adversely with each other;
 - e. containers used for the storage of special waste are made of materials that will not adversely react with the special waste;
 - f. special wastes stored in leaking containers are immediately transferred to intact containers; and
 - g. all containers used for the storage of special waste are clearly marked to identify what special waste is stored in the container.
- 6. The permittee shall inspect special waste storage containers:
 - a) weekly in terms of visual inspections for leaks;
 - b) monthly in terms of an inventory of special wastes stored on site;
 - c) annually in terms of tank/container quality, piping, and auxiliary equipment; and
 - d) upon request from an environmental protection officer.
- 7. The permittee shall not release any residue at the bottom of a container used for the storage of special waste to the environment. Such residue shall be collected by the permittee and considered to be special waste until proven by testing to not be special waste.
- 8. The permittee shall not store special wastes in a storage tank unless specifically authorized by a permit issued pursuant to the *Storage Tank Regulations*, O.I.C. 1996/194.
- 9. The permittee shall ensure that public access to all special waste storage and handling areas is prevented, except as required during regular operating hours.
- 10. If an inspection reveals that the amount of special waste stored at the site may pose a risk to human health or the environment, the permittee shall develop and implement a final disposal plan for the special waste, as directed in writing by an environmental protection officer.

11. TRANSPORT AND TRANSFER OF SPECIAL WASTE

1. The permittee shall ensure that all special wastes are transported and transferred in such a manner as to prevent their release into the environment DEPARTMENT OF ENVIRONMENT

ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date 27.004.15. Initials

- 2. The permittee shall complete a waste manifest documenting each shipment of special wastes from the site. The permittee shall distribute copies of the waste manifest in the manner described thereon.
- 3. The permit number **YG80-011** shall be used as the Provincial Identification Number on waste manifests used for the transport of special wastes.
- 4. The permittee shall ensure that all vehicles operated by the permittee and carrying any special wastes are secured to prevent access by unauthorized persons.
- 5. The permittee shall ensure that special wastes are transported to a special waste management facility in the Yukon or another jurisdiction that is permitted to receive those special wastes.
- 6. The permittee shall ensure that special wastes are transported by a carrier permitted in the Yukon to transport the special wastes. DEPARTMENT OF ENVIRONMENT

12. SPILLS

ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original

- 1. The permittee shall contact either an environmental protection officer, pathe 24-hour. Yukon Spill Report Centre (867-667–7244) as soon as possible under the circumstances in the event of a release, spill, unauthorized emission, discharge, or escape of any substance listed in the *Spills Regulations*, O.I.C. 1996/193, or any special wastes.
- 2. The permittee shall ensure that clean-up equipment appropriate for the amount and type of special waste stored on site (such as sorbent, shovel, broom, bucket, gloves, boots, etc.) is readily accessible at all locations where special wastes are handled or stored.
- 3. The permittee shall ensure that spill procedures are developed, maintained, and posted at all locations where special wastes are handled or stored, and that all associated personnel are familiar with those procedures. The spill procedures must meet the requirements for that type of plan as established by the Branch in writing.
- 4. In the event that an inspection or other information leads the proponent to believe that ODS are being released into the environment from an appliance or other container deposited at the site, the proponent shall ensure that the ODS are removed from the appliance or other container in accordance with the *Ozone-Depleting Substances and Other Halocarbons Regulation*, O.I.C. 2000/127.
- 5. The permittee shall ensure that contaminated material resulting from a release, spill, unauthorized emission, discharge, or escape of any substance listed in the *Spills Regulations*, O.I.C. 1996/193, or any special wastes is properly handled in accordance with the *Contaminated Sites Regulation*, O.I.C. 2002/171.

13. ANNUAL REPORT

1. The permittee shall submit for approval an annual report for each facility summarizing activities carried out under this permit. The annual report shall be submitted prior to

March 31st of the year following each year that the permit is in effect in a format acceptable to an environmental protection analyst, and shall cover the period from January 1st to December 31st. The annual report shall include the information described in this Part and any other information as required by an environmental protection analyst. If there is no information to report for a particular section of the annual report, the permittee shall explicitly include a statement to that effect in the annual report.

- 2. The annual report described in paragraph 13.1 shall include the following information related to water quality monitoring:
 - a) PDF laboratory analytical certificates and Excel spreadsheets of all water quality data collected in accordance with the facility-specific monitoring details in Appendix B, including purge volumes, water level measurements, and visual observations of turbidity;
 - b) An analysis of the water quality data by a qualified professional, including the qualified professional's opinion on:
 - a. Data quality;
 - b. Sampling or analytical errors and anomalies;
 - c. Recommendations for data improvement and/or resampling;
 - d. Any updates to, or confirmations of, the conceptual hydrogeological model for the site;
 - e. Groundwater flow direction;
 - f. Exceedances of the applicable *Contaminated Sites Regulation* water use standards; and
 - g. Observed or suspected impacts to water quality, including an analysis of spatial and temporal trends in contaminant concentrations over the previous 3 years;
 - c) A list of any groundwater monitoring wells that are known or suspected to be damaged or obstructed, and any actions taken to rehabilitate or decommission those groundwater monitoring wells;
 - d) A list of any groundwater monitoring wells that were decommissioned; and
 - e) A list and description of any new groundwater monitoring wells that were installed.
- 3. The annual report described in paragraph 13.1 shall include the following information related to cell construction, maintenance, and closure activities:
 - a) Details of any cells fully or progressively closed in accordance with written guidelines developed by the Branch;
 - b) The results of inspections of cover material placed over fully or progressively closed cells, including any evidence of erosion, ponding, settlement and revegetation, and a general description of any maintenance conducted to maintain the cover material integrity;
 - c) A description of any existing cells that are expected to reach capacity within a period of 12 months and/or any plans to construct new cells within a period of 12 months, and an estimate of when the cell(s) will be closed or constructed; and
 - d) An updated site diagram depicting the location of all active and closed cells, groundwater monitoring wells, and solid and special waste storage locations, or DEPARTMENT OF ENVIRONMEN

ENVIRONMENTAL PROGRAMS Whitehorse, Yukea Certified true copy of original

Date: 27,004,15. Initials?

confirmation that the site diagram submitted with the previous annual report is still accurate.

- 4. The annual report described in paragraph 13.1 for the Eagle Plains facility shall contain the following information related to ground temperature monitoring:
 - a) All ground temperature data collected; and
 - b) In every 3rd annual report, an analysis of the ground temperature data by a qualified professional, beginning with the 2017 annual report, including, but not limited to, the qualified professional's opinion on:
 - Observed or suspected impacts to permafrost, including an analysis of spatial and temporal trends in ground temperature over the previous 3 years; and
 - b. Recommended mitigation measures, if applicable.

14. <u>Records</u>

- 1. The permittee shall keep the following records at their office:
 - a) an updated site plan showing the location of all active and closed cells and solid and special waste segregation areas at the facility;
 - b) a copy of each plan submitted under this permit, and any amendments to and approvals of each plan;
 - c) summaries of all inspections carried out by the permittee under this permit (including the name of the person conducting the inspection, the date of each inspection, any observations recorded during the inspection, actions taken as a result of those observations, and the date each action was taken);
 - d) results of surface water and groundwater testing conducted at the site, including any interpretations of monitoring results to determine trends in contaminant levels over time;
 - e) reports on hydrogeological assessments undertaken at the site;
 - f) notes concerning any release, spill, unauthorized emission, discharge or escape that occurred at the facility, including the substance involved and estimated quantity, the date of observation, any spill reports made, and clean-up procedures implemented;
 - g) any deficiencies remedied in accordance with paragraph 2.6, and how and when they were remedied;
 - h) a copy of any waste manifests used to transport special wastes to or from the facility;
 - i) before and after photographs and a detailed description of any activities undertaken to construct a new cell; and
 - j) before and after photographs and a detailed description of any activities undertaken to close a cell.
- 2. The permittee shall keep all records required under this permit in a format acceptable to an environmental protection officer for a minimum of three years and make them available for inspection by an environmental protection officer upon request.

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original バ.. Initials Date 27004

APPENDIX A: WASTE DISPOSAL FACILITIES

Facility Name	Facility Type	Location
Drury Creek	Landfill	km 470.1 Robert Campbell Hwy Disposition 15304 134°23'W, 62°12'N
Eagle Plains	Transfer station	Km 386 Dempster Hwy Disposition 106I07-008 136°44'W, 66°19'N
Swift River	Landfill	km 1169.3 Alaska Hwy Disposition 2000-0630 131°25'W, 60°25'N

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date 2.7000 Initials

Eagle Plains*

Groundwater Flow Direction: To be determined

Groundwater Monitoring Wells

Well ID

Classification

UTM Easting

To be determined

Surface Water Monitoring Locations

Location ID UTM Zone

UTM Northing

To be determined

Ground Temperature Monitoring

Thermistor ID

To be determined

*Groundwater flow direction and information for groundwater monitoring well ID, surface water monitoring location ID, and thermistor ID shall be determined based on the hydrogeological assessment report for the facility, which is to be submitted by March 31, 2016 in accordance with paragraph 8.2 of the permit.

Director, Environmental Programs Branch

ober 2 Date

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROGRAMS Whitehorse, Yukon Certified true copy of original Date: 2.702465, Initials:

APPENDIX C GROUNDWATER MONITORING WELL LOGS

G	Government of Yukon -		Borehole No: 15MW01								
	ç	Site Assessment &	Project: Hydrogeological Assessment Eagle Plains SWF	Project No: ENVH2O03173-01							
			Location:								
		Remediation	Eagle Plains, Yukon								
Depth (m)	Method	Soil Description	Sample Type	Notes and Comments							
0			■ Vapour readings (ppmv) 200 400 600 800								
0 1 1 1 2 1 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1		SANDSTONE - fractured, dry, soft, oxidized SHALE - organics, crumbly, black, oxidized		Pipe stickup = 0.81 metres 2 •••• •••• •							
— 0	Sonic	- damp, very black - hard		16 ⁻¹ 18 ⁻¹ 18 ⁻¹ 20 ⁻¹ 20 ⁻¹ 22 ⁻¹ 20							
9		END OF BOREHOLE (10.06 metres) slough - 9.30 metres Monitoring well installed to 4.14 metres Thermistor #2551 installed at 9.30 metres	4510								
11 12 13 14 14		Thermistor #2551 installed at 9.30 metres		36 ⁴ 38 ⁴ 40 ⁴ 40 ⁴ 42 ⁴ 44							
- 15			Contractor: Poort Longuage	Completion Depth; 10.06 m							
			Contractor: Boart Longyear	Completion Depth: 10.06 m							
7	Γ.	TETRA TECH EBA	Drilling Rig Type: Track Mounted	Start Date: 2015 October 7							
11			Logged By: KR	Completion Date: 2015 October 7							
			Reviewed By: SK	Page 1 of 1							

ENVIRONMENTAL ZONE8.GPJ EBA.GDT 16/4/6

G	Government of Yukon -		Borehole No: 15MW02									
		Site Assessment &	Project: Hydrogeological A	sse	ssment Eagle Plains SWF	Project No: ENVH2O03173-	01					
			Location:									
		Remediation	Eagle Plains, Yukon									
Depth (m)	Method	Soil Description		Sample Type		Notes and Comments	#2		Depth (ft)			
0					■ Vapour readings (ppmv) 200 400 600 800				0			
1 1 2 3 4 5 6	Sonic	ORGANICS - (100 mm thick) SAND - some rounded to subrounded gravel and cobble wet, orange, oxidized SILT - firm, dark brown, no visible ice SAND AND SILT - crumbly, dry, hard, grey - weathered bedrock SANDSTONE - highly fractured, dry, oxidized END OF BOREHOLE (3.96 metres) Monitoring well installed to 3.96 metres Thermistor #2 installed to 3.96 metres	is, fine grained sand, moist to			Pipe stickup = 1.00 metre			2 4 4 4 10 10 10 10 10 10 10 10 10 10			
7 8 9 10 10 10 11									24-1-1-1-1-224 26-1-1-1-1-224 28-1-1-1-224 30-1-1-1-224 30-1-1-1-224 30-1-1-1-224 32-1-1-1-224 32-1-1-1-224 34-1-1-1-244 34-1-1-1-244 34-1-1-1-244 34-1-1-1-244 34-1-1-1-244 34-1-1-1-244 34-1-1-1-244 34-1-1-1-1-244 34-1-1-1-1-244 34-1-1-1-1-244 34-1-1-1-1-244 34-1-1-1-1-1-1-244 34-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
13 14 15	ł	TETRA TECH EBA	Contractor: Boart Longyea Drilling Rig Type: Track Mo Logged By: KR Reviewed By: SK		ed	Completion Depth: 3.96 m Start Date: 2015 October 7 Completion Date: 2015 Octo Page 1 of 1	ber 7		42			

Government of Yukon -		vernment of Yukon -	Borehole No: 15MW03									
		Site Assessment &	Project: Hydrogeological Assessment Eagle Plains SWF	Project No: ENVH2O03173-01								
			Location:									
		Remediation	Eagle Plains, Yukon									
Depth (m)	Method	Soil Description	Sample Type	Notes and G Comments	7007#	Depth (ft)						
0			■ Vapour readings (ppmv) 200 400 600 800			0						
-		ORGANICS - some sand, (100 mm thick)		Pipe stickup = 0.90		-						
1 1 2 3 4 5		SAND AND GRAVEL - some silt and clay, fine to coarse gravel, well graded, moist	grained sand, subrounded	metres		2 4 4 4						
E1		SAND - some gravel and cobbles, fine grained, damp to	moist, dark brown									
Ē		SANDSTONE - dry, oxidized				4						
Ē		\$HALE - organic rich			* - *							
E-2		SANDSTONE - highly fractured, very oxidized	· · · · · · · · · · · · · · · · · · ·			6-						
Ē												
						8-						
<u>-</u> 3		SHALE - organic rich, dry, black				10-						
Ē												
Ē						12-						
- 4 F												
-						14-						
Ē	Ц.					16-						
5	Sonic											
E						18-						
6												
						20-						
Ē						22-						
7		- light grey	· · · · · · · · · · · · · · · · · · ·									
Ē		- highly oxidized				24-						
Ē												
- 8						26-						
È.						28-						
Ē		- harder										
9		nuruur				30-						
È.												
E 10						32-						
9		END OF BOREHOLE (10.06 metres) Monitoring well installed to 3.96 metres				34-						
Ē		Thermistor #2552 installed to 10.06 metres										
- 11						36-						
F												
12						38-						
- 12 F						40-						
Ē												
13						42-						
È												
Ē						44-						
- - - - 14						46-						
Ē												
Ē						48-						
- 15		1	Contractor: Boart Longyear	Completion Depth: 10.06 m		<u> </u>						
7		TETRA TECH EBA	Drilling Rig Type: Track Mounted	Start Date: 2015 October 7	7							
11			Logged By: KR	Completion Date: 2015 October 7								
			Reviewed By: SK	Page 1 of 1								

ENVIRONMENTAL ZONE8.GPJ EBA.GDT 16/4/6

G	Government of Yukon -		Borehole No: 15MW04									
		Site Assessment &	Project: Hydrogeological A	ssessme	nt Eagle Plains SWF	Proiect	No: ENVH2O03173-01					
			Location:									
		Remediation	Eagle Plains, Yukon									
	1											
Depth (m)	Method	Soil Description		Sample Type			Notes and Comments	Backfill	Depth (ft)			
0					■ Vapour readings (p 200 400 600	pmv) 🔳 800			0			
Ē		ORGANICS - dark, leaves, rootlets, frozen, (150 mm thi										
E		SAND AND GRAVEL (FILL) - fine to coarse grained san ORGANICS - garbage covered, some sand and gravel, I		otlets					2			
1		SAND - some silt and gravel, fine grained sand, damp to	moist	/								
Ē		- oxidized							4			
E	Sonic	- wet, sheen on water, strong hydrocarbon odour SILT - clayey, very dense, dark, no visible ice, unfrozen		/⊨								
E 2	ő	SHALE - organic rich, crumbly			••••••							
E		- more competent							8			
- 3									10			
						4500						
Ē		END OF BOREHOLE (3.70 metres)				4500			12-			
4		Note: Backfilled at completion.							-			
E.									14-			
F									16-			
5												
E									18-			
6									20			
Ē									20			
Ē									22			
- 7					· · · · · · · · · · · · · · · · · · ·							
Ē									24-			
Ē.									26			
Ē												
Ē									28-			
<u> </u>									30-			
Ē									50			
9									32			
E 10												
E									34-			
E 11									36-			
E												
Ē									38-			
F 12									40-			
Ē												
E - 13									42-			
Ē									44			
Ē												
- 14									46			
Ē												
E - 15									48			
			Contractor: Boart Longyea	r		Comple	etion Depth: 3.7 m					
		TETRA TECH EBA	Drilling Rig Type: Track Mo	ounted		Start Da	ate: 2015 October 7					
	lt		Logged By: KR			Comple	etion Date: 2015 October 7					
			Reviewed By: SK			Page 1 of 1						

G	Government of Yukon -		Borehole No: 15MW05									
	Ś	Site Assessment &	Project: Hydrogeological	Asse	ssment Eagle Plains SWF	Project No: ENVH2O03173-	01					
		Remediation	Location:				-					
		Remediation	Eagle Plains, Yukon									
Depth (m)	Method	Soil Description		Sample Type	Vapour readings (ppmy)	Notes and Comments	14		Depth (ft)			
0			11 .:-1.)		■ Vapour readings (ppmv) ■ 200 400 600 800	Pipe stickup = 0.82			0			
Ē		ORGANICS - moss and peat, rootlets, frozen, (150 mm SILT - some sand, wet to 0.30 metres, very hard, high p	lastic			metres						
Ē		No recovery							2-			
E ¹		SILT - clayey, large gravel, trace of cobbles, very hard, o	ovidized no visible ice						4-			
-		SHALE - organic rich very dark black										
E 2	Sonic	- brownish black			3500	•			6-			
	ŭ				3500				8-			
Ē		- very dense, grey			4521							
- 3 -									10-			
Ē					4500				12-			
E-4					4500		⊣∎					
Ē		END OF BOREHOLE (4.08 metres) Monitoring well installed to 4.08 metres Thermistor #1 installed to 4.08 metres							14-			
5		Thermistor #1 installed to 4.08 metres							16			
Ē												
Ē									18-			
6									20			
Ē									-			
E7									22-			
Ē									24-			
-									_			
- 8									26-			
Ē									28-			
E-9									-			
Ē									30-			
Ē									32			
E 10					· · · · · · · · · · · · · · · · · · ·				-			
-									34-			
- 11									36			
Ē												
E - 12									38-			
Ē									40			
Ē									42-			
- 13												
Ē									44			
E 14									46-			
Ē												
Ē									48			
- 15		1	Contractor: Boart Longye	ar		Completion Depth: 4.08 m	1	1				
		TETRA TECH EBA	Drilling Rig Type: Track N		ed	Start Date: 2015 October 7						
			Logged By: KR			Completion Date: 2015 Octo	ber 7					
			Reviewed By: SK					Page 1 of 1				

