GOVERNMENT OF YUKON DEPARTMENT OF COMMUNITY SERVICES

HYDROGEOLOGICAL ASSESSMENT HAINES JUNCTION WASTE DISPOSAL FACILITY

REPORT

APRIL 2011 ISSUED FOR USE EBA FILE: W23101317.007

creating & delivering

BETTER SOLUTIONS

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the Government of Yukon and their agents. EBA, A Tetra Tech Company, does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the Government of Yukon, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in EBA's General Conditions which are provided in Appendix A of this report.

EXECUTIVE SUMMARY

The Government of Yukon (Department of Community Services) engaged EBA Engineering Consultants Ltd. to install a groundwater monitoring well network, undertake a groundwater monitoring event and prepare a hydrogeological assessment of the Haines Junction Waste Disposal Facility.

EBA directed and supervised the drilling and installation of three monitoring wells in October 2010 and undertook a groundwater monitoring event in December 2010. This report has been prepared in accordance with the agreed scope of work and presents conclusions and recommendations based on the hydrogeological conditions encountered during the fall 2010 field works.

The following conclusions are made based on the findings of the 2011 hydrogeological assessment:

- Three monitoring wells HJ-MW01, HJ-MW02, and HJ-MW03 were installed in October 2010 in areas north and south of the waste disposal facility to establish a groundwater monitoring network at the Site. HJ-MW01 was completed in a silty sand unit and HJ-MW02 and HJ-MW03 were completed in a sand and gravel unit, with a slotted section at each well base to allow groundwater entry;
- Based on groundwater elevation data, monitoring wells HJ-MW02 and HJ-MW03 appear to be downgradient of the Site and HJ-MW01 up-gradient; however, additional groundwater elevation data are necessary to identify potential seasonal changes and confirm the conceptual hydrogeological model;
- No monitoring or sampling of groundwater is believed to have been conducted at site prior to the fall/winter 2010 field program;
- The hydrogeological conceptual model indicates that there is recharge to the quaternary aquifers from either adjacent bedrock or alluvial fans on the slopes of the surrounding ranges. There is expected to be very little infiltration of water through the thick till sequence underlying the site to the water table. Groundwater flow downgradient of the site is expected to be predominantly to the south towards Dezadeash River where groundwater would be expected to discharge.
- Analysis of the hydraulic response test results shows that the hydraulic conductivity of the sandy silt unit is about 4.4×10⁻⁷ m/s whilst the hydraulic conductivity of the sand and gravel unit is about 1.7×10⁻⁶ m/s. The estimated average linear groundwater velocity, given a worst case scenario using the maximum calculated hydraulic conductivity, is approximately 3.1 m/year;
- The concentrations of sodium at monitoring well HJ-MW02 exceeds the CSR-DW (aesthetic) criteria;
- Concentrations of sulphate at all three monitoring wells exceed the CSR-DW (aesthetic) criteria and CSR-LW criteria;
- Concentrations of boron, manganese and molybdenum exceed the CSR-IW criteria at least one monitoring location each;
- Concentrations of magnesium and manganese exceed the CSR-DW (aesthetic) criteria at all three monitoring locations;
- Antimony exceeds the CSR-DW criteria at HJ-MW01;
- All other analytes were below the applicable guideline criteria;

- All organic analytes reported concentrations below the laboratory method detection limit with the
 exception of the naphthalene concentration at HJ-MW01. The source of the naphthalene could not be
 determined and should be investigated further if subsequent sampling rounds confirm the presence of
 this analyte;
- Dissolved Organic Carbon (DOC) concentrations were consistent at each monitoring well and below concentrations that would be expected to indicate impact from landfill leachate;
- Sulphate, a potential indicator of landfill impact on groundwater, was reported in all monitoring wells at concentrations considered to be well in excess of concentrations found in landfill leachate. Considering the wells are screened below approximately 20 to 30 m of silt, it is unlikely that these elevated concentrations are a result of landfilling activities;
- Ammonia, a potential indicator of leachate contamination, was detected in all monitoring wells. The concentrations reported are considered representative of background conditions given the highest detectable concentration was reported at background well HJ-MW01;
- When compared against typical leachate chemical composition, the proportions of sulphate and ammonia present do not indicate impact on groundwater from landfill leachate. Sulphate concentrations in leachate are typically significantly lower than that reported in all three wells whilst when sulphate is present in leachate, ammonia concentrations are typically in the hundreds to thousands of mg/L (Fetter, 1993);
- Metals displayed relatively consistent concentrations in all three wells across the site with no well indicating impact from landfilling operations;
- A preliminary review of groundwater monitoring results indicates that while groundwater at all monitoring wells reported concentrations of analytes typically associated with impact from landfill leachate, these analytes are, however, considered to be representative of background concentrations in the area of the Site. Infiltration of leachate to the SQA is expected to be restricted due to the thick sequence of silt underlying the site and the confinement of the SQA. In the unlikely event that contaminants infiltrate to the top of the confining layer noted at HJ-MW02 and HJ-MW03, the upward hydraulic gradient and low permeability of this unit would limit the flow of contaminants into the SQA. Any movement of contaminants would be through the process of diffusion which would severely limit any impact upon the aquifer;

The following recommendations are made based on the findings of this 2011 Hydrogeological Assessment report:

- As required by the Site's Waste Disposal Facility Permit, future monitoring programs should be completed once during the spring freshet when the most significant groundwater recharge occurs and once in late summer,
- HJ-MW01, HJ-MW02 and HJ-MW03 should be surveyed by a professional surveyor for location and elevation prior to the next monitoring round. Elevations from the top of the PVC casing and from ground level immediately adjacent to the well should be reported.

• Following the survey of the monitoring wells and the next two rounds of sampling in 2011, data should be reviewed by a qualified hydrogeologist and the need for additional up-gradient and downgradient monitoring wells assessed.

TABLE OF CONTENTS

EXE	CUTI	VE SU	MMARY	i
1.0	ΙΝΤ	RODU	CTION	7
	1.1	BACK	GROUND	
	1.2		OSE AND OBJECTIVES	
	1.3		PE AND SEQUENCE OF WORK	
	1.4		IFICATIONS OF ASSESSORS	
	1.5		ORIZATION	
2.0	SITE	DESC	CRIPTION AND HISTORY	9
	2.1	LOCA	TION OF STUDY AREA	
	2.2		HISTORY	
3.0	МЕТ	норо	DLOGY	
	3.1	PREL	IMINARY HYDROGEOLOGICAL ASSESSMENT	
	-	3.1.1	Data Sources	
		3.1.2	Site inspection	
		3.1.3	Background Geological Information	
		3.1.4	Contaminant Sites Registry	
		3.1.5	Interviews with Waste Disposal Facility Personnel	14
		3.1.6	Review of Waste Disposal Facility Permit and Waste Management Plan	15
		3.1.7	Review of Groundwater Assessment Reports	15
		3.1.8	Review of Environment Yukon Information	15
		3.1.9	Review of EBA Internal Database	15
	3.2	FIELD	INVESTIGATIONS	16
		3.2.1	Scope of Field Investigations	16
		3.2.2	Groundwater Monitoring Well Network	16
		3.2.3	Monitoring Well Surveying	
		3.2.4	Groundwater Monitoring Event	
		3.2.5	Rising Head and Falling Head Hydraulic Response Tests	18
	3.3		RATORY TESTING	
	3.4		ITY CONTROL/QUALITY ASSURANCE	
	3.5	Applic	ation of Applicable Water Quality Standards	21
4.0		NCEPT	UAL HYDROGEOLOGICAL MODEL	
	4.1		ING	
	4.2		λΤΕ	
	4.3		OGY AND HYDROGEOLOGY	
		4.3.1	Geological Framework	
			4.3.1.1 Yukon Group	
			4.3.1.2 Dezadeash Group	
			4.3.1.3 Tertiary Volcanics	

			4.3.1.4 Quaternary Deposits	. 24
		4.3.2	Principal Aquifers	
	4.4	GROU	NDWATER FLOW SYSTEMS	
		4.4.1	Regional and Intermediate Groundwater Flow	. 25
		4.4.2	Local Groundwater Flow	. 26
		4.4.3	Groundwater Elevations, Flow Direction, Gradient	. 26
	4.5		HEAD TEST RESULTS	
	4.6	ESTIM	ATED AVERAGE LINEAR GROUNDWATER VELOCITY	. 28
	4.7	POTEN	ITIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS .	. 28
5.0	GRC	UNDV	ATER IMPACT ASSESSMENT	29
	5.1		N OF GROUNDWATER CHEMISTRY	
	Disso		janic Carbon	
			ed Solids	
	5.2		PRETATION OF GROUNDWATER CHEMISTRY	
6.0	CON		ONS	33
7.0	REC	OMME	NDATIONS	35
8.0	CLO	SURE.		36
REFI	EREN	CES		37

TABLES

Table 1	Groundwater Analytical Results
Table 2	Groundwater Duplicate RPD'S

FIGURES

Figure 1	Site Location
Figure 2	Site Plan and Cross Section B-B' Alignment
Figure 3	Site Aerial Image
Figure 4	Regional Surface Geology
Figure 5	Regional Conceptual Hydrogeological Cross Section A – A'
Figure 6	Local Conceptual Hydrogeological Cross Section B – B'
Figure 7	Regional Drainage and Land Zoning
Figure 8	Groundwater Elevation Contours (December 2010)
Figure 9	Schoeller Plot
Figure 10	Piper Diagram

Figure 11 Stiff Diagrams

APPENDICES

- Appendix A EBA's Services Agreement and General Conditions
- Appendix B Haines Junction Waste Disposal Facility Permit
- Appendix C Monitoring Well logs
- Appendix D Groundwater Well Development Logs
- Appendix E Groundwater Sampling Field Sheets
- Appendix F Laboratory Analytical Results
- Appendix G Hydraulic Response Test Data and Analysis

I.0 INTRODUCTION

I.I BACKGROUND

EBA, A Tetra Tech Company (EBA) have been retained by the Government of Yukon (YTG), Department of Community Services, to design and install a groundwater monitoring network, undertake a groundwater monitoring event and prepare a Hydrogeological Assessment Report at the Haines Junction Waste Disposal Facility (the "Site").

I.2 PURPOSE AND OBJECTIVES

The purpose of this study is to assess the impact of waste disposal at the Site upon local groundwater quality.

The specific objectives of this study were to:

- Design and install a monitoring well network sufficient to provide an assessment of the Site's impact on groundwater quality;
- Assess groundwater quality against relevant Yukon water quality standards;
- Recommend further works to be completed as necessary to more comprehensively assess the impact to groundwater quality.

I.3 SCOPE AND SEQUENCE OF WORK

The following scope of work was proposed to develop the hydrogeological conceptual model for the site. This work was performed in accordance with the Site's Waste Disposal Facility Permit (Permit No: 80-002, Effective January 1, 2010 to December 31, 2011), relevant Environment Yukon Protocols and in accordance with the Yukon Environmental & Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (YESAA File Number: 2008-0246). A copy of the current Waste Disposal Facility Permit is provided in Appendix B.

In summary, the proposed scope of work included a preliminary "desktop study", followed by a field investigation program consisting of the installation of a groundwater monitoring network, water level monitoring, aquifer testing, groundwater sampling and analysis from the monitoring well network, followed by interpretation of results to provide a Hydrogeological Assessment Report detailing the impact to groundwater quality and risk to downgradient receptors. This work was undertaken in general accordance with relevant Yukon Contaminated Sites Regulation (YCSR) regulations.

To complete the scope of work, EBA completed the following tasks:

- Background data compilation and review;
- Installation of a monitoring well network;
- Development of monitoring wells;
- Sampling and testing of groundwater;

- Aquifer testing (hydraulic conductivity);
- Data review and interpretation of results;
- Reporting.

Table 1-1 summarizes the tasks and sequence of events to arrive at this report.

	the second se
Date	Activity
8 May 2010	EBA formally appointed by YTG to undertake the work.
3 July 2010	Site inspection by Adam Seeley of EBA.
9 - 19 October 2010	Groundwater monitoring wells installed by Geotech Drilling under the supervision of EBA. Development of groundwater monitoring wells undertaken by EBA.
6 – 7 December 2010	Groundwater monitoring event and slug testing of monitoring wells undertaken by EBA.
2 March 2011	Report Issued For Review.

Table 1-1: Site Assessment and Task Sequence

I.4 QUALIFICATIONS OF ASSESSORS

Mr. Adam Seeley conducted the initial site inspection, coordinated drilling works, and prepared this assessment report. Mr. Seeley is a Hydrogeologist with EBA's Whitehorse Environment Group, with 9 years experience in the environmental and hydrogeological fields and has been involved in groundwater monitoring and reporting programs at over 50 sites in Australia and the Yukon.

Ms Breanne Waggott supervised drilling works, undertook the groundwater monitoring and aquifer testing event and assisted in the preparation of this assessment report. Ms Waggott is a Junior Hydrogeologist with EBA's Whitehorse Environmental Group, with 1 year experience in the environmental hydrogeology field. Throughout her time at EBA she has assisted multiple field and desktop based hydrogeological assessments.

Ms. Tamra Reynolds, senior reviewed this report. Ms. Reynolds is a Senior Contaminant Hydrogeologist with EBA's Whitehorse Environment Group, with 15 years of experience in the environmental and hydrogeological fields. She has conducted over 100 Environmental Site Assessments, hydrogeological evaluations, and remediations at sites across Canada including Yukon. She has been registered as a Professional Geoscientist with APEG BC since 2001.

I.5 AUTHORIZATION

Written authorization and a signed contract to proceed with the works detailed in EBA's proposal (Doc. Ref. PW23101317) dated February 2010 were received from Bill Brown via email on May 19, 2010.

EBA received verbal authorization from Government of Yukon, Department of Community Services on June 21, 2010 to proceed with the work outlined in EBA's Technical Memo dated April 29 2010. A Change Order signed by both Mr. Marc Perreault, a Director at YTG, and an EBA representative authorising additional tasks to complete water sampling and hydrogeological assessments at the project site was received by EBA on July 9, 2010.

