

HYDROGEOLOGICAL ASSESSMENT

Town of Faro Solid Waste Disposal Facility

Submitted to:

Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services, Infrastructure Development Branch PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

Report Number: 1114360073-515-R-Rev0-1100

Distribution:

2 Copies - Yukon Government Community Services

2 - Copies - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Town of Faro Solid Waste Disposal Facility (the "Facility" or "Site") is one of the sites included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

In summary, the information obtained during the Site Assessment indicated the following:

- Site Description: The Town of Faro Solid Waste Disposal Facility is located in the southeast portion of the Yukon, within the Yukon Plateau Ecological Region, and in Kaska Dena First Nation's traditional territory, at latitude 62°12' north, and longitude 133°22' west. The Site is accessed by a gravel road off the east side of Mitchell Road, approximately 9.3 km north of the Robert Campbell Highway, and 180 km east of the Village of Carmacks. The Facility serves as a solid waste disposal facility for the Town of Faro and the surrounding area, accepting domestic and commercial waste including: appliances, automotive waste, household hazardous waste, metals, and waste oil. No evidence of spills or discharges was observed during the Site reconnaissance. A salvage yard and a materials (metals) recovery site are both located approximately 350 m to the northeast and upgradient of the Facility.
- <u>Site Topography</u>: The Facility is at an elevation of approximately 700 m (2,300 feet) above sea level and lies within the Pelly River watershed. A cleared area of approximately 25,000 square meters is present at the Facility, which was constructed out of a glacially formed kettle depression. Local surficial geology is mapped as a glaciofluvial complex, forming kettles, eskers, and crevasse-fill ridges. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes south towards the Pelly River.
- Stratigraphy and Hydrogeology:
 - Surface expression at the Site is dominated by quaternary surficial deposits;
 - Subsurface conditions were investigated with the installation of four monitoring wells including: FA-MW12-01, FA-MW12-02, FA-MW12-03, and FA-MW12-04, which were completed from July 10 through 12, 2012, under the supervision of Golder Associates, for the establishment of a monitoring well network at the Site;
 - The Site stratigraphy was investigated to a maximum depth of 17.4 m in FA-MW12-01, and was found to consist primarily of stratified sand and gravel deposits with minor silt;

i

- An unconfined aquifer was encountered during the drilling of all four monitoring wells at between approximately 13 m and 17 m below grade (bg);
- Hydraulic response tests were performed on two of the four monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 2 x 10⁻⁴ m/s and 3 x 10⁻⁴ m/s. These values are considered reasonable for the sand units encountered in the screened section of each of these wells during installation;
- The local, horizontal hydraulic gradient at the Site was assessed, using groundwater elevation data, to be approximately 0.008 m/m, sloping to the southwest;
- Groundwater velocity in the surficial aquifer is estimated to range between 5 x 10⁻⁶ m/s and 7 x 10⁻⁶ m/s (approximately 0.4 to 0.6 metres per day); and
- Based on the groundwater flow direction, it was determined that both FA-MW12-01 and FA-MW12-02 are downgradient of the Site, FA-MW12-04 is upgradient of the Site, and FA-MW12-03 is on a side-gradient to the Site; therefore, the minimum requirements for one upgradient and two downgradient wells at the Site have been met.

Groundwater Chemistry:

- The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life and drinking water are applicable at the Site;
- Groundwater samples were collected from monitoring wells FA-MW12-01, FA-MW12-03, and FA-MW12-04 on August 31, 2012, and a surface water sample was collected from a small pond approximately 200 m southeast of the Facility on September 1, 2012, in order to complete the initial monitoring event at the Facility;
- Iron and manganese exceeded the CSR drinking water standard in all three monitoring well samples;
- Magnesium exceeded the CSR drinking water standard in the sample taken from FA-MW12-01;
- Barium exceeded the CSR drinking water standard in the sample taken from FA-MW12-04; and
- Chromium exceeded the CSR standard for freshwater aquatic life in samples taken from FA-MW12-03 and FA-MW12-04.
- Elevated metals in both upgradient and downgradient monitoring wells suggest that contamination may not be sourced from the Site.

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);

- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;
- As risk of contamination from landfill leachate is low, groundwater quality at the Facility should be revaluated following two rounds of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Particular attention should be given to the analytes exceeding Yukon CSR standards, and an effort should be made to identify sources of groundwater contamination.

Study Limitations

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Town of Faro Solid Waste Disposal Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, installation of monitoring wells, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0	INTRO	DDUCTION	1
	1.1	Background	1
	1.2	Purpose and Objectives	1
	1.3	Scope and Sequence of Work	1
	1.4	Qualifications of Assessors	2
	1.5	Authorization	3
2.0	SITE D	DESCRIPTION AND HISTORY	3
	2.1	Site Location	3
	2.2	Site History	3
3.0	METH	ODOLOGY	3
	3.1	Preliminary Hydrogeological Assessment	3
	3.1.1	Data sources	4
	3.1.2	Site Inspections	5
	3.1.3	Background Geological Information Sources	5
	3.1.4	Contaminated Sites Registry	5
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	5
	3.1.6	Review of Environment Yukon Information	6
	3.2	Field Investigations	6
	3.2.1	Scope of Field Investigations	6
	3.2.2	Groundwater Monitoring Well Network	7
	3.2.3	Monitoring Well Surveying	8
	3.2.4	Groundwater Monitoring Event	8
	3.2.5	Rising Head Hydraulic Response Tests	9
	3.3	Laboratory Analysis	9
	3.4	Quality Assurance / Quality Control	10
	3.5	Application of Applicable Water Quality Standards	11
4.0	CONC	EPTUAL HYDROGEOLOGICAL MODEL	12
	4.1	Setting	12

	4.2	Climate	13
	4.3	Geology and Hydrogeology	13
	4.3.1	Geological Framework	13
	4.3.2	Principal Aquifer	13
	4.4	Groundwater Flow Systems	14
	4.4.1	Regional Groundwater Flow	14
	4.4.2	Local Groundwater Flow	14
	4.5	Hydraulic Response Tests	14
	4.6	Estimated Linear Groundwater Velocity	14
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	15
5.0	GROUN	NDWATER IMPACT ASSESSMENT	15
	5.1	Review of Groundwater Chemistry	15
	5.2	Interpretation of Groundwater Chemistry	17
6.0	CONCL	_USIONS	18
7.0	RECOM	MMENDATIONS	19
	01.001		

TABLES

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements	6
Table 2: Well Construction Details	8
Table 3: Monitoring Well Locations and Groundwater Elevations from the Monitoring Event on August 31, 2012	8
Table 4: Parameters Analyzed in August – September 2012	9
Table 5: Review of QA/QC procedures taken.	10
Table 6: Applicable Water Quality Standards	11
Table 7 Aquifer Units Encountered at the Site	13
Table 8: Estimated Hydraulic Conductivity	14
Table 9: Important Groundwater Chemistry Results	16

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Plan and Cross-Section Location
- Figure 3: Regional Surficial Geology
- Figure 4: Cross Section A-A'
- Figure 5: Regional Drainage and Land Zoning
- Figure 6: Monitoring Well Location Map and Groundwater Elevation
- Figure 7: Schoeller Plot
- Figure 8: Piper Plot
- Figure 9: Stiff Diagram

APPENDICES

APPENDIX A

Site Photographs

APPENDIX B

Well Construction Logs

APPENDIX C

Well Development and Sampling Sheets

APPENDIX D

Slug Test Data

APPENDIX F

Analytical Reports and Chain of Custody Forms

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Faro Solid Waste Disposal Facility (the "Facility" or the "Site") is one of the sites included in the program. This report presents the findings of our investigation.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7, 2011, and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways, and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope of work was proposed to develop the conceptual hydrogeological model for the Site and installation of a monitoring well network. This work was performed in accordance with the Waste Management Permit (Permit No. 80-007 effective January 1, 2012 to December 31, 2014), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (Document Number 2011-0234-26-1).

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research and finalization of a draft of the Site Assessment Plan;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 resulted in the preparation of a draft of this Hydrogeological Assessment Report, documenting the results of this investigation.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P.Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work, and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P.Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012) and has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Town of Faro Solid Waste Disposal Facility is in the southeast portion of Yukon at latitude 62° 12' north and longitude 133° 21' west. The Site is accessed by a 800 m gravel road off the west side of Mitchell Road, approximately 10 km north of the Robert Campbell Highway, and 180 km east of the Village of Carmacks.

2.2 Site History

The population of Faro has fluctuated, from a population of just less than 2000 in 1981, to a current population of approximately 400 inhabitants. The Town of Faro currently operates the Facility. According to the Town of Faro Solid Waste Management Plan (2003) the present disposal pit and materials handling areas were laid out in 1977. A wildlife program was implemented in the mid 1990s to eliminate risk to bears and other wildlife. Since 2008 waste has been buried, instead of burned, due to territory wide concerns raised about open burning. A review of historical aerial photographs for the area indicates that the land was undeveloped prior to its use as a landfill. The approximate area landfilled is included on Figure 2.

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review, interpretation of existing information, and an inspection of the Facility. The initial inspection of the Facility was conducted on October 20, 2011, and a follow up inspection was conducted on July 10, 2012 coinciding with the beginning of the monitoring well drilling program. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods and equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2012-05-29, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., Applied Hydrogeology, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171, Schedule 3-Generic Numerical Water Standards.
- Government of Yukon, Yukon Environment, Protocol for the Contaminated Sites Regulation Under the Environment Act. 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aguifermap.html
- Jackson, L.E., 1981-1982. *Surficial Geology, Bruce Lake, Yukon Territory*, Geological Survey of Canada, Map 1791A, scale 1:100,000.
- Site inspections of October 20, 2011 and July 10, 2012.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: http://atlas.nrcan.gc.ca/site/english/maps/topo/map Map 155 K/03, scale 1:50,000.
- Town of Faro, 2003. Town of Faro Solid Waste Management Plan.

3.1.2 Site Inspections

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the field work. The health and safety plan included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 20, 2011 and July 10, 2012. The initial Site visit was conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data. Proposed monitoring well locations were also reviewed for access constraints. During the second Site visit, the monitoring wells were drilled and installed. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Yukon Department of Energy Mines and Resources, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), the Yukon Water Well Registry, and a search of the Yukon Water online Data Catalogue.

3.1.4 Contaminated Sites Registry

A Contaminated Site Registry search was conducted by Yukon Environment on December 1, 2011. The search identified a report stating that approximately 60 m³ of contaminated soil, from a heating fuel spill at the Del Van Gorder school, was relocated to the Faro landfill October 9, 2007, then moved back to the school sometime in early 2008. No confirmatory sampling was obtained at the landfill. Soil samples taken from the stockpile tested had detectable levels of EPH₁₀₋₁₉ and EPH₁₉₋₃₂. It was also noted that the Facility is open and unmonitored 24 hours a day 7 days a week, and that there was ample opportunity for improper disposal of waste and unreported spills.

In addition to the Contaminated Site Registry search for the Facility, one conducted for the surrounding area on November 6, 2012 identified several reports on the Anvil Mine Complex, located approximately 12 km upgradient of the Facility. The Contaminated Site Registry search did not turn up any groundwater quality reports from this Site.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Waste Management Permit No. 80-007 was issued on January 1, 2012 for the Facility. It states that the Facility is to be operated in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Waste Management Permit 80-007 include:

Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);

- Sampling of downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outlined in Section 3.5;
- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011 standards; and
- Submitting monitoring results to Environment Yukon by January 31st each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

Site	Site Disposal Facility Permit Number	Permit Type	Solid Waste Management Plan	Required Groundwater Monitoring
Faro Solid Waste Disposal Facility	80-007	Landfill	Town of Faro (2003)	Twice Per Year

3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Faro Facility on the Yukon Environment and Socioeconomic Board (YESAB) online registry, and from several other sources, on October 19, 2012. Documents reviewed included: the most current waste facility permit issued for the Facility, the most current Solid Waste Management Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

3.2 Field Investigations

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Four (4) on-Site monitoring wells were completed by Midnight Sun Drilling under the supervision of Golder Associates from July 10 through 12, 2012;
- Monitoring wells FA-MW12-01, FA-MW12-03, and FA-MW12-04 were developed and sampled by Golder on August 31, 2012. The water level at each well was measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. At the time whem the well development and sampling was conducted well FA-MW12-02 was frozen;
- A surface water sample was taken from a small pond, located approximately 200 m southeast of the Site, on September 2, 2012;
- Groundwater and surface water samples were sent to ALS Environmental laboratory in Whitehorse, YT;
- Slug tests were carried out on FA-MW12-01, FA-MW12-03 and FA-MW12-04, on September 2, 2012 to assess horizontal hydraulic conductivity and linear groundwater velocity at the Site; and
- Results of field and laboratory data are summarized and interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol (Yukon Environment, 2011).

Four groundwater monitoring wells were proposed for installation at the Site to characterize groundwater conditions underlying the waste disposal Facility. A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. FA-MW12-04 was intended to characterize upgradient groundwater conditions, while FA-MW12-01, FA-MW12-03 and FA-MW12-03 were intended to assess groundwater conditions downgradient of the landfill. Locations of the monitoring wells were selected based on aerial photography, review of Site history, Site topography, suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- FA-MW12-01 was installed in the northeast corner of the Site, about halfway between the center and the northeast corner, and advanced to a depth of 17.4 m below grade (bg);
- FA-MW12-02 was installed on the west edge of the Site, and advanced to a depth of 17.1 m bg;
- FA-MW12-03 was installed near the southwest corner of the Site, and advanced to a depth of 17.1 m bg;
 and
- FA-MW12-04 was installed near the southeast corner of the Site, and advanced to a depth of 14.7 m bg.

All wells were installed using a Driltech, Marlin 5, truck-mounted, air rotary drill rig.

Grab samples of drill cuttings were taken at regular intervals to log the stratigraphy encountered in each borehole. Borehole logs, documenting observed stratigraphy, along with well construction details, are provided in Appendix B. A summary of the stratigraphy and well construction details is provided in Table 2.

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm, flush threaded Schedule 40 PVC casing;
- A 3 m long, PVC, factory-slotted well screen (10-slot) was installed in each of the monitoring wells;
- PVC casing was installed above the well screen to between 0.6 m and 1.0 m above grade;
- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1 m above the top of the screened interval;
- A bentonite chip seal, approximately 1 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;

- Each well was covered with a PVC end-cap and a lockable, steel, protective casing was installed to protect the wellhead; and
- Wells were developed by removing a minimum of 3 well volumes using dedicated Waterra[™] tubing and a Hydrolift[™] pump or hand bailer. Development logs are provided in Appendix C.

Table 2: Well Construction Details

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)
FA-MW12-01	17.4	SAND with some gravel	50	14.3 – 17.4	13.4 – 17.4
FA-MW12-02	17.1	Silty SAND	50	14.0 – 17.1	13.1 – 17.1
FA-MW12-03	17.1	SAND with some gravel	50	14.0 – 17.1	12.2 – 17.1
FA-MW12-04	14.7	Fine SAND	50	10.7 – 14.7	10.1 – 14.7

3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the vertical elevation of the top of the PVC wellhead (measuring point) for each well on July 12, 2012. Initial absolute elevation was surveyed relative to the top of PVC pipe at FA-MW12-01, which was obtained using a Trimble hand-held GPS instrument with a vertical accuracy of \pm 0.7 m. However, relative elevation between wells, as determined from the level survey, has a precision of \pm 1 cm. Table 3 presents a summary of survey data and water level measurements (recorded on August 31, 2012).

Table 3: Monitoring Well Locations and Groundwater Elevations from the Monitoring Event on August 31, 2012

Well ID	UTM Coordinates (Zone 8 North)	Top of PVC Casing Elevation (masl)	Standing Water Level (mbtoc)	Groundwater Elevation (masl)
FA-MW12-01	6901552.3 m N 584450.1 m E	698.47	14.14	684.32
FA-MW12-02	6901522.3 m N 584476.9 m E	698.19	Frozen @ 13.76	Frozen @ 684.43
FA-MW12-03	6901515.8 m N 584603.1 m E	698.64	13.95	684.69
FA-MW12-04	~ 6901641 m N ~ 584575 m E	697.14	11.63	685.51

3.2.4 Groundwater Monitoring Event

Monitoring wells FA-MW12-01, FA-MW12-03, and FA-MW12-04 were purged and sampled by Golder on August 31, 2012. FA-MW12-02 was iced over or blocked, and could not be purged or sampled during this monitoring event. The procedure used for sampling followed Contaminated Sites Regulation Protocol no. 7. Prior to purging each well, the water level was first measured with an electronic measuring tape.

Approximately four well volumes were then purged from each well, using 5/8" high density polyethylene (HDPE) Waterra™ tubing, a foot valve, and a Hydrolift™ pump. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging continued until field parameters were stable before sampling. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the three groundwater monitoring wells that were sampled, a surface water sample was collected from a small pond located approximately 200 metres southwest of the Site.

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. All samples were kept in coolers with ice packs prior to their delivery, and were delivered within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation, and is accredited as conforming to ISO/IEC 17025.

3.2.5 Rising Head Hydraulic Response Tests

Hydraulic response (slug) tests were performed on FA-MW12-01, FA-MW12-03, and FA-MW12-04 on September 1, 2012, to assess the hydraulic conductivity of the surficial aquifer underlying the Site. Tests were performed using a 1.5 m long, solid 38 mm diameter PVC slug and a Solinst Levelogger pressure transducer set to measure head fluctuations at one-second intervals. Manual water level measurements were also recorded throughout the tests.

Multiple rising head tests were completed for each well. A summary of the analysis of these tests is provided in Section 4.5.

3.3 Laboratory Analysis

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Waste Management Permit (Permit No. 80-007).

Sampling and analysis were undertaken in general accordance with Yukon Contaminated Site Regulation (CSR) Protocols 2 and 5 (Government of Yukon, 2011).

Table 4: Parameters Analyzed in August – September 2012

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	VOCs
FA-MW12-01	√	√	√	V	√
FA-MW12-02	-	-	-	-	-
FA-MW12-03	√	√	√	V	√
FA-MW12-04	√	√	√	V	√
Faro Surface Water	√	√	√	V	√

3.4 Quality Assurance / Quality Control

Table 5 provides a detailed description of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

Table 5: Review of QA/QC procedures taken.

QA/QC Aspect	Evidence and Evaluation
Data Representativeness	
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.
Background Samples	FA-MW12-04 was established as an upgradient well at the Site and is used to characterize background groundwater conditions in the surficial aquifer underlying the Site.
Field Procedures	Monitoring wells were purged/developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox [™]) and distilled water. Surface water samples were collected using one-time-use syringes.
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.
Data Precision and Accuracy	
Blind Duplicate	One blind duplicate was collected from FA-MW12-04 during the August/September 2012 groundwater monitoring event. Of the 110 analyte pairs tested, RPD values could not be calculated for 89 of the pairs, as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, 1 exceeded the RPD ¹ acceptance criteria of ±30% and only 2 exceeded 5%.
Trip Blanks	A trip blank was not collected during the August 2012 groundwater monitoring event.
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the lab report showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.
Holding Times	Samples were delivered outside the acceptable (24 hour) hold time for physical parameters, however field parameters were taken during sample collection to compensate. Analysis of nitrate and nitrite took place 1 day outside the 3 day recommended holding time.
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.
Charge Balance	Charge balance was calculated on each of the samples analyzed by the laboratory. Percent error in charge balance for all samples was below 5.2%.
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.
Validity of Data Set	The data quality review indicates significant discrepancy between the FDA and the FD. No significant systematic errors in the analysis process for groundwater were found. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.

¹ RPD calculations are presented in Appendix E of Golder's draft report entitled Beaver Creek Solid Waste Disposal Facility Hydrogeological Assessment" dated August 10, 2012

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and a downgradient surface water receptor were sampled and tested for the following parameters:

- Major ions (Ca, Mg, Na, K, Cl, SO₄, N, NO₂, NO₃ and P)
 - SO_4 , N, NO_2 , NO_3 and P)

Dissolved Metals

- Mercury
- Hardness
- Alkalinity
- Carbonate

- Bicarbonate
- pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- VOCs

- Chemical oxygen demand
- Total Kjeldahl Nitrogen
- EPH_{w10-32} & VH_{w6-10}
- BTEX
- PAHs

Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards or to the Canadian Environmental Quality Guidelines for constituents where no Yukon standards were available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

Table 6: Applicable Water Quality Standards

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment
Aquatic Life	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1	Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

A search of the Yukon Lands viewer website and Google Earth Images, conducted by Golder October 23, 2012, showed several small ponds and Vangorda Creek falling within a 1 km radius of the Site, as specified in the CSR, under which aquatic life standards are applied. The nearest body of water was determined to be a small, unnamed pond located approximately 60 m southeast of the Site. It was therefore determined that aquatic life standards were **applicable** to the Facility.

Drinking Water

A search of drinking water wells on the Groundwater Information Network website and the Yukon Water Data Catalogue (accessed October 23, 2012) showed several drinking water wells, located within the Town of Faro, within the 1.5 km radius of the Site, specified by the Yukon CSR, under which drinking water guidelines are applied. The Town's municipal wells are just outside the 1.5 km radius from the Site. It was therefore deemed that CSR drinking water standards were **applicable** to the Facility.

Irrigation

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on October 23, 2012, showed no irrigation wells on record for the Faro area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells in the area. A review of Google Earth Images from 2012, conducted by Golder on October 23, 2012, as well as the Site visit in July 2012 showed no agricultural land within 1.5 km of the Facility. It was therefore considered that CSR water quality standards for irrigation are **not applicable** to the Facility.

Livestock

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on October 23, 2012, showed no wells on record as being for livestock use in the Faro area. It should be noted that this is not a complete record of all wells in the Yukon. A review of the Solid Waste Operation Plan (Government of Yukon, 2011) as well as several Site visits also did not indicate the presence of livestock in the vicinity of the Facility. It was therefore considered that CSR standards for livestock are **not applicable** to the Facility.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 Setting

The Town of Faro Solid Waste Disposal Facility is in the southeast portion of Yukon, within the Yukon Plateau Ecological Region, and is located in Kaska Dena First Nation's traditional territory. The Facility is at an elevation of approximately 700 m (2,300 ft) within the Pelly River Watershed. The Site is situated in a topographic low that is a glacially formed feature known as a kettle depression. A cleared area of approximately 25,000 square meters is present at the Site. A salvage yard and a materials (metals) recovery site are both located approximately 350 m to the northeast and upgradient of the Facility.

4.2 Climate

Precipitation at the Site is likely the same as the precipitation at the Faro climate station (Climate ID 2100517), located approximately 2.38 kilometres southeast of the Site at an elevation of approximately 716.60 m above sea level. Average monthly precipitation ranges from a low average of 8 mm in April to a high average of 58.8 mm in July. The average annual precipitation reported at the Faro station is approximately 316 mm including 111.6 cm of snowfall. Temperature at the Site ranges from a low average of -21.5°C in January to a high average of 15°C in July (Environment Canada, 2011).

Annual precipitation is relatively low (approximately 316 mm per year). This suggests that the amount of infiltration of water through buried waste at the Site and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during the spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The southern Yukon, including the Faro area, has undergone several episodes of glaciation, the most recent being the Quaternary McConnell glaciation. During that period, sediments such as glacial till, glaciofluvial, and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Pelly River Valley, located downgradient of the Site.

The Faro area is mapped as being underlain primarily by till and alluvium, with minor glaciolacustrine sediments of Quaternary origin. Ablation till, colluvial glacial debris, morainal deposits, and bedrock exposures are found at higher elevations in the mountains to the northeast of the Site.

Surficial geology maps published by the Yukon Geological Survey (YGS) indicate natural surficial materials at the Site are part a glaciofluvial complex of outwash, glaciolacustrine, and minor till deposits, deposited in an ice contact environment. Deposits are poorly to well sorted; sand and gravel with minor silt and clay; greater than 5 m thick. Kame and kettle topography is associated with this setting (Jackson, 1993).

4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a shallow, unconfined, surficial aquifer composed primarily of unconsolidated sand and gravel, with minor silt, and cobbles. For the purpose of this report, this aquifer has been named the Surficial Aquifer (Table 7).

Table 7 Aquifer Units Encountered at the Site

Aquifer Name	Location	Aquifer Type	Comments
Surficial Aquifer	FA-MW12-01 FA-MW12-02 FA-MW12-03 FA-MW12-04	Unconfined; unconsolidated porous media	Sand and GravelShallow aquiferHigh hydraulic conductivity

4.4 Groundwater Flow Systems

4.4.1 Regional Groundwater Flow

Topography in the area surrounding the Facility slopes from the mountain range, located to the northeast of the Site (elevation approximately 1200 m amsl), southwest towards the Pelly River (elevation 625 m amsl). Regional hydraulic gradient is inferred to be a subdued replica of this topographic gradient, so that regional groundwater flow is primarily to the southwest, discharging to the Pelly River.

4.4.2 Local Groundwater Flow

Golder used the groundwater depth data from August 31, 2012 and well survey elevation information collected in July 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations are presented in Table 3.

Local groundwater flow direction at the Site is inferred, using groundwater elevation data, to be approximately 0.008 m/m, sloping to the southwest.

4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on two of the four newly installed monitoring wells at the Facility. The slug tests were analyzed using AQTESOLV version 4.5, and the results are included in Appendix D. Table 8 provides a summary of the findings.