G	Government of Yukon -		Borehole No: 15MW06								
		Site Assessment &	Project: Hydrogeological	Asse	essment Eagle Plains SWF	Project No: ENVH2O03173-	01				
			Location:	1000							
		Remediation	Eagle Plains, Yukon								
				Т							
Depth (m)	Method	Soil Description		Sample Type		Notes and Comments	#3		Depth (ft)		
0					■ Vapour readings (ppmv) 200 400 600 800				0		
2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Sonic	ORGANICS - some sand and gravel, rootlets, frozen, (1 SAND AND GRAVEL - trace of cobbles, coarse grained oxidized SANDSTONE - dry, grey, some oxidized areas SHALE - organic rich, black - greyish - oxidized - crumbly, very soft - more competent, slightly grey, some oxidized - competent, hard END OF BOREHOLE (4.00 metres) Monitoring well installed to 4.00 metres Thermistor #3 installed to 4.00 metres			1270 1231 1513 1407 1296 1348	Pipe stickup = 0.84 metres			2		
Ē											
- 15									48-		
			Contractor: Boart Longye			Completion Depth: 4 m					
	r -	TETRA TECH EBA	Drilling Rig Type: Track N	loun	ted	Start Date: 2015 October 8					
	U		Logged By: KR			Completion Date: 2015 Octo	ber 8		-		
			Reviewed By: SK			Page 1 of 1					

G	Government of Yukon -		Borehole No: 15MW07									
		Site Assessment &			ct No: ENVH2O03173-01							
	C		Project: Hydrogeological Asse	5511101	IL LAYIE FIAILIS SVVF	Filiped	21 NO. ENVIZOUS 173-01					
		Remediation		Location:								
			Eagle Plains, Yukon									
Depth (m)	Method	Soil Description		Sample Type			Notes and Comments	15MW07	Depth (ft)			
					■ Vapour readings (pr 200 400 600	omv) 🔳						
0		ORGANICS - sandy, gravelly, medium grained sand, rou	unded to subangular gravel, rootlets	5.	200 400 600 8	500	Pipe stickup = 0.81		0			
Ē	ic	some garbage	j j ,				metres					
Ē.	Sonic	 vet \$AND - some gravel and silt, trace of sandstone cobble 	fine grained wet firm	_//					2-			
E ¹		SAND AND GRAVEL - trace of cobbles, coarse grained		, /					4-			
F		wet to saturated, hydrocarbon odour										
E 2		\$ILT - very dry, dense, firm, no visible ice END OF BOREHOLE (1.35 metres)							6-			
Ē		slough - 1.20 metres							-			
Ē		Monitoring well installed to 1.20 metres							8-			
<u>-</u> 3									10-			
Ē									-			
Ē									12-			
E 4									14			
E									14-			
-									16-			
5						-			-			
Ē									18-			
E 6									-			
Ē									20-			
Ē									22-			
- 7									-			
Ē									24-			
Ē									-			
E 8									26			
Ē									28			
9												
- 9 E									30-			
F									-			
E 10									32-			
Ē									34-			
Ē									-			
E 11									36-			
Ē									-			
Ē									38-			
- 12 -						::			40-			
Ē												
- 13									42			
									_			
Ē									44-			
- 14									46-			
Ē												
Ē									48			
- 15			Contractor: Boart Longyear			Com	letion Depth: 1.35 m		_			
				tod								
7	- 1	TETRA TECH EBA	Drilling Rig Type: Track Moun	ilea			Date: 2015 October 8					
11			Logged By: KR				letion Date: 2015 October 8					
			Reviewed By: SK			Page	1 of 1					

APPENDIX D GROUNDWATER WELL DEVELOPMENT AND SAMPLING FIELD SHEETS

	·····	.			·	
Gro	undwater Deve	elopmer	nt and Sa	mple Fori	n	Development
WELL ID.: 15 MWOI					ENVH2O03173-01	·
SITE: Eagle Plains Solid V					Kristen Range	
WEATHER: <u>Sunny -5 %</u>	windy	D	ATE & TIME	SAMPLED:	1014 8, 2015 422126 Zone	4130 pm
TEMPERATURE:	GP	S LOCATI	ION: N: <u>73</u>	<u>57847</u> E	: <u>422126</u> Zone	: <u></u>
Is well ID visible?	ls lid/j-plug in place	· •		Ye		🗆 No
Is well locked? □ Yes □ No	General well condit	iồn - list an	iy damage, po	oled water ar	ound well etc.:	<u></u>
Well Casing Inner Diameter (mm)		T		~ 3ø~		
Depth to Water Below Top of Casing (A):	·	etres)	4,980 4,585 0.365	2 0,37	~ 185 mL = 1 we	ell vol
Depth to Bottom of Well Below Top of Casing (Depth to Ground Below Top of Casing (stand-u	· · · · · ·	netres) netres)	-	120	, 185	
Screen Interval (if known)	· ·	· · · · ·	tave to n			
FIELD EQUIPMENT	<u>_</u>		roke is s			· · ·
Field Meters Calibrated: 🔬 🦄 👔	Calibr	ation Refer	ence Sheet ID):		: Q
Pump: none 🗆	Waterra 🗆	Submersib	le 🗆	Peristaltic	□ Bladder	"eek
Bailer: none		nless Stee		Teflon		
Filter: none	🗆 In-li		0	Vacuum		
Equipment left in well: none	🗆 🗆 Bail	er		Waterra		
WELL PURGINGPurge Volumes $25 = 0.5 L I$	m			volume ((E	I – A(*C)): <u>0 , / 85</u> n for: /, 3	litres litres
Casing In. Diam. (mm)	100 150 90	ORD		l parameters :		
Vol (L/m of casing)* (C) 0.8 2.0 4.5		ible for filter p	_{ack} Pump	inlet depth (m		(m bTOC)
TIME PURGE RATE VOLUME TEMP (L/min) REMOVED (L) (°C)	pH COND. (UNITS) (uS/cm)	Redox (mV)	- ÐIŞ.0₂ (mg/l/) or %	Water Level (m bTOC)	REMARKS (colour, odour, s content, etc.)	
Stabilisation Criteria +/- 0.5	+/-0:05 +/-3% 7-83 104	+/- 10	+7-10%	+/- 0.1m if low flow	Visual observations (colour, turbidity,	······
4:53 0.4 2.18	1	-42.8	15,8	/	V, muley, us some	<u>((</u>
5:01 0.7 2.09		-77,6,	12, 32			
5:05 1,1 2.12	7.98 148	-75,3	14.46		П.,	، ما داره است.
5:09 1.4 2.23	The second s	- 47,1	13.77			a ha ha na
		•				
7						
			······		2.4 'Y-	
			Al h fahefa ledah kana ayar dan kana aya	ummukuramatasitatataataa	snasicomula, Ne companyatisticopy patatose ender fille data datato	المتوار المتعادية ، بالمراجع المتعادية ، متعادية المحادثة ، ما المحادثة ، ما محادثة المحادثة المحادثة
	en di Manana da Mana					nnaacaannannannannanna haanaa ar ahaan ahaa ahaa
SAMPLING Water Odour: No No	es (describe)		Shee	n 🗆 No	□ Yes (describe) _	
Turbidity: NTU or relative scale (circl	e as appropriate):	Clear 1	2 3	4	8 9 10	/ery Silty
Parameter Size & # of bottles: 40 m		250mL	500mL 11	L Filte	er and Size (μm)	Preservatives
□ Plastic □ Glass	· · · · · · · · · · · · · · · · · · ·			_ □ Yes	□ No	
□ Plastic □ Glass	No sa	mo	er ta	hen Yes		
□ Plastic □ Glass	110 200			_ □ Yes		
□ Plastic □ Glass □ Plastic □ Glass	·			_ □ Yes		<u></u>
Plastic D Glass Samples placed on ice for transp	ort 🗆 Yes 🗆	 No		_ □ Yes	No	
· · · · · · · · · · · · · · · · · · ·	A/QC Type and ID -	· <u></u>				
Other (comments, notes, observations, etc):		· · ·				· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·						

į.

......

-

Groundwater Development and Sample Form

WELL ID.: 15 MWO1 PROJECT NO.: ENVH2003173-01										
SITE: Eagle Plains Solid Waste Facility FIELD PERSONNEL: Kristen Range										
WEATHER: Windy overeast DATE & TIME SAMPLED: 10:20 Oct 10, 2015										
TEMPERATURE: -10°C GPS LOCATION: N: 7357847 E: 422126 Zone: 8N (Map datum NAD8										
Is well ID visible? Ves No Is lid/j-plug in place/working? Ves No										
Is well locked? 🛛 Yes 🔅 No General well condition - list any damage, pooled water around well etc.:										
Well Casing Inner Diameter (mm)										
Depth to Water Below Top of Casing (A): <u>4.57</u> (metres) PID Reaching = 0.5 ppm.										
Depth to Bottom of Well Below Top of Casing (B): 4.93 (metres)										
Depth to Ground Below Top of Casing (stand-up): (metres)										
Screen Interval (if known) (m bTOC)										
FIELD EQUIPMENT Field Meters Calibrated: Y 61 Calibration Reference Sheet ID: Cullibrated Univ more can										
Pump: □ none □ Waterra □ Submersible ▲ Peristaltic □ Bladder Bailer: ▲ none □ Stainless Steel □ Teflon □ PVC										
Bailer: 🗚 none 🗆 Stainless Steel 🖬 Tetlon 💷 PVC Filter: 🖬 none 🎉 In-line 🗖 Vacuum 🗖 Other										
Equipment left in well: X none										
WELL PURGING Low Flow One well volume ((B - A(*C)):										
Purge Volumes Purge volume to aim for: litres										
Casing In. Diam. (mm) 32 51 78 100 150										
Vol (L/m of casing)* (C) 0.8 2.0 4.5 7.9 17.7 *double for filter pack Pump inlet depth (m bTOC): (m bTOC) TIME PURGE RATE VOLUME TEMP pH COND. Redox DIS.02 Water Level REMARKS (colour, odour, sheen, brittle film, silt										
TIME (L/min) REMOVED (L) (°C) (UNITS) (uS/cm) (mV) (mV) (mg/) or % (m bTOC) content, etc.)										
Stabilisation Criteria +/- 0.5 +/-0.05 +/- 3% +/- 10 +/- 10% +/- 0.1m if low flow Visual observations (colour, turbidity, odour etc should be stable)										
4.77 Wills Meinting and										
10:25 -0.1 -1.87 7.43 228 15.4 10.63 4.76. cleaning up.										
10:31 -0.1 -600 -1.72 7.56 152 19.7 10.46. 4.77										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
line por blun 10:31+ 10:37. Thanked lin. Short agen. Started again a 10:48										
10:49 ~0.1 1, 3 -0.69 7.29 118 7.92 4.68 cleaning 10:52 70,1 1,6 -0.89 7.29 116 23.5 2-29 7.49 4.74										
10:58 ~0,1 2.2 -0,24 7.38 106 -9,1 9-2 4.78 turned down flow slightly										
11:05 0,1 2,9 0,49 7.31 100 -6.7 10.17 9.77										
11:00 0,1 3,2 1, -0,41 7.24 96/9-2.21 10-35 4.29/14.20										
SAMPLING Water Odour: No D Yes (describe) ² Sheen No D Yes (describe)										
Turbidity: NTU or relative scale (circle as appropriate): Clear 1 (2) 3 4 8 8 9 10 Very Silty										
Parameter Size & # of bottles: 40 mL 50mL 120mL 250mL 500mL 1L Filter and Size (µm) Preservatives										
🗆 Plastic 🗆 Glass Yes 🗆 No										
□ Plastic □ Glass Yes □ No										
□ Plastic □ GlassASPMCU_L, □ Yes □ No										
□ Plastic □ Glass Plastic □ Glass										
□ Plastic □ Glass Pes □ No										
Samples placed on ice for transport										
QA/QC Samples - XYes INO QA/QC Type and ID - Dup 0										
Other (comments, notes, observations, etc): Had problems to de water preging in dime when starting the flow nate in low.										
Thaved line, young ted to higher flow wate, then turned primp down, teretial.										
drangdown of 20 an. maindown stabilized, Difficult to primp storing and not										
without prezery. De Began sampling & 11:10. Atter spiping, w/@ 4.79.										

	· · · - ·		• • •			<u>_</u>	nt and Sa	%	4	Development.
		15MW			•			DJECT NO.:	ENVH200317	
		Eagle Plains		laste Fac	<u>ility</u>	_		RSONNEL:	Kristen Range	
	/EATHER:	Light s	how.		OD		ATE & TIME		1511100 0	
TEMPE	RATURE:	- 9°C			GP3	SLOCAT	ION: N: <u>FS :</u>	<u>37933</u> E	422047	Zone: 8 N (Map datum NA
Is well ID v	• •		No		ug in place	-	×	Ye		🗆 No -
Is well lock		- 12 - T	No	General	well condit	ion - list ar	ny damage, po	ooled water ar	ound well etc.:	pool.
	g Inner Diame									
•		p of Casing (A)		1.7	·	etres)	R			
-		Below Top of C	÷ .	·		etres)				
•		op of Casing (-	·	· ·	etres)				
· · · · · · · · · · · · · · · · · · ·) 1.67-	2.12	*	(m	bTOC)				
FIELD EQ	- · · · · · · · ·	N. c. t					•		so to to	
	rs Calibrated	: <u>Ys1</u>): Culibra	the this v	
		🗆 none	<u></u>	Waterra		Submersit		Peristaltic		
مى م	iler: a					nless Stee		Teflon	<u>À</u>	PVC
		🕱 none			D In-lii			Vacuum		Other
		<u>जू</u> none			D Bail	er		Waterra		Other
VELL PUF		25mm =	0.56,	lonn					B – A(*C)): <u>0, /</u>	
Purge Volu	umes Diam. (mm)	32 51	78	100	150	or a		volume to ain	n for: <u> </u>	litres
ol (L/m of			4.5			のれや ble for filter p		inlet depth (m		(m bTOC)
TIME	PURGE RATE	VOLUME	TEMP	pH	COND.	Redox	DIS ₀₂	Water Level		odour, sheen, brittle film, silt
	(L/min)	REMOVED (L)	(ºC)	(UNITS)	(uS/cm)	(mV)	(mg/L) for %	(m bTOC)	content, etc.)	· · ·
0:08	Stabilisation Crite	1	+/- 0.5	+/-0.05	+/- 3%	+/- 10	+7=10% 10,02	+/- 0.1m if low flow	İ.,	r, turbidity, odour etc should be stable)
10:17		~200ml	-1,7		286	-71,2	7.25	2.04	1 . P.	en HC, Hcodoz
	499	n400m1	1	6-12		·	1 A	2,08	ice crystals	
		Conit	aft	more	, wal	<u>q or</u>	IF, WU	<u>conn</u>	me durelog	
10 - 0	eneritette eneritette eneritette aleitete eleter f	w and a second						1 50		y cold, strong HC
12:07	nama - tan stifts - titki Neri idilile - stift esi minin	* 700ml	-1.5	6.30	285	38.3	12.66	7-89.	smell	1 sheen
12000				1000	101				2:21 ho	tree product
12:55	<u> </u>	n 1000m (-1,8	6.50		28,4	1.42	1,8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11111111111111111111111111111111111111
	Finishe		pm <u>s</u>	p 12:3	1 1	Instal	flid date	lossen i	n MW to	monto
	NU	every / we	e if	St The	water	level	has been	7 stabili	24d.	nath barbarda dha ann an an tha tha ann an tha tha ann an tha ann a
	@:40	f suat	1	vel =	1,73	+ nt	topve.			
		1 1 100000	<u> </u>			1	ropros			
AMPLING	Water Odo	ur: 🗆 No	Ķ Y	es (descril	be)	Fa Hydr	<u>ora</u> vin Shee	en 🗆 No	🙊 Yes (describe)
urbidity:	NTU	l or relative sca	le (circle	as appror	priate):	Clear ·	2 3		8 9 10	Very Silty
Parameter	Size 8	& # of bottles:	40 mL	50mL	120mL	250mL	500mL 1	L Filt	er and Size (µm)	Preservatives
	□ Plasti		·····					_ 🗆 Yes	s 🗆 No 📜	
	D Plastie	c 🗆 Glass					-+	_ 🗆 Yes	s 🗆 No 🔤	
· .	D Plasti	c 🗆 Glass			N <u>o 80</u>	mpus) nnv-	_ 🗆 Yes	s □ No	
	Plastic	c 🗆 Glass				<u> </u>	· · · ·	_ 🗆 Yes	s □ No	
-	D Plastic	c 🗆 Glass					<u> </u>	_ 🗆 Yes	s ,□ No	
	Samples p	laced on ice fo	r transpo	ort 🗆	Yes 🗆	No				······
····										
A/QC Sar	nples - 🗆 Y	es 🗆 No	0	A/QC Typ	e and ID -					

......

WELL ID .: IS Muso 7	PROJECT NO.:
SITE:Eagle Plains Solid Waste Facility	FIELD PERSONNEL: Kristen Range
WEATHER: <u>cold</u> , windy	DATE & TIME SAMPLED: 12:50 Oct 10, 20 12
TEMPERATURE:	GPS LOCATION: N: 7537933 E: 422047 Zone: 8N (Map datum NAD86
Is well ID visible? Yes No Is lid/j-plug in	place/working? □ Yes □ No
Is well locked? Yes No General well of	condition - list any damage, pooled water around well etc.:
Well Casing Inner Diameter (mm)	
Depth to Water Below Top of Casing (A): 1.75	(metres) PID Reading = 190 ppm.
Depth to Bottom of Well Below Top of Casing (B):	_ (metres)
Depth to Ground Below Top of Casing (stand-up): 0, 9	(metres)
Screen Interval (if known)	(m bTOC)
FIELD EQUIPMENT	
Field Meters Calibrated: γ (Calibration Reference Sheet ID: Calibrated this morney
Pump: 🗆 none 🗆 Waterra	🗆 Submersible 🙀 Peristaltic 🗖 Bladder
Bailer: 🙀 none 🗖	Stainless Steel Teflon PVC
Filter: 🙀 none 🗆	In-line 🗆 Vacuum 🗆 Other
Equipment left in well: 🙀 none 🛛 🗆	Bailer 🗆 Waterra 🗆 Other
WELL PURGING	One well volume ((B – A(*C)): litres
Purge Volumes 25 m = 0,5L	Purge volume to aim for: litres
Casing In. Diam. (mm) 32 51 78 100 150	or until parameters stabilize:
Vol (L/m of casing)* (C) 0.8 2.0 4.5 7.9 17.7	*double for filter pack Pump inlet depth (m bTOC): 2,10 (m bTOC)
	DND. Redox DIS.02 Water Level REMARKS (colour, odour, sheen, brittle film, silt S/cm) (mV) (mg/L) or % (m bTOC) content, etc.)
	- 3% +/- 10 +/- 10% +/- 0.1m if low flow Visual observations (colour, turbidity, odour etc should be stable)
12:55 - 300m1 -2.01 6.47 11	6 44,3 11.77 2.12. V. musky Hydrowson onch.
Unable he do low flow	sampling, well purged dry at lawest
pumping rate collicted	what as much water las powerkle
until 3 pm. Only aple	to collect ull An a sumply
Collected 2 40th year	& For BTEX 1.5 promi bottles for
PAH/EPH, 1 500m/ 8.	or all other analysis
k hot	filtered or preserved.
SAMPLING Water Odour: D No 💆 Yes (describe)	Inclusion Sheen Do No Yes (describe) He sheen
Turbidity: NTU or relative scale (circle as appropriate)	
): Clear 1 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$BTEX \square$ Plastic A Glass 2	
PAH/EPH \square Plastic \square Glass	
Prastic □ Glass	$ \underline{\qquad} \qquad \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \underline{\qquad} \qquad \qquad} \qquad $
□ Plastic □ Glass	Yes □ No
□ Plastic □ Glass	
Samples placed on ice for transport	
V I	
QA/QC Samples - D Yes 7No QA/QC Type and	- טו מ
Other (comments, notes, observations, etc): Due to nee huild up in well, mable to more near day within 5 mmills - line froze.	a sure drawdown. Therwed pump to lowost setting. Evell will than and begin surpling