2.0 SITE DESCRIPTION AND HISTORY

2.1 LOCATION OF STUDY AREA

Haines Junction Solid Waste Disposal Facility (SWDF) is located 175 km west of Whitehorse, approximately 200 m off the Alaska Highway at a latitude of 60° 46′ 12″ N and longitude of 137° 30′ 53″ W. The Site is approximately 2 km north of the center of the Haines Junction community and 800 m north of the nearest residential development.

The Dezadeash River and Pine Lake are the closest major water bodies, 2.5 km south and 3.7 km northeast respectively. The site is located at about 630 m asl on a slight topographic high between Pine Lake and the town of Haines Junction on relatively flat terrain with the natural land form only minimally altered from waste deposition activities. In general, the land slopes to the south towards Haines Junction and the Dezadeash River. The site location, surrounding features and local elevation contours are shown in Figure 1.

Photo 1 shows a view across the former waste deposition area, which has been covered and semirehabilitated with grasses and weeds growing on the capped surface. The Kluane Ranges are visible in the background, approximately 10 km away.

2.2 SITE HISTORY

The Haines Junction SWDF is believed to have commenced receiving waste in the mid to late 1980's, although permits for the receival and deposition of Special Waste and Solid Waste were not issued to the Village of Haines Junction (VHJ) until December 21, 2000 and March 31, 2001, respectively. The facility is owned and managed by the Village of Haines Junction, who oversee compliance with permit requirements. The site is currently maintained by a site supervisor with access controlled by a lockable gate, an electrified 'Texas gate' livestock grate and an electric fence around the operational area perimeter. The potential exists that access to the site was formally unrestricted, potentially resulting in the uncontrolled deposition of waste.

Over its operational life, the site has received waste streams including domestic waste, recyclables, household hazardous wastes and special waste such as oil and batteries, asbestos, clean wood wastes, clean soil, compost, tires, scrap metals, automobiles, white metals, white goods with refrigerant gases, and euthanized animals. Given the years of operation of the site prior to the issue of a permit, there is a high potential that hazardous items such as batteries, waste oil, and other chemical waste that are now stockpiled and appropriately disposed of, were formally buried with general domestic waste.

Photo 1: Haines Junction Waste Disposal Facility – Area 1, July 2010 (view southwest)

Prior to around 1996, domestic waste was typically incinerated with burned waste deposited in burial pits excavated below ground level. From 1996 onwards, domestic waste has been buried in excavated trenches or placed in bermed above ground "cells". Construction and grubbing waste has been deposited on top of the natural land surface and periodically covered with soil. Photo 2, below shows the current above ground domestic waste deposition cell.

Two site plans were provided to EBA which show the location of the various disposal areas across the site. One plan is dated September 2002 (YES) whilst the other plan is un-dated and has no author shown. The completeness of the maps in regards to the locations and number of former waste burial areas could not be verified. Locations of current disposal areas were obtained through interviews with site personnel during the field works conducted in 2010.

The site is currently divided into three separate waste disposal and stockpile areas, Areas 1, 2 and 3. Waste is segregated into appropriate areas and either stockpiled and stored, recycled or buried at the locations indicated in the site plan shown in Figure 2.

Photo 2: Haines Junction Domestic Waste Disposal, Area 1 – July 2010 (view east)

Domestic waste had historically been burned and buried in pits in the western and central portions of Area 1. Burning of domestic waste has been restricted since 1996, although some burning was reported to have continued due to public users lighting fires. Burning no longer occurs on site (Ken Gilbert, pers. comm.), which complies with the permit requirement to phase out burning by January 1, 2012. The eastern end of Area 1 has been excavated to approximately 4 m below ground level, with unburned domestic waste being placed in "cells" separated by soil berms and covered. Putrescible domestic waste is currently being disposed of in above ground bermed cells at the eastern end of Area 1, as shown in Photo 2. Batteries, oils and other hazardous wastes had been stored in a plastic lined area approximately halfway along the southern boundary of Area 1 prior to being moved to its current location, in a shed closer to the site entrance. When the former storage facility was removed, there was no evidence of leakage though the plastic lining (Martin Jones pers. comm.).

Area 2 has been raised approximately 3.0 to 3.7 m (10 to 12 ft) towards the east from the natural ground elevation with the deposition and burial of building material such as steel and timber. While this area was typically used for construction debris and grubbing waste, domestic waste was also often buried along with building waste (Martin Jones pers. comm.). A pit approximately 3 m (12 ft) below ground level was excavated within Area 2 for the disposal of asbestos. Animal carcasses are buried to a depth of 3.0 to 3.7 m (10 to 12 ft) around midway along the southern extent of the deposition area.

Empty fuel, oil and septic drums and tanks are stockpiled on the northern boundary of Area 3. There are believed to be buried fuel and oil drums and tanks beneath the current stockpile area. Anecdotal information provided to an EBA employee during the October 2010 drilling works suggests that as recently as 2009, drums containing significant amounts of oil were being placed in pits in Area 3 and compacted,

potentially resulting in oil being released into the pit prior to the pit being backfilled. Derelict cars are stockpiled at the eastern end of Area 3 and it is believed that there are cars buried beneath the stockpile (Martin Jones pers. comm.). White goods and miscellaneous metal is stockpiled up to 3 m high along the southern side of Area 3 (Photo 3).

Photo 3: White Goods and Metal Stockpile, Area 3 - July 2010 (view east)

Soil containing elevated hydrocarbon concentrations has been stockpiled at the western end of Area 1 and north-west corner of Area 3. The stockpiled soil at Area 1 was established and permitted in 2008 to Mr. Martin Eckervogt for the remediation of contaminated soil from the Glacier View Inn property. The stockpile is approximately 50 m x 50 m x 1.2 m and surrounded by a small soil berm. This soil is required to be regularly turned over to aid in remediation, although the stockpiles are not believed to have been turned for some time (Martin Jones pers. comm.)

The source of the soil in Area 3 and the nature of contamination are unknown. The contaminated soil was regularly turned over, fertilised, and is believed to have been remediated (Martin Jones pers. comm.). Further information in regards to the soil was unable to be obtained by EBA for this assessment.

The sites Solid Waste Management Plan (SWMP) details a procedure for the compaction, covering and capping of domestic waste at the Site. Compaction of the garbage is required to be conducted immediately after the deposition of waste and then immediately followed by the placement of a minimum of 100 mm of cover material. For the trench method of waste landfilling historically used at the site, the native material excavated from the trench, a clayey-silt and fine sandy-silt, was considered to be an appropriate intermediate cover and capping material. Inspection of the current domestic waste deposition cell in July 2010 indicated that deposited waste had not been compacted or covered for possibly a significant period of time. Photo 2 shows the current cell and accumulation of uncovered waste.

The SWMP details that a minimum of 0.6 m of final cover of clayey-silt or silty-clay type soil is to be placed over the surface of the landfill to help shed rainwater. The final cover is also to be crowned and sloped to ensure surface runoff. A minimum of 150 mm of topsoil is then to be placed over the low permeability soil as a final surface cover for the landfill. The topsoil is to be seeded with grass which is suitable for the local climate and keeps with the surrounding natural environment. Surface water is to be diverted away from the landfill site with appropriate ditching.

The SWMP does not outline the lining of the bases of the waste disposal cells landfill deposition areas with engineered low permeability membranes, although as reported in the SWMP, the accumulation of water in the disposal trenches indicates the native soils have a low permeability that may assist in reducing leachate infiltration.

3.0 METHODOLOGY

3.1 PRELIMINARY HYDROGEOLOGICAL ASSESSMENT

The preliminary hydrogeological assessment methodology involved an assessment of existing information and an inspection of the SWDF and surrounding area on July 3, 2010.

This component included the following tasks:

- Collation of background information;
- Assessment of the available groundwater data, borehole logs and related hydrogeological information;
- Development of a Conceptual Hydrogeological Model.

3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Site inspections and interview with site operational personnel;
- Topographic and Geological maps;
- EBA internal database search and review of past EBA assessment reports and maps;
- Operational permits issued by Environment Yukon for the Haines Junction WDF site;
- Review of the Haines Junction Solid Waste Management Plan (June 2003);
- Groundwater Assessment Reports provided by Village of Haines Junction;
- Environment Canada Climate Normals (1971 2000) (http://www.climate.weatheroffice.gc.ca/climate_normals/index_e.html);
- Yukon Water Well Registry, Department of Environment, Government of Yukon (http://www.environmentyukon.gov.yk.ca/pdf/YukonWaterWellsSummary.pdf)
- Contaminated Site Registry records at Yukon Environment; and,
- Interview with Yukon Government Community Operator Supervisors.

3.1.2 **Site inspection**

A site inspection was undertaken by EBA personnel on July 3, 2010. The purpose of this visit was to review the site location, layout and types of waste, confirm the expected geology and topography, to note aspects of geological and hydrogeological significance and to ascertain drill rig access for the proposed groundwater monitoring well locations.

3.1.3 Background Geological Information

Geological information was obtained through site visits, review of topographic and geological maps (from the Canadian and Yukon Geological Surveys) and geotechnical reports and maps. Additional subsurface information was gathered through an internal database search of EBA records for boreholes, test pits, monitoring wells, and soil tests completed at or in the vicinity of each site.

3.1.4 Contaminant Sites Registry

Since 2002, when the Contaminated Site Regulation came into effect, Environment Yukon has been maintaining records of documented spills and reported contaminated sites throughout the Yukon. This database is known as the Contaminated Site Registry. A request was made to Environment Yukon for a Contaminated Sites Registry search at the Haines Junction Waste Disposal Facility.

It was reported that a spill of 100 gallons of diesel fuel had occurred at the metal and wood area of the SWDF on May 30, 2000 (Matthew Nefstead, pers. comm.). The soil was to be excavated and placed in a "soil treatment area of the SWDF". The date of the spill predated the requirement for land treatment facilities to have permits, so it is unclear if removal and treatment actions were taken.

No other spills or contaminated sites have been recorded in the vicinity of the site since electronic records began in 2001. Spills documented prior to 2001 can be found through a request from Access to Information & Protection of Privacy Act (ATIP). Such a search was not within the scope of this project. It is noted that there remains a possibility of unreported or un-assessed contamination sources within the vicinity of the Site.

3.1.5 Interviews with Waste Disposal Facility Personnel

EBA representatives met with Yukon Government Community Operations Supervisors Mr. Peter Zurachenko and Mr. Jason Doucet on June 23, 2010 to discuss information pertaining to the Haines Junction Waste Disposal Facility. Information obtained from this interview included:

- Brief site history;
- Historical waste deposition inventory and anecdotal information;
- Most up to date site plans;
- Special waste deposition/storage areas.

3.1.6 Review of Waste Disposal Facility Permit and Waste Management Plan

The Site's Waste Disposal Facility Permit (Permit No: 80-002) and Solid Waste Management Plan were reviewed and used in conjunction with relevant background information to assess accepted and potential waste streams, to aid in the assessment of potential contaminant transport mechanisms, to confirm monitoring requirements and develop a monitoring network in compliance with the permit. A summary of the main requirements of the permit in regards to this hydrogeological assessment are outlined in Table 3-1.

Site	Waste Disposal Facility Permit No.	Solid Waste Management Plan	Permit Requires Groundwater Monitoring	Permit Specifies Groundwater Analysis List	Monitoring Schedule
Haines Junction Waste Disposal Facility	80-002	Yes (Access, et al, 2001)	Yes	Yes	Twice per year (Spring and late Summer)

Table 3-1: Summary of Current Permit Groundwater Monitoring Requirements

3.1.7 Review of Groundwater Assessment Reports

Michael Riseborough (Village of Haines Junction Chief Administrative Officer) provided two reports, (Hydrogeological Consultants, 1990 and J. Gibson Env. Consulting, 2008) to EBA for background review.

3.1.8 Review of Environment Yukon Information

EBA representatives visited the Yukon Department of Environment on June 18th 2008 to conduct a preliminary review of information pertaining to the Haines Junction Solid Waste Disposal Facility. Information provided by Yukon Department of Environment (Matthew Nefstead, Contaminated Sites Analyst) for review included:

- Current waste disposal facility permits (which included accepted waste streams and acceptance of special waste);
- Historical site reports, site plans, site inspection reports;
- Recorded spills on sites or neighboring contaminated sites; and,
- Other miscellaneous information related to each site.

3.1.9 Review of EBA Internal Database

EBA retains a database of previous reports, which was reviewed for information pertaining to the Haines Junction Waste Disposal Facility. Relevant information was used to assess geological and hydrogeological conditions and assist in the determination of potential drill sites.

Lithological logs and limited geochemical analytical data was reviewed from five Village of Haines Junction water supply wells located approximately 1.3 to 2.5 km to the south of the Site and detailed in EBA (2003).

EBA (2003) also lists another 10 private wells in the Haines Junction region and provides limited well information for review.

3.2 FIELD INVESTIGATIONS

3.2.1 Scope of Field Investigations

The scope of the hydrogeological assessment field investigation was as follows:

- Adam Seeley (EBA) conducted an inspection of the Haines Junction SWDF on 3 July 2010;
- Three on-site groundwater wells were drilled by Geotech Drilling under the supervision of EBA from October 9 to 18, 2010. Wells were developed immediately following the completion of the well installation.
- The three on-site groundwater wells were sampled by EBA on December 6 and 7, 2010. The water levels at each location were measured prior to purging and sampling and physiochemical parameters were tested at each monitoring well during sampling. Groundwater samples were sent to analytical laboratories accredited as conforming to ISO/IEC 17025 for analysis;
- Hydraulic response tests were conducted on the three monitoring wells on December 6 and 7, 2010 in order to estimate the hydraulic conductivity of the aquifer;
- Field and laboratory results were summarized, interpreted and are presented in this report.

3.2.2 Groundwater Monitoring Well Network

Three (3) groundwater monitoring wells were proposed to be installed at the Site to assess potential groundwater contamination sourced from the waste disposal facility. HJ-MW01 was targeted to characterize up-gradient groundwater conditions while HJ-MW02 and HJ-MW03 were aimed to assess any impact to the groundwater quality sourced from the landfill. The three monitoring wells were installed in October 2010 under the direction of EBA to establish a groundwater monitoring network.