Table 8: Estimated Hydraulic Conductivity

Monitoring Well ID	Primary Hydrogeological Unit	Solution Used	Calculated Hydraulic Conductivity (m/s)
FA-MW12-01	Sand, some gravel	Bouwer-Rice (1976)	3 x 10 ⁻⁴
FA-MW12-04	Fine Sand	Bouwer-Rice (1976)	2 x 10 ⁻⁴

4.6 Estimated Linear Groundwater Velocity

As determined from the slug tests summarized in Table 8, the hydraulic conductivity of the shallow aquifer underlying the Site is ranges between 2×10^{-4} m/s and 3×10^{-4} m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network, to be 0.008 m/m to the southwest. A range of reasonable linear groundwater velocity is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s);

K: is the hydraulic conductivity in m/s as determined by slug testing;

i: is the horizontal hydraulic gradient (m/m); and

n: is the porosity which is estimated to be approximately 0.35 (Fetter, 1994) in sand and

gravel.

The resulting groundwater velocity is estimated to be between 5×10^{-6} m/s and 7×10^{-6} m/s (approximately 0.4 to 0.6 metres per day). Groundwater at the Site may travel faster or slower than these estimates due to inaccuracies or seasonal variations in these parameters.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation, and contaminant transport principals. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, metals, wood, construction debris, and any other potential waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO₃, NH₃), organic hydrocarbons (Fuels, PAH's, chlorinated hydrocarbons), and salts;
- Leakage and spillage from on-Site hydrocarbon storage areas; and
- Transport of contaminated water from upgradient locations.

Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone; and
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in Section 3.2.4, one round of groundwater monitoring was conducted on two of the three monitoring wells at the Facility on August 31, 2012, and one surface water location downgradient from the Site on September 2, 2012. Chain of custody forms for the groundwater samples collected, the complete groundwater chemistry results, and QA/QC data can be found in Appendix E. Table 9 summarizes important parameters from the groundwater chemistry results, which are used to identify potential leachate contamination.

Table 9: Important Groundwater Chemistry Results

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)	Magnesium (mg/L)
FA-MW12-01	1140	94.4	0.370	347	8.44	108.00
FA-MW12-02	-	-	-	-	-	-
FA-MW12-03	933	<0.5	0.205	3.6	3.66	83.0
FA-MW12-04	1420	349	1.49	163	167	58.1
Surface Water	131	14.3	0.0138	<0.50	22.0	5.66

Total Dissolved Solids

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃. TDS in the monitoring well samples ranged from 933 mg/L to 1420 mg/L, and was 131 mg/L in the surface water sample. Groundwater typically has a higher TDS than surface water, and TDS for the monitoring wells is considered to be within normal range for groundwater.

Dissolved Organic Carbon

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. DOC levels from the monitoring well samples at the Site ranged from 3.66 mg/L in the sample from FA-MW12-02 to 167 mg/L in the sample from FA-MW12-04. The difference between samples is considered significant, and is consistent with landfill leachate influence. There is no CSR standard for DOC.

Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride might be expected due to degradation of waste with a high chloride concentration. Chloride levels from the monitoring well network ranged from non-detect in FA-MW12-01, to 449 mg/L in FA-MW12-04, while the chloride concentration measured in the surface water sample was 14.3 mg/L. Levels in FA-MW12-04 are considered to be outside the range expected in naturally occurring waters and exceed CSR drinking water standard of 250 mg/L. Chloride levels in FA-MW12-04 are consistent with landfill leachate influence.

Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater samples ranged from 0.205 mg/L to 1.49 mg/L in the monitoring well samples, and lower (0.0138 mg/L) in the surface water sample. All levels were within the normal range for naturally occurring waters, and no concentrations exceeded the applicable CSR standard for freshwater aquatic life.

Metals

Monitoring well samples contained several metals that exceeded CSR guidelines; barium exceeded the CSR drinking water guideline in FA-MW12-04; cobalt exceeded the CSR aquatic life standard in FA-MW12-03 and FA-MW12-04; iron exceeded the CSR drinking water guideline in FA-MW12-01, FA-MW12-03, and FA-MW12-04; magnesium exceeded CSR drinking water guidelines at in FA-MW12-01; manganese exceeded CSR drinking water guidelines in FA-MW12-03, and FA-MW12-04. The CSR drinking water standards for iron, magnesium, and manganese are intended to protect against odour and taste concerns. Elevated metals are often associated with landfill leachate influence.

Organics

Detectable levels of organic constituents are often a sign of leachate contamination. Of the hydrocarbons analyzed (BTEX, PAH, EPH $_{w10-32}$ & VH $_{w6-10}$, and chlorinated hydrocarbons) none were detected in any of the samples taken during this round of sampling.

5.2 Interpretation of Groundwater Chemistry

Factors that may affect natural groundwater quality include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;
- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in groundwater. The ionic composition of water can be used to classify the water into ionic types based on the dominant dissolved cation and anion, expressed in milliequivalents per litre (meq/L). These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to identify differences in water chemistry by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions, and may be used to identify different water types. Here, it shows that concentrations of major ions are different for each sample. In general, concentrations of calcium, magnesium, and bicarbonate, are similar in all of the groundwater samples, while sodium, chloride, and sulphate vary considerably. In the surface water sample, concentrations of all major ions are shown to be lower, and important constituents sulphate and bicarbonate are depleted.
- Piper: The Piper diagram (Figure 8) is used to compare the ratios of major ions and can be used to identify different water types. Here the Piper diagram shows that, although the sample results are located near one another, they all have a different chemical composition. The sample from FA-MW12-01 is identified as an Mg-Ca-HCO₃-SO₄ type water; the sample from FA-MW12-03 is identified as Ca-Mg-HCO₃-SO₄ type water; the sample from FA-MW12-04 is identified as Ca-Mg-Na-Cl-HCO₃ type water; and the surface water sample is identified as Ca-Mg-HCO₃-Cl type water.
- Stiff: The stiff diagram allows for differences in groundwater chemistry to be presented and viewed spatially. Here, the stiff diagram shows that all of the samples have significantly different chemical composition. This is consistent with variations in types of waste from the landfill impacting the underlying groundwater.

None of the samples indicate conclusively that landfill leachate from the Facility is influencing groundwater or surface water chemistry.

6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

- Stratigraphy and Hydrogeology:
 - Surface Expression at the Site is dominated by quaternary surficial deposits;
 - Subsurface conditions were investigated with the installation of four monitoring wells including: FA-MW12-01, FA-MW12-02, FA-MW12-03, and FA-MW12-04, which were completed from July 10 through 12, 2012, under the supervision of Golder Associates, for the establishment of a monitoring well network at the Site;
 - The Site stratigraphy was investigated to a maximum depth of 17.4 in FA-MW12-01, and was found to consist primarily of stratified sand and gravel deposits with minor silt;
 - An unconfined aquifer was encountered during the drilling of all four monitoring wells at between approximately 13 m and 17 m below grade (bg);
 - Hydraulic response tests were performed on three of the four monitoring wells. The results of these tests indicate the hydraulic conductivity of the unconfined aquifer underlying the Site ranges from 2 x 10⁻⁴ m/s and 3 x 10⁻⁴ m/s. These values are considered reasonable for the sand units encountered in the screened section of each of these wells during installation:

- The local, horizontal hydraulic gradient at the Site was assessed, using groundwater elevation data, to be approximately 0.008 m/m, sloping to the southwest;
- Groundwater velocity in the surficial aquifer is estimated to range between 5 x 10⁻⁶ m/s and 7 x 10⁻⁶ m/s (approximately 0.4 to 0.6 metres per day); and
- Based on the groundwater flow direction, it was determined that both FA-MW12-01 and FA-MW12-02 are downgradient of the Site, FA-MW12-04 is upgradient of the Site, and FA-MW12-03 is on a side-gradient to the Site; therefore, the minimum requirements for one upgradient and two downgradient wells at the Site have been met.

Groundwater Chemistry:

- The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life and drinking water are applicable at the Site;
- Groundwater samples were collected from monitoring wells FA-MW12-01, FA-MW12-03, and FA-MW12-04 on August 31, 2012, and a surface water sample was collected from a small pond approximately 200 m southeast of the Facility on September 1, 2012, in order to complete the initial monitoring event at the Facility;
- Iron and manganese exceeded the CSR drinking water standard in all three monitoring well samples;
- Magnesium exceeded the CSR drinking water standard in the sample taken from FA-MW12-01;
- Barium exceeded the CSR drinking water standard in the sample taken from FA-MW12-04;
- Chromium exceeded the CSR standard for freshwater aquatic life in samples taken from FA-MW12-03 and FA-MW12-04; and
- Elevated metals in both upgradient and downgradient monitoring wells suggest that contamination may not be sourced from the Site.

7.0 RECOMMENDATIONS

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;
- Groundwater quality at the Facility should be revaluated following two rounds of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Particular attention should be given to the analytes exceeding Yukon CSR standards, and an effort should be made to identify sources of groundwater contamination.

8.0 CLOSURE

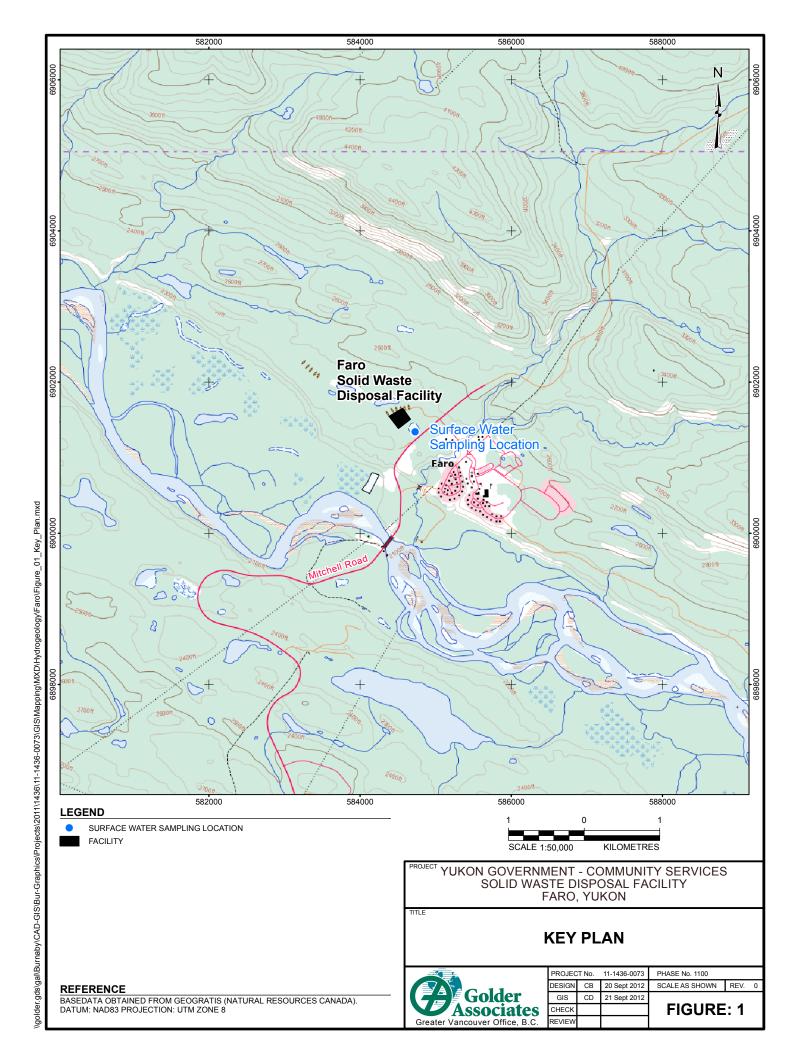
We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

ORIGINAL SIGNED

Calvin Beebe, M.Sc. Hydrogeologist Gary Hamilton, P.Geo. Principal Hydrogeologist


Reviewed By:

ORIGINAL SIGNED

Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist

CB/GJH/GCP/jcc

REFERENCE

IMAGE OBTAINED FROM GOOGLE EARTH, IMAGE DATE: OCTOBER 17, 2012 DATUM: NAD83 PROJECTION: UTM ZONE 8

SITE PLAN & CROSS SECTION LOCATION

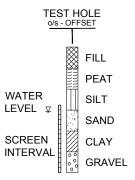

PROJECT No.		11-1436-0073	PHASE No. 1100	
DESIGN	СВ	09 Oct 2012	SCALE AS SHOW	
GIS	CD	08 Nov. 2012	_	
CHECK			FIGUR	
REVIEW				

FIGURE: 2

REFERENCE DESIGN CB 09 Oct 2012 SCALE AS SHOWN REV. 0 BASEDATA OBTAINED FROM GEOGRATIS (NATURAL RESOURCES CANADA).
SURFICIAL GEOLOGY DATA OBTAINED FROM THE YUKON GOVERNMENT, ENERGY, MINES AND RESOUCES.
DATUM: NAD83 PROJECTION: ALBERS **Golder Associates** GIS JW 09 Oct 2012 FIGURE: 3 CHECK

LEGEND

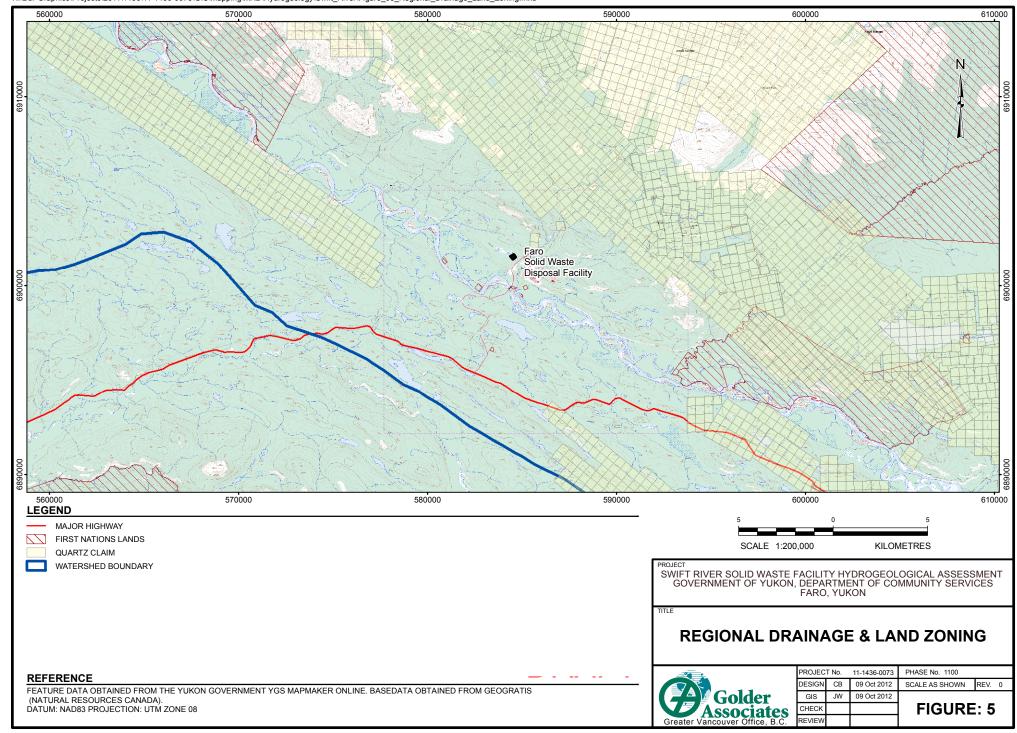
TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).

APPROXIMATE GROUND SURFACE

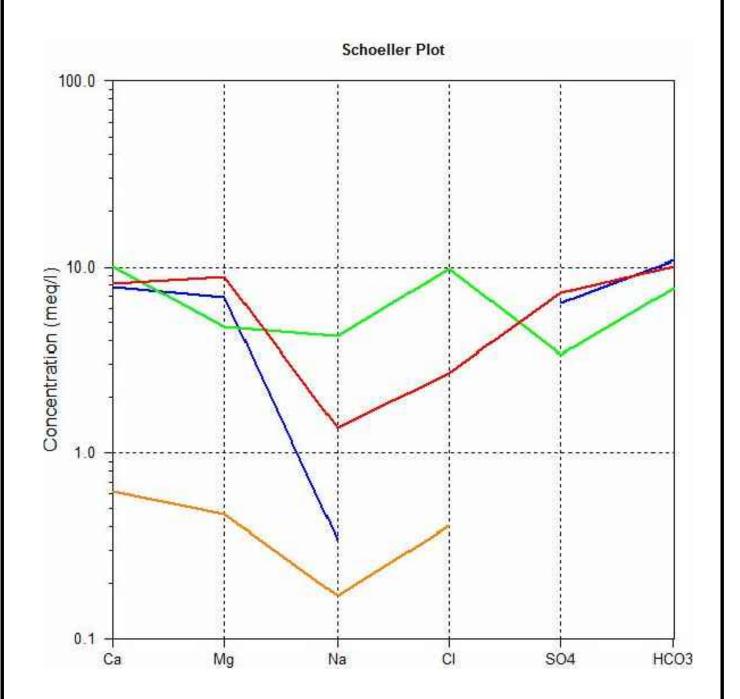
----- INFERRED GROUNDWATER (mASL)

SPECIAL NOTE: DATA CONCERNING THE VARIOUS STRATA HAVE BEEN OBTAINED AT TEST HOLE LOCATIONS ONLY. THE SOIL STRATIGRAPHY BETWEEN TEST HOLES HAS BEEN INFERRED FROM GEOLOGICAL EVIDENCE AND MAY VARY FROM THAT SHOWN.

VERTICAL SCALE EXAGGERATION 5.0X


GOVERNMENT OF YUKON,
DEPARTMENT OF COMMUNITY SERVICES
FARO, Y.T.

TITLE


CONCEPTUAL HYDROGEOLOGICAL CROSS - SECTION A-A'

FILE No. 1114360073-1100-1160-	6-0073/1100	PROJECT No. 11-1436-0073/1		
SCALE AS SHOW	31DEC12	GJH	DESIGN	
	03JAN13	JHL	CADD	
FIGURE 4			CHECK	
			DEVIEW	

Greater Vancouver Office, B.C

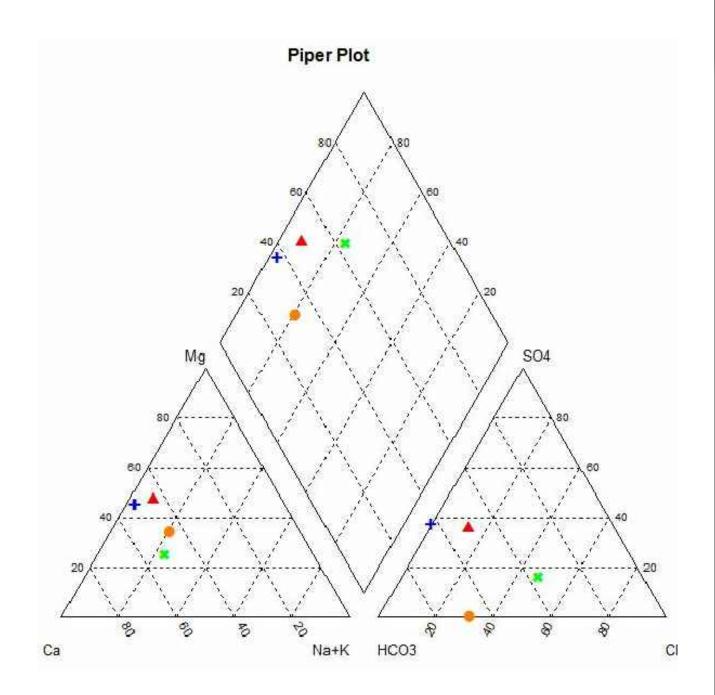
| LEGEND | Fall 2012 | Analysis Results | FA-MW12-01 | FA-MW12-03 | FA-MW12-04 | Faro Surface Water |

NOTES

LINES OVERLAP AND ARE NOT VISIBLE DUE TO SIMILARITY IN CHEMISTRY OF SAMPLES.

ROJECTYUKON GOVERNMENT-COMMUNITY SERVICES FARO. SOLID WASTE DISPOSAL FACILITY FARO, YUKON

TITLE


SCHOELLER PLOT

PROJECT No. 11-1436-0073			PH
DESIGN	СВ	300CT12	SC
CADD	TS	310CT12	
CHECK			
REVIEW			

SCALE NTS REV.

FIGURE 7

PROJECYUKON GOVERNMENT-COMMUNITY SERVICES FARO. SOLID WASTE DISPOSAL FACILITY FARO, YUKON

TITLE

PIPER PLOT

Golder				
Associates				
Greater Vancouver Office, BC				

	PROJECT No. 11-1436-0073			PHASE No.	1	1100-1160	
	DESIGN	CB	300CT12	SCALE	NTS	REV.	
	CADD	TS	310CT12				
	CHECK			l FIG	URE	Ξ8	
	REVIEW						

REVIEW

Greater Vancouver Office, B.C

TOWN OF FARO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX A

Site Photographs

Photograph 1: A view from the access road of the Site on the north edge of the Site looking south at the landfill and waste segregation areas.

Photograph 2: Tires receiving area.

Photograph 3: Derelict vehicles, metals, and waste oil storage area.

o:\final\2011\1436\11-1436-0073\1114360073-515-r-rev0-1100\appendices\app a\site photos.docx

TOWN OF FARO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX B

Well Construction Logs

RECORD OF MONITORING WELL: FA-MW12-01

DATUM:

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro DRILLING DATE: July 10, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES \oplus ADDITIONAL LAB. TESTING STRATA PLOT BLOWS/0.3m 15 20 CORE No. CORE RECOVERY NUMBER ELEV. TYPE PID WATER CONTENT PERCENT DESCRIPTION DEPTH ppm \circ^{W} Wp F ⊣ wi (m) 100 150 200 Ground Surface (SM) SILTY SAND, some gravel, dark 0.00 brown, moist. (GW-SW) GRAVEL and SAND, dark 0.30 grey, moist. o O 00 Ö, 2 (°) Ö o O M5 Driltech Truck Mounted Auger Drill Rig Bentonite Seal

Ó

Ó

0 . 0

9.45

LOGGED: AB CHECKED: DRAFT

(SP) fine SAND, dark brown, moist.

CONTINUED NEXT PAGE

PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

DEPTH SCALE

1:50

CLIENT: Yukon Government Community Services

RECORD OF MONITORING WELL: FA-MW12-01

DRILLING DATE: July 10, 2012
DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 2 DATUM:

LOGGED: AB

CHECKED: DRAFT

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SAMPLES PID ppm SOIL PROFILE BORING METHOD DEPTH SCALE METRES \oplus ADDITIONAL LAB. TESTING CORE COVERY Mudd OId STRATA PLOT BLOWS/0.3m 10 15 20 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH \circ^{W} Wp F ⊣ wi (m) 100 150 200 (SP) fine SAND, dark brown, moist. 11 Bentonite Seal 12 (SW) SAND, some gravel, trace silt, 12.19 dark grey, moist. PHICSPROJECTS/2011/436/41-436-0073/DRAFTING/GNIT/1-1436-0073 (1100 FA)GPJ Output Form:BC_BOREHOLE (ENVIRO) Template BC REGION TEMPLATE BETA 1.607 Lbray/BC REGION LIBRARY GLB bdrozdák. 89/13 M5 Driltech Truck Mounted Auger Drill Rig 13 - water at 13.72m depth. 10/20 Silica 15 51mm Slotted PVC Pipe 16 17 End of Monitoring Well. 18 19 20

RECORD OF MONITORING WELL: FA-MW12-02

DRILLING DATE: July 11, 2012

SHEET 1 OF 2 DATUM:

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

0	SOIL PROFILE		SAMI	PLES	PID ppm		•			, co	PIEZOMETER,
METRES BORING METHOD	DESCRIPTION	STRATA PLOT (m) ETATA TABLE TOTAL T	NUMBER TYPE	CORE No.		10 15	20	WATER CONTE	ENT PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
BO		R (m)	2		50 1	00 150	200	10 20	30 40		
6 2 2 3 4 NS Drillech Truck Mounted Auger Drill Right Air Rotany Air Rotany Air Rotany Air Rotany Air Rotany Air Rotany	Ground Surface (SW-GW) SAND and GRAVEL, dark grey-brown, moist.	STRATA		DECOMES CORE	50 1	00 150		Wp ├────	W wi	ADDII ADDII LAB.T	Bentonite Seal
10	(SM) SILTY SAND, trace gravel, dark grey-brown, moist. CONTINUED NEXT PAGE	9.75									
DEPTH:	I SCALE			4	Golde Associa	er otes			LOGGED: A		RAFT

RECORD OF MONITORING WELL: FA-MW12-02

DRILLING DATE: July 11, 2012

SHEET 2 OF 2 DATUM:

CHECKED: DRAFT

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

1:50

Seminate Seal	<u>ا</u> ا ا	2	SOIL PROFILE				SAI	MPLI			PID ppm					⊕					ا ا ا	PIEZOMETER, STANDPIPE	
Simm Slotted PVC Pipe 19 10 20 Sing Sing Sing Sing Sing Sing Sing Sing	METRES METHOL	BORING ME	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm						Wp	— <i>⊙\</i>	V	⊣ wı	ADDITION/ LAB. TESTII	OR THERMISTOR INSTALLATION	I
- water and increased gravel content at 16.46m depth. End of Monitoring Well.	10 11 12 13 14 14 MS Drittech Truck Mounted Auger Drill Rig 14		(SM) SILTY SAND, trace gravel, dark grey-brown, moist. (continued)		(m)			BI		22	5	0 1	00	150	200							10/20 Silica Sand	
			at 16.46m depth.		17.07																	51mm Slotted PVC Pipe	

1:50

RECORD OF MONITORING WELL: FA-MW12-03

DRILLING DATE: July 11, 2012

SHEET 1 OF 2 DATUM:

CHECKED: DRAFT

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

ш	90	SOIL PROFILE			- :	SAMP	LES		PID ppm			⊕						. ن	PIEZOMETER,
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	EV. PTH	NUMBER	TYPE BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	5 1		:0 	Wp	TER CO	⊖W	'	⊣ wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
0	Auger Drill Rig	Ground Surface (SW) SAND, trace gravel, dark brown, moist. (SP) fine SAND, trace gravel, dark grey, moist.		EV. (27TH n) 0.00	NUMBER	TYPE BLOWS/0.3	CORE NO	CORE RECOVERY	PID ppm 5	50 10			Wp		⊖W	0 4	⊣ wı	ADDITIC LAB. TES	Bentonite Seal
0 10		(SW) SAND, some gravel, dark brown, moist. CONTINUED NEXT PAGE		9.45	- +					 		 							
-		JOINTINGED NEXT FACE	1 1	- 1		- 1	1	1		1	i .	1		1					1

1:50

RECORD OF MONITORING WELL: FA-MW12-03

DRILLING DATE: July 11, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 2 DATUM:

CHECKED: DRAFT

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

00	SOIL PROFILE		Τ	SAI	MPLI	ES		PID ppm					•					ים	PIEZOMETER,
METRES BORING METHOD	DESCRIPTION	STRATA PLOT (a) TAIN (b) TAIN (c) TAIN (c) TAIN (d) TAIN (d) TAIN (e) TAIN (e) TAIN (f)		TYPE	BLOWS/0.3m	CORE No.	%	PID ppm	5 1	0	15	20		l	DNTEN	IT PER	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
BO		STR (m)	z		BLO	ŏ	REC	5	0 1	00	150	200)	Wp I			10 10	~ _	
11 11 12	(SW) SAND, some gravel, dark brown, moist. (continued)																		Bentonite Seal
자 Drittech Truck Mounted Auger Drill Rig Air Rotary	All Polary																		10/20 Silica Sand
15	- water and increased gravel content at 14.63m depth.																		51mm Slotted PVC Pipe
7	End of Monitoring Well.	17.	07																
18 19 20																			
DEPTH S	SCALE						Š		olde							LOGG	ED: A	<u> </u> В	

RECORD OF MONITORING WELL: FA-MW12-04

DRILLING DATE: July 11, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 2 DATUM:

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

<u> </u>	Т	SOIL PROFILE				SA	MPL	ES		PID ppm						+						. (2)	PIEZOMETER,
DEPTH SCALE METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	5	10	15		20		Wp I		—⊖ ^V	V	RCENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	+	Ground Surface	S				ш			5	50	100	15	0	200		1	0 2	20 :	30	40		
0		(SW) SAND, trace gravel, dark brown, moist.		6.10																			Bentonite Seal
		CONTINUED NEXT PAGE														_							
DEPTH 1 : 50	SC	CALE						(7	G Ass	old	er iate	es							LOGG	ECKE	в D: D	RAFT

RECORD OF MONITORING WELL: FA-MW12-04

DRILLING DATE: July 11, 2012

SHEET 2 OF 2 DATUM:

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Town of Faro

ш		3	SOIL PROFILE				SAI	MPLI	ES		PID ppm					•						ي ا	PIEZOMETER,
DEPTH SCALE METRES		BORING MEI HOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	5	10	15		0	Wp		—⊖ ^V		–ı wı	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	+	_		S				_				50	100	15) 20	00		10 2	20 3	30 4	0		
10 			(SW) SAND, trace gravel, dark brown, moist. (continued)																				10/20 Silica Sand
11	M5 Drittech Truck Mounted Auger Drill Rig	Air Rotary	(SP) fine SAND, dark grey, wet.		10.97																		51mm Slotted PVC Pipe
			water at 10.41111 depth.		13.72																		
13 14 - 14 - 15 - 16 - 17 - 17 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	i																						
18																							
DI			CALE						(Ž	Ass	olde	er	s						LOGG	ED: AI		

TOWN OF FARO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX C

Well Development and Sampling Sheets

Development
Purging/Sampling

V Top of Cas	ristaltic	PIT 6	netres (netres nm) Serial No. Serial No. Serial No. Serial No.	Fidally Influence well voice (B-A)*2.0 = (B-A)*1.1 = Sample interest of the control of the contr	plenced: plume: 2- 4- 24 ake depth:	9.5 litt litt m allibration But allibration Son D.O. Chem Bailer Type	res - for a 38 etres uffers: blution: net Ampoule e:	mm (2.0 i	C Home Co
Product thi Casing: v Top of Cas Wodel Wodel Wodel Fra Per T/PURGIN I. X 8.5.	ickness: A sing: B C C ristaltic PH (Units) 7-16	18.38 n	netres netres nm Serial No. Seria	One well vo (B-A)*2.0 = (B-A)*1.1 = Sample int	olume: 2 4. 24 ake depth:	8.5 litulitum malibration Bulibration School Chen Bailer Type	res - for a 51 res - for a 38 etres uffers:	mm (1.5 i	nch) diameter we
Model	ristaltic NG 9 =	Submer 36	Serial No. Serial No. Serial No. sible litre L/n Redox	es nin.	Ca	alibration So D.O. Chem Bailer Type	olution: net Ampoule e:	1 3 3 N	C Home Co
Temp. (°C) (0.2 = 7.4 =	9 =	Cond.	L/n	Diss. O ₂	Start:	15:0	3 Fin	ish: (5:25
(°C) (0.2 7 4.9 7 2.4 7	7.16								-
4.9 =			(mv)	(mg/L) or %	Rei	Water Level (m)		Remark	5
2.4 1	7.13								
						14.14			
01	7.07					14.15			
	7.16		-	-	-				
1.9	7.17					19.19	ANDI		
		-			-	-			
-		-		-			-		
		- 30							
No If ye	es Hydro	ocarbon-lik				Silty	1311111	MID I	erd s
Туре	40 π	nL 100 m	L 250 m	L 500 m	L 1L	2 L	4 L Filte	ered	Preservatives
astic	ass						☐ Yes	□ No	
astic Gla		*					☐ Yes	□ No	
astic Gla							☐ Yes	□ No	
astic Gla							□ Yes	□ No	
		Valore T. I	-two	-	UDDET	T. bir			
a	stic Gi stic Gi stic Gi stic Gi	stic	stic	stic	stic	stic	stic	stic	stic

A STATE			APRIL PROPERTY OF THE PARTY OF	
mountables				

□ Development□ Purging/Sampling

-		720		_				ate:	-			ne: 16:15
her: 00	SER	CAST		Temper	ature: _	12.5	C	ompleted	d by:	A BA	NO CHER	
NITORING												
e of Measurer			115				idally Influe		□ Yes	2 No		
th to product:			duct thickn	120000			one well volu	ıme:			E4 (2.0)	
th to water Be th to Bottom				A			B-A)*2.0 = B-A)*1.1 =					inch) diameter we inch) diameter we
meter Standpi		pelow tob	or casing.	C	mr		Sample intak	e depth:		netres	30 mm (1.3	incit) diameter we
notor otamap	ipo.											
UIPMENT	LIST											
and Temp. Me		Model	-			erial No.			alibration E		04 07	□ 10
ductivity Mete		Mode			100	erial No.	-		Calibration S			autoria de la companya del companya del companya de la companya de
solved Oxygen		r: Mode Waterra	□ Perista	tic D	Submersi	erial No.	-	-	Bailer Typ	met Ampoul	le	
np Details:	le L	vvaterra	LI Felisia	шс ц	publifiersi	ole		_	J ballet Typ			
ip Dotains.												
ELL DEVE	LOPI	MENT/PU	RGING									
ge Volume:		ell. Vol. X		_ =		litre					VALUE VIOL	
. Flow Rate:			-			L/m		tart:			Finish:	
Time	Volum	ed lemp			ond.	Redox	Diss. O ₂ (mg/L)		Water Level	Lends	Remark	s
	(L)	(*C)	(Uni	s) (u:	S/cm)	(mV)	or %		(m)			
					-				-	DE	4	
				-	-				-			
					-							1 0
					-	HOUSE STREET				5120	KUP	1.03m
					-	-				-		
		-			-				-	-	-	
		-	-	-		-			-	-		
	-	-	-	-								
			-	-	-	-			-			
-		-	-	-	-					-		
mments:												
Odour: Sheen:	☐ Ye		If yes	Hvdroca	rhan lika	□ OR	Motallia	-like 🗆	-		1 1 1 1 1 1 1	
Turbidity:	Clear		If yes				IIIIIII		Cilty			
ruibidity.	Olear	1111	11111	1 1 1 1 1	1 1 1 1 1			very	Only			
Analysis		Туг	ne .			1	Container Size	1			Filtered	Preservatives
7 11 10 17 510				40 mL	100 mL	250 mL	500 mL	1 L	2 L	4 L		1 10001 100100
		□ Plastic	☐ Glass			-				DY		
		□ Plastic	☐ Glass			-		-		DY		
		□ Plastic	Glass				-			DY		
		□ Plastic	☐ Glass				-	-		П		
		☐ Plastic	☐ Glass					-		DY		
					1					DY	es No	
		☐ Plastic	☐ Glass		-							
		☐ Plastic	☐ Glass ☐ Glass							DY		

Development
Purging/Sampling

tion: FARL		-03					Project No Date:	1	1. A	WC . 1"	2 7	1100 me: 16:30
ther: Over	CAST		Tempe	rature:	1500		Complete				20 CH	
e of Measurement: oth to product: oth to water Below of the Bottom of We meter Standpipe:	Pro Top of Casir	oduct thickr	ness:	3.03 m	etres (l	idally Influence well vone well vone B-A)*2.0 = B-A)*1.1 = Sample inta	lume: 4.08.2		⊠ No litres	- for a 51	mm (2.0	inch) diameter we inch) diameter we
and Temp. Meter: aductivity Meter: solved Oxygen Met anp: None Inp Details:	Mode Mode	el		s	Serial No. Serial No. Serial No.	20	(Calibration Calibration D.O. Ch D.Bailer T	Solution emet A	on:	14 11	√ □ 10
GLL DEVELOP ge Volume: W	MENT/PU		= 6	35	litre:		Start:	16	. 4:	→ Fir	nish: (7	7: 05
Time Volum Remo	ved (°C	(Un		Cond. (S/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Remark	- PAPE 1- 1
16:20 1	9.6		_						11	cm	of	well
16:52 8	-				-			13.55	1			T OFF
1657 16		1 6.					`	13.9				NEW
17:02 2			95									MESGON
17:06 30			56	1				0.0			77m	
17.01 35	1,.	1 6.	16		-		-	13.70	51	An P	E CO	LLECITO
									-			
										J. S. A.		
odour:	s 🗆 No	If yes If yes	The same of	rbon-like	11111	IIIII		Silty	500	12 1 1 1 1	Cand og D (1.17)	eya a
Turbidity: Clea				100 mL	250 mL	500 mL	11	2 L	4 L	Filte	ered	Preservatives
Turbidity: Clea	Ту	pe	40 mL	I TOO HIL			1.2	50 to	7.			
	Tyl	D Glass	40 mL	100 mL						□ Yes	DNO	AL I PERSON
	7		40 mL	100 ML						□ Yes	□ No	
	☐ Plastic	□ Glass	40 mL	100 HL								45) 45)
	☐ Plastic	□ Glass	40 mL	100 mc						□ Yes	□No	
	☐ Plastic ☐ Plastic ☐ Plastic	☐ Giass ☐ Giass ☐ Giass	40 mL	100 ML						□ Yes	□ No	
	☐ Piastic ☐ Piastic ☐ Piastic ☐ Piastic ☐ Piastic	☐ Glass ☐ Glass ☐ Glass ☐ Glass	40 mL	100 mL						☐ Yes ☐ Yes ☐ Yes	□ No □ No	
	☐ Plastic ☐ Plastic ☐ Plastic ☐ Plastic ☐ Plastic ☐ Plastic	☐ Glass ☐ Glass ☐ Glass ☐ Glass ☐ Glass	40 mL	100 mL						☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No	

The second section	- Children	establishment in mile	CONTRACTOR OF STREET
		MANUAL PROPERTY.	
79294	5. MARCHION	Control of the contro	Control of the Contro
- ADNO	Aug (1, 29)(5);	12000	
Service Laboratory	_45ab (74.7	100	NAME AND ADDRESS OF TAXABLE PARTY.
-	A CONTRACTOR OF THE	I de la companya della companya dell	

Development
Purging/Sampling

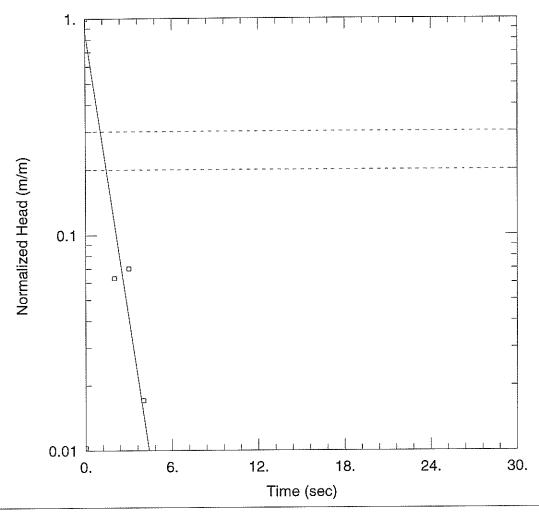
ion: F	ARO	10	-04			THE		roject No ate:	3	IAL	16. 5	Tin	3/1100 ne: 17:45
ner: CC	FAR			Temper	ature:	16°C	c	ompleted	d by:	A·B	1 AOG	er	
of Measure th to product th to water B th to Bottom neter Standp	ment: : elow Top of Well Be	Proc of Casing	duct thickness;	ess:	35 me mn	tres (E	idally Influe ine well vol 3-A)*2.0 = 3-A)*1.1 = ample intal	ume: 3. 3 -2-2			- for a 38		inch) diameter wel
UIPMENT and Temp. M ductivity Met solved Oxyge np: Nor np Details:	eter: er:	Model Model			Se Se	erial No. erial No. erial No. erial No.			Calibration Calibration D.O. Che Bailer Ty	Solutio emet A	n:	4 407	10
ELL DEVE ge Volume: , Flow Rate:	Well.		RGING	_ = _ 3	0.	litre:		Start:	17:	20	Fin	ish:	9:09
Time	Volume Removed (L)	Temp (°C)			ond. S/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Remark	
17:51	8	8.6	The same of the sa	26					111.6				
18:00	15	5.									-		
18:02	20	5-(78									
8:05	25	4.8	3 6.	79									
8:08	30	3.0	0 6.8	0					14.6	5 5	AMP	UF	COLLECTED
		-							-				
		-	-							-			
										-			
									-			-	
odour: Sheen: Turbidity:	□ Yes □ Yes Clear	□ No □ No I I I I	If yes _ If yes	Action 100	rbon-like		3	:-like 🗆	Silty	13.11	11111		+ +
		_				(Container Size		V				5
Analysis		Тур		40 mL	100 mL	250 mL	500 mL	1L	2 L	4L	Filte		Preservatives
	-	Plastic	☐ Glass						1		□ Yes	□ No	
		Plastic	☐ Glass			-	-				☐ Yes	□ No	
		Plastic	☐ Glass		1	-	-	-			□ Yes	□ No	
	-	Plastic	☐ Glass ☐ Glass					-			☐ Yes	□ No	
	-	D Plastic	☐ Glass			-	-				☐ Yes	□ No	
1		Plastic	☐ Glass					-			□ Yes	□ No	
			□ Glass			-		-			-		
	1 1	☐ Plastic	I L GIESS								☐ Yes	DNo	

Surface Water Sampling Data Sheet

Field Characterization
Sampling

cation:	DS V. 050	84728		0130	13	Project N Complete Date: Time: Reviewed	d By:	12:00					
EQUIPMENT OF AND THE A	ter: Mode	el	NA F	Se Se	rial No.	>	C	alibration alibration	Solution	n:	4 101	1 0	
oump: P None		□ Perista	altic 🗆 S	Submersib	le	Bai	er: 🗆	None	□ Sta	inless St	eel 🗆 T	reflon □ PVC	
SURFACE W	ATER SAM	MPLING							*				
Time 12:00	Volume Removed (L)	Temp. (°C)	pH (Units)	Cond. (uS/cm)	Redo (mV	x Di (mg	ss. O ₂ L) or %			Re	marks		
12.00													
					-								
			9										
											1		
				1		19							
Sheen:	☐ Yes ☐ No☐ Yes ☐ No☐ Clear ☐ ☐ ☐		111111	11111	11111	11111	Very S	ilty					
Analysis	T	уре	40 mL	100 mL	250 mL	tainer Size 500 mL	1 L	2L	4L	Filte	ered	Preservatives	
	☐ Plastic	☐ Glass								□ Yes	□No		
	☐ Plastic	☐ Glass			-					□ Yes	□No		
	☐ Plastic	□ Glass								□Yes	□ No		
	□ Plastic	☐ Glass		(3)						☐ Yes	□No		
	☐ Plastic	☐ Glass								□Yes	□ No		
					0					☐ Yes	□ No		
	☐ Plastic	☐ Glass	-							- DV	CAL		
	☐ Plastic	-			•					☐ Yes	□ No		

\\Cas1-s-filesrv1\data\Admin\Field Forms\Surface Water Sampling Data Sheet.doc



TOWN OF FARO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX D

Slug Test Data

Data Set: \...\FA-MW12-01 Test_1.aqt

Date: 11/07/12 Time: 11:10:16

PROJECT INFORMATION

Test Well: FA-MW-12-01 Test Date: 31-August-12

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 4.26 m

WELL DATA (MW12-01)

Initial Displacement: 0.82 m

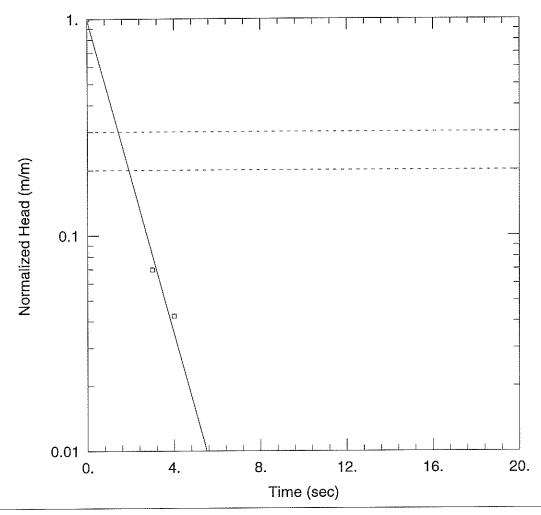
Static Water Column Height: 4.26 m

Total Well Penetration Depth: 4.25 m

Screen Length: 3.04 m

Casing Radius: 0.025 m

Well Radius: 0.092 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0003104 m/sec

y0 = 0.7074 m

Data Set: \...\FA-MW12-01 Test_2.aqt

Date: 11/07/12

Time: 11:10:37

PROJECT INFORMATION

Test Well: FA-MW-12-01 Test Date: 31-August-12

AQUIFER DATA

Saturated Thickness: 4.26 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW12-01)

Initial Displacement: 0.82 m

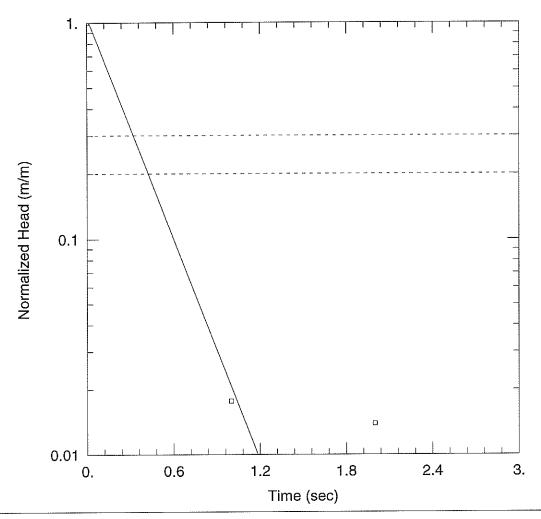
Static Water Column Height: 4.26 m

Total Well Penetration Depth: 4.25 m

Screen Length: 3.04 m

Casing Radius: 0.025 m

Well Radius: 0.092 m


SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.000255 m/sec

y0 = 0.8104 m

Data Set: \...\FA-MW12-03 Test_1.aqt

Date: 11/07/12 Time: 11:12:01

PROJECT INFORMATION

Test Well: FA-MW-12-03 Test Date: 31-August-12

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 4.08 m

WELL DATA (MW12-03)

Initial Displacement: 0.82 m

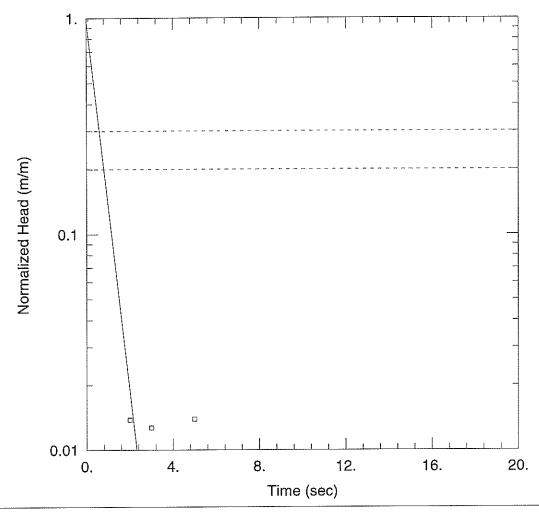
Static Water Column Height: 4.08 m

Total Well Penetration Depth: 4.07 m

Screen Length: 3.04 m

Casing Radius: 0.025 m

Well Radius: 0.092 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001194 m/sec

y0 = 0.878 m

Data Set: \...\FA-MW12-03 Test_2.aqt

Date: 11/07/12 Time: 11:12:27

PROJECT INFORMATION

Test Well: FA-MW-12-03 Test Date: 31-August-12

AQUIFER DATA

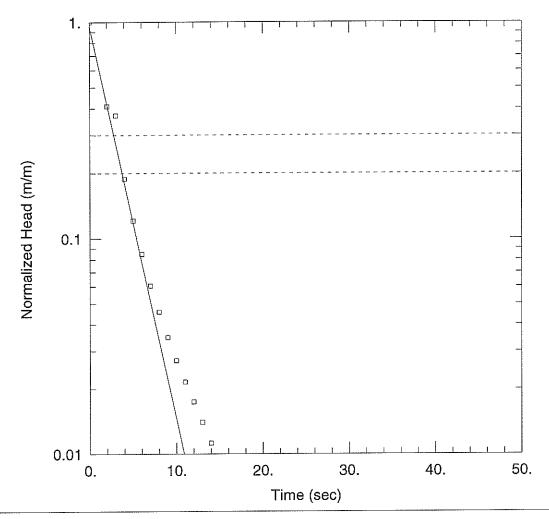
Saturated Thickness: 4.08 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (New Well)

Initial Displacement: 0.82 m

Total Well Penetration Depth: 4.07 m

Casing Radius: 0.025 m


Static Water Column Height: 4.08 m

Screen Length: 3.04 m Well Radius: 0.092 m

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005986 m/sec y0 = 0.8008 m

Data Set: \...\FA-MW12-04 Test_1.aqt

Date: 11/07/12 Time: 11:12:56

PROJECT INFORMATION

Test Well: FA-MW-12-04 Test Date: 31-August-12

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 3.7 m

WELL DATA (MW12-04)

Initial Displacement: 0.82 m

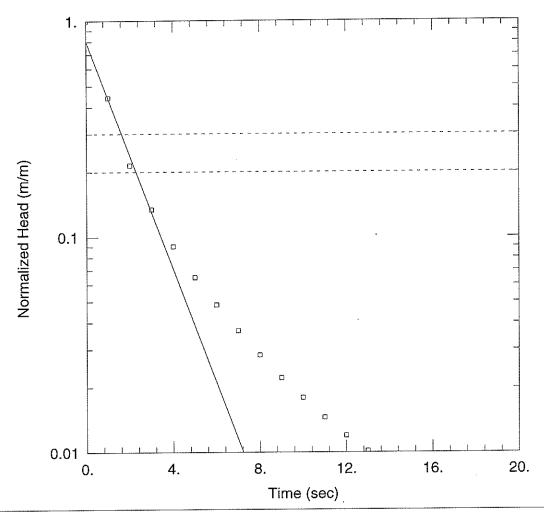
Static Water Column Height: 3.7 m

Total Well Penetration Depth: 3.69 m

Screen Length: 3.04 m

Casing Radius: 0.025 m

Well Radius: 0.092 m


SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001242 m/sec

y0 = 0.7852 m

Data Set: \...\FA-MW12-04 Test_2.aqt

Time: 11:13:11 Date: 11/07/12

PROJECT INFORMATION

Test Well: FA-MW-12-04 Test Date: 31-August-12

AQUIFER DATA

Anisotropy Ratio (Kz/Kr): 1. Saturated Thickness: 3.7 m

WELL DATA (New Well)

Initial Displacement: 0.82 m Total Well Penetration Depth: 3.69 m

Casing Radius: 0.025 m

Static Water Column Height: 3.7 m

Screen Length: 3.04 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: Unconfined

K = 0.0001798 m/sec

Solution Method: Bouwer-Rice

y0 = 0.6607 m

Single-well Response Test Data Sheet

Rising Head
Falling Head

	Well No.:	FA-mwi	2-01				
	Location:	FARO					
	Project No.:	11-1436	0073/11	00			
	Completed By:						
	Date:	02-55	>-12				
	Time:	11:10					
MONITOR	RING WELL INF	ORMATION	-				
		below top of cas	ing:	14.14	mataua		
		m of well below to	-	1011	meters		
		top of pipe to gro	-		meters		
	Well casing dia	The state of the s	und surface.		meters	(4 in ab = 0.005t)	
	Borehold diam		-		meters	(1 inch = 0.025 meters)	
	Screen length:		-		meters	(4 foot = 0.2040 = -t)	
	Screened unit:				meters	(1 foot = 0.3048 meters)	
	Screened unit.				(eg: sand, s	sirt, clay)	
QUIPME	ENT LIST						
	Slug				Bailer		
	Mass:		kilograms		Water co	lumn height:	meters
	Length:	1.5	meters		Inside dia	ameter:	meters
	Diameter:	0.0375	meters	and/or	Volume of	of water removed:	litres
1	Pressure trans	sducer serial #:	0011032	630			
	Sampling Inter		1		seconds	or minutes (circle one)	
		- Columns				(
SINGLE-	WELL RESPON						
	Start time	e: <u> \\:(3</u>	Finish time:	11:45			
	Time	Elapsed Time	Water Level (m)		Co	mments	7
	11:13	Liapsed Time	vvater Lever (III)	JX JN			-
	11:17		14.14		0.2m	off Borrom	-
	11:22		14.14	SLUG -	10		-
	11:27		19.19	SLUG I		- 2	-
	11:32			SUUG 0			-
	11:37			5cmc 21			-
	11:42			SULL OF			-
	11:45						-
	11.513		134	TX OU			-
140							-
							-
		-					_