I

Groundwater Development and Sample Form

APPENDIX E SURFACE WATER SAMPLING SHEETS

EBA# W23101021.028 ENVH2063173-01	EBA # W23101021.028 ENV A 2003178-01
Station/Site: SW1	Station/Site: SW2
Date/Time: 0.49, 2015 13:25 am pm	Date/Time: 649, 2015 4:30 am pm X
Sampler(s): KRP	Sampler(s): KKL
Duplicate Yes No Dup1 Dup2	Duplicate Yes No Dup1 Dup2
Season: Winter Spring Summer Fall	Season: Winter Spring Summer Fall
Weather: Rain Snow Overcast Clear	Weather: Rain Snow Overcast Clear
Windy Temperature -9°C	Windy X Temperature <u>-9 °C</u>
Collected Preserved Field Filtered	Collected Preserved Field Filtered
Collected Preserved Field Filtered Routine (500ml)	
Total Metals (125ml)	Routine (500ml) X As per COC. Total Metals (125ml) X X
Dissolved metals (250ml)	Dissolved metals (250ml)
Nutrients (250ml)	Nutrients (250ml)
*Samples should be perserved and filtered imediately after collection unless outside temperature hinders the filtering process	*Samples should be perserved and filtered imediately after collection unless outside temperature hinders the filtering process
Notes:	Notes:
In Situ measurements	In Situ measurements
pH <u>4.89</u>	pH 4.60
SPC Conductivity /19 us/cm	SPL Conductivity 540 prs/m
Temperature _ 2.00 °C ORP = 286. 9 mv	SPL Conductivity $540 \mu s/m$ Temperature $-2.0 \circ C$ ORP = 283.3 mV
TDS 0.077 mm //	TDS 0.352 g/L
Dissolved O2 /3.7/ mg7L	Dissolved O2 14-28 mg/L Flows taken Yes No
Flows taken Yes X No	Flows taken Yes No
Misc	
Photo(s) taken Yes 130	Misc Photo(s) taken) 3 4
GPS Co-ords 7358558 N 421851 E	
Waypoint name	GPS Co-ords +3581+9 N 42282L E Waypoint name
Comments:	Comments:
Address of a contraction of the Factor advances of the Advances of the Advances of a contraction of the Contract Advances of the A	1 - without start of the sta

EBA # WHATER ENV 42003173-0)	EBA# W23101021.028 ENU 12003173-07
Station/Site: SW3	Station/Site: SW Y
Date/Time: 5:45 Oct 9,2015 am pm X	Date/Time: Oct 10, 2015 2:30 pm y
Sampler(s): KRK	Sampler(s): KRK
Duplicate Yes 🗙 No Dup1 Dup2	Duplicate Yes No Dup1 Dup2
Season: Winter Spring Summer Fall	Season: Winter Spring Summer Fall 🗶
Weather: Rain Snow Overcast Clear	Weather: Rain Snow Overcast Clear
Windy 🔀 Temperature _ 5 ℃	Windy X Temperature -100
Collected Preserved Field Filtered Routine (500ml) Total Metals (125ml) Dissolved metals (250ml) Nutrients (250ml) Nutrients (250ml) *Samples should be perserved and filtered imediately after collection unless outside temperature hinders the filtering process	Collected Preserved Field Filtered Routine (500ml) Total Metals (125ml) Dissolved metals (250ml) Nutrients (250ml) Samples should be perserved and filtered imediately after collection unless outside temperature hinders the filtering process
Notes:	Notes:
In Situ measurements pH 4.81 SPC Conductivity 1/3 μ S/cm. Temperature - 2.0 °C 0RP - 311.7 mV TDS 0.075 g/L Dissolved 02 10.89 mg/L Flows taken Yes No	In Situ measurements pH = 3.94 SPC conductivity = 245 mS/cm. Temperature = -1.98 °C. TDS 0. No ms g/L ORP = 315.8 mV Dissolved O2 16.69 mg/L Flows taken Yes No
Misc	Misc
Photo(s) taken $135 - 136$	Photo(s) taken <u>M5-W7</u>
GPS Co-ords 7358844 N 421919 E	GPS CO-Ords 7358679 N 422266 E
Waypoint name 502	Waypoint name
Comments:	Comments:

APPENDIX F LABORATORY ANALYTICAL RESULTS

CLIENT NAME: TETRA TECH EBA 61 WASSON PLACE WHITEHORSE, YT Y1A0H7 (867) 668-9225

ATTENTION TO: KRISTEN RANGE

PROJECT: ENVH2O 03173-01

AGAT WORK ORDER: 15V029854

SOIL ANALYSIS REVIEWED BY: Angela Bond, Technical Reviewer

TRACE ORGANICS REVIEWED BY: Angela Bond, Technical Reviewer

ULTRA TRACE REVIEWED BY: Philippe Morneau, chimiste

WATER ANALYSIS REVIEWED BY: Angela Bond, Technical Reviewer

DATE REPORTED: Oct 15, 2015

PAGES (INCLUDING COVER): 54

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*NOTES

VERSION 1: Sample receipt temperature 5°C.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 54

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

British Columbia Metals Schedule 4 and 5

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Diffish Columbia Metals Schedule 4 and 5										
DATE RECEIVED: 2015-10-13							DATE REPORTED: 2015-10-15			
		SAMPLE DESCRIPTION	15MW01 9. : 8-10.0m	15MW07 1. 1-1.2m	15MW07 0. 5-0.6m	15MW06 0. 3-0.4m	15MW01 1.8-2m	Dup 01 9. 8-10.0m	15MW04 1. 1-1.2m	15MW04 0. 3-0.4m
Parameter	Unit	SAMPLE TYPE DATE SAMPLED G / S RDL		Soil 10/8/2015 7079504	Soil 10/8/2015 7079505	Soil 10/8/2015 7079506	Soil 10/7/2015 7079507	Soil 10/7/2015 7079508	Soil 10/7/2015 7079509	Soil 10/7/2015 7079510
Antimony	µg/g	0.1	0.5	0.2	0.4	0.3	0.8	0.5	0.4	0.3
Arsenic	µg/g	0.1	38.7	6.0	7.7	5.3	32.0	37.5	10.5	7.4
Barium	µg/g	0.5	380	79.0	119	44.0	244	400	114	75.1
Beryllium	µg/g	0.1	1.1	0.2	0.3	0.1	0.6	1.1	0.4	0.3
Cadmium	µg/g	0.01	0.05	0.05	0.07	0.02	0.06	0.09	0.11	0.08
Chromium	µg/g	1	32	7	16	4	24	32	11	12
Cobalt	µg/g	0.1	6.8	1.5	3.1	0.7	1.6	6.8	2.8	1.5
Copper	µg/g	0.2	53.1	4.8	9.9	3.7	31.4	70.0	10.1	5.7
Lead	µg/g	0.1	17.6	5.4	6.9	3.2	16.2	18.4	6.9	6.7
Mercury	µg/g	0.01	0.05	<0.01	0.02	<0.01	0.12	0.05	0.01	<0.01
Molybdenum	µg/g	0.2	0.7	0.3	0.6	0.3	0.9	0.7	0.6	0.7
Nickel	µg/g	0.5	42.6	5.8	11.1	3.3	15.7	40.9	13.0	5.7
Selenium	µg/g	0.1	1.3	0.4	0.5	0.2	2.6	1.7	0.7	0.3
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	0.1	0.2	<0.1	<0.1	<0.1	0.2	0.2	<0.1	<0.1
Tin	µg/g	0.2	0.8	<0.2	0.3	<0.2	0.6	0.8	0.2	0.3
Uranium	µg/g	0.2	1.2	0.3	0.5	0.2	1.0	1.3	0.5	0.4
Vanadium	µg/g	1	82	16	32	11	62	82	29	34
Zinc	µg/g	1	87	18	34	12	39	89	53	20
pH 1:2	pH units	0.1	4.4	5.3	4.9	5.4	4.6	4.3	5.3	4.5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7079503-7079510 Results are based on the dry weight of the sample

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

DATE REPORTED: 2015-10-15 DATE RECEIVED: 2015-10-13 SAMPLE DESCRIPTION: SW1 SW2 SW3 SW4 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 10/9/2015 10/9/2015 10/9/2015 10/10/2015 RDL 7080701 7080702 7080703 7080704 Parameter Unit G/S Methyl tert-butyl ether (MTBE) µg/L 1 <1 <1 <1 <1 Benzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 µg/L 0.5 <0.5 <0.5 <0.5 <0.5 Toluene Ethylbenzene µg/L 0.5 < 0.5 < 0.5 < 0.5 < 0.5 m&p-Xylene µg/L 0.5 <0.5 <0.5 < 0.5 <0.5 <0.5 o-Xylene µg/L 0.5 < 0.5 < 0.5 < 0.5 Styrene µg/L 0.5 <0.5 < 0.5 < 0.5 <0.5 VPH µg/L 100 <100 <100 <100 <100 VH µg/L 100 <100 <100 <100 <100 Naphthalene µg/L 0.05 0.05 < 0.05 < 0.05 < 0.05 Quinoline µg/L 0.1 < 0.1 < 0.1 < 0.1 < 0.1 µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Acenaphthylene Acenaphthene µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 µg/L 0.05 < 0.05 < 0.05 < 0.05 Fluorene < 0.05 Phenanthrene µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Anthracene µg/L 0.05 < 0.05 < 0.05 <0.05 <0.05 Acridine µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Fluoranthene µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Pyrene µg/L 0.02 < 0.02 < 0.02 < 0.02 0.06 Benzo(a)anthracene µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Chrysene µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Benzo(b)fluoranthene µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Benzo(j)fluoranthene µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Benzo(k)fluoranthene µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Benzo(a)pyrene µg/L 0.01 < 0.01 < 0.01 < 0.01 < 0.01 µg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene µg/L 0.05 < 0.05 <0.05 < 0.05 < 0.05 Benzo(g,h,i)perylene µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 LEPH C10-C19 µg/L 100 <100 <100 <100 <100 HEPH C19-C32 µq/L 100 <100 <100 <100 <100

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

BTEX / VPH / LEPH / HEPH / EPH Water

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

DATE REPORTED: 2015-10-15

SAMPLED BY:

BTEX / VPH / LEPH / HEPH / EPH Water

DATE RECEIVED: 2015-10-13

		SAMPLE DESCRIPTION	SW1	SW2	SW3	SW4
		SAMPLE TYPE	-	Water	Water	Water
		DATE SAMPLED	10/9/2015	10/9/2015	10/9/2015	10/10/2015
Parameter	Unit	G/S RDL	7080701	7080702	7080703	7080704
EPH C10-C19	µg/L	100	<100	<100	<100	<100
EPH C19-C32	µg/L	100	<100	<100	<100	<100
Benzo(b+j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	ug/L	1	<1	<1	<1	<1
Surrogate	Unit	Acceptable Limits				
Naphthalene - d8	%	50-130	68	66	72	66
2-Fluorobiphenyl	%	50-130	73	71	76	70
P-Terphenyl - d14	%	60-130	90	84	88	87
Bromofluorobenzene	%	70-130	97	97	95	98
Dibromofluoromethane	%	70-130	103	108	105	108
Toluene - d8	%	70-130	96	95	94	95

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7080701-7080704 VPH results have been corrected for BTEX contributions.

LEPH & HEPH results have been corrected for PAH contributions.

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

http://www.agatlabs.com

CANADA V5J 0B6

TEL (778)452-4000 FAX (778)452-4074

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

LEPH/HEPH Soil

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

DATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15 15MW01 9. 15MW07 1. 15MW07 0. 15MW06 0. Dup 01 9. SAMPLE DESCRIPTION: 8-10.0m 1-1.2m 15MW01 1.8-2m 8-10.0m 5-0.6m 3-0.4m SAMPLE TYPE: Soil Soil Soil Soil Soil Soil DATE SAMPLED: 10/7/2015 10/8/2015 10/8/2015 10/8/2015 10/7/2015 10/7/2015 G/S 7079503 RDL 7079504 RDL 7079505 7079506 7079507 7079508 Parameter Unit RDL Naphthalene 0.01 < 0.01 0.1 8.8 0.01 0.02 < 0.01 < 0.01 < 0.01 µg/g 0.01 0.04 0.1 18.5 0.01 0.07 < 0.01 < 0.01 0.05 2-Methylnaphthalene µg/g 1-Methylnaphthalene 0.01 0.05 0.1 11.7 0.01 0.06 < 0.01 < 0.01 0.06 µg/g Acenaphthylene µg/g 0.01 < 0.01 0.1 < 0.1 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Acenaphthene 0.01 < 0.01 0.1 <0.1 0.01 < 0.01 < 0.01 < 0.01 µg/g < 0.01 0.2 0.3 < 0.02 Fluorene µg/g 0.02 < 0.02 0.02 < 0.02 < 0.02 < 0.02 0.02 0.02 0.23 0.02 < 0.02 Phenanthrene µg/g 0.13 < 0.02 0.06 0.15 Anthracene 0.02 < 0.02 0.02 < 0.02 0.02 < 0.02 < 0.02 < 0.02 < 0.02 µg/g 0.08 0.05 <0.05 0.05 < 0.05 0.07 0.09 Fluoranthene µg/g 0.05 < 0.05 0.02 0.15 0.02 < 0.02 0.02 < 0.02 0.09 Pyrene µg/g < 0.02 0.16 Benzo(a)anthracene 0.02 < 0.02 0.02 < 0.02 0.02 < 0.02 < 0.02 < 0.02 < 0.02 µg/g Chrysene 0.05 0.08 0.05 < 0.05 0.05 < 0.05 < 0.05 0.11 0.08 µg/g Benzo(b)fluoranthene 0.02 0.09 0.02 < 0.02 0.02 < 0.02 < 0.02 0.12 0.12 µg/g Benzo(j)fluoranthene µg/g 0.02 0.02 0.02 < 0.02 0.02 < 0.02 < 0.02 0.02 0.02 Benzo(k)fluoranthene µg/g 0.02 0.02 0.02 <0.02 0.02 < 0.02 < 0.02 0.02 0.02 Benzo(a)pyrene 0.05 0.06 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 0.08 µg/g Indeno(1,2,3-c,d)pyrene µg/g 0.02 0.04 0.02 < 0.02 0.02 < 0.02 < 0.02 0.04 0.06 Dibenzo(a,h)anthracene 0.02 0.02 < 0.02 0.02 < 0.02 < 0.02 < 0.02 µg/g < 0.02 < 0.02 0.05 0.70 0.05 <0.05 0.05 < 0.05 < 0.05 0.23 0.89 Benzo(g,h,i)perylene µg/g LEPH C10-C19 20 20 23 20 62 2830 28 <20 63 µg/g HEPH C19-C32 20 111 20 63 20 28 <20 78 111 µg/g Benzo(b+j)fluoranthene µg/g 0.03 0.11 0.03 < 0.03 0.03 < 0.03 < 0.03 0.14 0.14 Unit Surrogate Acceptable Limits Naphthalene - d8 67 85 74 % 50-130 71 108 75 % 78 107 71 87 2-Fluorobiphenyl 50-130 86 76 P-Terphenyl - d14 % 60-130 80 80 70 83 78 88

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

LEPH/HEPH Soil

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

DATE RECEIVED: 2015-10-13						DATE REPORTED: 2015-10-15
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	15MW04 1. 1-1.2m Soil 10/7/2015 7079509	RDL	15MW04 0. 3-0.4m Soil 10/7/2015 7079510	
Naphthalene	µg/g	0.1	7.3	0.01	0.01	
2-Methylnaphthalene	µg/g	0.1	17.2	0.01	0.05	
1-Methylnaphthalene	µg/g	0.1	12.5	0.01	0.04	
Acenaphthylene	µg/g	0.1	<0.1	0.01	<0.01	
Acenaphthene	µg/g	0.1	<0.1	0.01	<0.01	
Fluorene	µg/g	0.2	0.5	0.02	<0.02	
Phenanthrene	µg/g	0.02	0.56	0.02	<0.02	
Anthracene	µg/g	0.02	<0.02	0.02	<0.02	
Fluoranthene	µg/g	0.05	<0.05	0.05	<0.05	
Pyrene	µg/g	0.02	0.02	0.02	<0.02	
Benzo(a)anthracene	µg/g	0.02	<0.02	0.02	<0.02	
Chrysene	µg/g	0.05	<0.05	0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.02	<0.02	0.02	<0.02	
Benzo(j)fluoranthene	µg/g	0.02	<0.02	0.02	<0.02	
Benzo(k)fluoranthene	µg/g	0.02	<0.02	0.02	<0.02	
Benzo(a)pyrene	µg/g	0.05	<0.05	0.05	<0.05	
Indeno(1,2,3-c,d)pyrene	µg/g	0.02	<0.02	0.02	<0.02	
Dibenzo(a,h)anthracene	µg/g	0.02	<0.02	0.02	<0.02	
Benzo(g,h,i)perylene	µg/g	0.05	<0.05	0.05	<0.05	
LEPH C10-C19	µg/g	20	2830	20	29	
HEPH C19-C32	µg/g	20	178	20	65	
Benzo(b+j)fluoranthene	µg/g	0.03	<0.03	0.03	<0.03	
Surrogate	Unit	Acceptable Limits				
Naphthalene - d8	%	50-130	94		66	
2-Fluorobiphenyl	%	50-130	95		71	
P-Terphenyl - d14	%	60-130	82		74	

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

LEPH/HEPH Soil

DATE RECEIVE	D: 2015-10-13	DATE REPORTED: 2015-10-15
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard	
7079503	Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.	
7079504	Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions. PAH detection limits increased due to sample matrix interference.	
7079505-7079508	Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.	
7079509	Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions. PAH detection limits increased due to sample matrix interference.	