Locations of the monitoring wells were selected based on aerial photography, review of geological and topographical information, review of site history and a site inspection. A site plan showing the approximate monitoring well locations and key site features is provided in Figure 2. Note that these wells have not been surveyed for location and are only approximate.

The drilling and monitoring well installation was completed by Geotech Drilling of Prince George, British Columbia under the direction of EBA on October 9 to 18, 2010. HJ-MW01 and HJ-MW02 were both advanced to approximately 40 m below grade (mbg) using an air rotary drilling technique. HJ-MW03, was advanced to 47 mbg also using an air rotary technique.

Grab samples of the drilling returns were collected on regular intervals to log the sediments. The borehole logs indicating observed lithology and monitoring well completion details are included in Appendix C, with a summary of well completion details presented in Table 3-2. Groundwater was encountered in HJ-MW01 and HJ-MW03 at approximately 38 to 39 mbg and at HJ-MW02 at approximately 45 mbg. Groundwater was encountered in HJ-MW03 in a primarily sand and gravel unit and HJ-MW01 in a sandy silt unit.

The lithology encountered was similar at all three locations and consistent with mapped lithological interpretations. Each borehole profile generally consisted primarily of silt with sand layers and some gravels to the maximum depth investigated (47.2 m).

Monitoring wells were installed in all three drilled boreholes. Installation details are included on the borehole logs in Appendix C. Typical completion details are:

- HJ-MW01 was completed in a sandy silt unit, HJ-MW02 and HJ-MW03 were completed in a gravelly sand unit;
- All three wells were drilled and screens placed aiming to intersect the water table;
- Monitoring wells were completed with 50 mm PVC Schedule 40 PVC pipes;
- A 3 m long well screen (0.010-slot) was installed at all monitoring wells with the intent that the observed groundwater table would be approximately 1 m below the top of the well screen;
- A solid un-slotted PVC pipe was installed above the well screen to about 0.9 m above grade;
- A silica sand pack was placed in the annulus between the well screen and the borehole wall. The sand pack was extended from the base of the borehole to about 0.6 m above the well screen;
- Approximately 1 m of bentonite was placed in the annulus directly above the sand pack. Additional bentonite seals were placed at various depths within each borehole to act as a safeguard against infiltration of contaminants to the underlying aquifer. The remainder of the annulus was filled with native cuttings to around 1.0 mbg.
- A surface seal consisting of approximately 1 m of bentonite and concrete was then installed to bring the borehole to ground level and limit surface water infiltration.
- Each well was capped with a PVC end-cap and the well PVC-standpipe protected and secured with a lockable steel protective casing.
- Each well was developed by removing a minimum of 3 well volumes using a dedicated disposable bailer. Development logs are provided in Appendix D.

Well ID	Drilled Depth (mbg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (mbg)	Filter Pack Interval (mbg)
HJ-MW01	38.4	Silt with Fine Sand	50	35.4 – 38.4	34.7 – 38.4
HJ-MW02	41.9	Gravelly Sand (with some silt)	50	38.9 – 41.9	38.3 – 41.9
HJ-MW03	47.2	Gravelly Sand (with some silt)	50	44.2 - 47.2	43.6 - 47.2

Table 3-2: Well Construction Details

3.2.3 Monitoring Well Surveying

EBA surveyed the vertical elevation of the top of the well PVC standpipe at each of the well locations on October 18, 2010. Elevations were surveyed relative to a local benchmark assigned an elevation of 100 m. The monitoring wells were not surveyed for location and it is recommended by EBA that this task be undertaken at all wells prior to the next monitoring round.

Table 3-3 presents survey data and water level measurements.

Well ID	Top of PVC Casing Elevation (m)	Standing Water Level (m b TOC) 12/6/2010	Groundwater Elevation (m) 12/6/2010
HJ-MW01	107.024	35.78	71.2
HJ-MW02	106.285	38.65	67.6
HJ-MW-03	100.549	32.63	67.9

Table 3-3: Well Survey and Water Level Data

3.2.4 **Groundwater Monitoring Event**

Groundwater monitoring wells HJ-MW01, HJ-MW02 and HJ-MW03 were sampled by EBA on December 6 and 7, 2010 using methods in accordance with Contaminated Sites Regulation Protocol No. 7: Groundwater Monitoring Well Installation and Sampling. Wells were sampled over one month after the completion of drilling, installation and development, allowing sufficient recovery of the water levels and to allow for the groundwater in the monitoring well to reach equilibrium with the aquifer.

Prior to sampling, the standing water level (SWL) was measured in each well, using an electric measuring tape. Each well was purged of three well volumes using dedicated tubing with a "Waterra" non-return foot valve installed prior to a sample being obtained. During purging, physio-chemical parameters (pH, temperature, EC and DO) were measured and recorded. Groundwater Purge and Sampling Field Sheets are provided in Appendix E.

Each sample bottle was labeled with the location ID, project number and date. Sample containers and appropriate preservatives for each suite of tests were provided by the primary laboratory. Samples for dissolved metals analysis were field filtered using new, clean 0.45 μ m filters and preserved with nitric acid. All samples were stored in coolers containing ice-bricks and delivered to the analytical laboratories (Exova and Maxxam) under Chain of Custody and within appropriate holding times. Both laboratories are certified by the Canadian Association for Laboratory Accreditation and are accredited as conforming to ISO/IEC 17025 for analysis.

3.2.5 Rising Head and Falling Head Hydraulic Response Tests

A falling head test or rising head test was performed on each of the monitoring wells at the Site to estimate hydraulic conductivity of the aquifer at the specific well locations. Falling head tests were performed at wells where polyethylene bailers could not remove 10% of the monitoring wells holding volume rapidly enough for a rising head test to be performed accurately. Falling head tests were undertaken at the

downgradient wells HJ-MW02 and HJ-MW03 by fully submerging a 3 m PVC solid slug filled with sand equivalent to 2.85 L. The rising head test was performed at HJ-MW01 by rapidly removing 2 liters of water from the well using 50.8 mm diameter dedicated polyethylene bailers. The recovery response in each well was monitored using the electronic water level sounder until the water level had recovered to at least 80% of its static water level. In addition to the manual data, a Solinst Levelogger® was deployed in the well to automatically record the water level data at one second intervals.

3.3 LABORATORY TESTING

The laboratory testing completed for the submitted groundwater samples collected on December 6 and 7, 2010 is summarized in Table 3-4. This analysis list is in compliance with the requirements of the site's Waste Disposal Facility Permit (Permit No. 80-009).

Sample ID	Ca, Mg, Na, K, Cl, SO4, NO3, NO2, PO4	Dissolved Metals, Hg, Hardness	Alkalinity, CO3, HCO3, pH, TDS, NH3, DOC	VOCs, COD, TKN, EPHw10-19	VHw6-10, BTEX, PAHs
HJ-MW01	✓	\checkmark	✓	✓	✓
HJ-MW02	\checkmark	\checkmark	~	\checkmark	~
HJ-MW03	✓	\checkmark	✓	✓	\checkmark

 Table 3-4: Laboratory Testing Program – December 2010

3.4 QUALITY CONTROL/QUALITY ASSURANCE

This section describes the Quality Assurance (QA) and Quality Control (QC) procedures undertaken to ensure sample integrity and representativeness and the reliability and accuracy of analysis results.

A RPD data validation spreadsheet is provided in Table 2. Data validation is summarized in Table 3-5.

QA/QC Aspect	Evidence and Evaluation				
Data Representativeness					
Sample integrity	All samples were received by the laboratory within appropriate holding times				
Background Samples	HJ-MW01 is considered to be hydraulically up gradient of the Site and the groundwater samples from this location can be considered to be representative of background conditions.				
Field Procedures	Monitoring wells were developed and sampled using dedicated tubing with "Waterra" non-return foot valves installed on the end of the tubing. All equipment that was used in multiple wells was decontaminated using a three stage wash procedure (detergent, tap water, distilled water).				

Table 3-5: Review of QA/QC

QA/QC Aspect	Evidence and Evaluation
Calibration of Field Equipment	Calibration of field equipment was undertaken prior to each day of field work.
Data Precision and Accuracy	
Blind Duplicates	One blind duplicate sample was collected from HJ-MW03 during the December 2010 groundwater monitoring event.
	Of the 40 analyte pairs tested, RPD values could not be calculated for 13 pairs as both values were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, 2 analytes (copper and zinc) exceeded the RPD acceptance criteria of +/-30%. These exceedences are considered to be generally minor and related to the poor reproducibility of the analytical methods at low analyte concentrations.
	RPD calculations are presented in Table 2.
Split Duplicates	One split duplicate sample was collected from HJ-MW03 during the December 2010 groundwater monitoring event and sent to Maxxam Laboratories. This sample was incorrectly labeled as MJ-MW03 on the Maxxam report.
	Of the 45 analytes tested, RPD values could not be calculated for 24 pairs as both values were below the laboratory MDL. Of the remaining analyte pairs tested, 5 analytes (copper, iron, nickel, selenium and titanium) exceeded the RPD criteria of +/- 30%. Exceedences for copper, iron, nickel and selenium are considered to be generally minor and related to the poor reproducibility of the analytical methods at low analyte concentrations.
	Titanium reported an RPD of 136% with results checked and confirmed by both laboratories. Although this RPD significantly exceeds the acceptable criteria, titanium is not considered a contaminant of concern and this result does not impact the validity of the entire data set.
	RPD calculations are presented in Table 2.
Trip Blanks	One trip blank was collected during the December 2010 groundwater monitoring event and placed on hold at the laboratory. Following the receipt and interpretation of results it was not considered necessary to undertake any analysis on this sample.
Laboratory Internal QA/QC	Laboratory internal QA/QC is detailed within the primary and secondary laboratories reports (Appendix F). Overall, both labs showed acceptable testing frequency and results for method blanks, laboratory duplicates and matrix spikes.
Holding Times	Holding times for samples were in conformance with applicable ASTM and laboratory requirements.

Table 3-5: Review of QA/QC

QA/QC Aspect	Evidence and Evaluation	
Laboratory Detection Limit	Laboratory reports indicate that the method detection limits were lower than the respective assessment criteria.	
Completeness of test program	The scope of work undertaken was generally consistent with that required to characterize the site and meet the study objective.	
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater and therefore, the data set used as the basis for the groundwater assessment is considered valid and complete.	

Table 3-5: Review of QA/QC

3.5 Application of Applicable Water Quality Standards

The *Contaminated Sites Regulation (CSR) (Environment Act)* provides standards for the assessment and remediation of contaminated sites in Yukon. The water quality standards applying to the assessment of groundwater contamination in Yukon are those specified in Schedule 3 of the CSR. The four types of water uses outlined in the CSR, the relevant water quality standards and their applicability to the assessment are presented in Table 3-6.

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment ¹
Aquatic Life	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1	Not Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable

Table 3-6: Applicable Water Quality Standards

The following presents an assessment of the applicability of each water use detailed above to this assessment.

Aquatic Life

There are no identified potential Aquatic Life receptors (surface water discharge locations such as wetlands, lakes or rivers) within 1 km downgradient of the site. Therefore, this water use is considered to be **not applicable**.

Drinking Water

A review of the Yukon Water Well Registry by EBA on January 6, 2011 and review of the EBA well database shows there are potentially wells within a 1.5 km radius of the Haines Junction waste disposal facility that may be used for drinking water. It is noted that Yukon Water Well Registry database is not complete and does not provide accurate well locations and it is possible that there are more wells than that recorded on the registry in the local vicinity.

Three wells were identified within 1.5 km downgradient of the SWDF, although there may be additional wells within this distance. Haines Junction Community Well #5 is located approximately 1.5 km to the south, although this well is screened at almost 400 m bgl and is unlikely to be hydraulically connected with the upper most aquifer. Haines Junction Community Well #4 (currently offline) is 1.4 km to the south, although this well is screened at almost 250 m bgl and is also unlikely to be hydraulically connected with the upper aquifer. There is a well of unknown use identified 1.25 km to the south of the site. The well is identified as "Esso" and may be a monitoring well associated with a gas station on the Alaska Hwy.

Based on a review of Google Earth images (2005) and the Yukon Mining and Lands Viewer surveyed land parcels map viewer, the nearest downgradient domestic developments to the SWDF are located within the Haines Junction community, approximately 0.8 km to the south. It is inferred that there are domestic developments within the Haines Junction community that utilize drinking water wells.

As there are domestic developments that are located within the allotted distances for drinking water use (1.5 km) and there are a number of wells on the water well database listed for domestic use without an exact location specified, this water use is considered to be **applicable**.

Irrigation

The Yukon Water Well Registry compiled by the Department of the Environment was review by EBA on January 6, 2011. The registry does not list the use of the wells in the vicinity of the waste disposal facility as being for Irrigation use. It is noted that this database is not a complete record of all wells drilled and it is possible that there are irrigation wells in the local vicinity not captured on the registry.

Figure 7 shows that an area to the east and southeast of the Site and potentially within 1.5 km of the boundary was identified as having an *"Agricultural Application"* tenure. Therefore, the potential for Irrigation Water use downgradient of the site exists and this water use is considered **applicable**.

Livestock

The Yukon Water Well Registry compiled by the Department of the Environment was review by EBA on January 6, 2011. The registry does not list the use of the wells in the vicinity of the waste disposal facility as being for Livestock use. It is noted that this database is not a complete record of all wells drilled and it is possible that there are wells in the local vicinity not captured on the registry used for Livestock Use.

Figure 7 shows that an area to the east and southeast of the Site and potentially within 1.5 km of the boundary was identified as having an "*Agricultural Application*" tenure. Therefore, potential for Livestock Water use downgradient of the site exists and this water use is considered **applicable**.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.I SETTING

The Site is located approximately 2 km north of the centre of the Haines Junction community and approximately 200 m east of the Alaska Highway. The closest residential development is approximately 800 m to the south of the Site. The Site is roughly trapezoidal with western and eastern boundary lengths of 460 m and 230 m respectively. The northern boundary has a length of 332 m and the southern boundary is approximately 422 m wide. A site plan is presented in Figure 2.