Single-well Response Test Data Sheet

Rising Head
Falling Head

Project No.: Completed By: Date: O2-5-2-12 Time: 0.25 0.		VV GII IVO	+H-PW	15-07					
Completed By: A BIND GER Date: 02-569-17 Time: 00.25 MONITORING WELL INFORMATION Depth to water below top of casing: 13-55 meters Distance from top of pipe to ground surface: 15 meters Well casing diameter: 15 meters Well casing diameter: 15 meters Borehold diameter: 15 meters 15 met		Location:							
Date: Time: 10.75 Continue		Project No.:	11-1436	,-00.731	1100				
## ADDITION CONTROLLY INFORMATION Depth to water below top of casing: Depth to bottom of well below top of casing: Depth to bottom of well below top of casing: Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: ### COUIPMENT LIST Slug		Completed By:	A BUNG	GES					
MONITORING WELL INFORMATION Depth to water below top of casing: Depth to bottom of well below top of casing: Depth to bottom of well below top of casing: Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: Surg Mass: Length: Diameter: Diameter: Diameter: Diameter: Diameter: Sampling Interval: Sing Time Elapsed Time Water Level (m) Time Elapsed Time Water Level (m) Time Comments Total Time Total Time Comments Total Time		Date:	02-550	-12					
Depth to water below top of casing: Depth to bottom of well below top of casing: Depth to bottom of well below top of casing: Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: Screened unit: Siug Mass: Length: Diameter: Diameter: Diameter: Diameter: Diameter: Diameter: Sampling Interval: Start time: Diameter: Diameter: Diameter: Diameter: Diameter: Diameter: Diameter: Meters Meters		Time:	10:25	10					
Depth to bottom of well below top of casing: Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: Sug Mass: Length: Diameter: Diameters Mater column height: Mater column height: Meters Inside diameter: Pressure transducer serial #: Sampling Interval: Start time: 10:30 Finish time: 10:30 Finish time: 10:33 13:95 SLUG Comments 10:48 SUG SUG Finish time: 10:48 SUG SUG Finish time: SUG SUG SUG SUG SUG SUG SUG SU	ONITOR	ING WELL INF	ORMATION						
Depth to bottom of well below top of casing: Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: Screened unit: Mass: Length: Diameter: Diameters Inside diameter: meters Diameters Inside diameter: meters Inside diameter: meters Diameters Inside diameter: meters Inside diameter: meters Diameters Inside diameter: Insid		Depth to water	below top of cas	ing:	13.55	meters			
Distance from top of pipe to ground surface: Well casing diameter: Borehold diameter: Screen length: Screened unit: Water column height: Diameter: Diameters Inside diameter: meters Diameters Di		Depth to botton	m of well below to	op of casing:	(8.03	meters			
Well casing diameter: Borehold diameter: Screen length: Screened unit: meters		Distance from	top of pipe to gro	und surface:		meters			
Screen length: Screened unit: Could be compared to the content of the content		Well casing dia	ameter:			meters	(1 inch =	: 0.025 meters)	
Screened unit: (eg: sand, silt, clay) EQUIPMENT LIST Slug Mass: Length: Diameter: Diameter: Diameter: Pressure transducer serial #: Sampling Interval: Start time: 10:30 Finish time: 10:30 Time Elapsed Time Water Level (m) Comments (0:30 Time Comments (Borehold diam	eter:			meters			
EQUIPMENT LIST Slug		Screen length:				meters	(1 foot =	0.3048 meters)	
Mass: kilograms Water column height: met Inside diameter: met Inside dia		Screened unit:				eg: sar	nd, silt, clay)		
Mass: kilograms Water column height: met Inside diameter: met Inside dia	OUIPME	NTLIST							
Mass: kilograms Water column height: met Inside diameter: met Inside dia						Railer			
Length: Diameter: Diameter	- 7			kilograms			column beigh	+-	
Diameter: 0-0375 meters and/or Volume of water removed: litre Pressure transducer serial #: 0011032630 Sampling Interval: seconds or minutes (circle one) SINGLE-WELL RESPONSE TEST Start time: 10:30 Finish time: 11:00 Time Elapsed Time Water Level (m) Comments 10:30 IX5446 IN 20cm OF BOTTON 10:38 I3:95 SLUG ONT 10:48 SLUG ONT 10:58 SLUG ONT			7 7						- meters
Pressure transducer serial #: OOIIO32630 Sampling Interval: Start time: IO:30 Finish time: II:00 Time Elapsed Time Water Level (m) Comments IO:30 IS 94 SUUG IN SUUG IN IO:43 IO:43 IO:48 IO:58 Finish time: II:00 SEMBLE-WELL RESPONSE TEST Start time: II:00 SUUG IN SUUG					and/or			oved:	-
Single-Well Response Test Start time: 10:30 Finish time: 11:00 Time Elapsed Time Water Level (m) Comments 10:30 Fixetus In 20 cm off Botton 10:38 I3.95 Sculp out 10:43 Sculp out 10:58 Sculp out 10:58 Sculp out						Voidii	ic of water refi	loveu.	_ iltres
Single-Well Response Test Start time: 10:30 Finish time: 11:00				0011032	600				
Start time: 10:30 Finish time: 11:00 Time		Sampling Inter	rval:)	secon	ds or minutes	(circle one)	1
Time Elapsed Time Water Level (m) Comments 10:30 13:94 10:38 13:95 5:06 IN 10:48 10:58 5:06 IN 10:58 TENGONT 10:58 Comments Comments Comments 10:00	INGLE-V	VELL RESPON	SE TEST						
10:30 10:38 13:99 SUNG IN 10:38 13.95 SUNG IN 10:43 SUNG IN SUNG IN SUNG IN 10:48 SUNG IN SUNG IN 10:58 SUNG IN SUNG IN SUNG IN		Start time	: 10:30	Finish time:	11:00				
10:30 10:38 13:99 13:99 SUUG IN 10:38 13:95 SUUG OUT 10:48 SUUG OUT 10:58 SUUG OUT 5UUG OUT									_
10:33 13.95 SLUG IN 10:38 13.95 SLUG ONT 10:43 SLUG ONT 10:48 SLUG ONT 10:53 SLUG IN 10:58 JEUG ONT			Elapsed Time	Water Level (m)					
10:38 13.95 SLUGONT 10:48 SLUGONT 10:58 JENGONT					1x5446	IN	20 cm	OFF BUTTUR	
10:43 SLUG IN 10:48 SLUG OUT 10:53 SLUG IN 10:58 JEUG OUT					SUUGI	2			
10:48 SLUG OUT 10:53 SLUG IN 10:58 JEUG OUT				13.95					
10:53 SLUG IN 10:58 JEUG OUT			1						
10:58 JENG OUT									
11:00 TX OUT								980 TEN 11 TEN	
		11:00			TXOUT				

Single-well Response Test Data Sheet

Rising Head

Data 3	Sheet				Falling Head	
	Well No.: Location: Project No.: Completed By: Date: Time:	FA-MUN FMRO 11-1436- A BADO 02-5ED. 01:30	0073/1 SER	100		
MONITOR	ING WELL INFO					
	Depth to botton		op of casing:	meter	rs rs (1 inch = 0.025 meters)	
EQUIPME				(09.		
	Slug Mass: Length: Diameter: Pressure trans Sampling Inter	0.0375 ducer serial #:	kilograms meters meters	Insi and/or Volu	ter column height: de diameter: ume of water removed:	meters meters litres
SINGLE-V	VELL RESPONS Start time	SE TEST : 9: 29	Finish time:	10:14		
	Time	Elapsed Time	Water Level (m)		Comments	7
	9:32 9:37 9:44		11:62	SLUG OUT SLUG OUT SLUG OUT		
	16:14			Tx our		

TOWN OF FARO SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX E

Analytical Reports and Chain of Custody Forms

Table E-1 **Results of Water Analyses - Metals** [YTG Landfill Monitoring, Faro, Yukon]

SCN Location QA/QC Date		Aquatic Life CSR-AW (freshwater)	Notes	L1203640-4 FA-MW12-01 31-AUG-12	L1203640-5 FA-MW12-03 31-AUG-12	L1203640-6 FA-MW12-04 31-AUG-12	L1203640-7 FA-MW12-04 FD 31-AUG-12	L1203640-8 FA SURFACE 02-SEP-12
Parameters pH (field) Temperature °C				7.17 1.90	6.96 3.70	6.8 5	7.17 1.90	6.50] 10.80
Conductivity (uS/cm) Dissolved Oxygen (mg/L)					- -	-		-
Laboratory Parameters pH (laboratory)				7.40 853	7.27 731	6.96 740	7.39 844	7.12 54.5
Hardness (as CaCO3) total dissolved solids				1140	993	1420	1140	131
Aggregate Organics COD				59	27	167	64	86
dissolved organic carbon				8.44	3.66	11.9	7.85	22.0
Dissolved Metals aluminum	0.2	1		<0.010	<0.010	<0.010	<0.010	0.012
antimony arsenic	0.006 0.025	0.2 0.05		0.00059 0.00604	<0.00050 0.00373	<0.00050 0.0140	0.00059 0.00629	<0.00050 0.00060
barium beryllium bismuth	1	10 0.053		0.16200 <0.0050 <0.20	0.108 <0.0050 <0.20	1.120 <0.0050 <0.20	0.166 <0.0050 <0.20	0.050 <0.0050 <0.20
boron cadmium calcium	5 0.005	0.0001 - 0.0006	Н	<0.10 <0.00020 164	<0.10 <0.00020 156	<0.10 <0.00020 201	<0.10 <0.00020 161	<0.10 <0.00020 12.5
chromium cobalt	0.05	0.010 ^{VI} , 0.090 ^{III} 0.009	V	<0.0020 < <i>0.010</i>	<0.0020 0.016	<0.0020 0.012	<0.0020 < <i>0.010</i>	<0.0020 < <i>0.010</i>
copper iron	0.3	0.020 - 0.090	Н	<0.0010 5.720 <0.00050	<0.0010 10.500 <0.00050	<0.0010 48.300 <0.00050	<0.0010 5.990 <0.00050	0.0012 0.032 <0.00050
lead lithium magnesium	100	0.040 - 0.160	Н	0.011 108.000	0.011 83.0	<0.010 <0.010 58.1	0.011 107.000	<0.010 <0.010 5.66
manganese mercury	0.05 0.001	0.001		0.474 <0.00020	3.890 <0.00020	4.240 <0.00020	0.477 <0.00020	<0.0020 <0.00020
molybdenum nickel phosphorus	0.25	10 0.250 - 1.5	Н	<0.030 <0.050 <0.30	<0.030 <0.050 <0.30	<0.030 <0.050 <0.30	<0.030 <0.050 <0.30	<0.030 <0.050 <0.30
potassium selenium	0.01	0.01		4.46 <0.0010	3.81 <0.0010	11.6 <0.0010	4.52 <0.0010	4.38 <0.0010
silicon silver sodium	200	0.0005 - 0.015	Н	6.78 <0.010 31.4	8.82 <0.010 7.8	6.06 <0.010 97.7	6.72 <0.010 32.3	0.440 < <i>0.010</i> 3.9
strontium thallium tin		0.003		0.803 < 0.20 < 0.030	0.452 <0.20 <0.030	0.789 < 0.20 < 0.030	0.818 < <i>0.20</i> <0.030	0.0598 < <i>0.20</i> <0.030
titanium uranium	0.1	1 3		<0.010 0.0135 <0.030	<0.010 0.0289 <0.030	<0.010 0.00711 <0.030	<0.010 0.0138 <0.030	<0.010 <0.00010
vanadium zinc	5	0.075 - 2.4	Н	<0.030	<0.030	<0.030	<0.030	<0.030 <0.050
Other Inorganics bicarbonate (CaCO3)				505	540	383	523	43.4
carbonate (CaCO3) hydroxide (CaCO3) total alkalinity (CaCO3)				<1.0 <1.0 505	<1.0 <1.0 540	<2.0 <2.0 383	<1.0 <1.0 523	<1.0 <1.0 43.4
ammonia chloride	250	1.31 - 18.5	pН	0.370 94.9	0.205 <5.0	1.49 349	0.387 99.5	0.0138 14.3
fluoride nitrate (as N) nitrite (as N)	1.5 10 3.2	2 - 3 400 0.2 - 2	H Cl	<0.20 <0.050 <0.010	<0.20 <0.050 <0.010	<0.40 <0.10 <0.020	<0.20 <0.050 <0.010	0.112 <0.0050 <0.0010
total Kjeldahl nitrogen sulphate	500	1000	Ci	0.875 347	0.366	3.73 163	1.01 339	2.38 < 0.50

2/23/2013

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life).

H = standard is Hardness dependent

CL = standard is chloride dependent pH = standard is pH dependent

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperatureMCS = Most Conservative Standard

FDA = field duplicate available

FD = field duplicate

 $QA/QC = quality\ assurance/quality\ control$

SCN = sample control number

Italics indicates standard is below detection limit.

Yellow highlight and bold= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

COC = Chain of Custody

* = Samples tested for dissolved metals were unfiltered

Results of Water Analyses - Hydrocarbons [YTG Landfill Monitoring, Faro, Yukon]

	SCN			L1203640-4	L1203640-5	L1203640-6	L1203640-7	L1203640-8
Loca	8	Aquatic Life		FA-MW12-01	FA-MW12-03	FA-MW12-04	FA-MW12-04	FA SURFACE
	/QC CSR - DW	CSR-AW (freshwater)		31-AUG-12	31-AUG-12	FDA 31-AUG-12	FD 31-AUG-12	02-SEP-12
	Jate	(Iresiiwater)	Notes	31-400-12	31-A00-12	31-A00-12	31-A00-12	02-0L1 -12
Monoaromatic Hydrocarbons								
benzene	0.005	4		< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
ethylbenzene	0.0024	2		< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
styrene	*****	0.72		< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
toluene	0.024	0.39		<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
ortho-xylene	****	0.07		< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
meta- & para-xylene				< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
total xylene	0.3			< 0.00075	< 0.00075	< 0.00075	< 0.00075	< 0.00075
VHw_{6-10}	15	15		<0.10	<0.10	<0.10	< 0.10	<0.10
VPHw		1.5		<0.10	<0.10	<0.10	<0.10	<0.10
Polycyclic Aromatic Hydrocarbons								
acenaphthene				<0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
acenaphthylene				< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
acridine		0.0005		< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
anthracene		0.001		<0.000050	< 0.000050	< 0.000050	< 0.000050	<0.000050
benzo(a)anthracene		0.001		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
benzo(a)pyrene	0.00001	0.0001		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
benzo(b)fluoranthene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
benzo(g,h,i)perylene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
benzo(k)fluoranthene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
chrysene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
dibenzo(a,h)anthracene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
fluoranthene		0.002		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
fluorene		0.002		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
indeno(1,2,3-c,d)pyrene		0.12		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
= -		0.01		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
naphthalene		0.003		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
phenanthrene				<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
pyrene quinoline		0.0002 0.034		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Other Hydrocarbons								
EPHw ₁₀₋₁₉	5	5		<0.25	< 0.25	< 0.25	< 0.25	0.27
		3						0.29
EPHw ₁₉₋₃₂				<0.25	<0.25	<0.25	<0.25	
LEPHw HEPHw		0.5		<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	0.27 0.29
Miscellaneous Organics								
methyl tertiary butyl ether (MTBE)								
Chlorinated Hydrocarbons								
bromodichloromethane (BDCM)				<0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010
tribromomethane (bromoform)				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tetrachloromethane (carbon tetrachloride)	0.005	0.13		<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050
monochlorobenzene (chlorobenzene)	0.03	0.013		<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010
dibromochloromethane (DBCM)				< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
chloroethane (ethyl chloride)				<0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010
trichloromethane (chloroform)	0.1	0.02		<0.0010	< 0.0010	<0.0010	< 0.0010	<0.0010
chloromethane (methyl chloride)				<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-dichlorobenzene	0.003			<0.00070	< 0.00070	< 0.00070	< 0.00070	< 0.00070
1,3-dichlorobenzene		1.5		<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,4-dichlorobenzene	0.001	0.26		<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,1-dichloroethane	******			<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,2-dichloroethane	0.005	1		<0.0010	< 0.0010	<0.0010	<0.0010	<0.0010
1,1-dichloroethylene (1,1-dichloroethene)	0.005	1		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	0.014			<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-dichloroethylene (cis) (1,2-dichloroethene (cis))				<0.0010 <0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,2-dichloroethylene (trans) (1,2-dichloroethene (trans)) 1,3-dichloropropene				<0.0010 <0.0014	<0.0010	<0.0010	<0.0010	<0.0010
dichloromethane (methylene chloride)	0.05	0.00		<0.0014	<0.0014	< 0.0014	<0.0014	< 0.0014
-	0.05	0.98						
1,2-dichloropropane (propylene dichloride)				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
cis-1,3-Dichloropropylene				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
trans-1,3-Dichloropropylene				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1,2-tetrachloroethane				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,2,2-tetrachloroethane				<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
tetrachloroethylene (1,1,2,2-tetrachloroethene)	0.03	1.1		<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
1,1,1-trichloroethane				<0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010
1,1,2-trichloroethane				<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010
trichloroethylene (1,1,2-trichloroethene)	0.05	0.2		<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010
trichlorofluromethane (freon 11)				<0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010
vinyl chloride (chloroethene)	0.002			<0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010
Notes:								

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life).

Italics indicates standard is below detection limit.

Yellow highlight and bold= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19}$ = extractable petroleum hydrocarbons, carbon range 10-19

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for EPHw₁₀₋₁₉ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

Golder Associates

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} = volatile hydrocarbons, carbon range 6-10$

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

Table E-3 Results of Quality Control Analyses - Metals [YTG Landfill Monitoring, Faro, Yukon]

SCN	L1203640-4	L1203640-7				
Location	FA-MW12-01	FA-MW12-04	Method		Relative	Difference
QA/QC	FDA	FD	Detection	Mean	Percent	Factor
Date	31-AUG-12	31-AUG-12	Limit		Difference	(DF)
Laboratory Parameters						
pH (laboratory)	7.40	7.39	0.10	7.395	0.14%	NA
Hardness (as CaCO3)	853	844	0.50	848.5	1.06%	NA
total dissolved solids	1140	1140	10	1140	0.00%	NA
Aggregate Organics						
COD	59	167	20	113	95.58%	NA
dissolved organic carbon	8.44	7.85	1.0	8.145	7.24%	NA
Dissolved Metals						
aluminum	<0.010	<0.010	0.010	NC	NC	NA
antimony	0.00059	0.00059	0.00050	NC	NC	NA
arsenic	0.00604	0.00629	0.00010	0.006165	4.06%	NA
barium	0.16200	0.166	0.020	0.164	2.44%	NA
beryllium	< 0.0050	<0.0050	0.0050	NC	NC	NA
bismuth	<0.20	<0.20	0.20	NC	NC	NA
boron	<0.10	<0.10	0.10	NC	NC	NA
cadmium	< 0.00020	<0.00020	0.00020	NC	NC	NA
calcium	164	161	0.10	162.5	1.85%	NA
chromium	<0.0020	<0.0020	0.0020	NC	NC	NA
cobalt	< 0.010	< 0.010	0.010	NC	NC	NA
copper	<0.0010	<0.0010	0.0010	NC	NC	NA
iron	5.72	5.99	0.030	5.855	4.61%	NA NA
lead	<0.00050	<0.00050	0.00050	NC	4.01% NC	NA NA
lithium	0.011	0.011	0.010	NC NC	NC NC	NA NA
		107				
magnesium	108	0.477	0.10	107.5	0.93%	NA
manganese	0.474		0.0020	0.4755	0.63%	NA
mercury	<0.00020	<0.00020	0.00020	NC NG	NC	NA
molybdenum	<0.030	<0.030	0.030	NC	NC	NA
nickel	<0.050	<0.050	0.050	NC	NC	NA
phosphorus	<0.30	<0.30	0.30	NC	NC	NA
potassium	4.46	4.52	0.10	4.49	1.34%	NA
selenium	<0.0010	<0.0010	0.0010	NC	NC	NA
silicon	6.78	6.72	0.050	6.75	0.89%	NA
silver	<0.010	<0.010	0.010	NC	NC	NA
sodium	31.4	32.3	2.0	31.85	2.83%	NA
strontium	0.803	0.818	0.0050	0.8105	1.85%	NA
thallium	< 0.20	< 0.20	0.20	NC	NC	NA
tin	< 0.030	<0.030	0.030	NC	NC	NA
titanium	<0.010	<0.010	0.010	NC	NC	NA
uranium	0.0135	0.0138	0.00010	0.01365	2.20%	NA
vanadium	< 0.030	<0.030	0.030	NC	NC	NA
zinc	<0.050	<0.050	0.050	NC	NC	NA
Other Inorganics			6.0		0.50	
bicarbonate (CaCO3)	505	523	2.0	514	3.50%	NA
carbonate (CaCO3)	<1.0	<1.0	2.0	NC	NC	NA
hydroxide (CaCO3)	<1.0	<1.0	2.0	NC	NC	NA
total alkalinity (CaCO3)	505	523	2.0	514	3.50%	NA
ammonia	0.370	0.387	0.0050	0.3785	4.49%	NA
chloride	94.9	99.5	5.0	97.2	4.73%	NA
fluoride	<0.20	<0.20	0.20	NC	NC	NA
nitrate (as N)	< 0.050	<0.050	0.050	NC	NC	NA
nitrite (as N)	<0.010	<0.010	0.010	NC	NC	NA
total Kjeldahl nitrogen	0.875	1.01	0.25	0.9425	NA	0.07
sulphate	347	339	5.0	343	2.33%	NA

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target is less than 2.

NC = Not Calculated

NA = not applicable

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

BOLD font indicates the parameter analysed exceeds Golder's internal QA/QC targets.