7079510 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

LEPH/HEPH/EPH Water

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

					II water				
DATE RECEIVED: 2015-10-13								DATE REPORTED: 2015-10-	15
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	15MW01 Water 10/10/2015 7080691	Dup 01 Water 10/10/2015 7080695	RDL	15MW07 Water 10/10/2015 7080699	RDL	Trip Blank Water 9/29/2015 7080705	
Naphthalene	µg/L	0.05	<0.05	<0.05	5	589	0.05	<0.05	
Quinoline	µg/L	0.1	<0.1	<0.1	10	<10	0.1	<0.1	
Acenaphthylene	µg/L	0.05	<0.05	<0.05	5	<5	0.05	<0.05	
Acenaphthene	µg/L	0.05	<0.05	<0.05	5	<5	0.05	<0.05	
Fluorene	µg/L	0.05	<0.05	<0.05	5	13	0.05	<0.05	
Phenanthrene	µg/L	0.05	<0.05	<0.05	0.05	8.26	0.05	<0.05	
Anthracene (Water)	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Acridine	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Fluoranthene	µg/L	0.05	<0.05	<0.05	0.05	0.20	0.05	<0.05	
Pyrene	µg/L	0.02	0.02	<0.02	0.02	0.33	0.02	<0.02	
Benzo(a)anthracene	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Chrysene	µg/L	0.05	<0.05	<0.05	0.05	0.09	0.05	<0.05	
Benzo(b)fluoranthene	µg/L	0.05	<0.05	<0.05	0.05	0.13	0.05	<0.05	
Benzo(j)fluoranthene	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Benzo(k)fluoranthene	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Benzo(a)pyrene	µg/L	0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	
ndeno(1,2,3-c,d)pyrene	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Dibenzo(a,h)anthracene	µg/L	0.05	<0.05	<0.05	0.05	<0.05	0.05	<0.05	
Benzo(g,h,i)perylene	µg/L	0.05	<0.05	<0.05	0.05	0.15	0.05	<0.05	
LEPH C10-C19	µg/L	100	<100	<100	1000	117000	100	<100	
HEPH C19-C32	µg/L	100	<100	<100	1000	3960	100	<100	
EPH C10-C19	µg/L	100	<100	<100	1000	118000	100	<100	
EPH C19-C32	µg/L	100	<100	<100	1000	4000	100	<100	
Benzo(b+j)fluoranthene	µg/L	0.1	<0.1	<0.1	0.1	0.1	0.1	<0.1	
Surrogate	Unit	Acceptable Limits							
Naphthalene - d8	%	50-130	74	73		NA		76	
2-Fluorobiphenyl	%	50-130	76	75		106		75	
P-Terphenyl - d14	%	60-130	86	84		83		92	

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

LEPH/HEPH/EPH Water

DATE RECEIVED: 2015-10-13

DATE REPORTED: 2015-10-15

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard

 7080691-7080695
 LEPH & HEPH results have been corrected for PAH contributions.

7080699 LEPH & HEPH results have been corrected for PAH contributions.

Naphthalene-d8 surrogate is not available due to sample matrix interference. PAH & EPH detection limits increased. Sample extract was diluted.

7080705 LEPH & HEPH results have been corrected for PAH contributions.

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

Volatile Organic Compounds in Soil

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

			Volatile	Organic Co	mpounds in	n Soll				
DATE RECEIVED: 2015-10-13							D	ATE REPORT	ED: 2015-10-15	
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	15MW01 9. 8-10.0m Soil 10/7/2015 7079503	15MW07 1. 1-1.2m Soil 10/8/2015 7079504	15MW07 0. 5-0.6m Soil 10/8/2015 7079505	15MW06 0. 3-0.4m Soil 10/8/2015 7079506	15MW01 1.8-2m Soil 10/7/2015 7079507	Dup 01 9. 8-10.0m Soil 10/7/2015 7079508	15MW04 1. 1-1.2m Soil 10/7/2015 7079509	15MW04 0. 3-0.4m Soil 10/7/2015 7079510
Chloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromomethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl ether (MTBE)	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Butanone (MEK)	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
cis-1,2-Dichloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	µg/g	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
1,2-Dichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzene	µg/g	0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	1.02	0.37
1,2-Dichloropropane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethene	µg/g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Bromodichloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
4-Methyl-2-pentanone (MIBK)	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	µg/g	0.05	<0.05	6.47	0.07	<0.05	<0.05	<0.05	5.31	1.16
Dibromochloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Volatile Organic Compounds in Soil												
DATE RECEIVED: 2015-10-13							D	ATE REPORT	ED: 2015-10-15			
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	15MW01 9. 8-10.0m Soil 10/7/2015	15MW07 1. 1-1.2m Soil 10/8/2015	15MW07 0. 5-0.6m Soil 10/8/2015	15MW06 0. 3-0.4m Soil 10/8/2015	15MW01 1.8-2m Soil 10/7/2015	Dup 01 9. 8-10.0m Soil 10/7/2015	15MW04 1. 1-1.2m Soil 10/7/2015	15MW04 0. 3-0.4m Soil 10/7/2015		
Parameter	Unit	G/S RDL	7079503	7079504	7079505	7079506	7079507	7079508	7079509	7079510		
1,1,1,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Chlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Ethylbenzene	µg/g	0.05	<0.05	4.19	<0.05	<0.05	<0.05	<0.05	2.18	0.12		
m&p-Xylene	µg/g	0.05	<0.05	24.5	0.08	<0.05	<0.05	<0.05	24.4	0.97		
Bromoform	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Styrene	µg/g	0.05	<0.05	0.37	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
o-Xylene	µg/g	0.05	<0.05	10.7	0.07	<0.05	<0.05	<0.05	9.53	1.18		
1,3-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1,4-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1,2-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1,2,4-Trichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05		
VPH	µg/g	10	<10	411	<10	<10	<10	<10	972	54		
Total Xylenes	µg/g	0.2	<0.2	35.2	<0.2	<0.2	<0.2	<0.2	33.9	2.2		
Surrogate	Unit	Acceptable Limits										
Bromofluorobenzene	%	60-140	92	109	95	97	92	101	111	136		
Dibromofluoromethane	%	60-140	97	97	91	95	96	98	103	136		
Toluene - d8	%	60-140	98	108	95	94	102	106	118	137		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7079503-7079510 Results are based on dry weight of sample.

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Volatile Organic Compounds in Water												
DATE RECEIVED: 2015-10-13								DATE REPORTED: 2015-10-15				
Parameter	Unit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	15MW01 Water 10/10/2015 7080691	Dup 01 Water 10/10/2015 7080695	15MW07 Water 10/10/2015 7080699	Trip Blank Water 9/29/2015 7080705					
Chloromethane	µg/L	0/0	1	<1	<1	<1	<1					
/inyl Chloride	µg/L		1	<1	<1	<1	<1					
Bromomethane	µg/L		1	<1	<1	<1	<1					
Chloroethane	µg/L		1	<1	<1	<1	<1					
richlorofluoromethane	µg/L		1	<1	<1	<1	<1					
Acetone	μg/L		10	<10	<10	<10	<10					
I,1-Dichloroethene	µg/L		1	<1	<1	<1	<1					
Dichloromethane	µg/L		1	<1	<1	<1	<1					
Methyl tert-butyl ether (MTBE)	µg/L		1	<1	<1	<1	<1					
2-Butanone (MEK)	µg/L		10	<10	<10	<10	<10					
rans-1,2-Dichloroethylene	µg/L		1	<1	<1	<1	<1					
I,1-Dichloroethane	µg/L		1	<1	<1	<1	<1					
cis-1,2-Dichloroethylene	µg/L		1	<1	<1	<1	<1					
Chloroform	µg/L		1	<1	<1	<1	<1					
I,2-Dichloroethane	µg/L		1	<1	<1	<1	<1					
1,1,1-Trichloroethane	µg/L		1	<1	<1	<1	<1					
Carbon Tetrachloride	µg/L		0.5	<0.5	<0.5	<0.5	<0.5					
Benzene	µg/L		0.5	<0.5	<0.5	179	<0.5					
,2-Dichloropropane	µg/L		1	<1	<1	<1	<1					
Trichloroethene	µg/L		1	<1	<1	<1	<1					
Bromodichloromethane	µg/L		1	<1	<1	<1	<1					
rans-1,3-Dichloropropene	µg/L		1	<1	<1	<1	<1					
-Methyl-2-pentanone (MIBK)	µg/L		10	<10	<10	<10	<10					
is-1,3-Dichloropropene	µg/L		1	<1	<1	<1	<1					
,1,2-Trichloroethane	µg/L		1	<1	<1	<1	<1					
oluene	µg/L		0.5	<0.5	<0.5	2380	<0.5					
Dibromochloromethane	µg/L		1	<1	<1	<1	<1					
Ethylene Dibromide	µg/L		0.3	<0.3	<0.3	<0.3	<0.3					
Tetrachloroethene	µg/L		1	<1	<1	<1	<1					
1,1,1,2-Tetrachloroethane	µg/L		1	<1	<1	<1	<1					

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Volatile Organic Compounds in Water												
DATE RECEIVED: 2015-10-13							DATE REPORTED: 2015-10-15					
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	15MW01 Water 10/10/2015 7080691	Dup 01 Water 10/10/2015 7080695	15MW07 Water 10/10/2015 7080699	Trip Blank Water 9/29/2015 7080705						
Chlorobenzene	µg/L	1	<1	<1	<1	<1						
Ethylbenzene	µg/L	0.5	<0.5	<0.5	278	<0.5						
m&p-Xylene	µg/L	0.5	<0.5	<0.5	1560	<0.5						
Bromoform	µg/L	1	<1	<1	<1	<1						
Styrene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5						
1,1,2,2-Tetrachloroethane	µg/L	1	<1	<1	<1	<1						
o-Xylene	µg/L	0.5	<0.5	<0.5	833	<0.5						
1,3-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5						
1,4-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5						
1,2-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5						
1,2,4-Trichlorobenzene	µg/L	1	<1	<1	<1	<1						
VPH	µg/L	100	<100	<100	2480	<100						
Total Trihalomethanes	µg/L	2	<2	<2	<2	<2						
Total Xylenes	µg/L	1	<1	<1	2390	<1						
Surrogate	Unit	Acceptable Limits										
Bromofluorobenzene	%	70-130	83	71	91	87						
Dibromofluoromethane	%	70-130	112	99	94	82						
Toluene - d8	%	70-130	110	94	108	84						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

Dioxins & Furans (Soil, NATO 1988)

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

DATE RECEIVED: 2015-10-13 **DATE REPORTED: 2015-10-15** 15MW01 9. 15MW07 1. 15MW07 0. 15MW06 0. SAMPLE DESCRIPTION: 8-10.0m 1-1.2m 5-0.6m 3-0.4m SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 10/7/2015 10/8/2015 10/8/2015 10/8/2015 G/S 7079503 RDL 7079504 RDL 7079506 Parameter Unit RDL 7079505 RDL 2,3,7,8-Tetra CDD 0.8 <0.8 <1 0.6 <0.6 0.9 <0.9 ng/kg 1 1,2,3,7,8-Penta CDD 0.9 <0.9 <1 2 0.9 1.2 ng/kg 1 1 1,2,3,4,7,8-Hexa CDD ng/kg 0.7 0.8 <1 0.5 2.0 0.8 0.9 1 1,2,3,6,7,8-Hexa CDD ng/kg 0.6 0.7 <1 0.5 1.7 0.8 1.1 1,2,3,7,8,9-Hexa CDD 0.7 <0.7 <1 0.8 <0.8 0.8 1.0 ng/kg 1 2 2 1,2,3,4,6,7,8-Hepta CDD ng/kg 0.5 <0.5 0.8 <0.8 1 1 Octa CDD 0.5 3 2 3 2 10 ng/kg 1.5 4 2,3,7,8-Tetra CDF ng/kg 0.6 <0.6 0.8 <0.8 0.6 <0.6 0.6 0.7 0.9 <0.9 0.6 0.9 0.7 0.8 1.2.3.7.8-Penta CDF ng/kg 0.6 < 0.6 2,3,4,7,8-Penta CDF 0.5 0.6 0.8 <0.8 0.5 0.5 0.9 ng/kg 0.5 1,2,3,4,7,8-Hexa CDF 0.8 <0.8 0.5 0.6 <1 0.7 1.4 ng/kg 1 1,2,3,6,7,8-Hexa CDF 0.7 <0.7 0.9 <0.9 1 <1 0.7 0.9 ng/kg 2,3,4,6,7,8-Hexa CDF 0.7 <0.7 0.9 <0.9 1 <1 0.6 1.4 ng/kg 2 1,2,3,7,8,9-Hexa CDF ng/kg 1 <1 1 <2 0.5 1.0 2 1,2,3,4,6,7,8-Hepta CDF ng/kg 0.9 <0.9 1 <1 <2 0.7 1.6 1,2,3,4,7,8,9-Hepta CDF 1 <1 <1 3 <3 1 ng/kg 1 1 2 3 Octa CDF ng/kg 3 <3 4 <4 3 <3 0.8 <0.8 <1 0.6 <0.6 0.9 <0.9 Total Tetrachlorodibenzodioxins ng/kg 1 0.9 <0.9 2 0.9 1.2 Total Pentachlorodibenzodioxins ng/kg 1 <1 1 0.5 3.7 Total Hexachlorodibenzodioxins 0.7 1.5 <1 0.8 3.1 ng/kg Total Heptachlorodibenzodioxins ng/kg 0.5 <0.5 2 2 0.8 <0.8 1 1 Total PCDDs ng/kg 0.9 3.0 3 7 2 8 2 16 Total Tetrachlorodibenzofurans ng/kg 0.6 <0.6 0.8 <0.8 0.6 0.9 0.6 1.3 0.6 0.9 <0.9 2.1 Total Pentachlorodibenzofurans ng/kg < 0.6 0.6 0.7 1.7 4.7 Total Hexachlorodibenzofurans <1 1 2 2 <2 0.7 ng/kg 1 Total Heptachlorodibenzofurans ng/kg <1 <1 3 <3 1 1 Total PCDFs 3 3 2 12 ng/kg 3 <3 4 <4 TEQ 2,3,7,8-Tetra CDD (TEF 1.0) 0 0 0 0 1,2,3,7,8-Penta CDD (TEF 0.5) TEQ 0 0 0.861 0.589

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Dioxins & Furans (Soil, NATO 1988) DATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15 15MW01 9. 15MW07 1. 15MW07 0. 15MW06 0. SAMPLE DESCRIPTION: 8-10.0m 1-1.2m 5-0.6m 3-0.4m SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 10/7/2015 10/8/2015 10/8/2015 10/8/2015 Unit 7079503 RDL 7079504 RDL RDL 7079506 Parameter G/S RDL 7079505 1,2,3,4,7,8-Hexa CDD (TEF 0.1) TEQ 0.0770 0 0.203 0.0914 1,2,3,6,7,8-Hexa CDD (TEF 0.1) TEQ 0.0720 0 0.167 0.114 TEQ 1,2,3,7,8,9-Hexa CDD (TEF 0.1) 0 0 0 0.103 1,2,3,4,6,7,8-Hepta CDD (TEF 0.01) TEQ 0 0.0224 0 0.0131 Octa CDD (TEF 0.001) TEQ 0.00151 0.00395 0.00270 0.00979 2,3,7,8-Tetra CDF (TEF 0.1) TEQ 0 0 0 0.0731 1,2,3,7,8-Penta CDF (TEF 0.05) TEQ 0 0 0.0446 0.0408 2,3,4,7,8-Penta CDF (TEF 0.5) TEQ 0.282 0 0.256 0.444 1,2,3,4,7,8-Hexa CDF (TEF 0.1) TEQ 0.0617 0 0.138 0 TEQ 1,2,3,6,7,8-Hexa CDF (TEF 0.1) 0 0 0.0914 0 2,3,4,6,7,8-Hexa CDF (TEF 0.1) 0 TEQ 0 0 0.137 1,2,3,7,8,9-Hexa CDF (TEF 0.1) TEQ 0 0.113 0 0.0985 1,2,3,4,6,7,8-Hepta CDF (TEF 0.01) TEQ 0 0 0 0.0161 1,2,3,4,7,8,9-Hepta CDF (TEF 0.01) TEQ 0 0 0 0.0133 Octa CDF (TEF 0.001) TEQ 0 0 0 0.00313 Total PCDDs and PCDFs (TEQ) TEQ 0.433 0.201 1.53 1.97

Certified By:

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Dioxins & Furans (Soil, NATO 1988) DATE REPORTED: 2015-10-15 DATE RECEIVED: 2015-10-13 15MW01 9. 15MW07 1. 15MW07 0. 15MW06 0. SAMPLE DESCRIPTION: 8-10.0m 1-1.2m 5-0.6m 3-0.4m SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 10/7/2015 10/8/2015 10/8/2015 10/8/2015 7079504 7079506 7079503 7079505 Surrogate Unit Acceptable Limits 13C-2378-TCDF % 30-140 70 69 44 64 13C-12378-PeCDF % 30-140 73 71 48 58 13C-23478-PeCDF % 30-140 81 81 50 69 58 49 13C-123478-HxCDF % 30-140 50 49 13C-123678-HxCDF % 30-140 49 56 50 44 13C-234678-HxCDF % 63 64 56 30-140 51 % 69 53 13C-123789-HxCDF 30-140 68 51 13C-1234678-HpCDF % 30-140 49 52 43 41 % 72 13C-1234789-HpCDF 30-140 71 56 53 % 78 71 13C-2378-TCDD 30-140 78 51 89 13C-12378-PeCDD % 30-140 88 62 76 13C-123478-HxCDD % 30-140 70 73 57 65 13C-123678-HxCDD % 30-140 67 70 57 54 13C-1234678-HpCDD % 30-140 67 71 58 65 13C-OCDD % 61 60 47 57 30-140

Certified By:

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Dioxins & Furans (Soil, NATO 1988) DATE RECEIVED: 2015-10-13 **DATE REPORTED: 2015-10-15** Dup 01 9. 15MW04 1. 15MW04 0. SAMPLE DESCRIPTION: 15MW01 1.8-2m 8-10.0m 3-0.4m 1-1.2m SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 10/7/2015 10/7/2015 10/7/2015 10/7/2015 G/S 7079507 RDL 7079508 RDL 7079510 Parameter Unit RDL 7079509 RDL 2,3,7,8-Tetra CDD 0.5 <0.5 <1 <1 ng/kg 1 1 <1 1 1,2,3,7,8-Penta CDD 0.9 <0.9 <1 <1 0.9 1.3 ng/kg 1 1 1,2,3,4,7,8-Hexa CDD ng/kg 0.7 0.7 0.7 0.9 1 <1 1 1 0.7 0.8 0.9 1,2,3,6,7,8-Hexa CDD ng/kg < 0.7 1 <1 1 1 1,2,3,7,8,9-Hexa CDD <1 <1 <1 0.9 <0.9 ng/kg 1 1 1 <1 2 0.7 <0.7 1,2,3,4,6,7,8-Hepta CDD ng/kg 0.9 1.1 1 1 Octa CDD 5 <5 2 0.9 <0.9 ng/kg 1 1 4 2,3,7,8-Tetra CDF ng/kg 0.7 <0.7 <1 0.5 <0.5 <1 1 1 <1 1 <1 1.2.3.7.8-Penta CDF ng/kg 1 <1 1 1 1 2,3,4,7,8-Penta CDF <1 0.6 0.7 0.8 1 ng/kg 1 1 1 1,2,3,4,7,8-Hexa CDF 0.5 0.6 <1 <1 ng/kg 1 1 1 1 1,2,3,6,7,8-Hexa CDF 0.5 0.6 <1 1 1 1 <1 ng/kg 1 2,3,4,6,7,8-Hexa CDF 1 <1 <1 1 <1 0.9 <0.9 ng/kg 1 1,2,3,7,8,9-Hexa CDF ng/kg 1 1 1 <1 1 <1 1 <1 1,2,3,4,6,7,8-Hepta CDF ng/kg 2 <2 1 <1 1 <1 1 <1 1,2,3,4,7,8,9-Hepta CDF 2 <2 <1 2 <2 1 <1 ng/kg 1 <3 2 <2 5 5 Octa CDF ng/kg 4 4 3 0.5 <0.5 <1 <1 3 Total Tetrachlorodibenzodioxins ng/kg 1 1 1 0.9 <0.9 <1 <1 0.9 2 Total Pentachlorodibenzodioxins ng/kg 1 1 0.8 1.7 3 Total Hexachlorodibenzodioxins 0.7 1.6 1 <1 ng/kg 1 Total Heptachlorodibenzodioxins ng/kg 0.9 1.1 1 2 1 2 0.7 <0.7 Total PCDDs ng/kg 5 <5 1 5 1 6 1 8 Total Tetrachlorodibenzofurans ng/kg 0.7 0.9 1 <1 0.5 0.8 1 <1 3 Total Pentachlorodibenzofurans ng/kg 1 <1 1 <1 1 4 1 3 Total Hexachlorodibenzofurans ng/kg 4 <1 1 1 <1 1 1 Total Heptachlorodibenzofurans ng/kg 2 <2 <1 2 <2 1 <1 Total PCDFs <3 2 8 5 9 ng/kg 4 9 3 TEQ 2,3,7,8-Tetra CDD (TEF 1.0) 0 0 0 0 1,2,3,7,8-Penta CDD (TEF 0.5) TEQ 0 0 0 0.656