On a regional scale, the land generally slopes to the south towards the Dezadeash River approximately 2.5 km to the south of the Site. Regional topographical elevation contours are shown on Figure 1. The site is located at an elevation of about 630 m asl on a topographic high between Pine Lake and the town of Haines Junction. The Site topography is generally flat, with a slight fall in elevation from north to south. Portions of the land surface of Area 1 and Area 2 has been raised up to 3 m above the natural surface elevation through the deposition and subsequent covering of waste.

Approximately half the site has been cleared of vegetation with cleared areas used as waste deposition and stockpile areas (Areas 1, 2 and 3). The area surrounding the Site has a medium to heavy cover of native vegetation. A satellite photograph of the site from 2005 showing cleared waste deposition and burial areas along with remaining native vegetation is shown in Figure 3. The site layout during the fall assessment period was very similar to that shown in this image. The domestic waste cell, which appears empty in the 2005 image, was noted to be close to being filled during the July 2010 site visit.

4.2 CLIMATE

Climatic data is not recorded in the Haines Junction area. Data from the Burwash A station (the closest weather station, 100 km northwest of Haines Junction), indicates 280 mm of annual precipitation with the majority of precipitation falling as rain between May and September. The average annual temperature at the Burwash A station airport is -3.8°C with the warmest average monthly temperature being July (12.8°C), and the coldest month generally being January with an average temperature of -22.0°C. The average daily temperature is above 0°C in the months from May through to September (Environment Canada, Burwash A, 1971 to 2000). From this information it can be concluded that groundwater recharge through surface water infiltration will be highest from May to September.

4.3 GEOLOGY AND HYDROGEOLOGY

4.3.1 Geological Framework

Figure 4 illustrates the regional surface geology (Geological Survey of Canada, 1992). Haines Junction is located within the physiographic region of the Shakwak Valley between the mountains of the Kluane Ranges, the Dezadeash Range and the Ruby Range. The region is transected with an interconnecting network of valleys that drain into larger river systems such as the Dezadeash River. Near the community of Haines Junction the Shakwak Valley is about 13 km wide and extends from Pine Like south west to the Auriol Range. The Site is located approximately midway across this valley (Figure 4).

Within the Haines Junction region, the geology consists of Quaternary aged sand, silt, clay and till deposits within the valleys, and partial to well exposed bedrock outcrops within the mountain ranges.

The primary geological formations in the Haines Junction region are described below:

4.3.1.1 Yukon Group

The Precambrian aged Yukon Group is primarily located in the Yukon Plateau and Ruby and Dezadeash Ranges within the Haines Junction region. This group generally consists of Precambrian quartz-mica schists, gneiss, slate, quartzite, crystalline limestone, greenstone, and chlorite and garnetiferous schists.

4.3.1.2 Dezadeash Group

The Dezadeash Group forms most of the Auriol Range. The group is Lower Cretaceous in age and consists mainly of a sequence of dull, dark grey to black, argillite and greywacke. The Dezadeash Group occurs in the axial zones of synclines, probably complicated by faults of the Kluane Range and commonly exhibits strong internal folding.

4.3.1.3 Tertiary Volcanics

Tertiary aged volcanics are exposed west and southwest of the Auriol Range and to the north of Haines Junction in the Pine lake region. These volcanic consist of volcanic breccia, tuff, rhyolite, dacite, andesite, and basalt. Some sandstone has been associated with these volcanic deposits.

4.3.1.4 Quaternary Deposits

Quaternary aged deposits exist within river, mountain and glacial valleys and depressions. The community of Haines Junction is situated within a lacustrine plain, just north of the fluvial floodplain of the Dezadeash River (Muller, 1967). Surrounding Haines Junction, and along the valleys to the northeast, northwest and southeast of the community, the surficial deposits consist of glaciofluvial outwash gravels. Southwest of Haines Junction, towards the Auriol Range, the surficial deposits consist of diamicton ground moraine at the Auriol foothills, and a mixture of gravelly glacial kame deposits, till covered slopes and gravelly glaciofluvial or fluvial fans on the slopes of the mountains. At least three major glaciers have advanced through the Shakwak Valley, covering what is now the Haines Junction community. These glaciers deposited clay rich tills upon retreating. There have also been several episodes in which the Haines Junction region has been covered by lakes (Glacial Lake Champagne and Lake Alsek) that deposited further thick sequences of clay and silt.

A review of available groundwater supply well drilling logs in the vicinity of the Site indicated that the materials encountered during drilling correlate to the expected deposits from the geological history described. Deposits beneath the site consist of an alternating sequence of clayey tills and fine grained glaciolacustrine deposits consisting of silt and clay with occasional sand and gravel lenses to a depth of at least 370 m bgl. Underlying these quaternary sequences is inferred to be bedrock of unknown type.

Cross-section A-A', shown as Figure 5, illustrates the interpreted conceptual geological and hydrogeological model of the region while cross section B-B', shown as Figure 6, shows the localized conceptual geological and hydrogeological model.

4.3.2 **Principal Aquifers**

Groundwater below the site occurs within the alternating sequences of clayey tills, fine grained silt and clay glaciolacustrine deposits and occasional sand and gravel and boulder lenses in the quaternary aged deposits and in the bedrock underlying these deposits.

The principal aquifers of interest to this assessment inferred to exist below the site and their type are summarized in Table 4-1. For ease of reference, these aquifers have been named the Shallow Quaternary Aquifer (SQA), the Intermediate Quaternary Aquifer (IQA), the Deep Quaternary Aquifer (DQA) and the Bedrock Aquifer (BRA). The approximate vertical extents of these aquifers are also illustrated in Figure 5.

Aquifer Name	Location	Aquifer Type	Comment
Shallow Quaternary Aquifer (SQA)	 Mapped as underlying and surrounding the site 	 Intergranular, porous media 	 Principal aquifer of interest to this assessment. Potential direct hydraulic connection to the Dezadeash River. Sand and gravel, with sand lenses. Uppermost water bearing unit. Artesian conditions encountered in shallow wells drilled to the north of the Site near Pine Lake.
Intermediate Quaternary Aquifers (IQA)	Mapped as underlying and surrounding the site	 Intergranular, porous media 	 Multiple aquifers with varying extent, hydraulic properties, interconnections and degrees of confinement. Artesian conditions encountered at 150 m bgl.
Deep Quaternary Aquifer (DQA)	Mapped as underlying and surrounding the site	 Intergranular, porous media 	 Approximately 350 – 400 m deep. Confined, artesian conditions with potentiometric elevation above ground level. Village of Haines Junction water supply well Well #5 screened in this aquifer
Bedrock Aquifer (BRA)	Underlies the quaternary aged deposits	Fractured rock	 Potentially a source of lateral and vertical recharge to the Quaternary Aquifers

Table 4-1: Principal Aquifers

4.4 **GROUNDWATER FLOW SYSTEMS**

Groundwater occurrence and flow can generally be described by a series of interconnected flow systems on a regional, intermediate and local scale with flow from areas of recharge to areas of discharge.

4.4.1 Regional and Intermediate Groundwater Flow

EBA (2003) outlined two conceptualized regional groundwater flow systems providing recharge to the Quaternary Aquifers. It is considered that groundwater recharge to the Shallow, Intermediate and Deep Quaternary Aquifers occurs from either:

- Infiltration of rainfall and surface water to alluvial fans and/or deltas that have formed off the slopes of the ranges surrounding the site and that sit adjacent to the Shallow, Intermediate and Deep Quaternary Aquifers; or
- Recharge to the bedrock aquifer, primarily through infiltration of surface water and rainfall in outcrop areas, moving into the deeper bedrock flow systems and subsequently flowing into the adjacent and overlying Quaternary Aquifers.

The potentiometric elevations of several wells in the DQA and IQA (Well 4, Well#5, Brewster's Well) are above the potentiometric elevations in wells screened in the SQA, with deeper wells showing a potentiometric elevation above ground level. This indicates an upwards vertical gradient and potential flow of groundwater through the Quaternary Aquifers towards the surface. The upwards flow of groundwater would be limited by the conductivity of overlying layers and the degree of interconnection between the various depositional layers.

At the surface, groundwater would be expected to discharge to the major regional water features such as the Dezadeash River and Dezadeash Lake.

4.4.2 Local Groundwater Flow

Local groundwater flow in the vicinity of the Site is expected to be in the SQA towards the Dezadeash River to the south, where groundwater is expected to discharge. Groundwater recharge to the SQA is expected to be primarily from lateral inflow from adjacent alluvial fans and/or bedrock where bedrock outcrops. There is potentially a component of recharge from upwards vertical flow of groundwater from the underlying IQA. Vertical leakage from the IQA would be limited by the conductivity of overlying layers and the degree of interconnection between the various depositional layers. Infiltration of surface water and rainfall to the SQA would be expected to be extremely limited by the approximately 20 m or more of clay and silt till that underlies the site.

As shown on Figure 5, lithological logs show a silt/sand and gravel layer between 30 to 60 mbg both in wells on site and in offsite wells to the south. The upper most water bearing formation was identified in this layer in HJ-MW02 and HJ-MW03 during the monitoring well installation program at the Site. While correlation between the well logs is difficult due to the depositional environment of the sediments, the sand and gravel layer has been inferred as extending up to 1.4 km to the south of the site and there is the possibility that this layer extends continuously to Well #2, where a gravel layer was logged at a similar elevation. If this layer is continuous it may indicate a preferential flow path for groundwater in the SQA to the Dezadeash River.

4.4.3 **Groundwater Elevations, Flow Direction, Gradient**

Each groundwater monitoring well was completed with the screen installed across the interval where the moisture content of the formation appeared to be transitioning from moist to wet/saturated. Groundwater elevations were measured in each monitoring well during the December 2010 sampling program. At each well the groundwater elevation, post completion, rose above the screened interval and above that logged as being wet/saturated indicating either that the well screens were installed below the water table or that there may be a degree of confinement of the aquifer.

Logs at HJ-MW02 and HJ-MW03 noted a stiff layer immediately above the transition from moist to saturated water content. This layer was noted by the driller to be very hard (rock like) and returns were a fine powder. This hard layer is considered to be acting as a confining unit with the groundwater elevation in HJ-MW02 and HJ-MW03, both screened in a sand and gravel unit immediately below the hard layer, rising to well above the screened interval. The logs of HJ-MW01 did not note a hard layer and there does not appear to be confinement of the aquifer at this location.

EBA used the groundwater depth data from December 2010 and well survey elevation information from October 2010 to calculate the groundwater elevation at each monitoring well. Water level measurements and groundwater elevations as of December 2010 are presented in Table 3-3.

Figure 8 presents the groundwater elevations and inferred groundwater contours from December 6, 2010. The groundwater elevation contours indicate flow to the southeast. This is generally consistent with the expected flow direction towards the Dezadeash River as well as the interpreted local groundwater flow direction discussed in Section 4.4.2. Using the data presented in Figure 8, the horizontal hydraulic gradient has been calculated to be approximately 0.018 m/m towards the southeast.

Figure 8 indicates that HJ-MW01 is located upgradient of the landfilling area and can be considered representative of background conditions. HJ-MW02 is located downgradient of waste deposition areas 1, 2 and 3 while HJ-MW03 is inferred to be downgradient of the current waste oil and special waste storage shed.

4.5 **RISING HEAD TEST RESULTS**

EBA analyzed one rising head test result (HJ-MW01) and two falling head test result (HJ-MW02 and HJ-MW03) using Hvorslev (1951) and Bouwer & Rice (1976) analysis methods implemented in the AquiferTestTM (ver. 3.0) software.

The hydraulic conductivity test results and plots are attached in Appendix G. The estimated hydraulic conductivities for each well using the two analysis methods are presented in Table 4-2.

Monitoring Well ID	Hvorslev Estimate (m/s)	Bouwer & Rice (m/s)	Hydrogeological Unit	Geometric mean Hydraulic Conductivity (m/s)	
	Logger Data	Logger Data		Conductivity (m/s)	
HJ-MW01	4.7E-07	4.1E-07	Sandy Silt		
HJ-MW02	2.2E-06	1.8E-06	Sand and Gravel	1.0E-06	
HJ-MW03	1.3E-06	1.3E-06	Sand and Gravel		

Table 4-2: Estimated Hydraulic Conductivity

As shown in Table 4-2, the estimated hydraulic conductivity using the two analysis methods ranged from 4.7×10^{-7} to 2.2×10^{-6} m/s. The data showed a geometric mean hydraulic conductivity of 1.0×10^{-6} with the hydraulic conductivity of the sandy silt unit approximately an order of magnitude lower than the sand and gravel unit.

4.6 ESTIMATED AVERAGE LINEAR GROUNDWATER VELOCITY

As described above, the geometric mean hydraulic conductivity of the aquifer between the three locations measured is 1.0×10^{-6} m/s with a maximum of 2.2×10^{-6} m/s. The observed hydraulic gradient across the property was 0.018 m/m towards to the southeast. Average linear groundwater velocity is calculated using the following equation:

$$V = (K i) / n$$

Where: V : is groundwater velocity in metres per second (m/s);

K : is hydraulic conductivity in metres per second (m/s) determined from the site specific slug tests;

i : is horizontal hydraulic gradient in metres/metres (m/m); and,

n : is porosity (%) estimated to be 0.25 (Freeze & Cherry, 1979) in all onsite wells.

Using the geometric mean hydraulic conductivity $(1.0x10^{-6} \text{ m/s})$, the estimated average groundwater velocity was determined to be approximately 1.4 m per year. Using the maximum determined hydraulic conductivity (2.2x10⁻⁶ m/s), which estimates a worst case scenario, the average groundwater velocity was determined to be approximately 3.1 m per year. However, groundwater may travel much faster or slower through the subsurface depending on the permeability of the unit and degree of interconnectivity between permeable units.