Table E-4 Results of Quality Control Analyses - Hydrocarbons [YTG Landfill Monitoring, Faro, Yukon]

SCN	L1203640-4	L1203640-7	1			
Location	FA-MW12-01	FA-MW12-04	Method		Relative	Difference
QA/QC	FDA	FD	Detection	Mean	Percent	Factor
Date	31-AUG-12	31-AUG-12	Limit		Difference	(DF)
Management Walana alama						
Monoaromatic Hydrocarbons benzene	<0.00050	<0.00050	0.00050	NC	NC	NA
ethylbenzene	<0.00050	<0.00050	0.00050	NC NC	NC	NA NA
styrene	< 0.00050	< 0.00050	0.00050	NC	NC	NA
toluene	< 0.00050	< 0.00050	0.00050	NC	NC	NA
ortho-xylene	< 0.00050	< 0.00050	0.00050	NC	NC	NA
meta- & para-xylene	<0.00050	< 0.00050	0.00050	NC	NC	NA
total xylene	<0.00075	<0.00075	0.00075	NC	NC	NA
VHw ₆₋₁₀	<0.10	<0.10	0.10	NC	NC	NA
VPHw	<0.10	<0.10	0.10	NC	NC	NA
Polycyclic Aromatic Hydrocarbons						
acenaphthene	< 0.000050	< 0.000050	0.000050	NC	NC	NA
acenaphthylene	< 0.000050	< 0.000050	0.000050	NC	NC	NA
acridine	< 0.000050	< 0.000050	0.000050	NC	NC	NA
anthracene	< 0.000050	< 0.000050	0.000050	NC	NC	NA
benzo(a)anthracene	< 0.000050	< 0.000050	0.000050	NC	NC	NA
benzo(a)pyrene	<0.000010	<0.000010	0.000010	NC	NC	NA
benzo(b)fluoranthene	<0.000050	<0.000050	0.000050	NC	NC	NA
benzo(g,h,i)perylene	<0.000050	<0.000050	0.000050	NC	NC	NA
benzo(k)fluoranthene	<0.000050	<0.000050	0.000050	NC	NC	NA
chrysene	<0.000050	<0.000050	0.000050	NC	NC	NA
dibenzo(a,h)anthracene	<0.000050	<0.000050	0.000050	NC	NC	NA
fluoranthene	<0.000050	<0.000050	0.000050	NC	NC	NA
fluorene	<0.000050	<0.000050	0.000050	NC	NC	NA
indeno(1,2,3-c,d)pyrene	<0.000050	<0.000050	0.000050	NC	NC	NA
naphthalene	<0.000050	<0.000050	0.000050	NC	NC	NA
phenanthrene	<0.000050	<0.000050	0.000050	NC	NC	NA
pyrene	<0.000050	<0.000050 <0.000050	0.000050	NC NC	NC NC	NA NA
quinoline	<0.000050	<0.000050	0.00020	NC	NC	NA
Other Hydrocarbons						
EPHw ₁₀₋₁₉	<0.25	< 0.25	0.25	NC	NC	NA
EPHw ₁₉₋₃₂	< 0.25	< 0.25	0.25	NC	NC	NA
LEPHw	<0.25	<0.25	0.25	NC	NC	NA
HEPHw	<0.25	<0.25	0.25	NC	NC	NA
Miscellaneous Organics methyl tertiary butyl ether (MTBE)			0.00050	NC	NC	NA
methyr ternary butyr etner (WTBE)			0.00030	NC	NC	INA
Chlorinated Hydrocarbons						
bromodichloromethane (BDCM)	<0.0010	< 0.0010	0.0010	NC	NC	NA
tribromomethane (bromoform)	< 0.0010	<0.0010	0.0010	NC	NC	NA
tetrachloromethane (carbon tetrachloride)	<0.00050	< 0.00050	0.00050	NC	NC	NA
monochlorobenzene (chlorobenzene)	<0.0010	<0.0010	0.0010	NC	NC	NA
dibromochloromethane (DBCM)	<0.0010	<0.0010	0.0010	NC	NC	NA
chloroethane (ethyl chloride)	<0.0010	<0.0010	0.0010	NC NC	NC	NA
trichloromethane (chloroform)	<0.0010	<0.0010	0.0010	NC NC	NC NC	NA
chloromethane (methyl chloride)	<0.0050 <0.00070	<0.0050 <0.00070	0.0050	NC NC	NC NC	NA NA
1,2-dichlorobenzene 1,3-dichlorobenzene	<0.00070 <0.0010	<0.00070 <0.0010	0.00070	NC NC	NC NC	NA NA
1,3-dichlorobenzene 1,4-dichlorobenzene	<0.0010 <0.0010	<0.0010 <0.0010	0.0010 0.0010	NC NC	NC NC	NA NA
1,1-dichloroethane	<0.0010	<0.0010	0.0010	NC NC	NC NC	NA NA
1,2-dichloroethane	<0.0010	<0.0010	0.0010	NC NC	NC NC	NA NA
1,1-dichloroethylene (1,1-dichloroethene)	<0.0010	<0.0010	0.0010	NC NC	NC NC	NA NA
1,2-dichloroethylene (cis) (1,2-dichloroethene (cis))	<0.0010	<0.0010	0.0010	NC NC	NC NC	NA NA
1,2-dichloroethylene (trans) (1,2-dichloroethene (trans))	<0.0010	<0.0010	0.0010	NC NC	NC	NA NA
1,3-dichloropropene	< 0.0014	<0.0014	0.0014	NC NC	NC	NA
dichloromethane (methylene chloride)	< 0.0050	< 0.0050	0.0050	NC	NC	NA
1,2-dichloropropane (propylene dichloride)	< 0.0010	<0.0010	0.0010	NC	NC	NA
cis-1,3-Dichloropropylene	< 0.0010	<0.0010	0.0010	NC	NC	NA
trans-1,3-Dichloropropylene	<0.0010	<0.0010	0.0010	NC	NC	NA
1,1,1,2-tetrachloroethane	<0.0010	<0.0010	0.0010	NC	NC	NA
1,1,2,2-tetrachloroethane	<0.0010	<0.0010	0.0010	NC	NC	NA
tetrachloroethylene (1,1,2,2-tetrachloroethene)	<0.0010	<0.0010	0.0010	NC	NC	NA
1,1,1-trichloroethane	<0.0010	<0.0010	0.0010	NC	NC	NA
1,1,2-trichloroethane	<0.0010	<0.0010	0.0010	NC	NC	NA
trichloroethylene (1,1,2-trichloroethene)	<0.0010	<0.0010	0.0010	NC	NC	NA
trichlorofluromethane (freon 11)	<0.0010	<0.0010	0.0010	NC NG	NC	NA
vinyl chloride (chloroethene)	<0.0010	<0.0010	0.0010	NC	NC	NA

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

 $Difference\ Factor\ is\ calculated\ when\ the\ mean\ value\ is\ less\ than\ five\ times\ the\ method\ detection\ limit;\ Golder's\ internal\ QA/QC\ target\ is\ less\ than\ 2.$

NC = Not Calculated

NA = not applicable

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody **BOLD** font indicates the parameter analysed exceeds Golder's internal QA/QC targets.

GOLDER ASSOCIATES LTD.

ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received: 04-SEP-12

Report Date: 17-SEP-12 12:37 (MT)

Version: FINAL

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L1203640

Project P.O. #: NOT SUBMITTED

Job Reference: 11-1436-0073/1100, 2500, 2800

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1203640 CONTD....

PAGE 2 of 17 17-SEP-12 12:37 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-1 Ground Water 31-AUG-12 10:50 RR NUMBER 1	L1203640-2 Ground Water 31-AUG-12 13:20 RR NUMBER 2	L1203640-3 surface water 01-SEP-12 11:10 RR SURFACE	L1203640-4 Ground Water 31-AUG-12 15:30 FA-MW12-01	L1203640-5 Ground Water 31-AUG-12 17:40 FA-MW12-03
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	3910	3320	739	853	731
	рН (рН)	7.36	7.38	8.42	7.40	7.27
	Total Dissolved Solids (mg/L)	5590	4580	1330	1140	993
	Turbidity (NTU)	319	12500	198	393	169
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	496	321	115	505	540
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	496	321	115	505	540
	Ammonia, Total (as N) (mg/L)	0.169	0.484	0.0354	0.370	0.205
	Chloride (CI) (mg/L)	62	54	30.7	94.9	<5.0
	Fluoride (F) (mg/L)	<0.40	<0.40 DLA	<0.20	<0.20	<0.20
	Nitrate (as N) (mg/L)	1.02	1.27	<0.050	<0.050	<0.050
	Nitrite (as N) (mg/L)	<0.020	<0.020	<0.010	<0.010	<0.010
	Total Kjeldahl Nitrogen (mg/L)	1.10	7.23	2.02	0.875	0.366
	Sulfate (SO4) (mg/L)	3370	2830	804	347	306
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	19.0	14.8	26.1	8.44	3.66
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	LAB	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	<0.050	<0.050	<0.010	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	<0.0025	<0.0025	0.00077	0.00059	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00091	0.00070	0.00587	0.00604	0.00373
	Barium (Ba)-Dissolved (mg/L)	<0.10	<0.10 DLA	0.044	0.162	0.108
	Beryllium (Be)-Dissolved (mg/L)	<0.010	<0.010	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.40	<0.40 DLA	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.50	<0.50	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.0010	<0.0010	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	459	445	96.3	164	156
	Chromium (Cr)-Dissolved (mg/L)	<0.010	<0.010	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.020	<0.020	<0.010	<0.010	0.016
	Copper (Cu)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.060	<0.060	<0.030	5.72	10.5
	Lead (Pb)-Dissolved (mg/L)	<0.0025	<0.0025	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	0.029	0.024	0.012	0.011	0.011
	Magnesium (Mg)-Dissolved (mg/L)	672	537	121	108	83.0
	Manganese (Mn)-Dissolved (mg/L)	2.00	3.52	0.0053	0.474	3.89
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.060	<0.060	<0.030	<0.030	<0.030

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 3 of 17

PAGE 3 of 17 17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-6 Ground Water 31-AUG-12 18:15 FA-MW12-04	L1203640-7 Ground Water 31-AUG-12 15:30 FA-MW12-05	L1203640-8 Surface Water 02-SEP-12 12:00 FA SURFACE	L1203640-9 Ground Water 01-SEP-12 15:20 DC NUMBER 1	L1203640-10 Ground Water 01-SEP-12 16:20 DC NUMBER 2
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	740	844	54.5	489	600
	pH (pH)	6.96	7.39	7.12	7.22	7.82
	Total Dissolved Solids (mg/L)	1420	1140	131	627	828
	Turbidity (NTU)	1290	539	16.3	3240	13900
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	383	523	43.4	488	499
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<1.0	<1.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<1.0	<1.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	383	523	43.4	488	499
	Ammonia, Total (as N) (mg/L)	1.49	0.387	0.0138	0.128	0.180
	Chloride (CI) (mg/L)	349	99.5	14.3	18.0	61.9
	Fluoride (F) (mg/L)	<0.40	<0.20	0.112	<0.10 DLA	<0.20 DLA
	Nitrate (as N) (mg/L)	<0.10	<0.050	<0.0050	2.12	0.921
	Nitrite (as N) (mg/L)	<0.020	<0.010	<0.0010	<0.0050	0.012
	Total Kjeldahl Nitrogen (mg/L)	3.73	1.01	2.38	3.57	7.13
	Sulfate (SO4) (mg/L)	163	339	<0.50	79.3	129
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	11.9	7.85	22.0	3.40	2.20
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	LAB	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	<0.010	<0.010	0.012	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	0.00059	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.0140	0.00629	0.00060	0.00177	0.00095
	Barium (Ba)-Dissolved (mg/L)	1.12	0.166	0.050	0.118	0.117
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	201	161	12.5	118	113
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	0.012	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	0.0012	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	48.3	5.99	0.032	0.392	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	0.011	<0.010	<0.010	0.011
	Magnesium (Mg)-Dissolved (mg/L)	58.1	107	5.66	47.2	77.4
	Manganese (Mn)-Dissolved (mg/L)	4.24	0.477	<0.0020	0.0911	0.0875
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 4 of 17

17-SEP-12 12:37 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-11 Ground Water 01-SEP-12 17:15 DC NUMBER 3	L1203640-12 Surface Water 02-SEP-12 14:50 DC SURFACE		
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	437	120		
	pH (pH)	7.82	8.23		
	Total Dissolved Solids (mg/L)	510	157		
	Turbidity (NTU)	2170	2.89		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	445	111		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	445	111		
	Ammonia, Total (as N) (mg/L)	0.0409 DLA	<0.0050		
	Chloride (CI) (mg/L)	<2.5 DLA	<0.50		
	Fluoride (F) (mg/L)	<0.10	0.047		
	Nitrate (as N) (mg/L)	0.089 DLA	0.0567		
	Nitrite (as N) (mg/L)	<0.0050	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.83	0.113		
	Sulfate (SO4) (mg/L)	65.7	26.0		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.25	2.39		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (Al)-Dissolved (mg/L)	<0.010	<0.010		
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050		
	Arsenic (As)-Dissolved (mg/L)	0.00402	0.00033		
	Barium (Ba)-Dissolved (mg/L)	0.107	0.068		
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20		
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10		
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020		
	Calcium (Ca)-Dissolved (mg/L)	92.0	32.6		
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020		
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010		
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010		
	Iron (Fe)-Dissolved (mg/L)	0.121	<0.030		
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050		
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010		
	Magnesium (Mg)-Dissolved (mg/L)	50.4	9.28		
	Manganese (Mn)-Dissolved (mg/L)	0.175	<0.0020		
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 5 of 17

Version: FINAL

17-SEP-12 12:37 (MT)

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-1 Ground Water 31-AUG-12 10:50 RR NUMBER 1	L1203640-2 Ground Water 31-AUG-12 13:20 RR NUMBER 2	L1203640-3 surface water 01-SEP-12 11:10 RR SURFACE	L1203640-4 Ground Water 31-AUG-12 15:30 FA-MW12-01	L1203640-5 Ground Water 31-AUG-12 17:40 FA-MW12-03
Grouping	Analyte					
WATER						
Dissolved Metals	Nickel (Ni)-Dissolved (mg/L)	OLA <0.10	OLA <0.10	<0.050	<0.050	<0.050
	Phosphorus (P)-Dissolved (mg/L)	DLA <0.60	<0.60	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	8.84	8.16	14.4	4.46	3.81
	Selenium (Se)-Dissolved (mg/L)	0.0060	<0.0050	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	7.67	5.96	3.36	6.78	8.82
	Silver (Ag)-Dissolved (mg/L)	<0.020	<0.020	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	44.3	68.9	84.7	31.4	7.8
	Strontium (Sr)-Dissolved (mg/L)	1.34	1.62	0.571	0.803	0.452
	Thallium (TI)-Dissolved (mg/L)	<0.40	<0.40 DLA	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.060	<0.060	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.020	<0.020	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.0709	0.0346	0.00042	0.0135	0.0289
	Vanadium (V)-Dissolved (mg/L)	<0.060	<0.060	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.25	<0.25	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	75	270	91	59	27
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD....

Version: FINAL

PAGE 6 of 17 17-SEP-12 12:37 (MT)

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-6 Ground Water 31-AUG-12 18:15 FA-MW12-04	L1203640-7 Ground Water 31-AUG-12 15:30 FA-MW12-05	L1203640-8 Surface Water 02-SEP-12 12:00 FA SURFACE	L1203640-9 Ground Water 01-SEP-12 15:20 DC NUMBER 1	L1203640-10 Ground Water 01-SEP-12 16:20 DC NUMBER 2
Grouping	Analyte					
WATER						
Dissolved Metals	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	11.6	4.52	4.38	3.30	4.53
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	6.06	6.72	0.440	6.93	6.37
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	97.7	32.3	3.9	16.2	30.4
	Strontium (Sr)-Dissolved (mg/L)	0.789	0.818	0.0598	0.838	1.08
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00711	0.0138	<0.00010	0.00907	0.0185
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	167	64	86	153	196
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 7 of 17

ALS ENVIRONMENTAL ANALYTICAL REPORT 17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-11 Ground Water 01-SEP-12 17:15 DC NUMBER 3	L1203640-12 Surface Water 02-SEP-12 14:50 DC SURFACE		
Grouping	Analyte				
WATER					
Dissolved Metals	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050		
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30		
	Potassium (K)-Dissolved (mg/L)	2.99	0.80		
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010		
	Silicon (Si)-Dissolved (mg/L)	6.52	3.80		
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010		
	Sodium (Na)-Dissolved (mg/L)	8.4	<2.0		
	Strontium (Sr)-Dissolved (mg/L)	0.833	0.139		
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20		
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030		
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.0131	0.00161		
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030		
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050		
Aggregate Organics	COD (mg/L)	<20	<20		
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050		
	Bromodichloromethane (mg/L)	<0.0010	<0.0010		
	Bromoform (mg/L)	<0.0010	<0.0010		
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050		
	Chlorobenzene (mg/L)	<0.0010	<0.0010		
	Dibromochloromethane (mg/L)	<0.0010	<0.0010		
	Chloroethane (mg/L)	<0.0010	<0.0010		
	Chloroform (mg/L)	<0.0010	<0.0010		
	Chloromethane (mg/L)	<0.0050	<0.0050		
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070		
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010		
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010		
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010		
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010		
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010		
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014		
	Dichloromethane (mg/L)	<0.0050	<0.0050		
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010		
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD....

PAGE 8 of 17 17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-1 Ground Water 31-AUG-12 10:50 RR NUMBER 1	L1203640-2 Ground Water 31-AUG-12 13:20 RR NUMBER 2	L1203640-3 surface water 01-SEP-12 11:10 RR SURFACE	L1203640-4 Ground Water 31-AUG-12 15:30 FA-MW12-01	L1203640-5 Ground Water 31-AUG-12 17:40 FA-MW12-03
Grouping	Analyte					
WATER						
Volatile Organic Compounds	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	90.0	87.2	87.9	86.9	86.5
	Surrogate: 1,4-Difluorobenzene (SS) (%)	92.0	92.0	91.4	92.1	93.3
Hydrocarbons	EPH10-19 (mg/L)	0.35	0.49	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	0.32	0.28	<0.25	<0.25	<0.25
	LEPH (mg/L)	0.35	0.49	<0.25	<0.25	<0.25
	HEPH (mg/L)	0.32	0.28	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	118.2	80.1	94.0	85.8	85.3
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
. 1941 0041 50113	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000030	<0.000030	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD....

PAGE 9 of 17 17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-6 Ground Water 31-AUG-12 18:15 FA-MW12-04	L1203640-7 Ground Water 31-AUG-12 15:30 FA-MW12-05	L1203640-8 Surface Water 02-SEP-12 12:00 FA SURFACE	L1203640-9 Ground Water 01-SEP-12 15:20 DC NUMBER 1	L1203640-10 Ground Water 01-SEP-12 16:20 DC NUMBER 2
Grouping	Analyte					
WATER						
Volatile Organic Compounds	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	0.0014
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	87.9	86.3	86.5	84.5	84.9
	Surrogate: 1,4-Difluorobenzene (SS) (%)	91.5	92.2	91.8	91.5	91.7
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	0.27	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	0.29	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	0.27	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	0.29	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	89.1	86.6	101.7	76.6	78.5
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
, a	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000030	<0.000030	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 10 of 17

17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-11 Ground Water 01-SEP-12 17:15 DC NUMBER 3	L1203640-12 Surface Water 02-SEP-12 14:50 DC SURFACE		
Grouping	Analyte				
WATER					
Volatile Organic Compounds	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010		
	Ethylbenzene (mg/L)	<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050		
	Styrene (mg/L)	<0.00050	<0.00050		
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010		
	Toluene (mg/L)	<0.00050	<0.00050		
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010		
	Trichloroethylene (mg/L)	<0.0010	<0.0010		
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010		
	Vinyl Chloride (mg/L)	<0.0010	<0.0010		
	ortho-Xylene (mg/L)	<0.00050	<0.00050		
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050		
	Xylenes (mg/L)	<0.00075	<0.00075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	84.8	86.3		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	90.8	91.0		
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25		
	EPH19-32 (mg/L)	<0.25	<0.25		
	LEPH (mg/L)	<0.25	<0.25		
	HEPH (mg/L)	<0.25	<0.25		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10		
	VPH (C6-C10) (mg/L)	<0.10	<0.10		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	80.0	91.4		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050		
	Acenaphthylene (mg/L)	<0.000050	<0.000050		
	Acridine (mg/L)	<0.000050	<0.000050		
	Anthracene (mg/L)	<0.000050	<0.000050		
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050		
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010		
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050		
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050		
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050		
	Chrysene (mg/L)	<0.000050	<0.000050		
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD....

PAGE 11 of 17 17-SEP-12 12:37 (MT) Version: FINAL

Aromatic Hydrocarbons Fluorene (mg/L)		Sample ID Description Sampled Date Sampled Time Client ID	L1203640-1 Ground Water 31-AUG-12 10:50 RR NUMBER 1	L1203640-2 Ground Water 31-AUG-12 13:20 RR NUMBER 2	L1203640-3 surface water 01-SEP-12 11:10 RR SURFACE	L1203640-4 Ground Water 31-AUG-12 15:30 FA-MW12-01	L1203640-5 Ground Water 31-AUG-12 17:40 FA-MW12-03
Polycyclic Aromatic Hydrocarbons	Grouping	Analyte					
Aromatic Hydrocarbons Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Pyrene (mg/L) Quinoline (mg/L) Surrogate: Acenaphthene d10 (%) Surrogate: Acridine d9 (%) Surrogate: Naphthalene d8 (%) Fluorene (mg/L)	WATER						
Indeno(1,2,3-c,d)pyrene (mg/L)	Aromatic	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Naphthalene (mg/L) <0.000050		Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Phenanthrene (mg/L) Pyrene (mg/L) Quinoline (mg/L) Surrogate: Acenaphthene d10 (%) Surrogate: Acridine d9 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Residues and states and states and states are states as a state and states are states as a state and states are stat		Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Pyrene (mg/L) <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050		Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Quinoline (mg/L) <0.000050		Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Surrogate: Acenaphthene d10 (%) 86.8 86.3 85.9 82.8 88.0 Surrogate: Acridine d9 (%) 87.8 86.6 88.4 85.1 89.1 Surrogate: Chrysene d12 (%) 80.5 80.1 84.1 81.3 87.0 Surrogate: Naphthalene d8 (%) 84.2 90.9 82.0 80.1 86.4		Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Surrogate: Acenaphthene d10 (%) 86.8 86.3 85.9 82.8 88.0 Surrogate: Acridine d9 (%) 87.8 86.6 88.4 85.1 89.1 Surrogate: Chrysene d12 (%) 80.5 80.1 84.1 81.3 87.0 Surrogate: Naphthalene d8 (%) 84.2 90.9 82.0 80.1 86.4		Quinoline (mg/L)					<0.000050
Surrogate: Acridine d9 (%) 87.8 86.6 88.4 85.1 89.1 Surrogate: Chrysene d12 (%) 80.5 80.1 84.1 81.3 87.0 Surrogate: Naphthalene d8 (%) 84.2 90.9 82.0 80.1 86.4		Surrogate: Acenaphthene d10 (%)					
Surrogate: Naphthalene d8 (%) 84.2 90.9 82.0 80.1 86.4		Surrogate: Acridine d9 (%)	87.8	86.6	88.4	85.1	89.1
3		Surrogate: Chrysene d12 (%)	80.5	80.1	84.1	81.3	87.0
Surrogate: Phenanthrene d10 (%) 89.3 88.8 90.4 87.0 92.8		Surrogate: Naphthalene d8 (%)	84.2	90.9	82.0	80.1	86.4
		Surrogate: Phenanthrene d10 (%)	89.3	88.8	90.4	87.0	92.8

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD....

PAGE 12 of 17 17-SEP-12 12:37 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-6 Ground Water 31-AUG-12 18:15 FA-MW12-04	L1203640-7 Ground Water 31-AUG-12 15:30 FA-MW12-05	L1203640-8 Surface Water 02-SEP-12 12:00 FA SURFACE	L1203640-9 Ground Water 01-SEP-12 15:20 DC NUMBER 1	L1203640-10 Ground Water 01-SEP-12 16:20 DC NUMBER 2
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	88.1	86.4	89.8	92.7	88.0
	Surrogate: Acridine d9 (%)	91.9	90.2	91.2	95.1	90.7
	Surrogate: Chrysene d12 (%)	84.0	84.7	81.7	86.8	85.3
	Surrogate: Naphthalene d8 (%)	90.9	85.4	85.8	91.2	86.3
	Surrogate: Phenanthrene d10 (%)	91.5	91.8	91.8	97.3	93.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1203640 CONTD.... PAGE 13 of 17

17-SEP-12 12:37 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1203640-11 Ground Water 01-SEP-12 17:15 DC NUMBER 3	L1203640-12 Surface Water 02-SEP-12 14:50 DC SURFACE		
Grouping	Analyte				
WATER					
Polycyclic Aromatic Hydrocarbons	Fluoranthene (mg/L)	<0.000050	<0.000050		
	Fluorene (mg/L)	<0.000050	<0.000050		
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050		
	Naphthalene (mg/L)	<0.000050	<0.000050		
	Phenanthrene (mg/L)	<0.000050	<0.000050		
	Pyrene (mg/L)	<0.000050	<0.000050		
	Quinoline (mg/L)	<0.000050	<0.000050		
	Surrogate: Acenaphthene d10 (%)	96.3	89.3		
	Surrogate: Acridine d9 (%)	98.2	91.5		
	Surrogate: Chrysene d12 (%)	91.9	85.0		
	Surrogate: Naphthalene d8 (%)	93.6	87.0		
	Surrogate: Phenanthrene d10 (%)	100.8	94.5		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
uplicate	Aluminum (AI)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Antimony (Sb)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Cadmium (Cd)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Chromium (Cr)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Lead (Pb)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Selenium (Se)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Zinc (Zn)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Aluminum (AI)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Antimony (Sb)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Boron (B)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Chromium (Cr)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Copper (Cu)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Lead (Pb)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Zinc (Zn)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Fluoride (F)	DLA	L1203640-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
iplicate	Nitrite (as N)	DLA	L1203640-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
iplicate	Beryllium (Be)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Bismuth (Bi)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
iplicate	Cobalt (Co)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Iron (Fe)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
iplicate	Molybdenum (Mo)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
iplicate	Nickel (Ni)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Phosphorus (P)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Silver (Ag)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
plicate	Thallium (TI)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Tin (Sn)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
plicate	Titanium (Ti)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Vanadium (V)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
ıplicate	Cadmium (Cd)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Chromium (Cr)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Lead (Pb)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
uplicate	Zinc (Zn)-Dissolved	DLA	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Sodium (Na)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Barium (Ba)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Boron (B)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Calcium (Ca)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Potassium (K)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Barium (Ba)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Calcium (Ca)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Barium (Ba)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Boron (B)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
•	()		
atrix Spike	Calcium (Ca)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Manganese (Mn)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Potassium (K)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Arsenic (As)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Boron (B)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Calcium (Ca)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9
atrix Spike	Manganese (Mn)-Dissolved	MS-B	L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9

L1203640 CONTD.... PAGE 15 of 17 17-SEP-12 12:37 (MT) Version: FINΔI

Parameter Qualifier Applies to Sample Number(s) Matrix Spike Uranium (U)-Dissolved MS-B L1203640-1, -10, -11, -12, -2, -4, -5, -6, -7, -9 **Qualifiers for Individual Parameters Listed:** Qualifier Description DLA Detection Limit Adjusted For required dilution MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
AI K-PCT-VA	Water	Alkalinity by Auto, Titration	APHA 2320 "Alkalinity"

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-PCT-VA Alkalinity by Auto. Titration APHA 2320 Alkalinity Water

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ALK-SCR-VA Water Alkalinity by colour or titration EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

Chloride by Ion Chromatography ANIONS-CL-IC-WR

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-F-IC-WR Water Fluoride by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

Nitrite Nitrogen by Ion Chromatography ANIONS-NO2-IC-WR Water

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-NO3-IC-WR Water Nitrate Nitrogen by Ion Chromatography EPA 300.1

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR Sulphate by Ion Chromatography EPA 300.1

EPH in Water by GCFID

Hardness

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

APHA 5310 TOTAL ORGANIC CARBON (TOC) **CARBONS-DOC-VA** Water Dissolved organic carbon by combustion

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

Chemical Oxygen Demand by Colorimetric APHA 5220 D. CHEMICAL OXYGEN DEMAND

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and

Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH). Water

Water

EPH-SF-FID-VA

HARDNESS-CALC-VA

APHA 2340B

BCMOE EPH GCFID

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-CVAFS-VA Water Dissolved Mercury in Water by CVAFS EPA SW-846 3005A & EPA 245.7

L1203640 CONTD....