Certified By:

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Dioxins & Furans (Soil, NATO 1988)

DATE RECEIVED: 2015-10-13								DATE REPORTED: 2015-10-15			
		SAMPLE DES	CRIPTION: 1	5MW01 1.8-2m		Dup 01 9. 8-10.0m		15MW04 1. 1-1.2m		15MW04 0. 3-0.4m	
			PLE TYPE: SAMPLED:	Soil 10/7/2015		Soil 10/7/2015		Soil 10/7/2015		Soil 10/7/2015	
Parameter	Unit	G/S	RDL	7079507	RDL	7079508	RDL	7079509	RDL	7079510	
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	TEQ			0.0720		0.0866		0		0.114	
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	TEQ			0		0.0879		0		0.136	
I,2,3,7,8,9-Hexa CDD (TEF 0.1)	TEQ			0		0		0		0	
,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	TEQ			0.0108		0		0.0203		0	
Octa CDD (TEF 0.001)	TEQ			0		0.00169		0.00368		0	
2,3,7,8-Tetra CDF (TEF 0.1)	TEQ			0		0		0		0	
,2,3,7,8-Penta CDF (TEF 0.05)	TEQ			0		0		0.0587		0	
2,3,4,7,8-Penta CDF (TEF 0.5)	TEQ			0		0.338		0.701		0.551	
,2,3,4,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0583		0		0.141		0	
,2,3,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0.0587		0		0.110		0	
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	TEQ			0		0		0		0	
,2,3,7,8,9-Hexa CDF (TEF 0.1)	TEQ			0.115		0		0		0	
,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	TEQ			0		0		0		0	
,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	TEQ			0		0		0		0	
Octa CDF (TEF 0.001)	TEQ			0.00407		0		0		0000539	
Total PCDDs and PCDFs (TEQ)	TEQ			0.319		0.514		1.03		1.46	

Certified By:

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Dioxins & Furans (Soil, NATO 1988)

DATE RECEIVED: 2015-10-1	3				DATE REPORTED: 2015-10-15				
				Dup 01 9.	15MW04 1.	15MW04 0.			
		SAMPLE DESCRIPTION: 1	5MW01 1.8-2m	8-10.0m	1-1.2m	3-0.4m			
		SAMPLE TYPE:	Soil	Soil	Soil	Soil			
		DATE SAMPLED:	10/7/2015	10/7/2015	10/7/2015	10/7/2015			
Surrogate	Unit	Acceptable Limits	7079507	7079508	7079509	7079510			
13C-2378-TCDF	%	30-140	57	66	57	67			
13C-12378-PeCDF	%	30-140	59	69	57	69			
13C-23478-PeCDF	%	30-140	70	77	65	76			
3C-123478-HxCDF	%	30-140	46	49	50	51			
3C-123678-HxCDF	%	30-140	45	46	49	50			
13C-234678-HxCDF	%	30-140	56	58	54	67			
13C-123789-HxCDF	%	30-140	57	60	57	64			
13C-1234678-HpCDF	%	30-140	40	48	42	46			
I3C-1234789-HpCDF	%	30-140	56	64	60	54			
3C-2378-TCDD	%	30-140	67	74	67	75			
3C-12378-PeCDD	%	30-140	78	85	68	85			
3C-123478-HxCDD	%	30-140	59	59	63	73			
3C-123678-HxCDD	%	30-140	60	64	61	68			
3C-1234678-HpCDD	%	30-140	57	66	64	60			
13C-OCDD	%	30-140	45	59	49	47			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7079503-7079510 The results were corrected based on the surrogate percent recoveries.

Certified By:

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

Ammonia, Nitrogen - Total Kjeldahl in Water														
ATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15														
			15MW01 Water	Dup 01 Water	15MW07 Water	SW1 Water	SW2 Water	SW3 Water	SW4 Water	Trip Blank Water				
11			10/10/2015	10/10/2015	10/10/2015	10/9/2015			10/10/2015	9/29/2015				
Unit	6/5	RDL	7080691	7080695	7080699	7080701	/080/02	7080703	/080/04	7080705				
mg/L		0.01	0.02	0.02	<0.01	0.02	0.05	0.03	0.04	0.01				
mg/L		0.1	0.4	0.4	1.8	0.6	0.6	0.6	0.5	0.3				
	0	SAMI DATE S Unit G / S mg/L	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL mg/L 0.01	SAMPLE DESCRIPTION: 15MW01 SAMPLE TYPE: Water DATE SAMPLED: 10/10/2015 Unit G / S RDL 7080691 mg/L 0.01 0.02	SAMPLE DESCRIPTION: 15MW01 Dup 01 SAMPLE TYPE: Water Water DATE SAMPLED: 10/10/2015 10/10/2015 Unit G / S RDL 7080691 7080695 mg/L 0.01 0.02 0.02	SAMPLE DESCRIPTION: 15MW01 Dup 01 15MW07 SAMPLE TYPE: Water Water Water DATE SAMPLED: 10/10/2015 10/10/2015 10/10/2015 Unit G / S RDL 7080691 7080695 7080699 mg/L 0.01 0.02 0.02 <0.01	SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 10/10/2015 10/10/2015 10/10/2015 10/9/2015 Unit G / S RDL 7080691 7080695 7080699 7080701 mg/L 0.01 0.02 0.02 <0.01	SAMPLE DESCRIPTION: 15MW01 Dup 01 15MW07 SW1 SW2 SAMPLE TYPE: Water Water Water Water Water Water DATE SAMPLED: 10/10/2015 10/10/2015 10/10/2015 10/10/2015 10/9/2015 10/9/2015 Unit G / S RDL 7080691 7080695 7080699 7080701 7080702 mg/L 0.01 0.02 0.02 <0.01 0.02 0.05	DATE REPORT SAMPLE DESCRIPTION: 15MW01 Dup 01 15MW07 SW1 SW2 SW3 SAMPLE TYPE: Water Mater Mater	DATE REPORTED: 2015-10-15 SAMPLE DESCRIPTION: 15MW01 Dup 01 15MW07 SW1 SW2 SW3 SW4 SAMPLE TYPE: Water Water				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

	Biochemical Oxygen Demand														
DATE RECEIVED: 2015-10-13	ATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15														
		SAMPLE DES	CRIPTION: PLE TYPE:	SW1 Water	SW2 Water	SW3 Water	SW4 Water	Trip Blank Water							
Parameter	Unit	DATE S G / S	SAMPLED: RDL	10/9/2015 7080701	10/9/2015 7080702	10/9/2015 7080703	10/10/2015 7080704	9/29/2015 7080705							
BOD (5 day)	mg/L		4	<4	<4	<4	<4	<4							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7080701-7080703 Literature holding time exceeded for Biochemical Oxygen Demand analysis.

7080705 Literature holding time exceeded for Biochemical Oxygen Demand analysis.

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

						DATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15													
DATE RECEIVED: 2015-10-13								DATE REPORTI	ED: 2015-10-15										
Parameter	S <i>A</i> Unit	MPLE DESCRIPTION SAMPLE TYPE DATE SAMPLED G / S RDL	: Water	RDL	SW2 Water 10/9/2015 7080702	RDL	SW3 Water 10/9/2015 7080703	SW4 Water 10/10/2015 7080704	Trip Blank Water 9/29/2015 7080705										
Aluminum Total	µg/L	5	1780	50	10100	5	899	1770	<5										
Antimony Total	μg/L	0.5	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5										
Arsenic Total	μg/L	0.1	0.5	0.1	0.6	0.1	0.2	0.3	<0.1										
Barium Total	µg/L	0.5	56.1	0.5	39.6	0.5	114	238	<0.5										
Beryllium Total	µg/L	0.05	0.34	0.05	1.96	0.05	0.34	0.47	<0.05										
Boron Total	µg/L	5	12	5	27	5	21	8	<5										
Cadmium Total	µg/L	0.01	0.16	0.01	1.50	0.01	0.20	0.76	<0.01										
Calcium Total	µg/L	50	5570	50	60100	50	9760	22700	<50										
Chromium Total	µg/L	0.5	1.4	0.5	1.7	0.5	0.7	1.0	<0.5										
Cobalt Total	µg/L	0.05	16.5	0.05	92.9	0.05	14.2	17.3	<0.05										
Copper Total	µg/L	0.5	2.2	0.5	6.8	0.5	1.9	3.1	<0.5										
Iron Total	µg/L	10	1160	10	1590	10	559	901	<10										
Lead Total	µg/L	0.05	0.38	0.05	0.35	0.05	0.14	0.27	<0.05										
Lithium Total	μg/L	0.5	7.1	0.5	30.3	0.5	9.4	11.3	<0.5										
Magnesium Total	µg/L	50	4830	50	29000	50	4060	5450	<50										
Manganese Total	μg/L	1	145	1	1140	1	174	225	<1										
Mercury Total	µg/L	0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01										
Molybdenum Total	µg/L	0.1	<0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1										
Nickel Total	µg/L	0.5	42.4	0.5	277	0.5	36.1	48.2	<0.5										
Selenium Total	µg/L	0.5	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5										
Silver Total	µg/L	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02										
Sodium Total	µg/L	100	810	100	4010	100	1060	1190	<100										
Thallium Total	µg/L	0.02	<0.02	0.02	0.02	0.02	<0.02	<0.02	<0.02										
Titanium Total	µg/L	1	6	1	7	1	1	3	<1										
Uranium Total	µg/L	0.01	0.05	0.01	0.06	0.01	0.01	0.02	<0.01										
Vanadium Total	µg/L	1	2	1	2	1	<1	1	<1										
Zinc Total	µg/L	5	134	5	781	5	126	160	<5										
Total Hardness (calc)	ug CaCO3/L	100	33800	100	270000	100	41100	79100	<100										

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

British Columbia CSR- Schedule 6 Dissolved Metals

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

DATE RECEIVED: 2015-10-13						DATE REPORTED: 2015-10-15
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	15MW01 Water 10/10/2015 7080691	Dup 01 Water 10/10/2015 7080695	15MW07 Water 10/10/2015 7080699	
Aluminum Dissolved	µg/L	2	3	3	63	
Antimony Dissolved	µg/L	0.2	<0.2	<0.2	<0.2	
rsenic Dissolved	µg/L	0.1	0.3	0.3	0.3	
Barium Dissolved	µg/L	0.2	22.6	22.6	90.9	
Beryllium Dissolved	µg/L	0.01	<0.01	<0.01	<0.01	
Boron Dissolved	µg/L	2	7	7	19	
Cadmium Dissolved	µg/L	0.01	0.02	0.01	0.30	
Calcium Dissolved	µg/L	50	9400	9310	15700	
Chromium Dissolved	µg/L	0.5	<0.5	<0.5	<0.5	
Cobalt Dissolved	µg/L	0.05	0.23	0.24	1.12	
Copper Dissolved	µg/L	0.2	0.3	0.4	2.3	
on Dissolved	µg/L	10	<10	<10	46	
ead Dissolved	µg/L	0.05	<0.05	<0.05	<0.05	
ithium Dissolved	µg/L	0.5	1.0	1.2	<0.5	
lagnesium Dissolved	µg/L	50	1360	1320	2930	
langanese Dissolved	µg/L	1	48	46	150	
lercury Dissolved	µg/L	0.01	<0.01	<0.01	<0.01	
lolybdenum Dissolved	µg/L	0.05	0.47	0.41	0.43	
lickel Dissolved	µg/L	0.2	0.6	0.6	3.9	
Selenium Dissolved	µg/L	0.5	<0.5	<0.5	<0.5	
Silver Dissolved	µg/L	0.02	<0.02	<0.02	<0.02	
Sodium Dissolved	µg/L	50	2400	2470	2020	
hallium Dissolved	µg/L	0.01	<0.01	<0.01	0.01	
itanium Dissolved	µg/L	0.5	0.8	0.7	3.9	
Iranium Dissolved	µg/L	0.01	0.05	0.05	0.04	
/anadium Dissolved	µg/L	0.5	<0.5	<0.5	<0.5	
Zinc Dissolved	µg/L	2	<2	<2	3	
Hardness (calc)	ug CaCO3/L	100	29100	28700	51300	

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

7080699

ATTENTION TO: KRISTEN RANGE

DATE REPORTED: 2015-10-15

SAMPLED BY:

British Columbia CSR- Schedule 6 Dissolved Metals

DATE RECEIVED: 2015-10-13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Sample not filtered at time of collection as per analysis requirements. Dissolved Metals sample improperly preserved as per analysis requirements. Dissolved Mercury sample container inappropriate as per analysis requirements.

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

	Chemical Oxygen Demand													
ATE RECEIVED: 2015-10-13 DATE REPORTED: 2015-10-15														
	SW3 Water	SW4 Water	Trip Blank Water											
Parameter	Unit	DATE S G / S	SAMPLED: RDL	10/10/2015 7080691	10/10/2015 7080695	10/10/2015 7080699	10/9/2015 7080701	10/9/2015 7080702	10/9/2015 7080703	10/10/2015 7080704	9/29/2015 7080705			
COD	mg/L		10	13	12	158	33	24	19	31	<10			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Angela Bend

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01 Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Unit 120, 8600 Glenlyon Parkway

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

				Dissolve	ed Organic (Carbon in W	/ater						
DATE RECEIVED: 2015-10-13								I	DATE REPORT	ED: 2015-10-15			
SAMPLE DESCRIPTION: 15MW01 Dup 01 15MW07 SW1 SW2 SW3 SW4 Trip Blank SAMPLE TYPE: Water Water													
Parameter	Unit	G/S	RDL	7080691	7080695	7080699	7080701	7080702	7080703	7080704	7080705		
Carbon Dissolved Organic	mg/L		0.5	1.4	0.9	15.8	9.0	5.7	5.5	8.5	<0.5		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Angela Bend

AGAT WORK ORDER: 15V029854 PROJECT: ENVH2O 03173-01

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

				Rou	tine Wat	er Analysis				
DATE RECEIVED: 2015-10-13									DATE REPORTI	ED: 2015-10-15
Parameter	SA Unit	MPLE DESCRIPT SAMPLE T DATE SAMP G/S RI	YPE: V LED: 10/	SW1 /ater 9/2015 80701	RDL	SW2 Water 10/9/2015 7080702	RDL	SW3 Water 10/9/2015 7080703	SW4 Water 10/10/2015 7080704	Trip Blank Water 9/29/2015 7080705
Total Dissolved Solids	mg/L	Ę	5	80	5	462	5	88	195	<5
Alkalinity (pH 4.5)	mg CaCO3/L	ŕ		<1	1	<1	1	<1	<1	<1
Alkalinity, Bicarbonate	mg CaCO3/L	ŕ		<1	1	<1	1	<1	<1	<1
Alkalinity, Carbonate	mg CaCO3/L			<1	1	<1	1	<1	<1	<1
Ortho-Phosphate	mg/L	0.0	01 <	0.001	0.001	0.007	0.001	<0.001	0.001	<0.001
Calcium Total	µg/L	5	0 5	570	50	60100	50	9760	22700	<50
Magnesium Total	µg/L	5	0 4	830	50	29000	50	4060	5450	<50
Sodium Total	µg/L	10	00	810	100	4010	100	1060	1190	<100
Potassium Total	µg/L	10	00	252	100	1170	100	287	191	<100
Chloride	mg/L	0.0	05	0.09	0.5	25.1	0.05	6.36	46.2	<0.05
Nitrate-N	mg/L	0.0	05 0	.129	0.005	0.020	0.005	0.028	0.009	<0.005
Nitrite-N	mg/L	0.0	05 <	0.005	0.005	<0.005	0.005	<0.005	<0.005	<0.005
Sulphate	mg/L	0.	5	44.8	5	308	0.5	44.8	39.1	<0.5
рН	pH units	0.0	01 -	4.03	0.01	3.79	0.01	4.16	3.91	4.68

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7080701-7080705 Literature holding time exceeded for pH analysis.

Certified By:

Angela Bend

PROJECT: ENVH2O 03173-01

CLIENT NAME: TETRA TECH EBA

SAMPLING SITE:

AGAT WORK ORDER: 15V029854

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

						Analysis		
DATE RECEIVED: 2015-10-13								DATE REPORTED: 2015-10-15
	SA	MPLE DESCRIP		15MW01 Water	Dup 01 Water		15MW07 Water	
		DATE SAM	PLED:	10/10/2015	10/10/2015		10/10/2015	
Parameter	Unit	G/S R	RDL	7080691	7080695	RDL	7080699	
Total Dissolved Solids	mg/L		5	52	42	5	64	
Alkalinity (pH 4.5)	mg CaCO3/L		1	25	22	1	38	
Alkalinity, Bicarbonate	mg CaCO3/L		1	25	22	1	38	
Alkalinity, Carbonate	mg CaCO3/L		1	<1	<1	1	<1	
Ortho-Phosphate	mg/L	0.	.001	0.008	0.007	0.001	<0.001	
Calcium Dissolved	µg/L	:	50	9400	9310	50	15700	
Magnesium Dissolved	µg/L	:	50	1360	1320	50	2930	
Sodium Dissolved	µg/L	:	50	2400	2470	50	2020	
Potassium Dissolved	µg/L	:	50	433	424	50	545	
Chloride	mg/L	0	.05	9.44	9.26	0.05	5.33	
Nitrate-N	mg/L	0.	.005	0.094	0.100	0.01	0.14	
Nitrite-N	mg/L	0.	.005	<0.005	<0.005	0.005	<0.005	
Sulphate	mg/L	(0.5	2.9	2.9	0.5	7.4	
рН	pH units	0	0.01	7.05	7.03	0.01	6.62	

Routine Water Analysis

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7080691-7080699 Literature holding time exceeded for pH analysis.