4.7 POTENTIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS

The following identified potential sources of groundwater contamination are based on site history and inspection, anecdotal information and processes governing the generation and transport of leachate in landfills. Potential sources identified include:

- Leachate sourced from the domestic waste disposal trenches and other decomposable matter that may have been historically dumped at the site (e.g. treated wood, plant matter). These contaminants include heavy metals, nutrients (NH3, NO3), organic hydrocarbons (fuels, PAHs, chlorinated hydrocarbons) and salts;
- Leakage and spillage of hydrocarbons from onsite special waste storage areas;
- Petroleum hydrocarbons and other organic compounds from stockpiled and buried vehicles;
- Hydrocarbons from storage drums that were stockpiled and/or crushed and buried;
- Hydrocarbons from contaminated soil that was "remediated" on site;
- There were no off-site sources of pollution identified which could be considered to have impacted upon the groundwater flowing beneath the site.

The main pathways for the transport of contaminants from the sources identified above to groundwater and downgradient receptors are:

- Percolation of contaminants through underlying soils to the Shallow Quaternary Aquifer. If dense nonaqueous phase liquids (DNAPL) were disposed of at the site, there is the potential that these liquids may move through the Shallow Quaternary Aquifer and into the deeper Quaternary Aquifers. Given the thick sequence of clay till beneath the site, it is considered extremely unlikely that significant volumes of leachate or organic contaminants would move through this low conductivity unit to the SQA.
- Assuming infiltration of contaminants to the SQA occurs, transport of contaminants within the Shallow and deeper Quaternary Aquifer's towards downgradient discharge locations may occur.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 **REVIEW OF GROUNDWATER CHEMISTRY**

One round of groundwater sampling was conducted as discussed in section 3.2.3. Copies of original laboratory reports and Chain of Custody documentation are included in Appendix F. Tabulated laboratory results are presented in Table 1. Table 5-1 summarizes some of the key water quality results from lab testing.

Monitoring Well ID	TDS	Ammonia (as N)	Sulphate	Dissolved Organic Carbon	Naphthalene	HEPH	LEPHw	Benzene	Uranium
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
HJ-MW01	2,930	0.94	1,890	3.8	0.0003	< 0.1	<0.1	<0.001	0.0061
HJ-MW02	5,020	0.44	3,230	3.6	< 0.0001	< 0.1	< 0.1	< 0.001	0.003
HJ-MW03	3,420	0.37	2,060	3.3	< 0.0001	< 0.1	< 0.1	< 0.001	0.003
WTH #1-89 ¹	1,129	-	685	-	-	-	-	-	-
Well #5 ²	188	-	15.7	-	-	-	-	-	-
¹ Offsite water test well, sampled May 1989 ² Offsite water supply well, sampled May 2008									

Table 5-1: Key Groundwater Chemistry Results

Table 5-2 details analytes which exceed the most stringent CSR Schedule criteria for each the applicable Water Uses. Laboratory test results from groundwater samples collected during December 2010 have been used in assessing against applicable guideline values. Table 1 presents all laboratory analytical results and compares them against the applicable guidelines. Copies of the laboratory reports are included in Appendix F.

Table 5-2: Groundwater Results Exceeding Most Stringent CSR Schedule 3 Criteria ¹						
Parameter	Guideline Value	Water Use	Well ID			
			HJ-MW01	HJ-MW02	HJ-MW03	
Antimony	0.006	Drinking Water	0.0112	NE	NE	
Boron	0.5	Irrigation Water	NE	0.559	0.503	
Manganese	0.05	Drinking Water	0.443	0.34	0.179	
Magnesium	100	Drinking Water	206	526	400	
Molybdenum	0.01	Irrigation Water	0.1138	0.0124	0.0179	
Sodium	200	Drinking Water	NE	235	NE	
Sulphate	500	Drinking Water	1,890	3,230	2,060	
¹ All results in mg/L NE – Guideline Value Not Exceeded						

A discussion of key groundwater parameters that potentially indicate impact to groundwater from the waste disposal facility and exceedences of relevant water quality guideline criteria are presented below.

Dissolved Organic Carbon

Dissolved Organic Carbon (DOC) concentrations can indicate organic matter sourced from a landfill impacting on groundwater. If a monitoring well is impacted by landfill leachate, DOC concentrations would be expected to show an increase to concentrations potentially in the hundreds or thousands of mg/L. DOC concentrations were consistent at each monitoring well, with concentrations ranging from 3.3 mg/L to 3.8 mg/L, indicating no impact from landfill leachate.

Total Dissolved Solids

Total Dissolved Solids (TDS) can indicate groundwater contamination from a waste disposal facility, with dissolved constituents of the degradation of organic waste (typically NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, HCO₃) contributing to an increase in TDS concentration. The TDS of the monitoring wells ranged from a minimum of 2,930 mg/L (HJ-MW01) to a maximum concentration of 5,020 mg/L (HJ-MW02). The only offsite geochemical data available to EBA that is comparable to the samples obtained from the wells on the site is from a test well drilled approximately 1.3 km to the south in 1989 (WTH #1-89). A water sample obtained during drilling from a gravel layer 61 mbg reported a TDS of 1129 mg/L.

HJ-MW02, which is inferred to be a downgradient well, reported a concentration over 2,000 mg/L higher than upgradient well HJ-MW01, which is considered to be representative of background conditions in the SQA. HJ-MW03 reported a concentration comparable to the HJ-MW01. The higher TDS concentration at HJ-MW02, which is directly down-gradient of the former waste burning and deposition areas, indicates that groundwater quality is potentially impacted by landfilling activities, although the transport mechanism to the SQA is not known. Alternatively, TDS concentrations may be naturally variable across the site and these concentrations are representative of natural conditions.

Sulphate

Sulphate concentrations are typically elevated in landfill leachate and can range from < 0.5 mg/L to 1850 mg/L (Fetter, 1993).

Sulphate concentrations are variable across the site from 1,890 mg/L (HJ-MW01) to 3,230 mg/L (HJ-MW02). Concentrations reported at all three wells exceed the aesthetic water standard for Drinking Water, Livestock Water Use and Irrigation Water Use.

EBA (2003) identified groundwater in the IQA as sulphate type and a review of sulphate concentrations in water supply wells in the Haines Junction region showed a range from 15.7 mg/L (Well #5, 365 mbg) to 685 mg/L (Test Hole No. 1-89, 61 mbg), with concentrations decreasing with depth.

The concentrations reported in all three wells on Site are well in excess of sulphate concentrations typically exhibited in landfill leachate. Given the concentrations shown in offsite wells, the depth to groundwater at each well (approximately 30 mbg through clay till) and the elevated concentrations reported at all three wells, it is not considered feasible for contamination from the landfill to have impacted upon both upgradient and downgradient wells at these elevated concentrations. Concentrations are believed representative of background conditions at all wells and the applicable water uses are not precluded due to sulphate sourced from the Site.

Ammonia

Ammonia is a typical constituent of landfill leachate and an indicator of contamination sourced from a landfill. Ammonia was reported at detectable concentrations at all three monitoring wells, although concentrations were below the applicable guideline criteria. There was no water quality data from local drinking wells which included ammonia concentrations made available to EBA.

The concentration at background well HJ-MW01 (0.94 mg/L) is elevated when compared to downgradient wells HJ-MW02 (0.44 mg/L) and HJ-MW03 (0.44 mg/L). Given that HJ-MW01, which reported the highest ammonia concentration, is over 100 m upgradient of a possible contaminant source, these concentrations are considered to be representative of background conditions and it is considered that the detectable ammonia concentrations are not the result of landfilling operations.

Further, when compared against typical leachate chemical composition, the proportions of sulphate and ammonia present do not indicate impact on groundwater from landfill leachate. Sulphate concentrations in leachate are typically significantly lower than that reported in all three wells, whilst when sulphate is present in leachate, ammonia concentrations are typically in the hundreds to thousands of mg/L.

Metals

Analyzed metals displayed relatively consistent concentrations in all three wells across the site.

Iron was reported above the MDL (0.005 mg/L) at all wells although the concentrations were below all applicable standards. The concentrations reported were consistent with those reported in drinking wells and test wells in the region.

Uranium was detected in all monitoring wells at concentrations below the applicable guidelines. The reported concentrations are considered to be naturally occurring, with uranium typically detected in groundwater in other locations in Yukon (Champagne, Copper Ridge, Deep Creek). Uranium in groundwater is often sourced from magmatic rock. The bedrock mapped in the region is described as being constituted of multiple rock types, including volcanic, and the presence of uranium in the till aquifer indicates a component of recharge to the quaternary aquifer beneath the site from the bedrock.

Antimony, boron, manganese, magnesium, molybdenum and sodium all exceed guideline criteria for one or more of the applicable water uses. Each of these elements exhibit generally consistent concentrations in both up-gradient and down-gradient wells and it is not considered that the wells show impact from the landfilling activities. Concentrations of these metals are believed representative of background conditions at all wells and the applicable water uses are not precluded due to contamination sourced from the Site.

Organics

Chlorinated and Halogenated Hydrocarbons, LEPHw, HEPH, VPHs, MTBE, Styrene and BTEX were reported at concentrations below the laboratory MDL at all tested wells.

All PAHs were reported at concentrations below the laboratory MDL except naphthalene concentrations measured at low concentrations, just above the MDL in HJ-MW01. The detectable naphthalene result was checked and confirmed by the primary laboratory. The CSR Schedule 3 groundwater criteria does not indicate a guideline value for naphthalene, either does the US-EPA National Primary Drinking Water Regulations, which were also consulted. Naphthalene has been found as a component of fuel oil and wood preserving chemicals. Trace amount of naphthalene are also produced by some plant and animal species. The source of the naphthalene in HJ-MW01 could not be determined and requires further assessment and review following confirmation of the detection in subsequent monitoring rounds.

5.2 INTERPRETATION OF GROUNDWATER CHEMISTRY

A comparison of groundwater chemistry for major ions for each well is displayed in the Schoeller Plot (Figure 9) and Piper Diagram (Figure 10). Stiff Diagrams provide a plot of major ions that can be easily interpreted in terms of relative percentages of cations and anions. Stiff Diagrams for each of the sample locations are presented in plan format as Figure 11, as an aid to the interpretation of the spatial distribution of groundwater chemistry.

Groundwater from HJ-MW02 and HJ-MW03 can be characterized as magnesium-calcium-sulphate type waters, whilst HJ-MW01 can be characterized as high magnesium-calcium-sulphate-bicarbonate groundwater. The Piper Plot and Stiff diagrams indicate that HJ-MW02 and HJ-MW03 have very similar chemistry whilst HJ-MW01, inferred to be located upgradient of the landfill area, displays a different

chemical composition. This is confirmed by the Schoeller diagram in Figure 9, with relative proportions of major ions in HJ-MW02 and HJ-MW03 closely matching and the higher concentration of bicarbonate and reduced magnesium evident at HJ-MW01. The different chemical composition shown at upgradient well HJ-MW01 may be due to this well being screened in a sandy silt unit whereas HJ-MW02 and HJ-MW03 were screened in a sand and gravel unit.

Concentrations of TDS, ammonia and sulphate are elevated in one or more monitoring wells, which can potentially indicate impact to groundwater from landfilling activities. It is considered that concentrations of these analytes detected in the wells are associated with background concentrations, not impact from contamination sourced from the site on the following grounds:

- Sulphate concentrations in landfill leachate typically exhibit a range of from < 0.5 mg/L to 1850 mg/L (Fetter, 1993). It is not considered feasible that contamination from landfilling operations on site would result in concentrations in the till aquifer, which is around 30 mbg, being significantly higher than that reported in leachate samples obtained directly from landfills.
- Where sulphate concentrations in leachate are elevated, in EBA's experience this is normally accompanied by an increase in ammonia concentration to at least several hundred mg/L. Ammonia concentrations in all three wells have remained below 1 mg/L despite the very high sulphate concentrations.
- The TDS is proportional to the concentrations of the major ions reported in each groundwater sample. The higher TDS reported in downgradient well HJ-MW02 is resultant of the elevated concentration of sulphate at this well.

Whilst groundwater chemistry at downgradient wells HJ-MW02 and HJ-MW03 shows some differences to that at up-gradient well HJ-MW01, it is not considered due to impact from landfilling operations on site. The variable concentrations in sulphate and ammonia, typical indicators of landfill leachate impact, are considered to be representative of background concentrations given the concentrations reported at each well and the proportional concentrations of each analyte when compared against typical landfill leachate analysis.

Uranium, believed to be most likely sourced from the Bedrock Aquifer, was detected in all wells, which indicates a component of recharge to the SQA from the Bedrock Aquifer.

Heavy metals (including antimony, boron, manganese and molybdenum) concentrations in groundwater are considered to be background given the consistent concentrations reported across the site.

6.0 CONCLUSIONS

The field work for the 2010 Monitoring Well Program at the Haines Junction Waste Disposal Facility was completed between 3 July, 2010 and December 7, 2010. The current water sampling network includes three groundwater monitoring wells.