PAGE 16 of 17

17-SEP-12 12:37 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA

Water

LEPHs and HEPHs

BC MOE LABORATORY MANUAL (2005)

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

MET-DIS-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA

Water

Dissolved Metals in Water by ICPMS(Low)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-F-VA

Water

Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PAH-SF-MS-VA

Water

PAH in Water by GCMS

EPA 3510, 8270

The entire water sample is extracted with dichloromethane, prior to analysis by gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PAH-SURR-MS-VA

Water

PAH Surrogates for Waters

EPA 3510, 8270

Analysed as per the corresponding PAH test method. Known quantities of surrogate compounds are added prior to analysis to each sample to demonstrate analytical accuracy.

PH-MAN-WR

Water

pH by Meter

APHA 4500-H (B)

"This analysis is carried out using procedures adapted from APHA Method 4500-H ""pH Value"". The pH is determined in the laboratory using a pH electrode."

TDS-VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-F-VA

Water

TKN in Water by Fluorescence

APHA 4500-NORG D.

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

TURBIDITY-WR

Water

Turbidity by Nephelometer

APHA 2130

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

VH-HSFID-VA

Water

VH in Water by Headspace GCFID

B.C. MIN. OF ENV. LAB. MAN. (2009)

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.

VH-SURR-FID-VA

Water

VH Surrogates for Waters

B.C. MIN. OF ENV. LAB. MAN. (2009)

VOC-HSMS-VA

Water

VOCs in water by Headspace GCMS

EPA8260B, 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

VOC7-HSMS-VA

Water

BTEX/MTBE/Styrene by Headspace GCMS

FPA8260B, 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

VOC7/VOC-SURR-MS-VA

Water

VOC7 and/or VOC Surrogates for Waters

EPA8260B, 5021

VPH-CALC-VA

Water

VPH is VH minus select aromatics

BC MOE LABORATORY MANUAL (2005)

L1203640 CONTD....
PAGE 17 of 17
17-SEP-12 12:37 (MT)
Version: FINAL

These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10).

XYLENES-CALC-VA

Water

Sum of Xylene Isomer Concentrations

CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WR	ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1203640 Report Date: 17-SEP-12 Page 1 of 25

Client: GOLDER ASSOCIATES LTD.

201B, 170 Titanium Way Whitehorse YT Y1A 0G1

Contact: Andrea Badger

Test Matrix	Reference Result	Qualifier Units	RPD Limit	Analyzed
ALK-PCT-VA Water				
Batch R2431168				
WG1540768-10 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 105.0	%	85-115	06-SEP-12
WG1540768-11 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 105.0	%	85-115	06-SEP-12
WG1540768-12 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 104.7	%	85-115	06-SEP-12
WG1540768-13 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 104.9	%	85-115	06-SEP-12
WG1540768-14 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 102.3	%	85-115	06-SEP-12
WG1540768-15 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 105.5	%	85-115	06-SEP-12
WG1540768-16 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 105.7	%	85-115	06-SEP-12
WG1540768-9 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-CONTROL 104.8	%	85-115	06-SEP-12
WG1540768-1 MB Alkalinity, Total (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Carbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3)	<1.0	mg/L	1	06-SEP-12
WG1540768-2 MB Alkalinity, Total (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Carbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3)	<1.0	mg/L	1	06-SEP-12
WG1540768-3 MB Alkalinity, Total (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Carbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3)	<1.0	mg/L	1	06-SEP-12
WG1540768-4 MB Alkalinity, Total (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Carbonate (as CaCO3)	<1.0	mg/L	1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3)	<1.0	mg/L	1	06-SEP-12
WG1540768-5 MB Alkalinity, Total (as CaCO3)	<1.0	mg/L	1	06-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 2 of 25

Test Matrix Reference Res ALK-PCT-VA Water Batch R2431168 WG1540768-5 MB Alkalinity, Bicarbonate (as CaCO3) <1.0 Alkalinity, Carbonate (as CaCO3) <1.0 Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0 Alkalinity, Bicarbonate (as CaCO3) <1.0 Alkalinity, Total (as CaCO3) <1.0 Alkalinity, Bicarbonate (as CaCO3) <1.0		mg/L mg/L mg/L mg/L mg/L	RPD	1 1 1 1	06-SEP-12 06-SEP-12 06-SEP-12
Batch R2431168 WG1540768-5 MB Alkalinity, Bicarbonate (as CaCO3) <1.0 Alkalinity, Carbonate (as CaCO3) <1.0 Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0	0	mg/L mg/L mg/L		1	06-SEP-12 06-SEP-12
WG1540768-5 MB Alkalinity, Bicarbonate (as CaCO3) <1.0 Alkalinity, Carbonate (as CaCO3) <1.0 Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0	0	mg/L mg/L mg/L		1	06-SEP-12 06-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.0 Alkalinity, Carbonate (as CaCO3) <1.0 Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0	0	mg/L mg/L mg/L		1	06-SEP-12 06-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.0 Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0	0	mg/L mg/L mg/L		1	06-SEP-12 06-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.0 WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0))	mg/L		1	06-SEP-12
WG1540768-6 MB Alkalinity, Total (as CaCO3) <1.0))	mg/L			
Alkalinity, Total (as CaCO3) <1.0	0	•		1	
	0	•		1	
Alkalifility, Dicarbonate (as CaCO3)		mg/L			06-SEP-12
Allediaite Carlemate (as CaCCO)	J	/I		1	06-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.0	9	mg/L		1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.0	J	mg/L		1	06-SEP-12
WG1540768-7 MB Alkalinity, Total (as CaCO3) <1.0)	mg/L		1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.		mg/L		1	06-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.		mg/L		1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.		mg/L		1	06-SEP-12
WG1540768-8 MB	,	mg/L		'	00-3LF-12
Alkalinity, Total (as CaCO3) <1.	0	mg/L		1	06-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.0	0	mg/L		1	06-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.0	0	mg/L		1	06-SEP-12
Batch R2434619		•			
WG1543738-2 MB					
Alkalinity, Total (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
WG1543738-3 MB					
Alkalinity, Total (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.6	0	mg/L		1	11-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.6	0	mg/L		1	11-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.6	0	mg/L		1	11-SEP-12
WG1543738-4 MB					
Alkalinity, Total (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Bicarbonate (as CaCO3) <1.6	0	mg/L		1	11-SEP-12
Alkalinity, Carbonate (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
Alkalinity, Hydroxide (as CaCO3) <1.0	0	mg/L		1	11-SEP-12
WG1543738-5 MB Alkalinity, Total (as CaCO3) <1.0	0	mg/L		1	11-SEP-12

Workorder: L1203640

Report Date: 17-SEP-12

Page 3 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch R2434619 WG1543738-5 MB								
Alkalinity, Bicarbonate (a			<1.0		mg/L		1	11-SEP-12
Alkalinity, Carbonate (as	,		<1.0		mg/L		1	11-SEP-12
Alkalinity, Hydroxide (as	CaCO3)		<1.0		mg/L		1	11-SEP-12
ALK-SCR-VA	Water							
Batch R2430884 WG1540548-2 CRM Alkalinity, Total (as CaC	:03)	VA-ALKL-COI	NTROL 94.8		%		85-115	05-SEP-12
WG1540548-5 CRM Alkalinity, Total (as CaC	O3)	VA-ALKM-CO	NTROL 105.3		%		85-115	05-SEP-12
WG1540548-13 DUP Alkalinity, Total (as CaC	:O3)	L1203640-10 499	499		mg/L	0.1	20	05-SEP-12
WG1540548-1 MB Alkalinity, Total (as CaC	O3)		<2.0		mg/L		2	05-SEP-12
WG1540548-4 MB Alkalinity, Total (as CaC	O3)		<2.0		mg/L		2	05-SEP-12
WG1540548-7 MB Alkalinity, Total (as CaC	O3)		<2.0		mg/L		2	05-SEP-12
ANIONS-CL-IC-WR	Water							
Batch R2434365								
WG1544199-3 DUP Chloride (Cl)		L1203640-1 62	61		mg/L	0.9	20	04-SEP-12
WG1544199-2 LCS Chloride (Cl)			101.2		%		85-115	04-SEP-12
WG1544199-6 LCS Chloride (Cl)			101.4		%		85-115	04-SEP-12
WG1544199-1 MB Chloride (CI)			<0.50		mg/L		0.5	04-SEP-12
WG1544199-5 MB Chloride (CI)			<0.50		mg/L		0.5	04-SEP-12
WG1544199-4 MS Chloride (CI)		L1203640-8	99.5		%		75-125	04-SEP-12
WG1544199-8 MS Chloride (CI)		L1203929-2	101.4		%		75-125	04-SEP-12
ANIONS-F-IC-WR	Water							

Workorder: L1203640 Report Date: 17-SEP-12 Page 4 of 25

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-F-IC-WR		Water		_					
Batch R2	434365								
WG1544199-3 Fluoride (F)	DUP		L1203640-1 <0.40	<0.40	RPD-NA	mg/L	N/A	20	04-SEP-12
WG1544199-2 Fluoride (F)	LCS			90.3		%		85-115	04-SEP-12
WG1544199-6 Fluoride (F)	LCS			93.4		%		85-115	04-SEP-12
WG1544199-1 Fluoride (F)	MB			<0.020		mg/L		0.02	04-SEP-12
WG1544199-5 Fluoride (F)	MB			<0.020		mg/L		0.02	04-SEP-12
WG1544199-4 Fluoride (F)	MS		L1203640-8	97.6		%		75-125	04-SEP-12
WG1544199-8 Fluoride (F)	MS		L1203929-2	86.1		%		75-125	04-SEP-12
ANIONS-NO2-IC-W	'R	Water							
Batch R2	434365								
WG1544199-3 Nitrite (as N)	DUP		L1203640-1 < 0.020	<0.020	RPD-NA	mg/L	N/A	20	04-SEP-12
WG1544199-2 Nitrite (as N)	LCS			100.9		%		85-115	04-SEP-12
WG1544199-6 Nitrite (as N)	LCS			102.3		%		85-115	04-SEP-12
WG1544199-1 Nitrite (as N)	MB			<0.0010		mg/L		0.001	04-SEP-12
WG1544199-5 Nitrite (as N)	MB			<0.0010		mg/L		0.001	04-SEP-12
WG1544199-4 Nitrite (as N)	MS		L1203640-8	102.3		%		75-125	04-SEP-12
WG1544199-8 Nitrite (as N)	MS		L1203929-2	93.5		%		75-125	04-SEP-12
ANIONS-NO3-IC-W	'R	Water							
Batch R2	434365								
WG1544199-3 Nitrate (as N)	DUP		L1203640-1 1.02	1.02		mg/L	0.3	20	04-SEP-12
WG1544199-2 Nitrate (as N)	LCS			102.0		%		85-115	04-SEP-12
WG1544199-6 Nitrate (as N)	LCS			102.5		%		85-115	04-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 5 of 25

				•				.go o o. <u>-</u>
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-NO3-IC-W								
Batch R2 WG1544199-1 Nitrate (as N)	434365 MB		<0.0050		mg/L		0.005	04-SEP-12
WG1544199-5 Nitrate (as N)	МВ		<0.0050		mg/L		0.005	04-SEP-12
WG1544199-4 Nitrate (as N)	MS	L1203640-8	101.4		%		75-125	04-SEP-12
WG1544199-8 Nitrate (as N)	MS	L1203929-2	101.5		%		75-125	04-SEP-12
NIONS-SO4-IC-W	R Water							
Batch R2	434365							
WG1544199-3 Sulfate (SO4)	DUP	L1203640-1 3370	3370		mg/L	0.1	20	04-SEP-12
WG1544199-2 Sulfate (SO4)	LCS		102.6		%		85-115	04-SEP-12
WG1544199-6 Sulfate (SO4)	LCS		102.8		%		85-115	04-SEP-12
WG1544199-1 Sulfate (SO4)	МВ		<0.50		mg/L		0.5	04-SEP-12
WG1544199-5 Sulfate (SO4)	МВ		<0.50		mg/L		0.5	04-SEP-12
WG1544199-4 Sulfate (SO4)	MS	L1203640-8	102.4		%		75-125	04-SEP-12
WG1544199-8 Sulfate (SO4)	MS	L1203929-2	102.6		%		75-125	04-SEP-12
CARBONS-DOC-V	A Water							
Batch R2	431932							
WG1541373-2 Dissolved Organ		VA-DOC-C-C	AFFEINE 94.6		%		80-120	06-SEP-12
WG1541373-4 Dissolved Organ		VA-DOC-C-C	AFFEINE 93.8		%		80-120	06-SEP-12
WG1541373-6 Dissolved Orga		VA-DOC-C-C	AFFEINE 87.0		%		80-120	06-SEP-12
WG1541373-8 Dissolved Organ		VA-DOC-C-C	AFFEINE 89.0		%		80-120	06-SEP-12
WG1541373-9 Dissolved Organ		L1203640-10 2.20	2.02		mg/L	8.5	20	06-SEP-12
WG1541373-1 Dissolved Organ	MB nic Carbon		<0.50		mg/L		0.5	06-SEP-12

Workorder: L1203640

Report Date: 17-SEP-12 Page 6 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-DOC-VA	Water							
Batch R243193	32							
WG1541373-3 MB Dissolved Organic Ca	arbon		<0.50		mg/L		0.5	06-SEP-12
WG1541373-5 MB Dissolved Organic Ca			<0.50		mg/L		0.5	06-SEP-12
WG1541373-7 MB Dissolved Organic Ca	arbon		<0.50		mg/L		0.5	06-SEP-12
WG1541373-11 MS Dissolved Organic Ca	arbon	L1204272-5	91.6		%		70-130	06-SEP-12
Batch R243304	44							
WG1542922-3 DUI Dissolved Organic Ca		L1203640-8 22.0	22.1		mg/L	0.3	20	09-SEP-12
WG1542922-1 MB Dissolved Organic Ca			<0.50		mg/L		0.5	09-SEP-12
COD-COL-VA	Water							
Batch R24309	67							
WG1540889-2 LCS COD	3		103.9		%		85-115	06-SEP-12
WG1540889-6 LCS COD	5		103.3		%		85-115	06-SEP-12
WG1540889-1 MB COD			<20		mg/L		20	06-SEP-12
WG1540889-5 MB COD			<20		mg/L		20	06-SEP-12
WG1540889-4 MS COD		L1203698-2	103.1		%		75-125	06-SEP-12
EPH-SF-FID-VA	Water							
Batch R24308								
WG1541190-1 MB								
EPH10-19			<0.25		mg/L		0.25	10-SEP-12
EPH19-32			<0.25		mg/L		0.25	10-SEP-12
Batch R243284								
WG1541190-3 MB EPH10-19			<0.25		mg/L		0.25	10-SEP-12
EPH19-32			<0.25		mg/L		0.25	10-SEP-12
HG-DIS-CVAFS-VA	Water							

Workorder: L1203640 Report Date: 17-SEP-12 Page 7 of 25

					<u> </u>		ι α	go / 01 20
Test N	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-DIS-CVAFS-VA	Water							
Batch R2431074								
WG1540537-1 MB			0.000050		//		0.00005	
Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	06-SEP-12
Batch R2431952								
WG1540537-17 DUP		L1203640-1						
Mercury (Hg)-Dissolved		<0.00020	<0.000050	RPD-NA	mg/L	N/A	20	07-SEP-12
WG1540537-19 DUP		L1203640-10	0.000050	555 114	//	N 1/A	22	
Mercury (Hg)-Dissolved		<0.00020	<0.000050	RPD-NA	mg/L	N/A	20	07-SEP-12
WG1542219-2 LCS Mercury (Hg)-Dissolved			88.6		%		80-120	07-SEP-12
WG1541038-1 MB			55.5		,•		00-120	07-0L1-1Z
Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	07-SEP-12
WG1542219-1 MB								
Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	07-SEP-12
WG1540537-18 MS		L1203640-2			0.4			
Mercury (Hg)-Dissolved			85.6		%		70-130	07-SEP-12
WG1540537-20 MS Mercury (Hg)-Dissolved		L1203640-12	83.3		%		70 120	07 CED 40
			03.3		70		70-130	07-SEP-12
Batch R2433082		1.400.4007.4						
WG1540537-32 MS Mercury (Hg)-Dissolved		L1204697-1	76.8		%		70-130	10-SEP-12
WG1540537-38 MS		L1204824-3						
Mercury (Hg)-Dissolved			83.5		%		70-130	10-SEP-12
MET-DIS-ICP-VA	Water							
Batch R2430733								
WG1540537-2 CRM		VA-HIGH-WAT						
Beryllium (Be)-Dissolved			98.8		%		80-120	04-SEP-12
Bismuth (Bi)-Dissolved			101.3		%		80-120	04-SEP-12
Cobalt (Co)-Dissolved			95.8		%		80-120	04-SEP-12
Iron (Fe)-Dissolved			99.5		%		80-120	04-SEP-12
Lithium (Li)-Dissolved	1		101.5		%		80-120	04-SEP-12
Molybdenum (Mo)-Dissolve	ed		99.2		%		80-120	04-SEP-12
Nickel (Ni)-Dissolved			97.1		%		80-120	04-SEP-12
Phosphorus (P)-Dissolved			101.9		%		80-120	04-SEP-12
Silicon (Si)-Dissolved			106.2		%		80-120	04-SEP-12
Silver (Ag)-Dissolved			100.4		%		80-120	04-SEP-12
Sodium (Na)-Dissolved			97.3		%		80-120	04-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 8 of 25

est M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA V	Vater							
Batch R2430733								
WG1540537-2 CRM		VA-HIGH-W			0.4			
Strontium (Sr)-Dissolved			98.3		%		80-120	04-SEP-12
Thallium (TI)-Dissolved			98.7		%		80-120	04-SEP-12
Tin (Sn)-Dissolved			98.8		%		80-120	04-SEP-12
Titanium (Ti)-Dissolved			104.7		%		80-120	04-SEP-12
Vanadium (V)-Dissolved			99.1		%		80-120	04-SEP-12
WG1540537-1 MB			-0.0050		~~ ~ /l		0.005	04.050.40
Beryllium (Be)-Dissolved			<0.0050		mg/L		0.005	04-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	04-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	04-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	04-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	04-SEP-12
Molybdenum (Mo)-Dissolve	ed		< 0.030		mg/L		0.03	04-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	04-SEP-12
Phosphorus (P)-Dissolved			< 0.30		mg/L		0.3	04-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	04-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	04-SEP-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	04-SEP-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	04-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	04-SEP-12
Tin (Sn)-Dissolved			< 0.030		mg/L		0.03	04-SEP-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	04-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	04-SEP-12
Batch R2431723								
WG1541038-4 CRM		VA-HIGH-W						
Beryllium (Be)-Dissolved			91.6		%		80-120	06-SEP-12
Bismuth (Bi)-Dissolved			96.5		%		80-120	06-SEP-12
Cobalt (Co)-Dissolved			91.7		%		80-120	06-SEP-12
Iron (Fe)-Dissolved			96.5		%		80-120	06-SEP-12
Lithium (Li)-Dissolved			96.5		%		80-120	06-SEP-12
Molybdenum (Mo)-Dissolve	ed		93.3		%		80-120	06-SEP-12
Nickel (Ni)-Dissolved			94.8		%		80-120	06-SEP-12
Phosphorus (P)-Dissolved			97.3		%		80-120	06-SEP-12
Silicon (Si)-Dissolved			98.4		%		80-120	06-SEP-12
Silver (Ag)-Dissolved			94.5		%		80-120	06-SEP-12
Sodium (Na)-Dissolved			96.5		%		80-120	06-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 9 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2431723	3							
WG1541038-4 CRM Strontium (Sr)-Dissolve	ad	VA-HIGH-WA	ATRM 96.1		%		00.400	00 CED 40
Thallium (TI)-Dissolved			94.4		%		80-120	06-SEP-12 06-SEP-12
Tin (Sn)-Dissolved	4		95.2		%		80-120	
Titanium (Ti)-Dissolved	4		100.4		%		80-120	06-SEP-12
Vanadium (V)-Dissolve			94.7		%		80-120	06-SEP-12
, ,	tu		94.7		70		80-120	06-SEP-12
WG1541038-1 MB Beryllium (Be)-Dissolve	ed		<0.0050		mg/L		0.005	06-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	06-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	06-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	06-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	06-SEP-12
Molybdenum (Mo)-Diss	solved		< 0.030		mg/L		0.03	06-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	06-SEP-12
Phosphorus (P)-Dissol	ved		<0.30		mg/L		0.3	06-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	06-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	06-SEP-12
Sodium (Na)-Dissolved	t		<2.0		mg/L		2	06-SEP-12
Strontium (Sr)-Dissolve	ed		<0.0050		mg/L		0.005	06-SEP-12
Thallium (TI)-Dissolved	d		<0.20		mg/L		0.2	06-SEP-12
Tin (Sn)-Dissolved			< 0.030		mg/L		0.03	06-SEP-12
Titanium (Ti)-Dissolved	d		<0.010		mg/L		0.01	06-SEP-12
Vanadium (V)-Dissolve	ed		< 0.030		mg/L		0.03	06-SEP-12
Batch R2432807	7							
WG1540537-40 MS		L1203761-10)					
Iron (Fe)-Dissolved			95.5		%		70-130	09-SEP-12
Sodium (Na)-Dissolved	t		106.4		%		70-130	09-SEP-12
Titanium (Ti)-Dissolved	t		106.1		%		70-130	09-SEP-12
Batch R2433031	1							
WG1540537-19 DUP		L1203640-10						
Beryllium (Be)-Dissolve		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	09-SEP-12
Bismuth (Bi)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	09-SEP-12
Cobalt (Co)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	09-SEP-12
Iron (Fe)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	09-SEP-12
Lithium (Li)-Dissolved		0.011	0.012		mg/L	6.7	20	09-SEP-12
Molybdenum (Mo)-Diss	solved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	09-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 10 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2433031	1							
WG1540537-19 DUP		L1203640-10	0.050		4			
Nickel (Ni)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	09-SEP-12
Phosphorus (P)-Dissol	ved	<0.30	<0.30	RPD-NA	mg/L	N/A	20	09-SEP-12
Silicon (Si)-Dissolved		6.37	6.29		mg/L	1.3	20	09-SEP-12
Silver (Ag)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	09-SEP-12
Sodium (Na)-Dissolved		30.4	30.4		mg/L	0.1	20	09-SEP-12
Strontium (Sr)-Dissolve	ed	1.08	1.07		mg/L	0.6	20	09-SEP-12
Thallium (TI)-Dissolved	t	<0.20	<0.20	RPD-NA	mg/L	N/A	20	09-SEP-12
Tin (Sn)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	09-SEP-12
Titanium (Ti)-Dissolved	t	<0.010	<0.010	RPD-NA	mg/L	N/A	20	09-SEP-12
Vanadium (V)-Dissolve	ed	<0.030	<0.030	RPD-NA	mg/L	N/A	20	09-SEP-12
WG1540537-20 MS		L1203640-12						
Iron (Fe)-Dissolved			95.0		%		70-130	09-SEP-12
Sodium (Na)-Dissolved	t		103.6		%		70-130	09-SEP-12
Titanium (Ti)-Dissolved	t		103.6		%		70-130	09-SEP-12
Batch R2433107	7							
WG1540537-32 MS		L1204697-1						
Iron (Fe)-Dissolved			92.6		%		70-130	10-SEP-12
Sodium (Na)-Dissolved			98.5		%		70-130	10-SEP-12
Titanium (Ti)-Dissolved	d		100.3		%		70-130	10-SEP-12
WG1540537-38 MS		L1204824-3			0.4			
Iron (Fe)-Dissolved			97.4		%		70-130	10-SEP-12
Sodium (Na)-Dissolved			N/A	MS-B	%		-	10-SEP-12
Titanium (Ti)-Dissolved	d		101.4		%		70-130	10-SEP-12
Batch R2433175	5							
WG1540537-31 MS		L1204708-2						
Iron (Fe)-Dissolved			93.1		%		70-130	07-SEP-12
Sodium (Na)-Dissolved			92.1		%		70-130	07-SEP-12
Titanium (Ti)-Dissolved	d		100.3		%		70-130	07-SEP-12
WG1541038-5 MS		L1204276-3	00.0		0/		70 :00	07.055.15
Iron (Fe)-Dissolved			88.9		%		70-130	07-SEP-12
Sodium (Na)-Dissolved			86.6		%		70-130	07-SEP-12
Titanium (Ti)-Dissolved	מ		97.4		%		70-130	07-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 11 of 25

est Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA Water							
Batch R2433700							
WG1540537-10 MS	L1204272-13						
Iron (Fe)-Dissolved		96.2		%		70-130	10-SEP-12
Sodium (Na)-Dissolved		102.5		%		70-130	10-SEP-12
Titanium (Ti)-Dissolved		103.2		%		70-130	10-SEP-12
WG1540537-8 MS	L1204272-3	05.0		0/			
Iron (Fe)-Dissolved		95.3		%		70-130	10-SEP-12
Sodium (Na)-Dissolved		101.9		%		70-130	10-SEP-12
Titanium (Ti)-Dissolved		101.8		%		70-130	10-SEP-12
Batch R2434379							
WG1540537-17 DUP Beryllium (Be)-Dissolved	L1203640-1 <0.010	<0.010	RPD-NA	mg/L	N/A	20	11-SEP-12
Bismuth (Bi)-Dissolved	<0.40	<0.40		mg/L			
Cobalt (Co)-Dissolved	<0.40	<0.40	RPD-NA	mg/L	N/A	20	11-SEP-12
Iron (Fe)-Dissolved	<0.060	<0.020	RPD-NA RPD-NA	•	N/A	20	11-SEP-12
Lithium (Li)-Dissolved	0.029	0.028	RPD-NA	mg/L mg/L	N/A	20	11-SEP-12
Molybdenum (Mo)-Dissolved	<0.060	<0.060	DDD NA	mg/L	1.5	20	11-SEP-12
Nickel (Ni)-Dissolved	<0.10	<0.000	RPD-NA	mg/L	N/A	20	11-SEP-12
Phosphorus (P)-Dissolved	<0.60	<0.60	RPD-NA RPD-NA	mg/L	N/A N/A	20 20	11-SEP-12
Silicon (Si)-Dissolved	7.67	7.55	RFD-NA	mg/L			11-SEP-12
Silver (Ag)-Dissolved	<0.020	<0.020	DDD NA	mg/L	1.6	20	11-SEP-12
Sodium (Na)-Dissolved	44.3	42.9	RPD-NA	mg/L	N/A	20	11-SEP-12
Strontium (Sr)-Dissolved	1.34	1.30		•	3.2	20	11-SEP-12
Thallium (TI)-Dissolved	<0.40	<0.40	DDD NA	mg/L	3.1	20	11-SEP-12
, ,			RPD-NA	mg/L	N/A	20	11-SEP-12
Tin (Sn)-Dissolved	<0.060	<0.060	RPD-NA	mg/L	N/A	20	11-SEP-12
Titanium (Ti)-Dissolved Vanadium (V)-Dissolved	<0.020	<0.020	RPD-NA	mg/L	N/A	20	11-SEP-12
,	<0.060	<0.060	RPD-NA	mg/L	N/A	20	11-SEP-12
MET-DIS-LOW-MS-VA Water	•						
Batch R2431675							
WG1540537-1 MB Aluminum (Al)-Dissolved		<0.0030		mg/L		0.003	06-SEP-12
Antimony (Sb)-Dissolved		<0.00010		mg/L			
Arsenic (As)-Dissolved		<0.00010		mg/L		0.0001 0.0001	06-SEP-12
Barium (Ba)-Dissolved		<0.00010	1	mg/L		0.0001	06-SEP-12 06-SEP-12
Boron (B)-Dissolved		<0.000	•	mg/L			
Cadmium (Cd)-Dissolved		<0.010	1	•		0.01	06-SEP-12
Calcium (Ca)-Dissolved		<0.000	,	mg/L mg/L		0.00005 0.02	06-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 12 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2431675	;							
WG1540537-1 MB			0.00050					
Chromium (Cr)-Dissolv			<0.00050		mg/L		0.0005	06-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	06-SEP-12
Lead (Pb)-Dissolved			<0.000050		mg/L		0.00005	06-SEP-12
Magnesium (Mg)-Disso			<0.0050		mg/L		0.005	06-SEP-12
Manganese (Mn)-Disso			<0.000050		mg/L		0.00005	06-SEP-12
Potassium (K)-Dissolve			<0.050		mg/L		0.05	06-SEP-12
Selenium (Se)-Dissolve	ed		<0.0010		mg/L		0.001	06-SEP-12
Uranium (U)-Dissolved			<0.000010		mg/L		0.00001	06-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	06-SEP-12
WG1541038-1 MB Aluminum (Al)-Dissolve	ed		<0.0030		mg/L		0.003	06-SEP-12
Antimony (Sb)-Dissolve	ed		<0.00010		mg/L		0.0001	06-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	06-SEP-12
Barium (Ba)-Dissolved			<0.000050		mg/L		0.00005	06-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	06-SEP-12
Cadmium (Cd)-Dissolve	ed		<0.000050		mg/L		0.00005	06-SEP-12
Calcium (Ca)-Dissolved	d		<0.020		mg/L		0.02	06-SEP-12
Chromium (Cr)-Dissolv	red		<0.00050		mg/L		0.0005	06-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	06-SEP-12
Lead (Pb)-Dissolved			<0.000050		mg/L		0.00005	06-SEP-12
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	06-SEP-12
Manganese (Mn)-Disso	olved		<0.000050		mg/L		0.00005	06-SEP-12
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	06-SEP-12
Selenium (Se)-Dissolve			<0.0010		mg/L		0.001	06-SEP-12
Uranium (U)-Dissolved			<0.000010		mg/L		0.00001	06-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	06-SEP-12
Batch R2432716	.							
WG1540537-19 DUP	•	L1203640-10						
Aluminum (Al)-Dissolve	ed	<0.010	<0.0030	RPD-NA	mg/L	N/A	20	08-SEP-12
Antimony (Sb)-Dissolve	ed	<0.00050	0.00020		mg/L	6.7	20	08-SEP-12
Arsenic (As)-Dissolved		0.00095	0.00101		mg/L	5.8	20	08-SEP-12
Barium (Ba)-Dissolved		0.117	0.114		mg/L	2.2	20	08-SEP-12
Boron (B)-Dissolved		<0.10	0.033		mg/L	5.3	20	08-SEP-12
Cadmium (Cd)-Dissolve	ed	<0.00020	0.000057		mg/L	3.3	20	08-SEP-12
Calcium (Ca)-Dissolved		113	117		mg/L	3.4	20	08-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 13 of 25

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Water							
Batch R2432716							
WG1540537-19 DUP	L1203640-10						
Chromium (Cr)-Dissolved	<0.0020	<0.00050	RPD-NA	mg/L	N/A	20	08-SEP-12
Copper (Cu)-Dissolved	<0.0010	0.00061		mg/L	1.0	20	08-SEP-12
Lead (Pb)-Dissolved	<0.00050	<0.000050	RPD-NA	mg/L	N/A	20	08-SEP-12
Magnesium (Mg)-Dissolved	77.4	75.7		mg/L	2.2	20	08-SEP-12
Manganese (Mn)-Dissolved	0.0875	0.0887		mg/L	1.4	20	08-SEP-12
Potassium (K)-Dissolved	4.53	4.56		mg/L	0.8	20	08-SEP-12
Selenium (Se)-Dissolved	<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	08-SEP-12
Uranium (U)-Dissolved	0.0185	0.0184		mg/L	0.6	20	08-SEP-12
Zinc (Zn)-Dissolved	<0.050	< 0.0030	RPD-NA	mg/L	N/A	20	08-SEP-12
Batch R2433051							
WG1540537-2 CRM	VA-HIGH-WA						
Aluminum (Al)-Dissolved		99.9		%		80-120	07-SEP-12
Antimony (Sb)-Dissolved		106.5		%		80-120	07-SEP-12
Arsenic (As)-Dissolved		103.0		%		80-120	07-SEP-12
Barium (Ba)-Dissolved		102.9		%		80-120	07-SEP-12
Boron (B)-Dissolved		93.2		%		80-120	07-SEP-12
Cadmium (Cd)-Dissolved		102.5		%		80-120	07-SEP-12
Calcium (Ca)-Dissolved		99.7		%		80-120	07-SEP-12
Chromium (Cr)-Dissolved		103.6		%		80-120	07-SEP-12
Copper (Cu)-Dissolved		98.8		%		80-120	07-SEP-12
Lead (Pb)-Dissolved		101.9		%		80-120	07-SEP-12
Magnesium (Mg)-Dissolved		100.1		%		80-120	07-SEP-12
Manganese (Mn)-Dissolved		98.8		%		80-120	07-SEP-12
Potassium (K)-Dissolved		97.3		%		80-120	07-SEP-12
Selenium (Se)-Dissolved		101.9		%		80-120	07-SEP-12
Uranium (U)-Dissolved		103.4		%		80-120	07-SEP-12
Zinc (Zn)-Dissolved		98.7		%		80-120	07-SEP-12
WG1541038-4 CRM	VA-HIGH-WA						
Aluminum (Al)-Dissolved		98.0		%		80-120	07-SEP-12
Antimony (Sb)-Dissolved		103.9		%		80-120	07-SEP-12
Arsenic (As)-Dissolved		99.4		%		80-120	07-SEP-12
Barium (Ba)-Dissolved		96.2		%		80-120	07-SEP-12
Boron (B)-Dissolved		88.1		%		80-120	07-SEP-12
Cadmium (Cd)-Dissolved		100.1		%		80-120	07-SEP-12
Calcium (Ca)-Dissolved		95.8		%		80-120	07-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 14 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2433051								
WG1541038-4 CRM		VA-HIGH-W						
Chromium (Cr)-Dissolve	d		99.9		%		80-120	07-SEP-12
Copper (Cu)-Dissolved			95.4		%		80-120	07-SEP-12
Lead (Pb)-Dissolved			95.1		%		80-120	07-SEP-12
Magnesium (Mg)-Dissol			94.9		%		80-120	07-SEP-12
Manganese (Mn)-Dissol			96.7		%		80-120	07-SEP-12
Potassium (K)-Dissolved			96.5		%		80-120	07-SEP-12
Selenium (Se)-Dissolved	d		98.2		%		80-120	07-SEP-12
Uranium (U)-Dissolved			96.2		%		80-120	07-SEP-12
Zinc (Zn)-Dissolved			93.9		%		80-120	07-SEP-12
Batch R2433805								
WG1540537-38 MS		L1204824-3	00.0		0/			
Aluminum (Al)-Dissolved			93.0		%		70-130	10-SEP-12
Antimony (Sb)-Dissolved	ג		100.4		%		70-130	10-SEP-12
Arsenic (As)-Dissolved			106.2	140 B	%		70-130	10-SEP-12
Barium (Ba)-Dissolved			N/A	MS-B	%		=	10-SEP-12
Boron (B)-Dissolved			N/A	MS-B	%		-	10-SEP-12
Cadmium (Cd)-Dissolve	d		98.8		%		70-130	10-SEP-12
Calcium (Ca)-Dissolved			N/A	MS-B	%		=	10-SEP-12
Chromium (Cr)-Dissolve	d		91.9		%		70-130	10-SEP-12
Copper (Cu)-Dissolved			90.4		%		70-130	10-SEP-12
Lead (Pb)-Dissolved			87.0		%		70-130	10-SEP-12
Magnesium (Mg)-Dissolv	ved		N/A	MS-B	%		-	10-SEP-12
Manganese (Mn)-Dissol	ved		91.3		%		70-130	10-SEP-12
Potassium (K)-Dissolved	t		N/A	MS-B	%		-	10-SEP-12
Selenium (Se)-Dissolved	t		98.5		%		70-130	10-SEP-12
Uranium (U)-Dissolved			90.5		%		70-130	10-SEP-12
Zinc (Zn)-Dissolved			92.6		%		70-130	10-SEP-12
Batch R2433912								
WG1540537-17 DUP Aluminum (Al)-Dissolved	d	L1203640-1 < 0.050	<0.015	RPD-NA	mg/L	N/A	20	11-SEP-12
Antimony (Sb)-Dissolved	d	<0.0025	<0.00050	RPD-NA	mg/L	N/A	20	11-SEP-12
Arsenic (As)-Dissolved		0.00091	0.00094		mg/L	3.7	20	11-SEP-12
Barium (Ba)-Dissolved		<0.10	0.0280		mg/L	2.9	20	11-SEP-12
Boron (B)-Dissolved		<0.50	<0.050	RPD-NA	mg/L	N/A	20	11-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 15 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2433912								
WG1540537-17 DUP	٨	L1203640-1	0.00055		/		22	0=5
Cadmium (Cd)-Dissolve		<0.0010	0.00055		mg/L	7.7	20	11-SEP-12
Calcium (Ca)-Dissolved		459	444	555	mg/L	3.3	20	11-SEP-12
Chromium (Cr)-Dissolve	ea .	<0.010	<0.0025	RPD-NA	mg/L	N/A	20	11-SEP-12
Copper (Cu)-Dissolved		<0.0050	<0.0025	RPD-NA	mg/L	N/A	20	11-SEP-12
Lead (Pb)-Dissolved	1	<0.0025	<0.00025	RPD-NA	mg/L	N/A	20	11-SEP-12
Magnesium (Mg)-Dissol		672	645		mg/L	4.1	20	11-SEP-12
Manganese (Mn)-Dissol		2.00	1.98		mg/L	0.9	20	11-SEP-12
Potassium (K)-Dissolved		8.84	8.63		mg/L	2.3	20	11-SEP-12
Selenium (Se)-Dissolved	d	0.0060	0.0060		mg/L	1.0	20	11-SEP-12
Uranium (U)-Dissolved		0.0709	0.0721		mg/L	1.7	20	11-SEP-12
Zinc (Zn)-Dissolved		<0.25	<0.015	RPD-NA	mg/L	N/A	20	11-SEP-12
WG1540537-20 MS Aluminum (Al)-Dissolved	4	L1203640-12	99.7		%		70-130	11-SEP-12
Antimony (Sb)-Dissolved			106.9		%		70-130	11-SEP-12
Arsenic (As)-Dissolved	4		106.8		%		70-130	11-SEP-12
Barium (Ba)-Dissolved			N/A	MS-B	%		-	11-SEP-12
Boron (B)-Dissolved			92.3	e B	%		70-130	11-SEP-12
Cadmium (Cd)-Dissolve	d		103.4		%		70-130	11-SEP-12
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	11-SEP-12
Chromium (Cr)-Dissolve			96.8	e B	%		70-130	11-SEP-12
Copper (Cu)-Dissolved			103.2		%		70-130	11-SEP-12
Lead (Pb)-Dissolved			101.1		%		70-130	11-SEP-12
Magnesium (Mg)-Dissol	ved		N/A	MS-B	%		-	11-SEP-12
Manganese (Mn)-Dissol			103.2	e B	%		70-130	11-SEP-12
Potassium (K)-Dissolved			101.5		%		70-130	11-SEP-12
Selenium (Se)-Dissolved			104.5		%		70-130	11-SEP-12
Uranium (U)-Dissolved			102.5		%		70-130	11-SEP-12
Zinc (Zn)-Dissolved			97.8		%		70-130	11-SEP-12
					, -		70-100	11 061 -12
Batch R2433950 WG1540537-32 MS		L1204697-1	400.5		04			
Aluminum (Al)-Dissolved			100.6		%		70-130	11-SEP-12
Antimony (Sb)-Dissolved	d		111.6		%		70-130	11-SEP-12
Arsenic (As)-Dissolved			110.5		%		70-130	11-SEP-12
Barium (Ba)-Dissolved			N/A	MS-B	%		-	11-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 16 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2433	950							
WG1540537-32 M		L1204697-1	NI/A	MC D	0/			0=5
Boron (B)-Dissolved			N/A	MS-B	%		-	11-SEP-12
Cadmium (Cd)-Diss			98.9	NO 5	%		70-130	11-SEP-12
Calcium (Ca)-Disso			N/A	MS-B	%		-	11-SEP-12
Chromium (Cr)-Disc			97.2		%		70-130	11-SEP-12
Copper (Cu)-Dissol			94.2		%		70-130	11-SEP-12
Lead (Pb)-Dissolve			92.9		%		70-130	11-SEP-12
Magnesium (Mg)-D			N/A	MS-B	%		-	11-SEP-12
Manganese (Mn)-D			N/A	MS-B	%		-	11-SEP-12
Potassium (K)-Diss	olved		N/A	MS-B	%		-	11-SEP-12
Selenium (Se)-Diss	olved		114.1		%		70-130	11-SEP-12
Uranium (U)-Dissol	ved		92.7		%		70-130	11-SEP-12
Zinc (Zn)-Dissolved	I		93.2		%		70-130	11-SEP-12
Batch R2434								
WG1540537-12 M Aluminum (Al)-Diss		L1204732-3	91.5		%		70-130	11-SEP-12
Antimony (Sb)-Diss			98.9		%		70-130	11-SEP-12
Arsenic (As)-Dissol			N/A	MS-B	%		70-130	11-SEP-12 11-SEP-12
Barium (Ba)-Dissolv			97.8	WO-B	%		- 70-130	
Boron (B)-Dissolved			97.6 N/A	MS-B	%		70-130	11-SEP-12
, ,			101.7	IVIO-B			-	11-SEP-12
Cadmium (Cd)-Diss				MC D	%		70-130	11-SEP-12
Calcium (Ca)-Disso			N/A	MS-B	%		-	11-SEP-12
Chromium (Cr)-Disc			95.1		%		70-130	11-SEP-12
Copper (Cu)-Dissol			89.7		%		70-130	11-SEP-12
Lead (Pb)-Dissolve			95.2		%		70-130	11-SEP-12
Magnesium (Mg)-D			N/A	MS-B	%		-	11-SEP-12
Manganese (Mn)-D			N/A	MS-B	%		-	11-SEP-12
Potassium (K)-Diss	olved		89.5		%		70-130	11-SEP-12
Selenium (Se)-Diss	olved		106.9		%		70-130	11-SEP-12
Uranium (U)-Dissol	ved		N/A	MS-B	%		-	11-SEP-12
Zinc (Zn)-Dissolved	I		91.2		%		70-130	11-SEP-12
NILIO E VA	Water							

NH3-F-VA Water

Workorder: L1203640 Report Date: 17-SEP-12 Page 17 of 25

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-VA	Water							
Batch R2432042 WG1541509-10 CRM Ammonia, Total (as N)		VA-NH3-F	97.9		%		85-115	07-SEP-12
WG1541509-2 CRM Ammonia, Total (as N)		VA-NH3-F	102.4		%		85-115	07-SEP-12
WG1541509-4 CRM Ammonia, Total (as N)		VA-NH3-F	100.1		%		85-115	07-SEP-12
WG1541509-6 CRM Ammonia, Total (as N)		VA-NH3-F	88.8		%		85-115	07-SEP-12
WG1541509-8 CRM Ammonia, Total (as N)		VA-NH3-F	97.6		%		85-115	07-SEP-12
WG1541509-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	07-SEP-12
WG1541509-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	07-SEP-12
WG1541509-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	07-SEP-12
WG1541509-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	07-SEP-12
WG1541509-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	07-SEP-12
WG1541509-12 MS Ammonia, Total (as N)		L1203418-30	105.5		%		75-125	07-SEP-12
Batch R2432481								
WG1542715-10 CRM Ammonia, Total (as N)		VA-NH3-F	106.2		%		85-115	09-SEP-12
WG1542715-2 CRM Ammonia, Total (as N)		VA-NH3-F	101.1		%		85-115	09-SEP-12
WG1542715-4 CRM Ammonia, Total (as N)		VA-NH3-F	99.2		%		85-115	09-SEP-12
WG1542715-6 CRM Ammonia, Total (as N)		VA-NH3-F	99.0		%		85-115	09-SEP-12
WG1542715-8 CRM Ammonia, Total (as N)		VA-NH3-F	101.7		%		85-115	09-SEP-12
WG1542715-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	09-SEP-12
WG1542715-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	09-SEP-12
WG1542715-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	09-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 18 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-VA	Water							
Batch R2432481								
WG1542715-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	09-SEP-12
WG1542715-9 MB					J.		0.000	00 021 12
Ammonia, Total (as N)			<0.0050		mg/L		0.005	09-SEP-12
WG1542715-12 MS		L1205539-1						
Ammonia, Total (as N)			97.8		%		75-125	09-SEP-12
WG1542715-14 MS Ammonia, Total (as N)		L1203698-9	106.4		%		75-125	09-SEP-12
PAH-SF-MS-VA	Water							
Batch R2431312								
WG1541190-2 LCS								
Acenaphthene			96.8		%		60-130	07-SEP-12
Acenaphthylene			95.7		%		60-130	07-SEP-12
Acridine			97.0		%		60-130	07-SEP-12
Anthracene			102.4		%		60-130	07-SEP-12
Benz(a)anthracene			92.9		%		60-130	07-SEP-12
Benzo(a)pyrene			94.5		%		60-130	07-SEP-12
Benzo(b)fluoranthene			96.9		%		60-130	07-SEP-12
Benzo(g,h,i)perylene			94.9		%		60-130	07-SEP-12
Benzo(k)fluoranthene			104.2		%		60-130	07-SEP-12
Chrysene			96.5		%		60-130	07-SEP-12
Dibenz(a,h)anthracene			100.6		%		60-130	07-SEP-12
Fluoranthene			99.8		%		60-130	07-SEP-12
Fluorene			97.4		%		60-130	07-SEP-12
Indeno(1,2,3-c,d)pyrene			98.3		%		60-130	07-SEP-12
Naphthalene			89.9		%		50-130	07-SEP-12
Phenanthrene			102.4		%		60-130	07-SEP-12
Pyrene			99.0		%		60-130	07-SEP-12
Quinoline			95.0		%		60-130	07-SEP-12
WG1541190-1 MB								
Acenaphthene			<0.000050		mg/L		0.00005	07-SEP-12
Acenaphthylene			<0.000050)	mg/L		0.00005	07-SEP-12
Acridine			<0.000050)	mg/L		0.00005	07-SEP-12
Anthracene			<0.000050)	mg/L		0.00005	07-SEP-12
Benz(a)anthracene			<0.000050)	mg/L		0.00005	07-SEP-12
Benzo(a)pyrene			<0.000010)	mg/L		0.00001	07-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 19 of 25

Test Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2431312								
WG1541190-1 MB			2 22225		4			
Benzo(b)fluoranthene			<0.000050		mg/L		0.00005	07-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	07-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	07-SEP-12
Chrysene			<0.000050		mg/L		0.00005	07-SEP-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	07-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	07-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	07-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050)	mg/L		0.00005	07-SEP-12
Naphthalene			<0.000050)	mg/L		0.00005	07-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	07-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	07-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	07-SEP-12
Batch R2431882								
WG1541190-3 MB								
Acenaphthene			<0.000050		mg/L		0.00005	12-SEP-12
Acenaphthylene			<0.000050		mg/L		0.00005	12-SEP-12
Acridine			<0.000050		mg/L		0.00005	12-SEP-12
Anthracene			<0.000050)	mg/L		0.00005	12-SEP-12
Benz(a)anthracene			<0.000050)	mg/L		0.00005	12-SEP-12
Benzo(a)pyrene			<0.000010)	mg/L		0.00001	12-SEP-12
Benzo(b)fluoranthene			<0.000050)	mg/L		0.00005	12-SEP-12
Benzo(g,h,i)perylene			<0.000050)	mg/L		0.00005	12-SEP-12
Benzo(k)fluoranthene			<0.000050)	mg/L		0.00005	12-SEP-12
Chrysene			<0.000050)	mg/L		0.00005	12-SEP-12
Dibenz(a,h)anthracene			<0.000050)	mg/L		0.00005	12-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	12-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	12-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050)	mg/L		0.00005	12-SEP-12
Naphthalene			<0.000050)	mg/L		0.00005	12-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	12-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	12-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	12-SEP-12
PH-MAN-WR	Water				-			,

Workorder: L1203640 Report Date: 17-SEP-12 Page 20 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-MAN-WR	Water							
Batch R2432843 WG1541397-1 LCS pH			100.0		%		70-130	06-SEP-12
TDS-VA	Water							
Batch R2432580 WG1542235-2 LCS Total Dissolved Solids			101.6		%		85-115	07-SEP-12
WG1542235-5 LCS Total Dissolved Solids			102.1		%		85-115	07-SEP-12
WG1542235-8 LCS Total Dissolved Solids			100.9		%		85-115	07-SEP-12
WG1542235-1 MB Total Dissolved Solids			<10		mg/L		10	07-SEP-12
WG1542235-4 MB Total Dissolved Solids			<10		mg/L		10	07-SEP-12
WG1542235-7 MB Total Dissolved Solids			<10		mg/L		10	07-SEP-12
TKN-F-VA	Water							
Batch R2433109 WG1540620-3 DUP Total Kjeldahl Nitrogen		L1203640-12 0.113	0.108		mg/L	3.7	20	10-SEP-12
WG1540620-2 LCS Total Kjeldahl Nitrogen			101.7		%		75-125	10-SEP-12
WG1540620-5 LCS Total Kjeldahl Nitrogen			101.6		%		75-125	10-SEP-12
WG1540620-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	10-SEP-12
WG1540620-4 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	10-SEP-12
TURBIDITY-WR	Water							
Batch R2433599 WG1542241-3 DUP Turbidity		L1203640-10 13900	13800		NTU	0.7	15	07-SEP-12
WG1542241-2 LCS Turbidity			104.4		%		85-115	07-SEP-12
WG1542241-1 MB Turbidity			<0.10		NTU		0.1	07-SEP-12
VH-HSFID-VA	Water							

Workorder: L1203640 Report Date: 17-SEP-12 Page 21 of 25

		Workdider. E1203040			Report Date. 1	_	Page 21 01 2:		
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
H-HSFID-VA	Water								
Batch R242765	52								
WG1542764-2 LCS									
Volatile Hydrocarbons	s (VH6-10)		86.9		%		70-130	12-SEP-12	
WG1542764-1 MB Volatile Hydrocarbons	s (VH6-10)		<0.10		mg/L		0.1	12-SEP-12	
OC-HSMS-VA	Water		101.10		9/ =		0.1	12-0L1 - 12	
Batch R242601									
WG1542764-2 LCS									
Bromodichloromethar	ne		85.2		%		70-130	09-SEP-12	
Bromoform			77.5		%		70-130	09-SEP-12	
Carbon Tetrachloride			93.6		%		70-130	09-SEP-12	
Chlorobenzene			91.8		%		70-130	09-SEP-12	
Dibromochloromethar	ne		87.3		%		70-130	09-SEP-12	
Chloroethane			88.7		%		60-140	09-SEP-12	
Chloroform			87.3		%		70-130	09-SEP-12	
Chloromethane			78.3		%		60-140	09-SEP-12	
1,2-Dichlorobenzene			93.7		%		70-130	09-SEP-12	
1,3-Dichlorobenzene			100.3		%		70-130	09-SEP-12	
1,4-Dichlorobenzene			98.5		%		70-130	09-SEP-12	
1,1-Dichloroethane			84.8		%		70-130	09-SEP-12	
1,2-Dichloroethane			81.2		%		70-130	09-SEP-12	
1,1-Dichloroethylene			75.3		%		70-130	09-SEP-12	
cis-1,2-Dichloroethyle	ene		86.4		%		70-130	09-SEP-12	
trans-1,2-Dichloroethy	ylene		84.5		%		70-130	09-SEP-12	
Dichloromethane			79.1		%		60-140	09-SEP-12	
1,2-Dichloropropane			86.5		%		70-130	09-SEP-12	
cis-1,3-Dichloropropy	lene		78.7		%		70-130	09-SEP-12	
trans-1,3-Dichloropro	pylene		82.0		%		70-130	09-SEP-12	
1,1,1,2-Tetrachloroeth	nane		91.2		%		70-130	09-SEP-12	
1,1,2,2-Tetrachloroeth	nane		74.6		%		70-130	09-SEP-12	
Tetrachloroethylene			99.1		%		70-130	09-SEP-12	
1,1,1-Trichloroethane			92.2		%		70-130	09-SEP-12	
1,1,2-Trichloroethane			89.8		%		70-130	09-SEP-12	
Trichloroethylene			92.0		%		70-130	09-SEP-12	
Trichlorofluoromethar	ne		100.8		%		60-140	09-SEP-12	
Vinyl Chloride			90.0		%		60-140	09-SEP-12	