Certified By:

Angela Bend

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Soil Analysis

RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
British Columbia Metals Sche	dule 4 and 5														
Antimony	7079506		0.3	0.3	NA	< 0.1	110%	70%	130%	104%	85%	115%			
Arsenic	7079506		5.3	5.5	3.8%	< 0.1	105%	70%	130%	97%	90%	110%			
Barium	7079506		44.0	46.4	5.4%	< 0.5	80%	70%	130%	100%	90%	110%			
Beryllium	7079506		0.1	0.1	NA	< 0.1	104%	70%	130%	106%	90%	110%			
Cadmium	7079506		0.02	0.02	NA	< 0.01	74%	70%	130%	102%	90%	110%			
Chromium	7079506		4	4	NA	< 1	106%	70%	130%	105%	90%	110%			
Cobalt	7079506		0.7	0.8	14.9%	< 0.1	111%	70%	130%	103%	90%	110%			
Copper	7079506		3.7	3.4	7.4%	< 0.2	104%	70%	130%	98%	90%	110%			
Lead	7079506		3.2	3.5	6.7%	< 0.1	96%	70%	130%	102%	90%	110%			
Mercury	7079506		<0.01	<0.01	NA	< 0.01	102%	70%	130%	105%	90%	110%			
Molybdenum	7079506		0.3	0.4	NA	< 0.2	99%	70%	130%	97%	90%	110%			
Nickel	7079506		3.3	3.7	11.1%	< 0.5	112%	70%	130%	107%	90%	110%			
Selenium	7079506		0.2	0.2	NA	< 0.1				106%	85%	115%			
Silver	7079506		<0.5	<0.5	NA	< 0.5				98%	90%	110%			
Thallium	7079506		<0.1	<0.1	NA	< 0.1	84%	70%	130%	101%	90%	110%			
Tin	7079506		<0.2	<0.2	NA	< 0.2				96%	90%	110%			
Uranium	7079506		0.2	0.2	NA	< 0.2	105%	70%	130%	101%	90%	110%			
Vanadium	7079506		11	10	1.4%	< 1	102%	70%	130%	101%	90%	110%			
Zinc	7079506		12	13	3.6%	< 1	110%	70%	130%	103%	90%	110%			
рН 1:2	7079506		5.4	5.4	0.2%	< 0.1	100%	90%	110%	100%	95%	105%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Angela Bend

AGAT QUALITY ASSURANCE REPORT (V1)

Page 29 of 54

Page 30 of 54

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis

					J		···· ·								
RPT Date: Oct 15, 2015			0	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
LEPH/HEPH Soil															
Naphthalene	64801	7078975	<0.01	<0.01	0.0%	< 0.01	101%	80%	120%				95%	50%	130%
2-Methylnaphthalene	64801	7078975	<0.01	<0.01	0.0%	< 0.01	100%	80%	120%				84%	50%	130%
1-Methylnaphthalene	64801	7078975	<0.01	<0.01	0.0%	< 0.01	101%	80%	120%				90%	50%	130%
Acenaphthylene	64801	7078975	<0.01	<0.01	0.0%	< 0.01	97%	80%	120%				83%	50%	130%
Acenaphthene	64801	7078975	<0.01	<0.01	0.0%	< 0.01	99%	80%	120%				103%	50%	130%
Fluorene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	98%	80%	120%				95%	50%	130%
Phenanthrene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	99%	80%	120%				73%	60%	130%
Anthracene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	90%	80%	120%				83%	60%	130%
Fluoranthene	64801	7078975	<0.05	<0.05	0.0%	< 0.05	91%	80%	120%				83%	60%	130%
Pyrene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	92%	80%	120%				79%	60%	130%
Benzo(a)anthracene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	95%	80%	120%				83%	60%	130%
Chrysene	64801	7078975	<0.05	<0.05	0.0%	< 0.05	100%	80%	120%				93%	60%	130%
Benzo(b)fluoranthene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	97%	80%	120%				75%	60%	130%
Benzo(j)fluoranthene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	98%	80%	120%				93%	60%	130%
Benzo(k)fluoranthene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	105%	80%	120%				93%	60%	130%
Benzo(a)pyrene	64801	7078975	<0.05	<0.05	0.0%	< 0.05	94%	80%	120%				80%	60%	130%
Indeno(1,2,3-c,d)pyrene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	99%	80%	120%				80%	60%	130%
Dibenzo(a,h)anthracene	64801	7078975	<0.02	<0.02	0.0%	< 0.02	100%	80%	130%				76%	60%	130%
Benzo(g,h,i)perylene	64801	7078975	<0.05	<0.05	0.0%	< 0.05	83%	80%	120%				88%	60%	130%
Naphthalene - d8	64801	7078975	64	81	23.0%		99%	80%	120%				89%	50%	130%
2-Fluorobiphenyl	64801	7078975	75	94	22.0%		108%	80%	120%				100%	50%	130%
P-Terphenyl - d14	64801	7078975	70	90	25.0%		89%	80%	120%				86%	60%	130%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Volatile Organic Compounds in Soil Chloromethane 60% 140% 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 99% 80% 120% 122% Vinyl Chloride 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 99% 80% 120% 115% 60% 140% Bromomethane 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 99% 80% 120% 116% 60% 140% Chloroethane 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 99% 80% 120% 114% 60% 140% Trichlorofluoromethane 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 99% 80% 120% 110% 70% 130% Acetone 64801 7072941 <0.5 <0.5 0.0% < 0.5 100% 80% 120% 119% 70% 130% 1,1-Dichloroethene 7072941 < 0.05 80% 120% 64801 < 0.05 < 0.05 0.0% 99% 114% 70% 130% Dichloromethane 64801 7072941 < 0.05 <0.05 0.0% < 0.05 100% 80% 120% 115% 70% 130% Methyl tert-butyl ether (MTBE) 64801 7072941 <0.1 <0.1 0.0% < 0.1 97% 80% 120% 103% 70% 130% 2-Butanone (MEK) 64801 7072941 <0.5 <0.5 0.0% < 0.5 98% 80% 120% 92% 70% 130% trans-1,2-Dichloroethene 97% 104% 70% 130% 64801 7072941 < 0.05 < 0.05 0.0% < 0.05 80% 120% 1.1-Dichloroethane 64801 7072941 < 0.05 0.0% < 0.05 98% 80% 95% 70% 130% < 0.05 120% cis-1.2-Dichloroethene 64801 7072941 < 0.05 0.0% < 0.05 98% 80% 120% 70% 130% < 0.05 98% 64801 7072941 97% Chloroform < 0.05 < 0.05 0.0% < 0.05 80% 120% 101% 70% 130%

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis (Continued)

			0.9.				(00)			/					
RPT Date: Oct 15, 2015			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ľ					value	Lower	Upper		Lower	Upper		Lower	Uppe
1,2-Dichloroethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				103%	70%	130%
1,1,1-Trichloroethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				101%	70%	130%
Carbon Tetrachloride	64801	7072941	<0.02	<0.02	0.0%	< 0.02	98%	80%	120%				102%	70%	130%
Benzene	64801	7072941	<0.02	<0.02	0.0%	< 0.02	98%	80%	120%				102%	70%	130%
1,2-Dichloropropane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				101%	70%	130%
Trichloroethene	64801	7072941	<0.01	<0.01	0.0%	< 0.01	97%	80%	120%				104%	70%	130%
Bromodichloromethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				103%	70%	130%
trans-1,3-Dichloropropene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				99%	60%	140%
4-Methyl-2-pentanone (MIBK)	64801	7072941	<0.5	<0.5	0.0%	< 0.5	99%	80%	120%				100%	70%	130%
cis-1,3-Dichloropropene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				98%	60%	140%
1,1,2-Trichloroethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				102%	70%	130%
Toluene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				99%	70%	130%
Dibromochloromethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				104%	70%	130%
Ethylene Dibromide	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				101%	70%	130%
Tetrachloroethene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	97%	80%	120%				101%	70%	130%
1,1,1,2-Tetrachloroethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				107%	70%	130%
Chlorobenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				104%	70%	130%
Ethylbenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				101%	70%	130%
m&p-Xylene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				103%	70%	130%
Bromoform	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				111%	70%	130%
Styrene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				103%	70%	130%
1,1,2,2-Tetrachloroethane	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				106%	70%	130%
o-Xylene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				104%	70%	130%
1,3-Dichlorobenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				103%	70%	130%
1,4-Dichlorobenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	98%	80%	120%				103%	70%	130%
1,2-Dichlorobenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				100%	70%	130%
I,2,4-Trichlorobenzene	64801	7072941	<0.05	<0.05	0.0%	< 0.05	99%	80%	120%				99%	70%	130%
Bromofluorobenzene	64801	7072941	106	99	7.0%		94%	60%	140%				108%	60%	140%
Dibromofluoromethane	64801	7072941	113	111	2.0%		91%	60%	140%				93%	60%	140%
Toluene - d8	64801	7072941	114	119	4.0%		90%	60%	140%				92%	60%	140%
VPH	64801	7072941	<10	<10	0.0%	< 10									

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Volatile Organic Compounds	s in Water											
Chloromethane	64800	7067258	<1	<1	0.0%	< 1	97%	80%	120%	84%	70%	130%
Vinyl Chloride	64800	7067258	<1	<1	0.0%	< 1	98%	80%	120%	85%	70%	130%
Bromomethane	64800	7067258	<1	<1	0.0%	< 1	97%	80%	120%	95%	70%	130%
Chloroethane	64800	7067258	<1	<1	0.0%	< 1	97%	80%	120%	88%	70%	130%
Trichlorofluoromethane	64800	7067258	<1	<1	0.0%	< 1	98%	80%	120%	89%	70%	130%
Acetone	64800	7067258	<10	<10	0.0%	< 10	99%	80%	120%			
AGAT QUALITY ASSU	RANCE REPO	ORT (V1)									Page 31	of 54

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis (Continued)

	ct 15, 2015			anicə		19313		ILIII	ueu)					
RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN		TERIAL	METHOD	BLAN		MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1	eptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
1,1-Dichloroethene	64800	7067258	<1	<1	0.0%	< 1	100%	80%	120%				89%	70%	130%
Dichloromethane	64800	7067258	<1	<1	0.0%	< 1	105%	80%	120%				93%	70%	130%
Methyl tert-butyl ether (MTBE)	64800	7067258	<1	<1	0.0%	< 1	106%	80%	120%				103%	70%	130%
2-Butanone (MEK)	64800	7067258	<10	<10	0.0%	< 10	113%	80%	120%						
trans-1,2-Dichloroethylene	64800	7067258	<1	<1	0.0%	< 1	104%	80%	120%				95%	70%	130%
1,1-Dichloroethane	64800	7067258	<1	<1	0.0%	< 1	108%	80%	120%				98%	70%	130%
cis-1,2-Dichloroethylene	64800	7067258	<1	<1	0.0%	< 1	114%	80%	120%				103%	70%	130%
Chloroform	64800	7067258	5	5	0.0%	< 1	111%	80%	120%				100%	70%	130%
1,2-Dichloroethane	64800	7067258	<1	<1	0.0%	< 1	116%	80%	120%				108%	70%	130%
1,1,1-Trichloroethane	64800	7067258	<1	<1	0.0%	< 1	111%	80%	120%				99%	70%	130%
Carbon Tetrachloride	64800	7067258	<0.5	<0.5	0.0%	< 0.5	110%	80%	120%				99%	70%	130%
Benzene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	110%	80%	120%				100%	70%	130%
1,2-Dichloropropane	64800	7067258	<1	<1	0.0%	< 1	115%	80%	120%				108%	70%	130%
Trichloroethene	64800	7067258	<1	<1	0.0%	< 1	105%	80%	120%				99%	70%	130%
Bromodichloromethane	64800	7067258	<1	<1	0.0%	< 1	112%	80%	120%				103%	70%	130%
trans-1,3-Dichloropropene	64800	7067258	<1	<1	0.0%	< 1	112%	80%	120%				108%	70%	130%
4-Methyl-2-pentanone (MIBK)	64800	7067258	<10	<10	0.0%	< 10	116%	80%	120%				NA	70%	130%
cis-1,3-Dichloropropene	64800	7067258	<1	<1	0.0%	< 1	112%	80%	120%				101%	70%	130%
1,1,2-Trichloroethane	64800	7067258	<1	<1	0.0%	< 1	107%	80%	120%				102%	70%	130%
Toluene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	109%	80%	120%				101%	70%	130%
Dibromochloromethane	64800	7067258	<1	<1	0.0%	< 1	105%	80%	120%				99%	70%	130%
Ethylene Dibromide	64800	7067258	<0.3	<0.3	0.0%	< 0.3	107%	90%	110%				104%	70%	130%
Tetrachloroethene	64800	7067258	<1	<1	0.0%	< 1	103%	80%	120%				89%	70%	130%
1,1,1,2-Tetrachloroethane	64800	7067258	<1	<1	0.0%	< 1	103%	90%	110%				101%	70%	130%
Chlorobenzene	64800	7067258	<1	<1	0.0%	< 1	105%	80%	120%				100%	70%	130%
Ethylbenzene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	107%	80%	120%				102%	70%	130%
m&p-Xylene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	107%	80%	120%				103%	70%	130%
Bromoform	64800	7067258	<1	<1	0.0%	< 1	95%	80%	120%				99%	70%	130%
Styrene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	97%	80%	120%				100%	70%	130%
1,1,2,2-Tetrachloroethane	64800	7067258	<1	<1	0.0%	< 1	98%	80%	120%				104%	70%	130%
o-Xylene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	98%		120%				100%		130%
1,3-Dichlorobenzene	64800	7067258	<0.5	<0.5	0.0%	< 0.5	102%	80%	120%				99%		130%
1,4-Dichlorobenzene		7067258	<0.5	<0.5	0.0%	< 0.5	101%	80%	120%				100%		130%
1,2-Dichlorobenzene		7067258	<0.5	<0.5	0.0%	< 0.5	104%		120%				104%		130%
1,2,4-Trichlorobenzene	64800	7067258	<1	<1	0.0%	< 1	107%	80%	120%				109%	70%	130%
Bromofluorobenzene		7067258	80	76	5.0%		96%		120%				96%		130%
Dibromofluoromethane	64800	7067258	106	101	5.0%		104%		130%				106%		130%
Toluene - d8	64800	7067258	105	95	10.0%		106%		120%				108%		130%
VPH		7067258	<100	<100	0.0%	< 100									

AGAT QUALITY ASSURANCE REPORT (V1)

Page 32 of 54

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	DADAMETED Batch San		Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

I FPH/HFPH/FPH Water

LEPH/HEPH/EPH Water												
Naphthalene	64797	W-MS	0.40	0.41	2.5%	< 0.05	99%	80%	120%	82%	50%	130%
Quinoline	64797	W-MS	0.5	0.5	0.0%	< 0.1	97%	80%	120%	109%	50%	130%
Acenaphthylene	64797	W-MS	0.32	0.34	6.0%	< 0.05	100%	80%	120%	65%	50%	130%
Acenaphthene	64797	W-MS	0.36	0.39	8.0%	< 0.05	96%	80%	120%	72%	50%	130%
Fluorene	64797	W-MS	0.40	0.41	2.5%	< 0.05	96%	80%	120%	82%	50%	130%
Phenanthrene	64797	W-MS	0.35	0.35	0.0%	< 0.05	100%	80%	120%	71%	60%	130%
Anthracene (Water)	64797	W-MS	0.36	0.37	2.7%	< 0.05	101%	80%	120%	73%	60%	130%
Acridine	64797	W-MS	0.52	0.48	8.0%	< 0.05	100%	80%	120%	104%	50%	130%
Fluoranthene	64797	W-MS	0.40	0.41	2.5%	< 0.05	99%	80%	120%	80%	60%	130%
Pyrene	64797	W-MS	0.40	0.41	2.5%	< 0.02	97%	80%	120%	80%	60%	130%
Benzo(a)anthracene	64797	W-MS	0.32	0.32	0.0%	< 0.05	101%	80%	120%	66%	60%	130%
Chrysene	64797	W-MS	0.46	0.48	4.0%	< 0.05	100%	80%	120%	94%	60%	130%
Benzo(b)fluoranthene	64797	W-MS	0.41	0.43	5.0%	< 0.05	101%	80%	120%	82%	60%	130%
Benzo(j)fluoranthene	64797	W-MS	0.54	0.56	4.0%	< 0.05	100%	80%	120%	109%	60%	130%
Benzo(k)fluoranthene	64797	W-MS	0.41	0.37	10.0%	< 0.05	101%	80%	120%	84%	60%	130%
Benzo(a)pyrene	64797	W-MS	0.34	0.33	3.0%	< 0.01	95%	80%	120%	68%	60%	130%
Indeno(1,2,3-c,d)pyrene	64797	W-MS	0.34	0.34	0.0%	< 0.05	101%	80%	120%	68%	60%	130%
Dibenzo(a,h)anthracene	64797	W-MS	0.33	0.33	0.0%	< 0.05	102%	80%	120%	66%	60%	130%
Benzo(g,h,i)perylene	64797	W-MS	0.38	0.38	0.0%	< 0.05	100%	80%	120%	76%	60%	130%
Naphthalene - d8	64797	W-MS	72	75	4.0%		98%	80%	120%	73%	50%	130%
2-Fluorobiphenyl	64797	W-MS	75	80	6.0%		96%	80%	120%	75%	50%	130%
P-Terphenyl - d14	64797	W-MS	76	82	8.0%		100%	80%	120%	77%	60%	130%
EPH C10-C19	64797	W-MS	7960	7590	5.0%	< 100	98%	70%	130%	89%	70%	130%
EPH C19-C32	64797	W-MS	9780	9250	6.0%	< 100	95%	70%	130%	89%	70%	130%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

BTEX / VPH / LEPH / HEPH / EPH Water

AGAT QUALITY ASSURA	NCE REPO	ORT (V1)								ŀ	Page 33	of 54
Dibromofluoromethane	64802	7080701	103	106	3.0%		101%	70%	130%	101%	70%	130%
Bromofluorobenzene	64802	7080701	97	98	1.0%		100%	70%	130%	99%	70%	130%
VH	64802	7080701	<100	<100	0.0%	< 100						
VPH	64802	7080701	<100	<100	0.0%	< 100						
Styrene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	99%	70%	130%
o-Xylene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	97%	70%	130%
m&p-Xylene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	96%	70%	130%
Ethylbenzene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	97%	70%	130%
Toluene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	98%	70%	130%
Benzene	64802	7080701	<0.5	<0.5	0.0%	< 0.5	100%	80%	120%	98%	70%	130%
Methyl tert-butyl ether (MTBE)	64802	7080701	<1	<1	0.0%	< 1	100%	80%	120%	105%	70%	130%
	in mator											

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lir	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Upper	,	Lower	Upper
Toluene - d8	64802	7080701	96	96	0.0%		100%	70%	130%				100%	70%	130%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Volatile Organic Compounds in	Water											
Chloromethane	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	91%	70%	130%
Vinyl Chloride	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	93%	70%	130%
Bromomethane	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	107%	70%	130%
Chloroethane	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	99%	70%	130%
Trichlorofluoromethane	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	96%	70%	130%
Acatana	0.4000	3000305	10	10	0.00/	10	1000/	000/	4000/			
Acetone	64806	7080705	<10	<10	0.0%	< 10	100%	80%	120%	070/	700/	4000/
1,1-Dichloroethene	64806	7080705	<1	<1	0.0%	< 1	99%	80%		97%		130%
Dichloromethane	64806	7080705	<1	<1	0.0%	< 1	100%	80%		98%	70%	130%
Methyl tert-butyl ether (MTBE)	64806	7080705	<1	<1	0.0%	< 1	97%	80%		96%	70%	130%
2-Butanone (MEK)	64806	7080705	<10	<10	0.0%	< 10	98%	80%	120%			
trans-1,2-Dichloroethylene	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	95%	70%	130%
1,1-Dichloroethane	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	91%	70%	130%
cis-1,2-Dichloroethylene	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	93%	70%	130%
Chloroform	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	94%	70%	130%
1,2-Dichloroethane	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	100%	70%	130%
1,1,1-Trichloroethane	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	98%		130%
Carbon Tetrachloride	64806	7080705	<0.5	<0.5	0.0%	< 0.5	98%	80%	120%	98%	70%	130%
Benzene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	98%	80%	120%	102%	70%	130%
1,2-Dichloropropane	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	104%	70%	130%
Trichloroethene	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	102%	70%	130%
Bromodichloromethane	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	101%	70%	130%
trans-1,3-Dichloropropene	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	103%	70%	130%
4-Methyl-2-pentanone (MIBK)	64806	7080705	<10	<10	0.0%	< 10	99%	80%	120%	NA	70%	130%
cis-1,3-Dichloropropene	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%	99%	70%	130%
1,1,2-Trichloroethane	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	101%		130%
,,,					,.							
Toluene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	97%	80%	120%	103%	70%	130%
Dibromochloromethane	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	101%	70%	130%
Ethylene Dibromide	64806	7080705	<0.3	<0.3	0.0%	< 0.3	97%	90%	110%	102%	70%	130%
Tetrachloroethene	64806	7080705	<1	<1	0.0%	< 1	97%	80%	120%	90%	70%	130%
1,1,1,2-Tetrachloroethane	64806	7080705	<1	<1	0.0%	< 1	98%	90%	110%	105%	70%	130%
Chlorobenzene	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	102%	70%	130%
Ethylbenzene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	99%	80%		103%		130%
m&p-Xylene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	99%	80%		104%		130%
Bromoform	64806	7080705	<1	<1	0.0%	< 1	99%	80%		105%	70%	130%
Styrene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	99%	80%		107%		130%
	0.000			-0.0	0.075		00,0	0070				
1,1,2,2-Tetrachloroethane	64806	7080705	<1	<1	0.0%	< 1	98%	80%	120%	101%		130%
AGAT QUALITY ASSURA	NCE REPO	ORT (V1)								F	Page 34	of 54