The following conclusions are made based on the findings of the 2011 hydrogeological assessment:

• Three monitoring wells HJ-MW01, HJ-MW02 and HJ-MW03 were installed in October 2010 in areas north and south of the waste disposal facility to establish a groundwater monitoring network at the

Site. HJ-MW01 was completed in a silty sand unit and HJ-MW02 and HJ-MW03 were completed in a sand and gravel unit, with a slotted section at each well base to allow groundwater entry;

- Based on groundwater elevation data, monitoring wells HJ-MW02 and HJ-MW03 appear to be downgradient of the Site and HJ-MW01 up-gradient; however, additional groundwater elevation data are necessary to identify potential seasonal changes and confirm the conceptual hydrogeological model;
- No monitoring or sampling of groundwater is believed to have been conducted at site prior to the fall/winter 2010 field program;
- The hydrogeological conceptual model indicates that there is recharge to the quaternary aquifers from either adjacent bedrock or alluvial fans on the slopes of the surrounding ranges. There is expected to be very little local infiltration of water through the thick till sequence underlying the site to the water table. Groundwater flow in the SQA downgradient of the site is expected to be predominately to the south towards Dezadeash where groundwater would be expected to discharge.
- Analysis of the hydraulic response test results show that the hydraulic conductivity of the sandy silt unit is about 4.4×10⁻⁷ m/s whilst the hydraulic conductivity of the sand and gravel unit is about 1.7×10⁻⁶ m/s. The estimated average linear groundwater velocity, given a worst case scenario using the maximum calculated hydraulic conductivity, is approximately 3.1 m/year;
- The concentrations of sodium at monitoring well HJ-MW02 exceeds the CSR-DW (aesthetic) criteria;
- Concentrations of sulphate at all three monitoring wells exceeds the CSR-DW (aesthetic) criteria and CSR-LW criteria;
- Concentrations of boron, manganese and molybdenum exceed the CSR-IW criteria at least one monitoring location each;
- Concentrations of magnesium and manganese exceed the CSR-DW (aesthetic) criteria at all three monitoring locations;
- Antimony exceeds the CSR-DW criteria at HJ-MW01;
- All other analytes were below the applicable guideline criteria;
- All organic analytes reported concentrations below the laboratory MDL with the exception of the naphthalene concentration at HJ-MW01. The source of the naphthalene could not be determined and should be investigated further if subsequent sampling rounds confirm the presence of this analyte;
- Dissolved Organic Carbon (DOC) concentrations were consistent at each monitoring well and below concentrations that would be expected to indicate impact from landfill leachate;
- Sulphate, an indicator of landfill impact on groundwater, was reported in all monitoring wells at concentrations considered to be well in excess of concentrations found in landfill leachate. Considering the wells are screened below approximately 20 to 30 m of silt, it is unlikely that these elevated concentrations are a result of landfilling activities;

- Ammonia, an indicator of leachate contamination, was detected in all monitoring wells. The concentrations reported are considered representative of background conditions given the highest detectable concentration was reported at background well HJ-MW01;
- When compared against typical leachate chemical composition, the proportions of sulphate and ammonia present do not indicate impact on groundwater from landfill leachate. Sulphate concentrations in leachate are typically significantly lower than that reported in all three wells whilst when sulphate is present in leachate, ammonia concentrations are typically in the hundreds to thousands of mg/L;
- Metals displayed relatively consistent concentrations in all three wells across the site with no well indicating impact from landfilling operations;
- A preliminary review of groundwater monitoring results indicates that while groundwater at all monitoring wells reported concentrations of analytes typically associated with impact from landfill leachate, these analytes are considered to be representative of background concentrations. Infiltration of leachate to the SQA is expected to be restricted due to the thick sequence of silt underlying the site and the confinement of the SQA. In the unlikely event that contaminants infiltrate to the top of the confining layer noted at HJ-MW02 and HJ-MW03, the upward hydraulic gradient and low permeability of this unit would limit the flow of contaminants into the SQA. Any movement of contaminants would be through the process of diffusion which would severely limit any impact upon the aquifer;

7.0 **RECOMMENDATIONS**

The following recommendations are made based on the findings of the 2011 hydrogeological assessment:

- As required by the Site's Waste Disposal Facility Permit, future monitoring programs should be completed once during the spring freshet when the most significant groundwater recharge occurs and once in late summer,
- HJ-MW01, HJ-MW02 and HJ-MW03 should be surveyed by a professional surveyor for location and elevation prior to the next monitoring round. Elevations from the top of the PVC casing and from ground level immediately adjacent to the well should be reported.
- Following the survey of the monitoring wells and the next two rounds of sampling in 2011, data should be reviewed by a qualified hydrogeologist and the need for potential additional up-gradient and downgradient monitoring wells assessed.

8.0 CLOSURE

We trust this report meets your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

Sincerely, EBA, A Tetra Tech Company

Hty

Adam Seeley, B.Sc., M.Hyd. Intermediate Hydrogeologist Environmental Practice Direct Line: 876.668.2071 x243 aseeley@eba.ca

1 Au

Tamra Reynolds, M.Sc., P.Geo. Senior Hydrogeologist Environmental Practice Direct Line: 876.668.2071 x241 tareynolds@eba.ca

REFERENCES

- 1. Contaminated Sites Regulation (2002) Yukon. O.I.C. 2002/171. September 2002.
- 2. Yukon Department of Environment (2002). O.I.C. 2002/171. Schedule 3 Generic Numerical Water Standards for Protection of Freshwater Aquatic Life, Drinking Water, Irrigation Water and Livestock Water. September 2002.
- 3. Yukon Department of Environment (2010). Waste Disposal Facility Permit No: 80-002. 2010.
- 4. Yukon Department of Environment (2007). Protocol No. 2: Analysis of Samples Taken in Relation to the *Contaminated Sites Regulation*. December 2007.
- 5. Yukon Department of Environment (2008). Protocol No. 5: Petroleum Hydrocarbon Analytical Methods and Standards. March 2008.
- 6. Yukon Department of Environment (2007). Protocol No. 6: Water Quality Standards .November 2007.
- 7. Yukon Department of Environment (2008). Protocol No. 7: Groundwater Monitoring Well Installation and Sampling. March 2008.
- 8. Yukon Department of Environment (2007). Protocol No. 10: Determining Background Groundwater Quality. November 2007.
- 9. Yukon Government (2009). Yukon Environmental & Socioeconomic Assessment Act Decision Document – Haines Junction Municipal Landfill (File Number: 2008-0246). February 2009.
- 10. Environment Canada Climate Normal Data website.
- 11. Geological Survey of Canada (1992). Geology of SW Dezadeash Map Area (115A), Yukon Territory.
- 12. Geological Survey of Canada, Department of Mines and Technical Surveys. Geological Series Map 1019A, Dezadeash, Yukon Territory.
- 13. Access, et al. (2001). Supporting Documentation, Solid Waste Management Plan, Village of Haines Junction. November 2001.
- 14. EBA, (2003). Resource Assessment for Heat Potential Study, Village of Haines Junction, YT. October 2003
- 15. Muller, J.E., 1967. Kluane Lake Map-Area, Yukon Territory (115G, 115F E1/2). Geological Survey of Canada, pp. 137, 2 maps
- 16. R. Allan Freeze, John A. Cherry, 'Groundwater', Prentice Hall, 1979

TABLES

 Table I
 Groundwater Analytical Results

 Table 2
 Groundwater Duplicate RPD'S

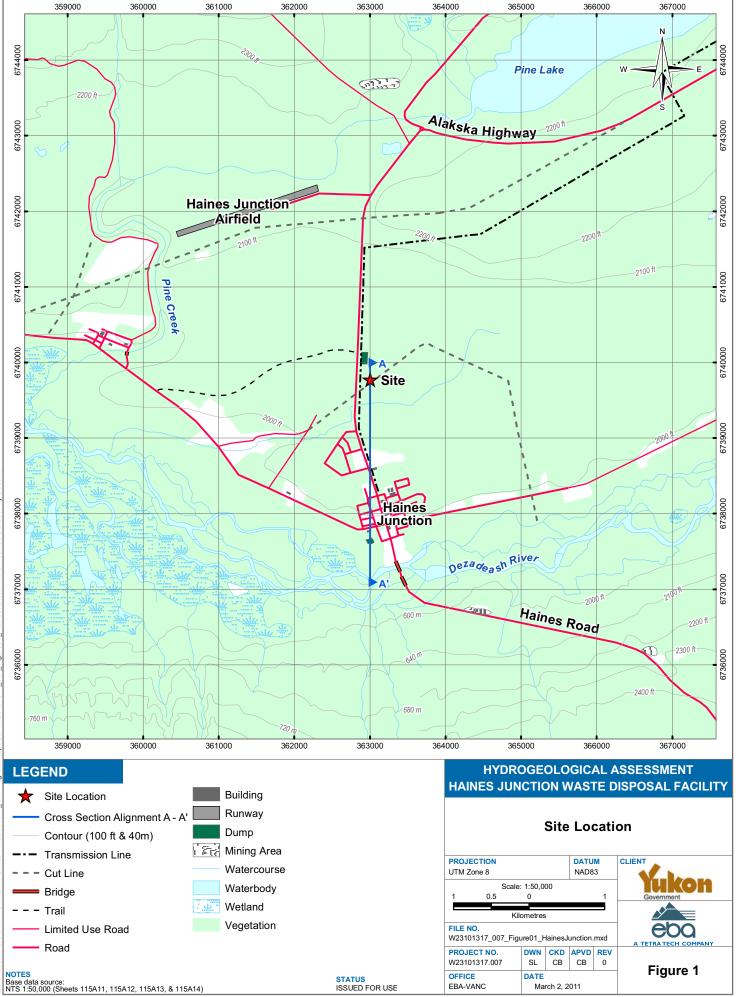
						LocCode	HJ-MW01	HJ-MW02	HJ-MW03	HJ-MW03	HJ-MW03
						SampleCode	778356-1	778356-2	778356-3	778356-4	B0B9368_2010/1
						Campicoouc					08_MJ MW03 DUPLICATE
						Sampled_Date-Time Lab Report Number	12/6/2010 1394453	12/7/2010 1394453	12/6/2010 1394453	12/6/2010 1394453	12/6/2010 B0B9368
Chem_Group	ChemName	Units	EQL	CSR Schedule 3 - DW	CSR Schedule 3 - IW	CSR Schedule 3 - LW					
	Dissolved Organic Carbon	mg/L	0.5				3.8	3.6	3.3	-	-
	Ortho Phosphorus (as P)	mg/L	0.01				0.05	0.11	0.09	-	-
	tellurium	µg/L	0.01				<0.1	<0.1	<0.1	<0.1	
BTEX	Benzene	µg/L	0.4	5			<1	<1	<1	-	<0.4
STER	Ethylbenzene	µg/L	0.4	2.4			<1	<1	<1	-	<0.4
	Toluene	µg/L	0.4	24			<1	<1	<1	-	<0.4
	Xylene (m & p)	µg/L	0.4				<1	<1	<1	-	<0.4
	Xylene (o)	µg/L	0.4	1			<1	<1	<1	-	<0.4
	Xylene Total	µg/L	0.4	300			<1	<1	<1	-	< 0.4
Chlorinated Hydrocarbor		µg/L	1				<1	<1	<1	-	-
	1,1,2,2-tetrachloroethane	µg/L	1				<1	<1	<1	-	-
	1,1-dichloroethane	µg/L	1				<1	<1	<1	-	-
	1,1-dichloroethene	µg/L	1	14			<1	<1	<1	-	-
	1,2-dichloroethane	µg/L	1	5		<u>5</u>	<1	<1	<1	-	-
	1,2-dichloropropane	µg/L	1				<1	<1	<1	-	-
	Bromodichloromethane	µg/L	1			<u>100</u>	<1	<1	<1	-	-
	Bromoform	µg/L	1			100	<1	<1	<1	-	-
	Carbon tetrachloride	µg/L	1	5		5	<1	<1	<1	-	-
	Chlorodibromomethane	µg/L	1			<u>100</u>	<1	<1	<1	-	-
	Chloroethane	µg/L	10				<10	<10	<10	-	-
	Chloroform	µg/L	1	100		<u>100</u>	<1	<1	<1	-	-
	Chloromethane	µg/L	10				<10	<10	<10	-	-
	cis-1,2-dichloroethene	µg/L	1				<1	<1	<1	-	-
	cis-1,3-dichloropropene	µg/L	1				<1	<1	<1	-	-
	Dichloromethane	µg/L	5	50		<u>50</u>	<5	<5	<5	-	-
	Trichloroethene	µg/L	1	50		<u>50</u>	<1	<1	<1	-	-
	Tetrachloroethene	µg/L	1	30			<1	<1	<1	-	-
	trans-1,2-dichloroethene	µg/L	1				<1	<1	<1	-	-
	trans-1,3-dichloropropene	µg/L	1				<1	<1	<1	-	-
	Vinyl chloride	µg/L	2	2			<2	<2	<2	-	-
Halogenated Benzenes	1,2-dichlorobenzene	µg/L	1	3			<1	<1	<1	-	-
	1,3-dichlorobenzene	µg/L	1				<1	<1	<1	-	-
	1,4-dichlorobenzene	µg/L	1	1			<1	<1	<1	-	-
	Chlorobenzene	µg/L	1	30			<1	<1	<1	-	-
Halogenated Hydrocarbo		µg/L	10				<10	<10	<10	-	-
	Trichlorofluoromethane	µg/L	1				<1	<1	<1	-	-
	Alkalinity (Bicarbonate)	mg/L	5				910	100	140	-	-
	Alkalinity (Hydroxide) as CaCO Alkalinity (total) as CaCO3		5000				<5,000 744	<5,000 88	<5,000 118	-	-
		mg/L	5 0.005				- 744	- 88	- 118	-	- 0.44
	Ammonia Ammonia as N	mg/L	4.0				- 940	- 440	370		
	Ammonia as N Chloride	mg/L	10 0.02	250	100		<u>940</u> 5.8	<u>440</u> 5	370	- 340	-
	Kjeldahl Nitrogen Total	mg/L	0.02	230	100		9.5	0.74	0.6	-	-
	Nitrate (as N)	mg/L	0.06	10		100	9.5 <0.05	<0.05	<0.05	< 0.01	-
	Nitrate (as NO3-)	mg/L	0.01	10		100	<0.05	<0.05	<0.05	<0.01	< 0.02
	Nitrite (as N)	mg/L	0.002	3.2		10	< 0.02	< 0.02	< 0.02	-	-
	Nitrite (as NO2-)	mg/L	0.005	0.2		<u></u>	<0.02	-	-	-	< 0.005
	Nitrogen (Total Oxidised)	mg/L	0.000	10		100	< 0.07	< 0.07	< 0.07	-	< 0.02
	Sodium	mg/L	0.05	200		<u></u>	181	235	144	137	132
	Sulphate	mg/L	0.05	500		1000	1,890	3,230	2,060	-	-
	Sulphur as S	mg/L	0.03			1000	632	1,060	737	686	744
	Thorium	µg/L	0.2	1 1			<0.4	<0.4	<0.4	<0.4	-
	Hardness as CaCO3	mg/L	0.4				1,640	3,010	2,190	2,030	1,990
	Total Solids	mg/L	5	1 1			2,930	5,020	3,420	-	-
Lead	Lead		0.0001	0.01	0.2	0.1	<0.0001	< 0.0001	0.0002	< 0.0001	< 0.0002
MAH	Styrene	µg/L	0.4				<1	<1	<1		<0.4