Workorder: L1203640 Report Date: 17-SEP-12 Page 22 of 25

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R24260	011							
WG1542764-1 ME			0.0040		e-/I		0.004	
Bromodichlorometha	ane		<0.0010		mg/L		0.001	09-SEP-12
Bromoform			<0.0010		mg/L		0.001	09-SEP-12
Carbon Tetrachlorid	е		<0.00050		mg/L		0.0005	09-SEP-12
Chlorobenzene			<0.0010		mg/L		0.001	09-SEP-12
Dibromochlorometha	ane		<0.0010		mg/L		0.001	09-SEP-12
Chloroethane			<0.0010		mg/L		0.001	09-SEP-12
Chloroform			<0.0010		mg/L		0.001	09-SEP-12
Chloromethane			<0.0050		mg/L		0.005	09-SEP-12
1,2-Dichlorobenzene			<0.00070		mg/L		0.0007	09-SEP-12
1,3-Dichlorobenzene			<0.0010		mg/L		0.001	09-SEP-12
1,4-Dichlorobenzene	Э		<0.0010		mg/L		0.001	09-SEP-12
1,1-Dichloroethane			<0.0010		mg/L		0.001	09-SEP-12
1,2-Dichloroethane			<0.0010		mg/L		0.001	09-SEP-12
1,1-Dichloroethylene	9		<0.0010		mg/L		0.001	09-SEP-12
cis-1,2-Dichloroethy	lene		<0.0010		mg/L		0.001	09-SEP-12
trans-1,2-Dichloroet	hylene		<0.0010		mg/L		0.001	09-SEP-12
Dichloromethane			< 0.0050		mg/L		0.005	09-SEP-12
1,2-Dichloropropane)		<0.0010		mg/L		0.001	09-SEP-12
cis-1,3-Dichloroprop	ylene		<0.0010		mg/L		0.001	09-SEP-12
trans-1,3-Dichloropr	opylene		<0.0010		mg/L		0.001	09-SEP-12
1,1,1,2-Tetrachloroe	ethane		<0.0010		mg/L		0.001	09-SEP-12
1,1,2,2-Tetrachloroe	thane		<0.0010		mg/L		0.001	09-SEP-12
Tetrachloroethylene			<0.0010		mg/L		0.001	09-SEP-12
1,1,1-Trichloroethan	e		<0.0010		mg/L		0.001	09-SEP-12
1,1,2-Trichloroethan	е		<0.0010		mg/L		0.001	09-SEP-12
Trichloroethylene			<0.0010		mg/L		0.001	09-SEP-12
Trichlorofluorometha	ane		<0.0010		mg/L		0.001	09-SEP-12
Vinyl Chloride			<0.0010		mg/L		0.001	09-SEP-12
VOC7-HSMS-VA	Water							
Batch R24260	011							
WG1542764-2 LC	s				0.4			
Benzene			87.1		%		70-130	09-SEP-12
Ethylbenzene			100.3		%		70-130	09-SEP-12
Methyl t-butyl ether ((MTBE)		92.9		%		70-130	09-SEP-12

Workorder: L1203640 Report

Report Date: 17-SEP-12 Page 23 of 25

est	Matrix		Result	Qualifier	Units	RPD	Limit	Analyzed
OC7-HSMS-VA	Water							
Batch R2426 WG1542764-2 LC								
Styrene			96.5		%		70-130	09-SEP-12
Toluene			95.3		%		70-130	09-SEP-12
meta- & para-Xylene	е		101.4		%		70-130	09-SEP-12
ortho-Xylene			98.7		%		70-130	09-SEP-12
WG1542764-1 MI	3							
Benzene			<0.00050		mg/L		0.0005	09-SEP-12
Ethylbenzene			<0.00050		mg/L		0.0005	09-SEP-12
Methyl t-butyl ether	(MTBE)		<0.00050		mg/L		0.0005	09-SEP-12
Styrene			<0.00050		mg/L		0.0005	09-SEP-12
Toluene			<0.00050		mg/L		0.0005	09-SEP-12
meta- & para-Xylene	Э		<0.00050		mg/L		0.0005	09-SEP-12
ortho-Xylene			<0.00050		mg/L		0.0005	09-SEP-12

Workorder: L1203640 Report Date: 17-SEP-12 Page 24 of 25

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1203640 Report Date: 17-SEP-12 Page 25 of 25

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie
Physical Tests							
pH by Meter							
p	1	31-AUG-12 10:50	06-SEP-12 16:57	24	150	hours	EHTR
	2	31-AUG-12 13:20	06-SEP-12 16:57	24	148	hours	EHTR
	3	01-SEP-12 11:10	06-SEP-12 16:57	24	126	hours	EHTR
	4	31-AUG-12 15:30	06-SEP-12 16:57	24	145	hours	EHTR
	5	31-AUG-12 17:40	06-SEP-12 16:57	24	143	hours	EHTR
	6	31-AUG-12 18:15	06-SEP-12 16:57	24	143	hours	EHTR
	7	31-AUG-12 15:30	06-SEP-12 16:57	24	145	hours	EHTR
	8	02-SEP-12 12:00	06-SEP-12 16:57	24	101	hours	EHTR
	9	01-SEP-12 15:20	06-SEP-12 16:57	24	122	hours	EHTR
	10	01-SEP-12 16:20	06-SEP-12 16:57	24	121	hours	EHTR
	11	01-SEP-12 17:15	06-SEP-12 16:57	24	120	hours	EHTR
	12	02-SEP-12 14:50	06-SEP-12 16:57	24	98	hours	EHTR
Anions and Nutrients							
Nitrate Nitrogen by Ion Chr	omatography						
	1	31-AUG-12 10:50	04-SEP-12 15:20	3	4	days	EHTR
	2	31-AUG-12 13:20	04-SEP-12 15:20	3	4	days	EHTR
	4	31-AUG-12 15:30	04-SEP-12 15:20	3	4	days	EHTR
	5	31-AUG-12 17:40	04-SEP-12 15:20	3	4	days	EHTR
	6	31-AUG-12 18:15	04-SEP-12 15:20	3	4	days	EHTR
	7	31-AUG-12 15:30	04-SEP-12 15:20	3	4	days	EHTR
Nitrite Nitrogen by Ion Chro	omatography						
	1	31-AUG-12 10:50	04-SEP-12 15:20	3	4	days	EHTR
	2	31-AUG-12 13:20	04-SEP-12 15:20	3	4	days	EHTR
	4	31-AUG-12 15:30	04-SEP-12 15:20	3	4	days	EHTR
	5	31-AUG-12 17:40	04-SEP-12 15:20	3	4	days	EHTR
	6	31-AUG-12 18:15	04-SEP-12 15:20	3	4	days	EHTR
	7	31-AUG-12 15:30	04-SEP-12 15:20	3	4	days	EHTR
Logand & Qualifier Definitio							

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

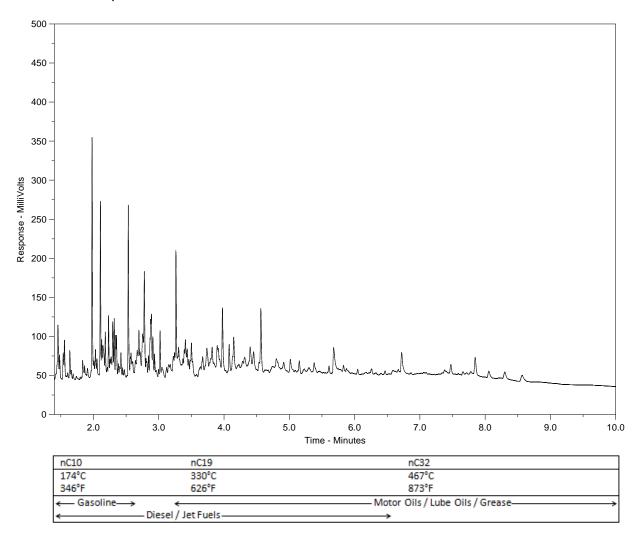
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

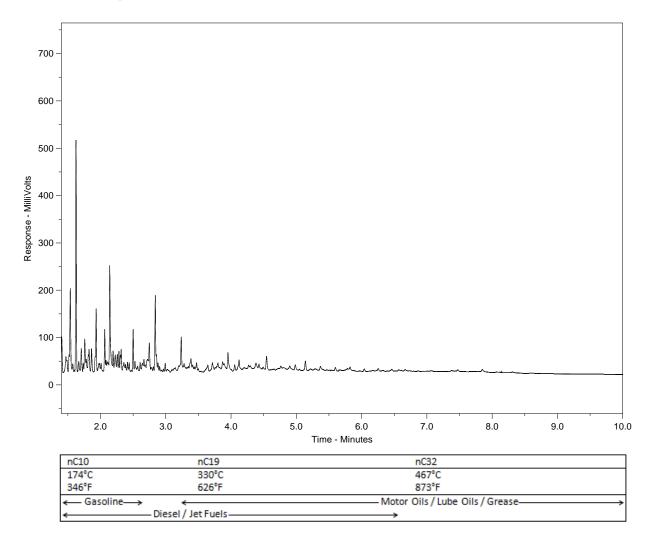
Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1203640 were received on 04-SEP-12 10:10.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

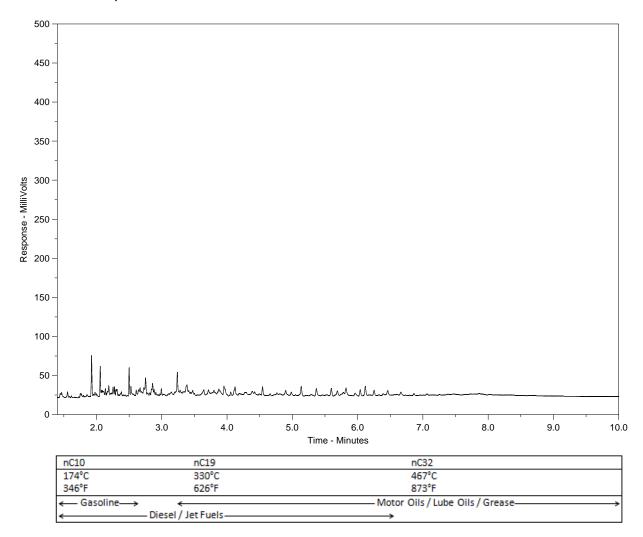
ALS Sample ID: L1203640-1 Client Sample ID: RR NUMBER 1


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

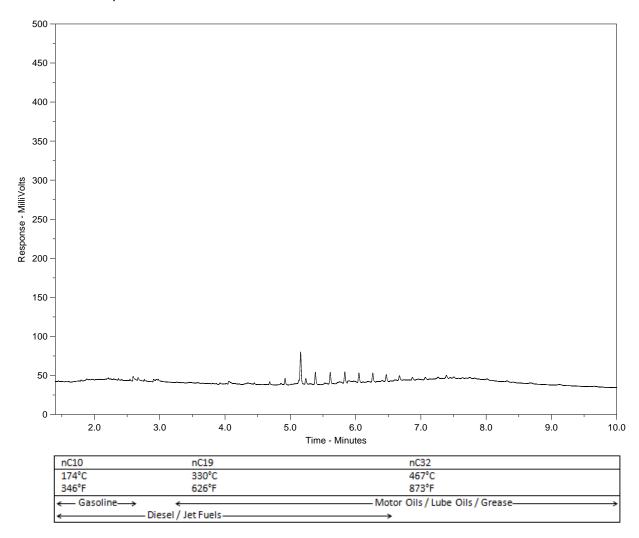
ALS Sample ID: L1203640-2 Client Sample ID: RR NUMBER 2


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

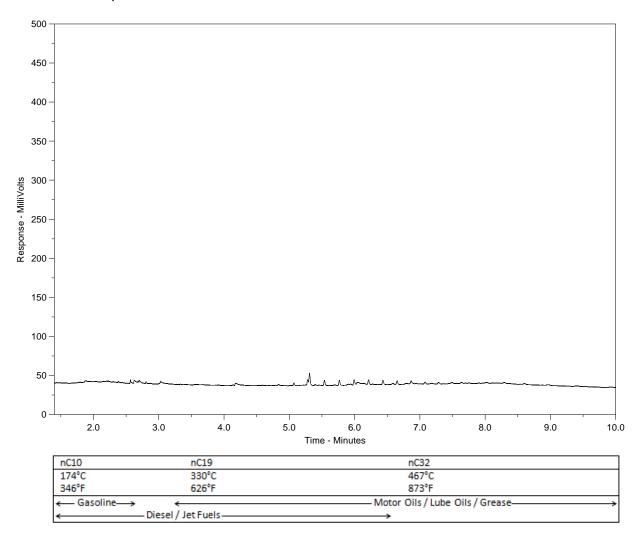
ALS Sample ID: L1203640-3 Client Sample ID: RR SURFACE


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

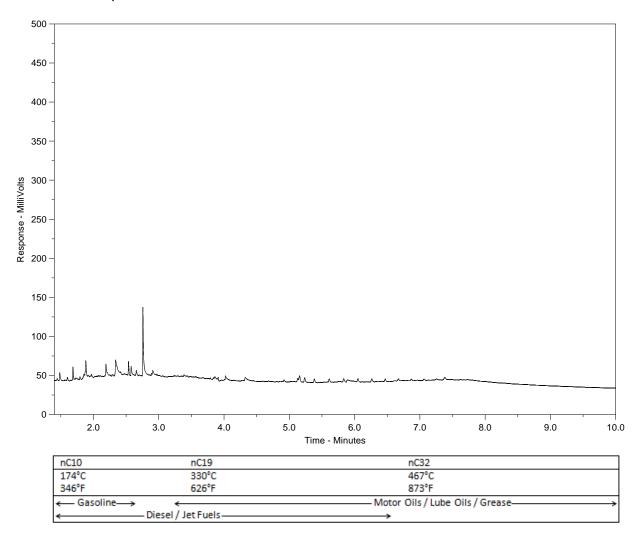
ALS Sample ID: L1203640-4 Client Sample ID: FA-MW12-01


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

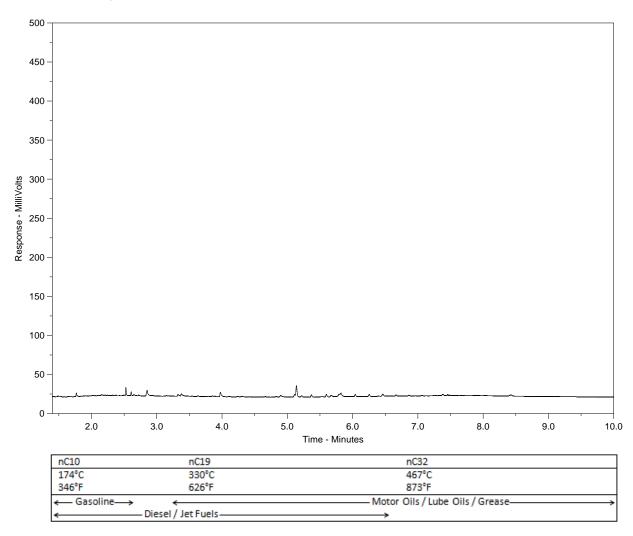
ALS Sample ID: L1203640-5 Client Sample ID: FA-MW12-03


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

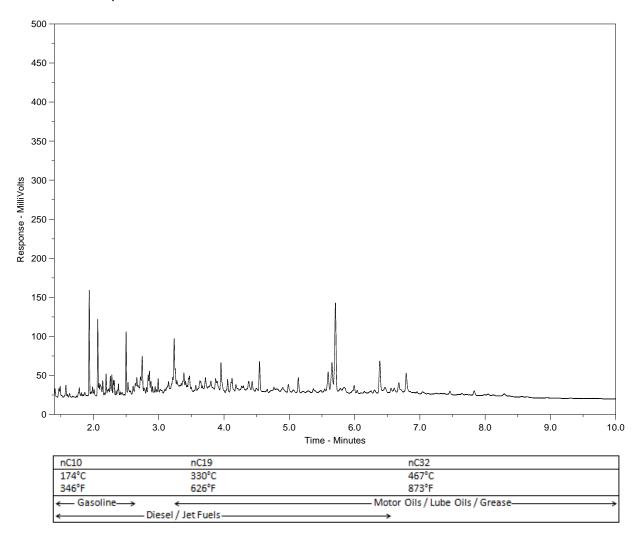
ALS Sample ID: L1203640-6 Client Sample ID: FA-MW12-04


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

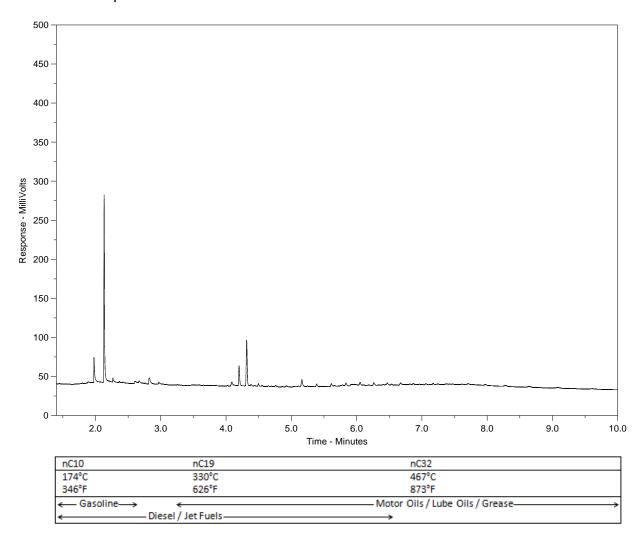
ALS Sample ID: L1203640-7 Client Sample ID: FA-MW12-05


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

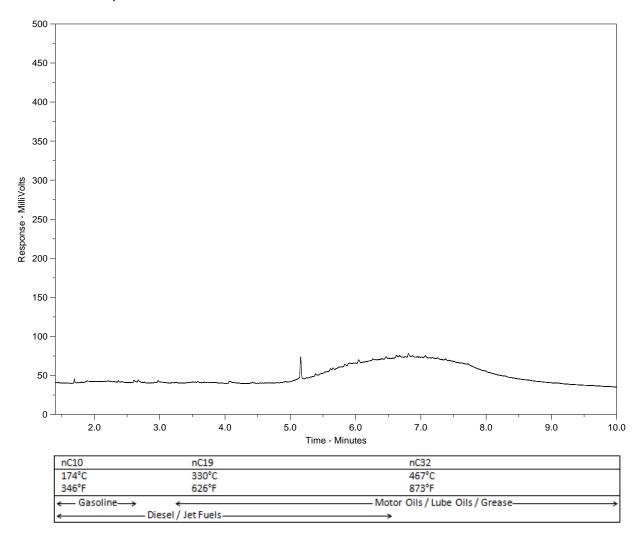
ALS Sample ID: L1203640-8 Client Sample ID: FA SURFACE


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

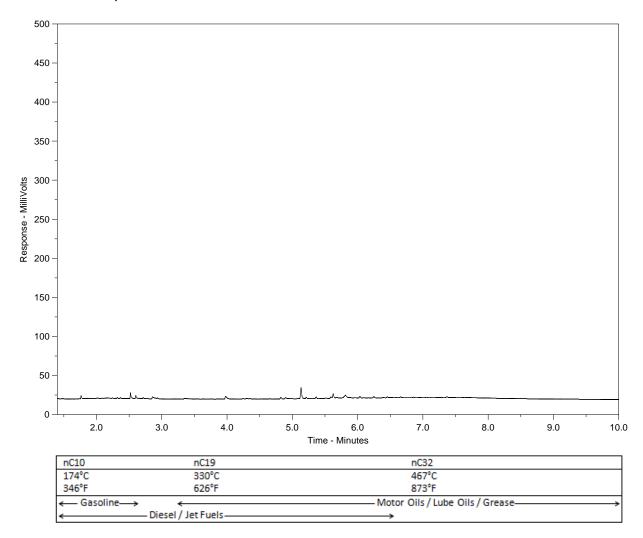
ALS Sample ID: L1203640-9 Client Sample ID: DC NUMBER 1


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

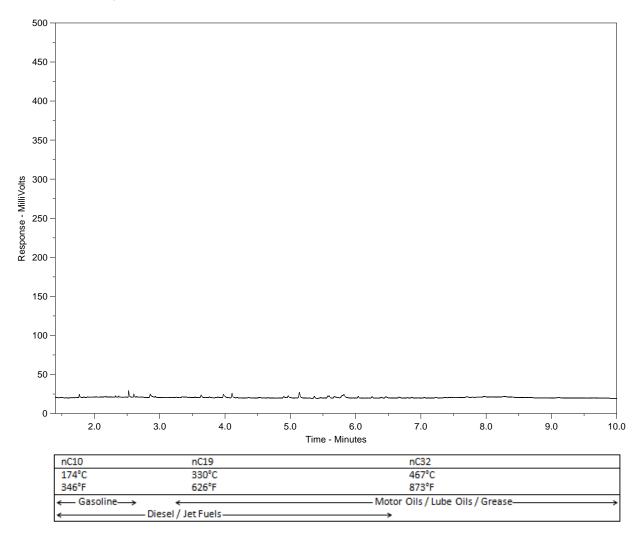
ALS Sample ID: L1203640-10 Client Sample ID: DC NUMBER 2


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1203640-11 Client Sample ID: DC NUMBER 3


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1203640-12 Client Sample ID: DC SURFACE

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

(ALS) Environmental

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	Page	1 of	1

Report To	Report F	Report Format / Distribution Service Requested (Rush for routine analysis subject to						to availa	availability)								
Company: Golder Associate	es .		☑ Standard	✓ Standard Other					Regular (Standard Turnaround Times - Business Days)								
Contact: Andrea Badger			✓ PDF	✓ Excel	☐ Digital	Fax											
Address: 201B 170 Titaniu	201B 170 Titanium Way			Email 1: andrea badger@golder.com					O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT								
	Whitehorse, YT Y1A 0G1			Email 2: gary_hamilton@golder.com				O Same Day or Weekend Emergency - Contact ALS to Confirm TAT									
Phone: 867-633-6076				Email 3: calvin beebe@golder.com				Analysis Request Please indicate below Filtered, Preserved or both (F, P, F/P)									
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '						Client / Project Information					d, Pre	served	or both	<u> (F, P,</u>	F/P)	l	
Hardcopy of Invoice with Repor	rt? Yes	No	Job #:	11-1436-0073/1	1100, 2500, 280	0		<u> </u>	<u> </u>				_	_			
Company:			PO / AFE	:			l x										
Contact: - Address: -	•	· · · · · · · · · · · · · · · · · · ·	L\$D:	<u> </u>	<u>-</u>		<u> </u>		-							છ	
Phone:	Fax:	-	0				200						•	٠.		ajie	
Lab Work Order#		- 11	Quote #:		T		8									ö	
∴ (lab use only)	L1203	,640	ALS Contact:		Sampler:	A Badger	11-1436-0072/xxx									or of C	
Sample # (1	1 to the West Control of the Control			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	As per									Number of Containers	
RR Number 1	Stores			31-Aug-12	10:50	Groundwater	X				 					8	
RR Number 2	RR Number 2				13:20	Groundwater	Х									8	
RR Surface	RR Surface				11:10	Surface Water	Х									8	
FA-MW12-01	FA-MW12-01				15:30	Groundwater	Х									8	
FA-MW12-03				31-Aug-12	17:40	Groundwater	Х									8	
FA-MW12-04				31-Aug-12	18:15	Groundwater	Х									8	
FA-MW12-05				31-Aug-12	15:30	Groundwater	Х						_			8	
FA Surface				02-Sep-12	12:00	Surface Water	Х									8	
DC Number 1			<u></u>	01-Sep-12	15:20	Groundwater	Х									8	
DC Number 2				01-Sep-12	16:20	Groundwater	X									8	
DC Number 3				01-Sep-12	17:15	Groundwater	X				<u> </u>					8	
DC Surface				02-Sep-12	14:50	Surface Water	X									8	
			ater or land use (CCI					•	Natura	il, etc) /	Hazar	dous C	etails			-	
RR Surface, FA-MW12-04, FA RR Surface, FA Surface, volun	•	solved metlas	analysis were not filte	ered or preserved	ł.		-										
			mplete all portions o	-							4_L						
Also provided	•		user acknowledges a .S location addresse	_		-			-			mmon	analys	ses.			
	LEASE (client use)			MENT RECEPT	and the second s		QVS.			NT VER					7577 FY		
Released by:	Date (dd-mmm-yy)		Received by:	Date: scot	Time:	Temperature:	Verifi	ed by:	4 14 13 14 14	Date:		Time:	7 . 7 6	Obs	ervation		
Andrea Badger 4-Sep-12 10:00			MA	OU-Aug-6	10:10	3./ ℃									s add	- 1	
			/ 1/											KIE 40 A			

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada

T: +1 (604) 296 4200