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Trace Organics Analysis (Continued)

			•				•			,					
RPT Date: Oct 15, 2015			C	DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	1.10	eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
o-Xylene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	98%	80%	120%				103%	70%	130%
1,3-Dichlorobenzene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	98%	80%	120%				104%	70%	130%
1,4-Dichlorobenzene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	98%	80%	120%				104%	70%	130%
1,2-Dichlorobenzene	64806	7080705	<0.5	<0.5	0.0%	< 0.5	99%	80%	120%				104%	70%	130%
1,2,4-Trichlorobenzene	64806	7080705	<1	<1	0.0%	< 1	99%	80%	120%				100%	70%	130%
Bromofluorobenzene	64806	7080705	87	81	7.0%		94%	80%	120%				100%	70%	130%
Dibromofluoromethane	64806	7080705	82	80	2.0%		91%	70%	130%				93%	70%	130%
Toluene - d8	64806	7080705	84	82	2.0%		90%	80%	120%				97%	70%	130%
VPH	64806	7080705	<100	<100	0.0%	< 100									

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Angela Bend

Page 35 of 54

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Ultra Trace Analysis

RPT Date: Oct 15, 2015			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.10	ptable nits	Recovery	1:	ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
Dioxins & Furans (Soil, NATO 19	88)														
2,3,7,8-Tetra CDD	1	7079506	< 0.9	< 0.9	NA	< 0.1	96%	40%	130%	NA	40%	130%	103%	40%	130%
1,2,3,7,8-Penta CDD	1	7079506	1.2	1.1	8.7%	< 0.1	95%	40%	130%	NA	40%	130%	104%	40%	130%
I,2,3,4,7,8-Hexa CDD	1	7079506	0.9	0.9	NA	< 0.2	95%	40%	130%	NA	40%	130%	106%	40%	130%
I,2,3,6,7,8-Hexa CDD	1	7079506	1.1	1.0	9.5%	< 0.1	130%	40%	130%	NA	40%	130%	96%	40%	130%
I,2,3,7,8,9-Hexa CDD	1	7079506	1.0	0.9	10.5%	< 0.1	83%	40%	130%	NA	40%	130%	124%	40%	130%
I,2,3,4,6,7,8-Hepta CDD	1	7079506	1	1	0.0%	< 0.1	99%	40%	130%	NA	40%	130%	104%	40%	130%
Octa CDD	1	7079506	10	9	10.5%	< 0.9	103%	40%	130%	NA	40%	130%	96%	40%	130%
2,3,7,8-Tetra CDF	1	7079506	0.7	0.7	0.0%	< 0.1	101%	40%	130%	NA	40%	130%	103%	40%	130%
I,2,3,7,8-Penta CDF	1	7079506	0.8	0.8	0.0%	< 0.1	100%	40%	130%	NA	40%	130%	104%	40%	130%
2,3,4,7,8-Penta CDF	1	7079506	0.9	0.8	11.8%	< 0.1	100%	40%	130%	NA	40%	130%	101%	40%	130%
I,2,3,4,7,8-Hexa CDF	1	7079506	1.4	1.3	7.4%	< 0.2	107%	40%	130%	NA	40%	130%	98%	40%	130%
I,2,3,6,7,8-Hexa CDF	1	7079506	0.9	0.9	NA	< 0.2	102%	40%	130%	NA	40%	130%	99%	40%	130%
2,3,4,6,7,8-Hexa CDF	1	7079506	1.4	1.3	7.4%	< 0.2	108%	40%	130%	NA	40%	130%	98%	40%	130%
I,2,3,7,8,9-Hexa CDF	1	7079506	1.0	0.9	NA	< 0.2	105%	40%	130%	NA	40%	130%	102%	40%	130%
I,2,3,4,6,7,8-Hepta CDF	1	7079506	1.6	1.5	6.5%	< 0.1	103%	40%	130%	NA	40%	130%	99%	40%	130%
I,2,3,4,7,8,9-Hepta CDF	1	7079506	1	1	0.0%	< 0.2	110%	40%	130%	NA	40%	130%	95%	40%	130%
Octa CDF	1	7079506	3	3	0.0%	< 0.6	106%	40%	130%	NA	40%	130%	93%	40%	130%

Certified By:

Page 36 of 54

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Water Analysis

				vval		laiys	13								
RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
DADAMETED	Patab	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Basayany		ptable nits	Pagayany		eptable mits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upp
Ammonia, Nitrogen - Total Kjelo	ahl in Water					•				•					
Ammonia-N	7071731		0.54	0.55	2.0%	< 0.01	106%	85%	115%	97%	90%	110%			
Nitrogen - Total Kjeldahl (TKN)	7053031		1.5	1.4	10.2%	< 0.1	108%	85%	115%	96%	90%	110%			
Comments: RPDs are calculated us	sing raw analy	tical data	and not the	e rounded	duplicate	values rep	orted.								
Chemical Oxygen Demand															
COD	7080691		< 10	< 10	NA	< 10	108%	85%	115%	99%	90%	110%			
Comments: RPDs are calculated us	sing raw analy	tical data	and not the	e rounded	duplicate	values rep	orted.								
Dissolved Organic Carbon in W	ater														
Carbon Dissolved Organic	7071731		5.2	5.3	1.4%	< 0.5	105%	85%	115%	107%	90%	110%			
Comments: RPDs are calculated us	sing raw analy	tical data	and not the	e rounded	duplicate	values rep	orted.								
Routine Water Analysis															
Total Dissolved Solids	7087726		600	608	1.2%	< 5				100%	85%	115%			
Alkalinity (pH 4.5)	7083509		158	156	0.9%	< 1	100%	90%	110%	10070	0070	11070			
Ortho-Phosphate	7071731		0.027	0.025	7.7%	< 0.001	100%		115%	99%	Q0%	110%	98%	80%	120
Calcium Dissolved	7080691		9400	9310	1.0%	< 50	107%	90%	110%	104%		110%	3070	0070	120
Magnesium Dissolved	7080691		1360	1330	2.1%	< 50 < 50	107 %	90%	110%	104 %		110%			
Cadium Diagahuad	7000004		0.400	0.400	0.00/	50	4050/	000/	44.00/	4.070/	000/	4400/			
Sodium Dissolved	7080691		2400	2460	2.8%	< 50	105%	90%	110%	107%		110%			
Potassium Dissolved	7080691		433	445	2.9%	< 50	101%	90%	110%	99%		110%			
Chloride	7080691		9.44	9.30	1.5%	< 0.05	96%	85%	115%	100%		110%			
Nitrate-N	7080691		0.094	0.103	9.4%	< 0.005	99%	85%	115%	97%		110%			
Nitrite-N	7080691		<0.005	<0.005	NA	< 0.005				107%	90%	110%			
Sulphate	7080691		2.9	2.9	1.5%	< 0.5	96%	85%	115%	95%	90%	110%			
рН	7083509		7.76	7.80	0.5%	< 0.01	100%	95%	105%						
Comments: RPDs are calculated us	sing raw analy	tical data	and not the	e rounded	duplicate	values rep	orted.								
British Columbia CSR- Schedul	e 6 Dissolve	d Metals													
Aluminum Dissolved	7072894		3	3	NA	< 2	103%	90%	110%	107%	85%	115%			
Antimony Dissolved	7072894		<0.2	<0.2	NA	< 0.2	103%	90%	110%	99%	85%	110%			
Arsenic Dissolved	7072894		0.2	0.2	NA	< 0.1	104%	90%	110%	100%	90%	110%			
Barium Dissolved	7072894		9.6	9.3	3.2%	< 0.2	97%	90%	110%	94%	90%	110%			
Beryllium Dissolved	7072894		<0.01	<0.01	NA	< 0.01	106%		110%	102%		110%			
Boron Dissolved	7072894		9	9	NA	< 2	102%	90%	110%	104%	80%	120%			
Cadmium Dissolved	7072894		<0.01	0.01	NA	< 0.01	102%	90%	110%	100%		110%			
Calcium Dissolved	7080691		9400	9310	1.0%	< 50	107%	90%	110%	104%		110%			
Chromium Dissolved	7072894		<0.5	<0.5	NA	< 0.5	104%	90%	110%	101%		110%			
Cobalt Dissolved	7072894		<0.05	<0.05	NA	< 0.05	107%		110%	102%		110%			
Copper Dissolved	7072894		14.8	14.4	2.5%	< 0.2	110%	90%	110%	93%	90%	110%			
Iron Dissolved	7080691		<10	<10	2.076 NA	< 10	102%		110%	109%		110%			
			<10	<10	IN/A	< 10	10270	3070	11070	10970	3070	11070			

AGAT QUALITY ASSURANCE REPORT (V1)

Page 38 of 54

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Water Analysis (Continued)

RPT Date: Oct 15, 2015			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper	-	Lower	Upper			Upper
Lead Dissolved	7072894		0.21	0.19	4.7%	< 0.05	109%	90%	110%	105%	90%	110%			
Lithium Dissolved	7072894		1.0	1.0	NA	< 0.5				102%	90%	110%			
Magnesium Dissolved	7080691		1360	1330	2.1%	< 50	109%	90%	110%	108%	90%	110%			
Manganese Dissolved	7080691		48	47	1.8%	< 1	106%	90%	110%	102%	90%	110%			
Mercury Dissolved	7080691		<0.01	<0.01	NA	< 0.01	109%	90%	110%	110%	90%	110%			
Molybdenum Dissolved	7072894		4.98	5.08	2.1%	< 0.05	99%	90%	110%	98%	90%	110%			
Nickel Dissolved	7072894		0.6	0.6	NA	< 0.2	102%	90%	110%	97%	90%	110%			
Selenium Dissolved	7072894		<0.5	<0.5	NA	< 0.5	102%	90%	110%	97%	85%	115%			
Silver Dissolved	7072894		<0.02	<0.02	NA	< 0.02				99%	90%	110%			
Sodium Dissolved	7080691		2400	2460	2.8%	< 50	105%	90%	110%	107%	90%	110%			
Thallium Dissolved	7072894		0.01	<0.01	NA	< 0.01	107%	90%	110%	103%	90%	110%			
Titanium Dissolved	7072894		1.3	1.2	NA	< 0.5				99%	90%	110%			
Uranium Dissolved	7072894		0.12	0.12	3.0%	< 0.01	102%	90%	110%	102%	90%	110%			
Vanadium Dissolved	7072894		1.1	1.1	NA	< 0.5	100%	90%	110%	97%	90%	110%			
Zinc Dissolved	7072894		10	9	NA	< 2	100%	90%	110%	94%	85%	115%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Biochemical Oxygen Demand											
BOD (5 day)	7082048	56	53	5.5%	< 4	90%	70%	130%	88%	85%	115%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

British Columbia CSR - Schedule 6 Total Metals

Aluminum Total	7082311	2800	2820	0.8%	< 5	103%	85%	115%	96%	85%	115%
Antimony Total	7082311	<0.5	<0.5	NA	< 0.5	112%	85%	115%	104%	90%	110%
Arsenic Total	7082311	1.2	1.2	1.8%	< 0.1	98%	85%	115%	102%	90%	110%
Barium Total	7082311	51.2	54.2	5.6%	< 0.5	109%	85%	115%	106%	90%	110%
Beryllium Total	7082311	0.10	0.10	NA	< 0.05	99%	85%	115%	101%	90%	110%
Boron Total	7082311	<5	<5	NA	< 5	97%	85%	115%	101%	80%	120%
Cadmium Total	7082311	0.03	0.04	NA	< 0.01	103%	85%	115%	101%	90%	110%
Calcium Total	7082311	21800	21900	0.5%	< 50	100%	85%	115%	102%	90%	110%
Chromium Total	7082311	5.4	5.3	1.0%	< 0.5	105%	85%	115%	98%	90%	110%
Cobalt Total	7082311	2.07	2.01	2.8%	< 0.05	110%	85%	115%	95%	90%	110%
Copper Total	7082311	6.7	6.7	0.2%	< 0.5	107%	85%	115%	103%	90%	110%
Iron Total	7082311	4230	4200	0.6%	< 10	108%	85%	115%	97%	90%	110%
Lead Total	7082311	1.58	1.54	2.8%	< 0.05	101%	85%	115%	104%	90%	110%
Lithium Total	7082311	3.3	3.4	1.8%	< 0.5				107%	90%	110%
Magnesium Total	7082311	4790	4790	0.1%	< 50	102%	85%	115%	106%	90%	110%
Manganese Total	7082311	87	86	0.8%	< 1	100%	85%	115%	100%	90%	110%
Mercury Total	7082311	< 0.01	< 0.01	NA	< 0.01	114%	85%	115%	104%	90%	110%
Molybdenum Total	7082311	0.4	0.4	NA	< 0.1	107%	85%	115%	106%	90%	110%

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE SAMPLED BY:

Water Analysis (Continued)

					-	•									
RPT Date: Oct 15, 2015			- C	DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Ia					Value	Lower	Upper	-	Lower	Upper		Lower	Upper
Nickel Total	7082311		7.0	7.0	0.7%	< 0.5	107%	85%	115%	97%	90%	110%			
Selenium Total	7082311		<0.5	<0.5	NA	< 0.5	107%	85%	115%	107%	85%	115%			
Silver Total	7082311		<0.02	<0.02	NA	< 0.02				98%	90%	110%			
Sodium Total	7082311		2360	2410	1.9%	< 100	101%	85%	115%	101%	90%	110%			
Thallium Total	7082311		0.05	0.04	NA	< 0.02	111%	85%	115%	100%	90%	110%			
Titanium Total	7082311		111	109	1.9%	< 1				97%	90%	110%			
Uranium Total	7082311		0.24	0.24	1.6%	< 0.01	96%	85%	115%	103%	90%	110%			
Vanadium Total	7082311		6	6	0.8%	< 1	100%	85%	115%	100%	90%	110%			
Zinc Total	7082311		12	11	NA	< 5	106%	85%	115%	97%	80%	120%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

Angela Bend

Page 39 of 54

AGAT QUALITY ASSURANCE REPORT (V1)

Method Summary

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Jranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
bH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER

Method Summary

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01 SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE

SAMPLED BY:

SAMPLING SITE:	1	SAMPLED BT:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Methyl tert-butyl ether (MTBE)	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
Benzene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
Toluene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
Ethylbenzene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
m&p-Xylene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
o-Xylene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
Styrene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
VPH	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS/FID
VH	ORG-180-5130	Modified from BC MOE Lab Manual Section D	GC/MS/FID
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Quinoline	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acenaphthylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acenaphthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Fluorene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Phenanthrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acridine	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(a)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Chrysene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(b)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(j)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(a)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE:

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzo(g,h,i)perylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Naphthalene - d8	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
2-Fluorobiphenyl	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
P-Terphenyl - d14	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
LEPH C10-C19	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
HEPH C19-C32	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
EPH C10-C19	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
EPH C19-C32	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
Bromofluorobenzene	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS
Dibromofluoromethane	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS
Toluene - d8	ORG-180-5130	Modified from BC MOE Lab Manual Sec D (BTEX, VPH)	GC/MS
Naphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE

AGAT WORK ORDER: 15V029854 ATTENTION TO: KRISTEN RANGE

	SAMPLED BY:	
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
ORG-180-5102	modified from BC MOE Lab Manual Section D (PAH)	GC/MS
ORG-180-5102	modified from BC MOE Lab Manual Section D (PAH)	GC/MS
ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
		GC/MS
ORG-180-5133	modified from BC MOE Lab Manual Section D	GC/MS
ORG-180-5133	modified from BC MOE Lab Manual Section D	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Section D (VOC)	GC/MS
ORG-180-5103	Section D (VOC)	GC/MS
ORG-180-5103	Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
	ORG-180-5102 ORG-180-5102 ORG-180-5102 ORG-180-5102 ORG-180-5102 ORG-180-5102 ORG-180-5101 ORG-180-5101 ORG-180-5101 ORG-180-5133 ORG-180-5133 ORG-180-5133 ORG-180-5103 ORG-180-5103	AGAT S.O.PLITERATURE REFERENCEORG-180-5102Modified from BC MOE Lab Manual Section D (PAH)ORG-180-5102Modified from BC MOE Lab Manual Section D (PAH)ORG-180-5101modified from BC MOE Lab Manual Section D (PAH)ORG-180-5101Modified from BCMOE Lab Manual Section D (EPH)ORG-180-5103modified from BC MOE Lab Manual Section D (EPH)ORG-180-5133modified from BC MOE Lab Manual Section DORG-180-5133modified from BC MOE Lab Manual Section DORG-180-5133modified from BC MOE Lab Manual Section DORG-180-5103Modified from BC MOE Lab Manual Section DORG-180-5103Modified from BC MOE Lab Manual Section D (VOC)ORG-180-5103Modified from BC MOE Lab Manual Section D (VOC)ORG-180-5103<

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	PARAMETER AGAT S.O.P LITERATURE REFERENCE		ANALYTICAL TECHNIQUE			
Benzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2-Dichloropropane	ORG-180-5103	Modified from BC MOE Lab Manual GC/MS Section D (VOC)				
Trichloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Bromodichloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
trans-1,3-Dichloropropene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
4-Methyl-2-pentanone (MIBK)	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
cis-1,3-Dichloropropene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,2-Trichloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Toluene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Dibromochloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Ethylene Dibromide	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Tetrachloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,1,2-Tetrachloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Chlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Ethylbenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
m&p-Xylene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Bromoform	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Styrene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,2,2-Tetrachloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
o-Xylene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,3-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,4-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2,4-Trichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Bromofluorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Dibromofluoromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Toluene - d8	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
VPH	ORG-180-5103	Modified from BC MOE Lab Manual Sec D (VOC)	GC/MS/FID			