Hydrogeological Assessment - Haines Junction Waste Disposal Facility W23101317.007, February 2011 Issued For Use

						LocCode	HJ-MW01 778356-1	HJ-MW02 778356-2	HJ-MW03 778356-3	HJ-MW03 778356-4	HJ-MW03 B0B9368 2010/12/
						SampleCode	118330-1	118308-2	110300-3	//8300-4	08_MJ MW03
											DUPLICATE
						Occurring to Dayle Times	12/6/2010	12/7/2010	12/6/2010	12/6/2010	12/6/2010
						Sampled_Date-Time Lab Report Number	1394453	1394453	1394453	1394453	B0B9368
							1004400	1334433	1334433	1004400	D0D3300
Chem_Group	ChemName	Units	EQL	CSR Schedule 3 - DW	CSR Schedule 3 - IW	CSR Schedule 3 - LW					
Metals	Aluminium	mg/L	0.003	0.2	5	5	< 0.005	< 0.005	< 0.005	< 0.005	0.004
	Antimony	mg/L	0.0002	0.006			0.0112	< 0.0002	0.0007	0.0006	0.0008
	Arsenic	mg/L	0.0001	0.025	0.1	0.025	0.0064	0.003	0.0028	0.0024	0.0024
	Barium	mg/L	0.001	1			0.015	0.01	0.011	0.011	0.012
	Beryllium	mg/L	0.00004	4	0.1	0.1	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.0001
	Bismuth	mg/L		ſ			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Boron	mg/L	0.004	5	0.5	5	0.285	0.559	0.503	0.5	0.53
	Cadmium	mg/L	0.0000	0.005	0.005	0.08	0.0001	0.00005	0.00004	0.00004	0.00003
	Calcium	mg/L	0.05			1000	319	339	218	203	211
	Chromium (III+VI)	mg/L	0.0004	0.05			< 0.0004	0.0005	0.0006	0.0007	< 0.001
	Cobalt	- V	0.00002		0.05	1	0.00137	0.00094	0.00084	0.00077	0.0007
	Copper		0.0002		0.2	0.3	0.001	0.004	0.002	0.001	0.001
	Iron	mg/L	-	0.3	5	<u></u>	0.017	0.099	0.005	0.007	0.009
	Lithium	mg/L	-	0.0	2.5	5	0.006	0.003	0.004	0.004	< 0.005
	Magnesium	mg/L		100	2.0	<u> </u>	206	526	400	370	355
	Manganese	mg/L	-	0.05	0.2		0.443	0.34	0.175	0.167	0.179
	Mercury		0.0001	0.001	0.2	0.002	<0.00001	<0.00001	<0.00001	<0.00001	<0.00002
	Molybdenum	U	0.0001	0.25	0.01	0.05	0.1138	0.0124	0.0179	0.017	0.016
	Nickel	mg/L		0.23	0.2	1	0.01	0.005	0.004	0.004	0.002
	Phosphorus	mg/L	0.001		0.2	<u> </u>	0.01 - 109	<0.003	0.02 - 0.41	<0.004	0.002
	Potassium	mg/L	0.01				12.9	17.6	14.6	13.7	14.3
			0.0001	0.01	0.02	0.05	0.0015	0.0012	0.0011	0.001	0.0003
	Selenium	µg/L	50	0.01	0.02	0.05	3,320	6,940	6,730	6,400	
	Silicon Silver	10	0.0000	1			<0.00001	<0.00001	<0.00001	<0.00001	7,100
		-		' T			3.544	5.888	3.927	3.704	2.99
	Strontium	mg/L		1							
		- V	0.0000				< 0.00001	0.00001	0.00003	0.00003	< 0.00005
	Tin	-	0.0001				0.0002	0.0012	0.0004	< 0.0001	< 0.005
	Titanium	mg/L		100	40	000	0.0186	0.0351	0.0263	0.0262	< 0.005
	Uranium	µg/L	0.1	100	10	<u>200</u>	6.1	3	3	3	3
	Vanadium	-	0.0001	_	0.1	<u>0.1</u>	0.0005	0.001	0.0014	0.0013	< 0.005
	Zinc	mg/L	0.001	5	1	<u>2</u>	0.002	0.004	0.004	0.002	< 0.005
	Zirconium	µg/L	0.1				<0.1	<0.1	<0.1	<0.1	<0.5
Organic	Alkalinity (Carbonate)	mg/L	6				<6	<6	<6	-	-
PAH	Acridine	mg/L		5			< 0.00005	< 0.00005	<0.00005	-	-
	Quinoline	µg/L	3.4				<3.4	<3.4	<3.4	-	-
PAH/Phenols	Acenaphthene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Acenaphthylene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Anthracene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Benz(a)anthracene	µg/L	0.01				<0.01	<0.01	<0.01	-	-
	Benzo(a) pyrene	µg/L	0.01	0.01			<0.01	<0.01	<0.01	-	-
	Benzo(b)fluoranthene		0.01				<0.01	<0.01	<0.01	-	-
	Benzo(g,h,i)perylene	µg/L					<0.1	<0.1	<0.1	-	-
	Benzo(k)fluoranthene	µg/L		l			<0.02	<0.02	<0.02	-	-
	Chrysene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Dibenz(a,h)anthracene	µg/L	0.01				<0.01	<0.01	<0.01	-	-
	Fluoranthene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Fluorene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Indeno(1,2,3-c,d)pyrene	μg/L	0.1				<0.1	<0.1	<0.1	-	-
	Naphthalene	μg/L	0.1				0.3	<0.1	<0.1	-	-
	Phenanthrene	µg/L	0.1				<0.1	<0.1	<0.1	-	-
	Pyrene	µg/L	0.02				<0.02	<0.02	<0.02	-	-
		<u>µ9</u> /L									0.004
Solvents	Methyl Tertiary Butyl Ether	mg/L					-	-	-	-	< 0.004
Solvents TPH							<100	- <100	<100	-	<0.004
	Methyl Tertiary Butyl Ether	mg/L	0.004								
	Methyl Tertiary Butyl Ether HEPH	mg/L µg/L	0.004 100	15000	15000	<u>15000</u>	<100	<100	<100	-	-
	Methyl Tertiary Butyl Ether HEPH LEPHw	mg/L μg/L μg/L	0.004 100 100	15000	15000	<u>15000</u>	<100 <100	<100 <100	<100 <100	-	-
	Methyl Tertiary Butyl Ether HEPH LEPHw VPH C6-C10	mg/L μg/L μg/L μg/L	0.004 100 100 50 50	15000	15000	<u>15000</u>	<100 <100 <50	<100 <100 <50	<100 <100 <50		- - <300

Hydrogeological Assessment - Haines Junction Waste Disposal Facility W23101317.007, February 2011 Issued For Use

			SDG	12/6/2010	12/6/2010		12/6/2010	Interlab_D	
			Field ID	HJ-MW03	QC01	RPD	HJ-MW03	HJ-MW03 DUPLICATE	RPD
			Sampled Date-Time	12/6/2010	12/6/2010		12/6/2010	12/6/2010	
Method_Type	ChemName	Units	EQL						
Metals Dissolved	Sulphur as S	mg/l	0.2 (Primary): 3 (Interlab)	737.0	686.0	7	737.0	744.0	1
		1.3							
Routine Water	Calcium	mg/l	0.1 (Primary): 0.05 (Interlab)	218.0	203.0	7	218.0	211.0	3
	Magnesium		0.1 (Primary): 0.05 (Interlab)	400.0	370.0	8	400.0	355.0	12
	Nitrogen (Total Oxidised)	mg/l	0.01 (Primary): 0.02 (Interlab)	<0.07			< 0.07	<0.02	0
	Phosphorus	mg/l	0.01	0.02	<0.01	67	0.02		
	Potassium	mg/l	0.1 (Primary): 0.05 (Interlab)	14.6	13.7	6	14.6	14.3	2
	Silicon	µg/l	50 (Primary): 100 (Interlab)	6730.0	6400.0	5	6730.0	7100.0	5
	Sodium	mg/l	0.1 (Primary): 0.05 (Interlab)	144.0	137.0	5	144.0	132.0	9
	Hardness as CaCO3	mg/l	5 (Primary): 0.5 (Interlab)	2190.0	2030.0	8	2190.0	1990.0	10
Trace Metals Dissolved	Aluminium	mg/l	0.005 (Primary): 0.003 (Interlab)	<0.005	< 0.005	0	< 0.005	0.004	0
	Antimony	mg/l	0.0002 (Primary): 0.0005 (Interlab)	0.0007	0.0006	15	0.0007	0.0008	13
	Arsenic	mg/l	0.0002 (Primary): 0.0001 (Interlab)	0.0028	0.0024	15	0.0028	0.0024	15
	Barium	mg/l	0.001	0.011	0.011	0	0.011	0.012	9
	Beryllium	mg/l	0.00004 (Primary): 0.0001 (Interlab)	<0.0	<0.0	0	<0.0	<0.0001	0
	Bismuth	mg/l	0.001	<0.001	<0.001	0	<0.001	<0.001	0
	Boron	mg/l	0.004 (Primary): 0.05 (Interlab)	0.503	0.5	1	0.503	0.53	5
	Cadmium	mg/l	0.00001	0.0	0.0	0	0.0	0.0	29
	Chromium (III+VI)	mg/l	0.0004 (Primary): 0.001 (Interlab)	0.0006	0.0007	15	0.0006	<0.001	0
	Cobalt	mg/l	0.00002 (Primary): 0.0005 (Interlab)	0.0008	0.0008	9	0.0008	0.0007	18
	Copper	mg/l	0.001 (Primary): 0.0002 (Interlab)	0.002	0.001	67	0.002	0.001	67
	Iron	mg/l	0.01 (Primary): 0.005 (Interlab)	0.005	0.007	33	0.005	0.009	57
	Lead	mg/l	0.0001 (Primary): 0.0002 (Interlab)	0.0002	<0.0001	67	0.0002	<0.0002	0
	Lithium	mg/l	0.001 (Primary): 0.005 (Interlab)	0.004	0.004	0	0.004	<0.005	0
	Manganese	mg/l	0.005 (Primary): 0.001 (Interlab)	0.175	0.167	5	0.175	0.179	2
	Mercury	mg/l	0.00001 (Primary): 0.00002 (Interlab)	<0.0	<0.0	0	<0.0	<0.0	0
	Molybdenum	mg/l	0.0001 (Primary): 0.001 (Interlab)	0.0179	0.017	5	0.0179	0.016	11
	Nickel	mg/l	0.001	0.004	0.004	0	0.004	0.002	67
	Selenium	mg/l	0.0006 (Primary): 0.0001 (Interlab)	0.0011	0.001	10	0.0011	0.0003	114
	Silver	mg/l	0.00001 (Primary): 0.00002 (Interlab)	<0.0	<0.0	0	<0.0	<0.0	0
	Strontium	mg/l	0.001	3.927	3.704	6	3.927	2.99	27
	tellurium	µg/L	0.1	<0.1	<0.1	0	<0.1		
	Thallium	mg/l	0.00001 (Primary): 0.00005 (Interlab)	0.0	0.0	0	0.0	<0.0001	0
	Thorium	µg/L	0.4	<0.4	<0.4	0	<0.4		
	Tin	mg/l	0.0001 (Primary): 0.005 (Interlab)	0.0004	<0.0001	120	0.0004	<0.005	0
	Titanium	mg/l	0.0004 (Primary): 0.005 (Interlab)	0.0263	0.0262	0	0.0263	<0.005	136
	Uranium	µg/L	0.4 (Primary): 0.1 (Interlab)	3.0	3.0	0	3.0	3.0	0
	Vanadium	mg/l	0.0001 (Primary): 0.005 (Interlab)	0.0014	0.0013	7	0.0014	<0.005	0
	Zinc	mg/l	0.001 (Primary): 0.005 (Interlab)	0.004	0.002	67	0.004	<0.005	0
	Zirconium	µg/L	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
VOC Screen - Water	Benzene	µg/L	1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Ethylbenzene		1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Styrene		1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Toluene		1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Xylene (m & p)	µg/L	1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Xylene (o)		1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
	Xylene Total	µg/L	1 (Primary): 0.4 (Interlab)	<1.0			<1.0	<0.4	0
									L
Volatile Petroleum Hydrocarbons - Water	VPH C6-C10		50 (Primary): 300 (Interlab)	<50.0	<50.0	0	<50.0	<300.0	0
	VPHw	µg/L	50 (Primary): 300 (Interlab)	<50.0	<50.0	0	<50.0	<300.0	0


*RPDs have only been considered where a concentration is greater than 5 times the EQL. **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (5-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Hydrogeological Assessment - Haines Junction Waste Disposal Facility W23101317.007, February 2011 Issued For Use