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Chloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Vinyl Chloride	ORG-180-5131	Modified from BC MOE Lab Manual GC/MS Section D (VOC)				
Bromomethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Chloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Trichlorofluoromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Acetone	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1-Dichloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Dichloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Methyl tert-butyl ether (MTBE)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
2-Butanone (MEK)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
trans-1,2-Dichloroethylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1-Dichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
cis-1,2-Dichloroethylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Chloroform	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2-Dichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,1-Trichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Carbon Tetrachloride	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Benzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2-Dichloropropane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Trichloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Bromodichloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
trans-1,3-Dichloropropene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
4-Methyl-2-pentanone (MIBK)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
cis-1,3-Dichloropropene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,2-Trichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Toluene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Dibromochloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Ethylene Dibromide	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Tetrachloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,1,2-Tetrachloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D	GC/MS			
Chlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Ethylbenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
m&p-Xylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Bromoform	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
Styrene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,1,2,2-Tetrachloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC) GC/MS				
o-Xylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC) GC/MS				
1,3-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,4-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS			
1,2,4-Trichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	I GC/MS			
Bromofluorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual GC/MS Section D (VOC)				
Dibromofluoromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC) GC/MS				
Toluene - d8	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC) GC/MS				
VPH	ORG-180-5131	Modified from BC MOE Lab Manual Sec D (VOC)	GC/MS/FID			

Method Summary

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01 SAMPLING SITE:

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Ultra Trace Analysis		1			
2,3,7,8-Tetra CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8-Penta CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8-Hexa CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,6,7,8-Hexa CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8,9-Hexa CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Octa CDD	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,7,8-Tetra CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8-Penta CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,4,7,8-Penta CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8-Hexa CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,6,7,8-Hexa CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,4,6,7,8-Hexa CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8,9-Hexa CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Octa CDF	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Tetrachlorodibenzodioxins	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Pentachlorodibenzodioxins	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Hexachlorodibenzodioxins	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Heptachlorodibenzodioxins	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total PCDDs		MA.400 DF 1.0/EFA 1013 MA.400 DF 1.0/EPA 1613	HRMS		
Total Tetrachlorodibenzofurans	HR-151-5400				
Total Pentachlorodibenzofurans	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Hexachlorodibenzofurans	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total Heptachlorodibenzofurans	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total PCDFs	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,7,8-Tetra CDD (TEF 1.0)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8-Penta CDD (TEF 0.5)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,6,7,8-Hexa CDD (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8,9-Hexa CDD (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,6,7,8-Hepta CDD (TEF 0.01)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Octa CDD (TEF 0.001)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,7,8-Tetra CDF (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8-Penta CDF (TEF 0.05)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,4,7,8-Penta CDF (TEF 0.5)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8-Hexa CDF (TEF 0.1)	HR_151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
2,3,4,6,7,8-Hexa CDF (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,7,8,9-Hexa CDF (TEF 0.1)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,6,7,8-Hepta CDF (TEF 0.01)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
1,2,3,4,7,8,9-Hepta CDF (TEF 0.01)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Octa CDF (TEF 0.001)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
Total PCDDs and PCDFs (TEQ)	HR-151-5400	MA.400 DF 1.0/EPA 1613	HRMS		
13C-2378-TCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-12378-PeCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-23478-PeCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-123478-HxCDF	HR-151-5400	MA.400 DF 1.0	HRMS		

Method Summary

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
13C-123678-HxCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-234678-HxCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-123789-HxCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-1234678-HpCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-1234789-HpCDF	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-2378-TCDD	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-12378-PeCDD	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-123478-HxCDD	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-123678-HxCDD	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-1234678-HpCDD	HR-151-5400	MA.400 DF 1.0	HRMS		
13C-OCDD	HR-151-5400	MA.400 DF 1.0	HRMS		

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Water Analysis Ammonia-N	INOR-181-6001	Modified from SM 4500-NH3 G	CONTINUOUS FLOW ANALYZER		
Nitrogen - Total Kjeldahl (TKN)	INOR-181-6034, LAB-181-4017	modified from EPA 351.2 SPECTROPHOTOMETER			
BOD (5 day)	INOR-181-6032	Modified from SM 5210 B	PC TITRATE		
Aluminum Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Antimony Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Arsenic Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Barium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Beryllium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Boron Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Cadmium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Calcium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES		
Chromium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Cobalt Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Copper Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Iron Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B ICP/OES			
Lead Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B ICP-MS			
Lithium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Magnesium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES		
Manganese Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES		
Mercury Total	MET-181-6103	Modified from EPA 245.7	CV/AA		
Molybdenum Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Nickel Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Selenium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Silver Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B ICP-MS			
Sodium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES		
Thallium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B ICP-MS			
Titanium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Uranium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Vanadium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		

Method Summary

CLIENT NAME: TETRA TECH EBA PROJECT: ENVH2O 03173-01

SAMPLING SITE

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Zinc Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS		
Aluminum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B ICP-MS			
Antimony Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Arsenic Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Barium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Beryllium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Boron Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Cadmium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Calcium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES		
Chromium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Cobalt Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Copper Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Iron Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES		
Lead Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Lithium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Magnesium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES		
Manganese Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B ICP/OES			
Mercury Dissolved	MET-181-6103, LAB-181-4015	Modified from EPA 245.7	CV/AA		
Molybdenum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Nickel Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Selenium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Silver Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Sodium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES		
Thallium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Titanium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Uranium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Vanadium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		
Zinc Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS		

Method Summary

CLIENT NAME: TETRA TECH EBA

PROJECT: ENVH2O 03173-01

SAMPLING SITE:

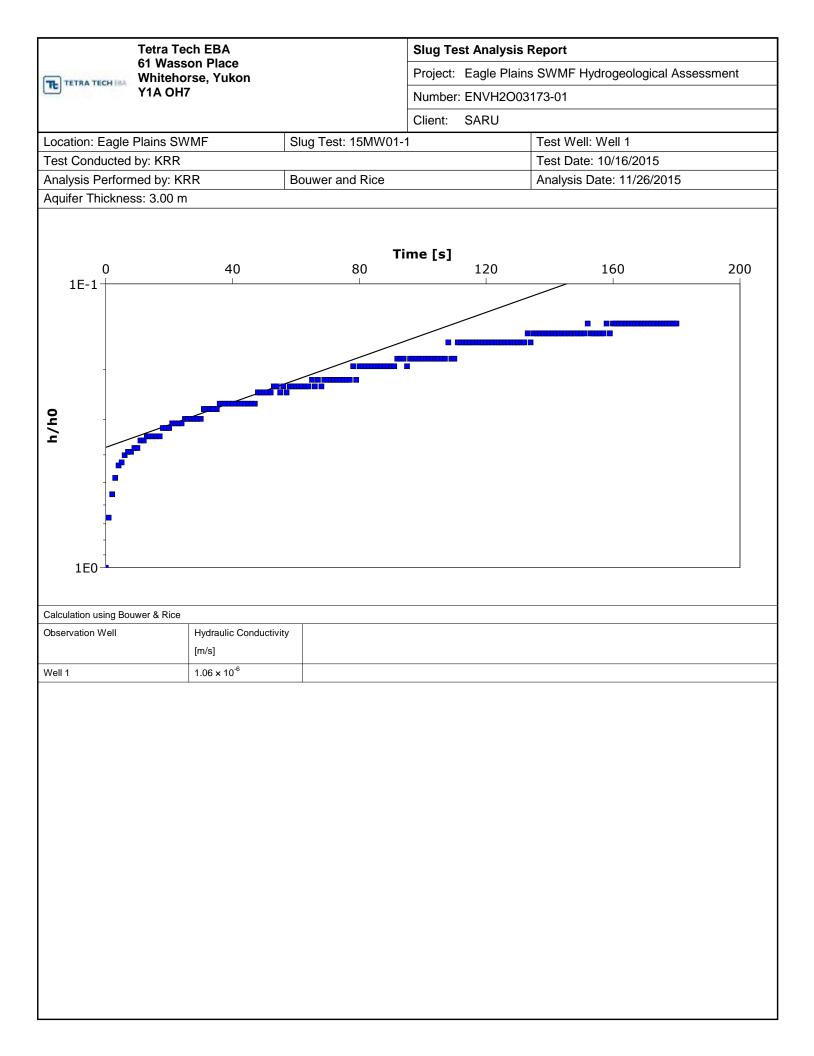
SAMI LING SITE.	SAMI LED BT.				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
COD	INOR-181-6004	Modified from SM 5220 D	SPECTROPHOTOMETER		
Carbon Dissolved Organic	INOR-181-6003	Modified from SM 5310 B	COMBUSTION		
Total Dissolved Solids	INOR-181-6007	SM 2540 C, D & E	GRAVIMETRIC		
Alkalinity (pH 4.5)	INOR-181-6000	Modified from SM 2320 B	PC TITRATE		
Alkalinity, Bicarbonate	INOR-181-6000	Modified from SM 2320 B	PC TITRATE		
Alkalinity, Carbonate	INOR-181-6000	Modified from SM 2320 B	PC TITRATE		
Ortho-Phosphate	INOR-181-6021	Modified from SM 4500-P E	SPECTROPHOTOMETER		
Potassium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B ICP/OES			
Chloride	INOR-181-6002	Modified from SM 4110 B	ION CHROMATOGRAPH		
Nitrate-N	INOR-181-6002	Modified from SM 4110 B	ION CHROMATOGRAPH		
Nitrite-N	INOR-181-6002	Modified from SM 4110 B	ION CHROMATOGRAPH		
Sulphate	INOR-181-6002	Modified from SM 4110 B	ION CHROMATOGRAPH		
рН	INOR-181-6000	Modified from SM 4500-H+	PH METER		
Potassium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B ICP/OES			

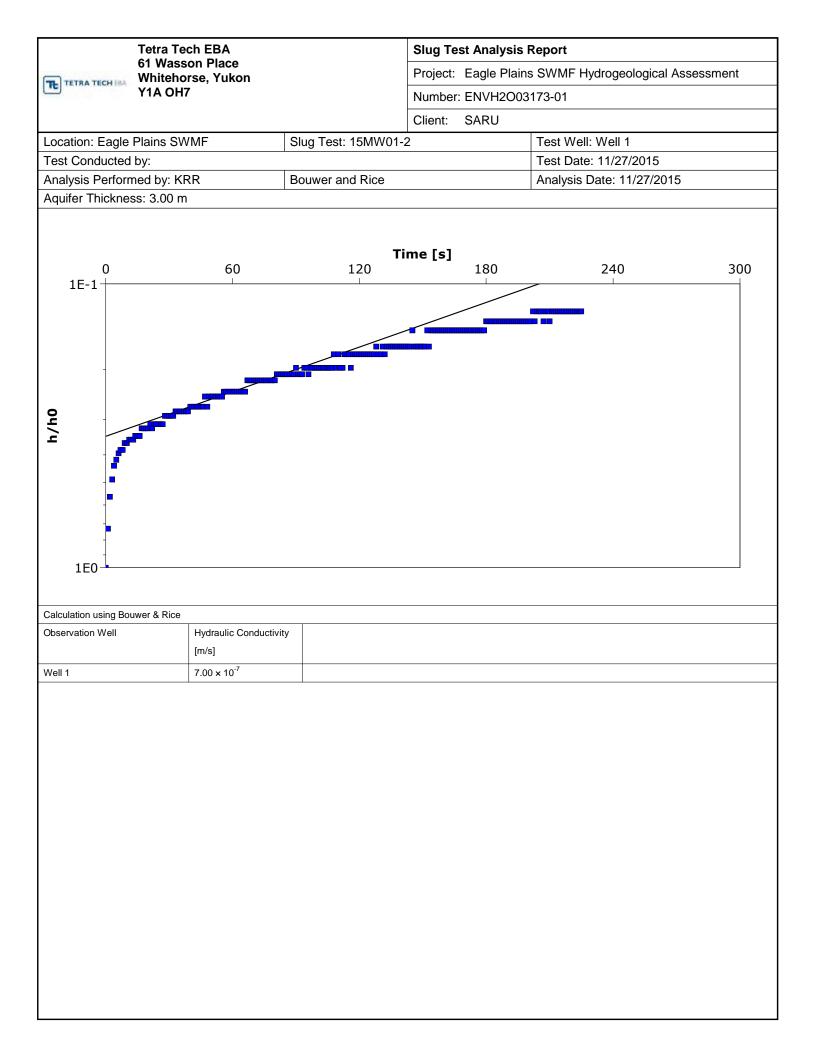
AGAT Lat	0 Gleniyon Parkway Burnaby, BC V5J 0B6 V 5F: 778.452.4074	Laboratory Use Only Soc Arrival Temperature: Soc AGAT Job Number:	
Chain of Custody Record			Notes: 13 OCT 2015 2.14 Spm
Report Information	Report Information	Report Format	73 00 010 1 1
Company: Tetra Tech EBA	1. Name: Kristen Rame	Single	Turnaround Time Required (TAT)
Contact: Kuisten Range	Email: Krisken. vange@tetrakeh.	Sample per	
Address: bi Wasson Place	2. Name: Skephon Klump	Multiple	Regular TAT 5 to 7 working days Rush TAT Day 2 - 100%
Address: <u>bl. Wasson Place</u> Whitehorse, Yr.	Email: stephan. Klump & khrakel	Samples per	Day 3 - 50%
		page	🗆 Day 4 - 25%
	Requirements (Please Check)	Excel Format	Date Required:
AGAT Quote #:	BC CSR Soil BC CSR - Water	Included	PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM
Client Project #: ENV HZO 03173-0]			
Invoice To Same as above Yes 2 / No			
Compositi			
Company:			
Contact:			
Address:	- Schedule 11 (Please Specify)		ST S
Phone: Fax:	CCME (Please Specify)		AINE
Phone: Fax: P0/AFE#:	Other (Please Specify)		OF CONTAIN US (Y/N) LI 60 DAYS
			00F (DUS (
LABORATORY USE (LAB ID #) SAMPLE IDENTIFICATION SAMPLE MATRIX	DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO: SAMPLE CONTAINMENT		NUMBER OF CONTAINERS PRESERVED (Y/N) HAZARDOUS (Y/N) HOId for: [] G0 DAYS
7079503 15MWD1 9.8-10.0m Soil	Oct 7, 2015		4
504 15 MWD7 1.1-1.2m Soil	Oct 8, 2017		24
505 15 MWO7 0.5-016m Soil	out 8, 2015		2
506 15 MWOL 0.3 - 0.4m Soil	6it 8, 2015		2
507 15 MW61 1.8 - 2m Soil	017,2015		<u> </u>
508 Dup 01 94-10,00 Soil 509 15 Hunor 11-12 m Soil	017.2015		4
	Oct 7, 2015		4
5/0 15 MW04 0.3-0.4m Soll 7080691 15MW01 GW	01+7, 20 Gr		
	Oct 10, 2015 11:30 Oct 10, 2015 11:30		
$\begin{array}{cccc} 699 & Dup & 01 & GW \\ \hline 699 & ISMWOT & GW \end{array}$	01 10, 2015 11:30 01 10, 2015 1:30		
Samples Relinquished By (Print Name and Sign): Date/Time	c Samples Received By (Print Name and Sign):	Date/Time	
Samples Relinquished By (Print Name and Sign): Date/Tim	Stavan huchy Mr 1	3 OCT 20) S Date/Time	Page of
Samples Relinquished By (Print Name and Sign): Date/Tim		Date/Time	№ : 016447
Document #: DN/458-1586.003			Date Revised: July 16, 2013
s national and and	3 A S S	v ii 220	

Chain of Custody Record Report Information Report Information Report Information Report Information Report Information Report Information Image: Contract: Contren: Contren: Contract: Contract: Contract: Contren: Contract: Co	-	agat	Lab	oratories		0 Glenlyon Parkway Burnaby, BC V5J 0B6 • F: 778.452.4074	Laboratory Use On Arrival Temperature: AGAT Job Number:	S	8 54	
Report Information Name:	Chain of C	ustody Record						05 2:4	Sph	
Contact:	Report Informa	ation		Report Information	and the second	Report Format			-/	
Prone: Fax: Page Day 4 - 25% AGAT Quote #:	Contact:	Areas -		Email:		Sample per page Multiple	Regular TAT 5 to Rush TAT Day :	7 working days 2 - 100%		
Involce To Same as above Yes // No II. AW Company:	AGAT Quote #:	2	Requirements (Pleas	sirements (Please Check)		Date Required:	y 4 - 25%		IPLE	
LABORATORY USE (LAB ID #) SAMPLE IDENTIFICATION SAMPLE MATRIX DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT 701 SW1 SW 0.479, 2015 13:25 1	Invoice To Company: Contact:	Same as above Ye		□ PL □ CL □ RL					VERS	8
701 SW1 SW 6cf 9, 2015 17:25 702 SW2 SW 0cf 9, 2015 4:30 703 SW3 SW 0cf 9, 2015 5:30 704 SW4 SW 0cf 9, 2015 2:30 705 Truip blank Spf 29, 2015 Image: 2015 705 Truip blank Spf 29, 2015 Image: 2015 705 Truip blank Spf 29, 2015 Image: 2015 Simples Relequished By (Prix Name and Sign): Date/Time Image: 2015 Samples Relequished By (Prix Name and Sign): Date/Time Image: 2015 Samples Relequished By (Prix Name and Sign): Date/Time Date/Time Samples Relequished By (Prix Name and Sign): Date/Time Date/Time									OF CONTAI	US (Y/N)
TO2 SW2 SW 0.49, 2015 4.30 703 8W3 SW 0.49, 2015 5:30 704 SW4 SW 0.49, 2015 2:30 705 True SW 0.49, 2015 2:30 705 True SW4 SW 0.49, 2015 705 True SW4 Supt 29, 2015 1 705 True Supt 29, 2015 1 1 705 True Supt 29, 2015 1 1 1 8 Supt 29, 2015 1 1 1 1 1 Sumples References of give: Sumples Received by Print Name and Sign: 13 Oct Date/Time Page	100 CARDON PRODUCTION	SAMPLE IDENTIFICATION	10 L. S. M. M. L. C. A. M. S.	DATE/TIME SAMPLED	In the second state of the family of the second state of the				NUMBER (HAZARDO Hold for:
Samples Relinquished By (Prot Name and Sign): Date/Time Date/Time Date/Time Date/Time No: 016448	702 703 704	SW2 SW3 SW4	SW SW	0:19, 2015 4.3 0:19, 2015 5:3 0:10, 2015 2:30	0 0					
Samples Relinquished By (Prot Name and Sign): Date/Time Date/Time Date/Time Date/Time No: 016448				Samples Received By	Print Nampand Sign): Rind Mark M 13	Doct Date/Time		Page _ 2	of	7
Document #: DW-486/4500.003	Samples Relinquished By (Pra	or Name and Sign):				Date/Time		Nº: 01(6448)

agat Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY


Work Order # 151029859


Receiving Basics: Received From: Waybill #: Sample Quantities: Containers: 113
TIME SENSITIVE ISSUES: Earliest Date Sampled: <u>67 OCT 2015</u> ALREADY EXCEEDED? (Ves) No <u>BOD, Nitrate, Mitnite, and Ontho-phosphate have expired on SW samples</u>
Non-Conformances: 3 temperatures of samples* and average of each cooler: (record differing temperatures on the CoC next to sample ID's) * use jars when available (1) $\underline{S} + \underline{S} + \underline{S} = \underline{S} \circ C(2) \underline{S} + \underline{6} + \underline{S} = \underline{S} \circ C(3) \underline{S} + \underline{5} + \underline{5} = \underline{S} \circ C(4) _ + _ + _ = _ \circ C$ Was ice or ice pack present: (e) No Integrity Issues: Will subsempte Dissdred Metals/Mercury from SOOnL for Sample ISMW07 (incorrect presention and not field filtered)
Account Project Manager:
Additional Notes:

Document #: SR-186-9504.001 Revision Date: July 9, 2014 Page 1 of 1

APPENDIX G HYDRAULIC RESPONSE TEST DATA AND ANALYSIS