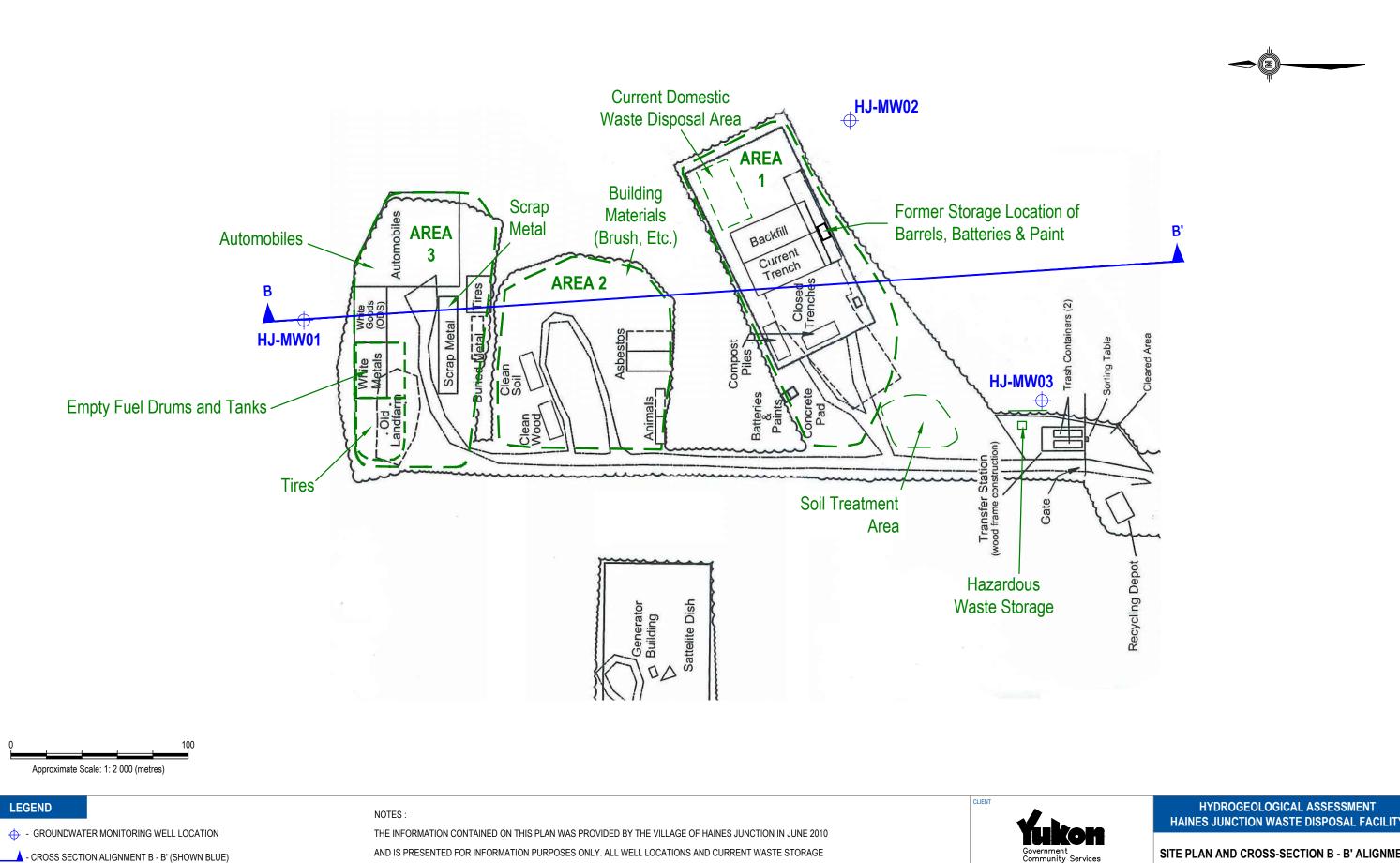

FIGURES

Figure I	Site Location
Figure 2	Site Plan and Cross Section B-B' Alignment
Figure 3	Site Aerial Image
Figure 4	Regional Surface Geology
Figure 5	Regional Conceptual Hydrogeological Cross Section A – A'
Figure 6	Local Conceptual Hydrogeological Cross Section B – B'
Figure 7	Regional Drainage and Land Zoning
Figure 8	Groundwater Elevation Contours (December 2010)
Figure 9	Schoeller Plot
Figure 10	Piper Diagram
Figure II	Stiff Diagrams

Q:VancouvenGIS\ENVIRONMENTALW231W23101317_MWProgramMaps\007\W23101317_007_Figure01_HainesJunction.mxd modified 3/2/2011 by sleusink

- CURRENT WASTE STORAGE LOCATIONS (SHOWN GREEN)
- 2001 WASTE STORAGE LOCATIONS (SHOWN BLACK)

LOCATIONS WERE ADDED BY EBA AND ARE SHOWN IN COLOR.

HAINES JUNCTION WASTE DISPOSAL FACILITY

SITE PLAN AND CROSS-SECTION B - B' ALIGNMENT

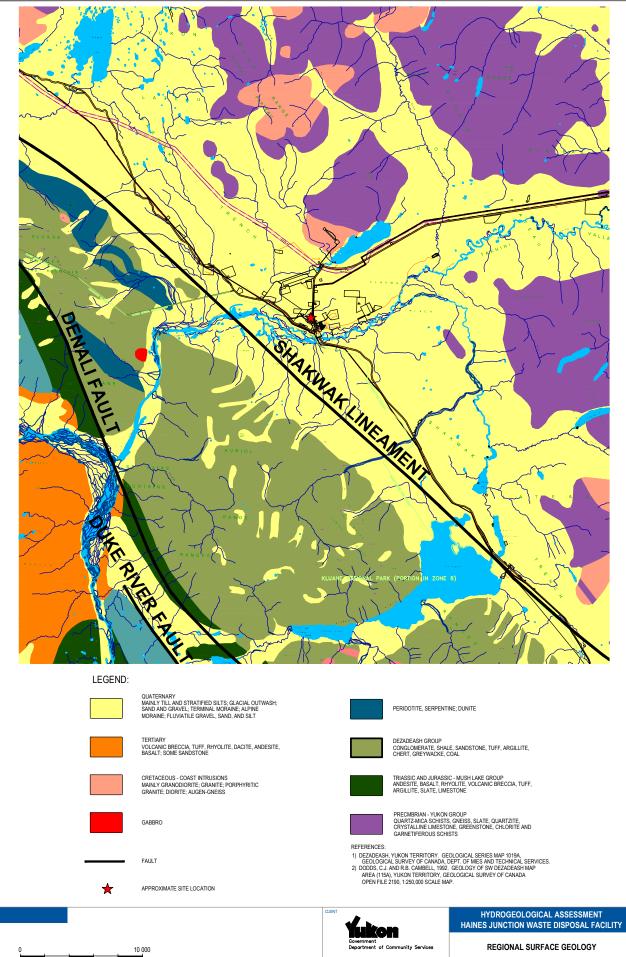
PROJECT NO. DWN CKD REV W23101317.007 CB AJS 0 Fig	OFFICE EBA-WHSE	DATE February 2-	4, 2011	
				 Fia

A TETRATECH COM

gure 2

200 Scale: 1: 4 000 (metres)

Q:\Whitehorse\Data\0201drawings\Haines Junction\W23101317.007 Hydro Assessment\W23101317.007 Fig.3_R0.dwg [FIGURE 3] March 02, 2011 - 3:39:25 pm (BY: BUCHAN, CAMERON)


Department of Community Services PROJECT NO. W23101317.007

A TETRATECH COMPANY

OFFICE EBA-WHSE

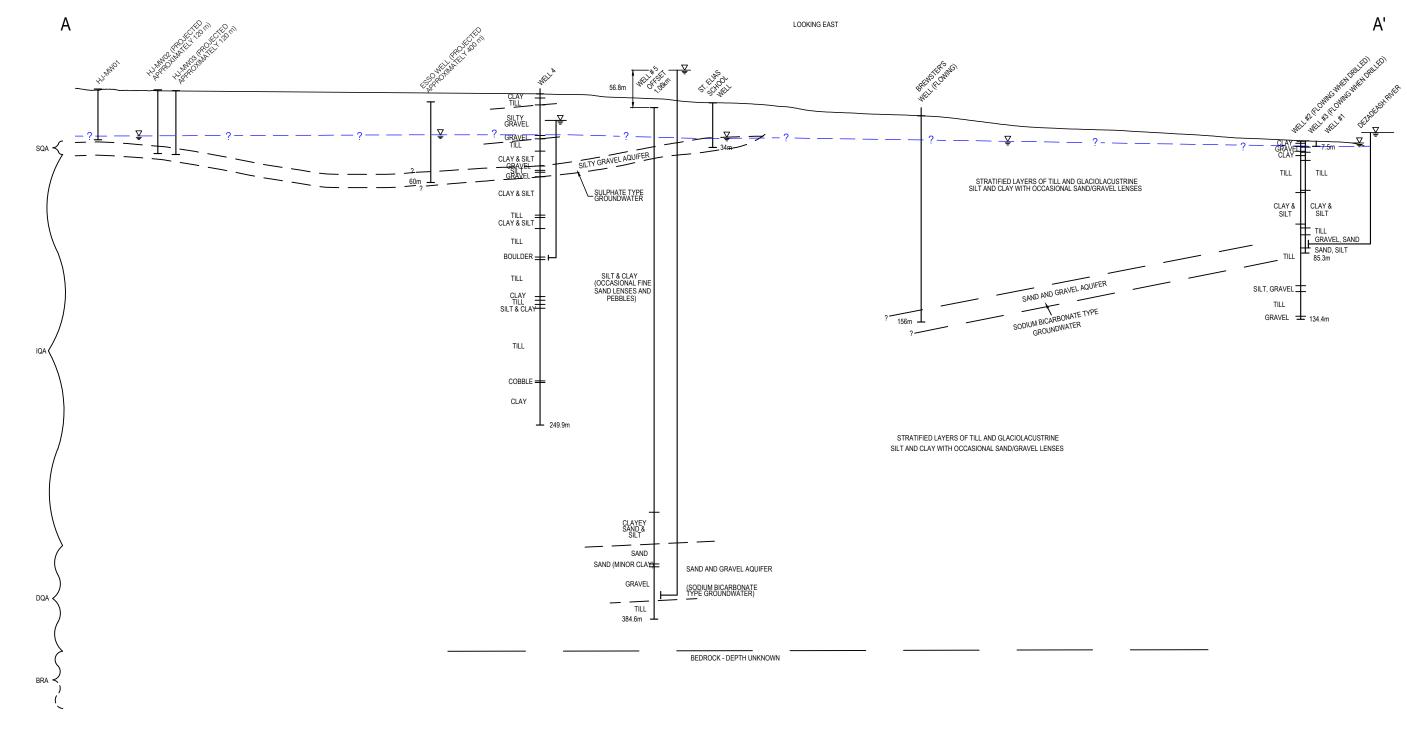
SITE AERIAL IMAGE

DWN	CKD	REV	Figure 3
CB	AJS	O	
DATE February	23, 2011		94. 0 0

PROJECT NO. W23101317.007

OFFICE

EBA-WHSE


eba

CB AJS 0

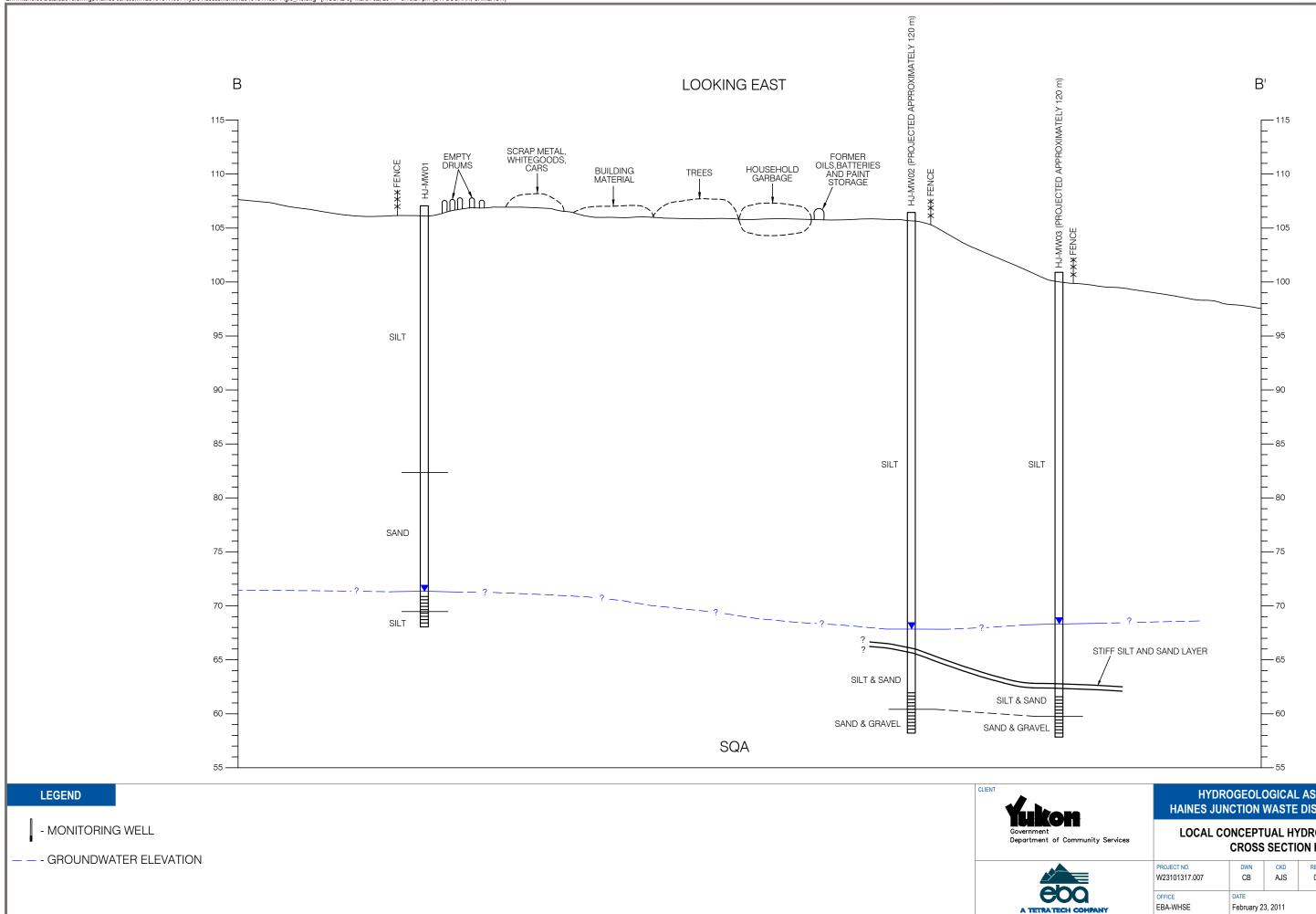
March 1, 2011

Figure 4

LEGEND

- SQA SHALLOW QUATERNARY AQUIFER
- IQA INTERMEDIATE QUATERNARY AQUIFER
- DQA QUATERNARY AQUIFER
- BRA BEDROCK AQUIFER

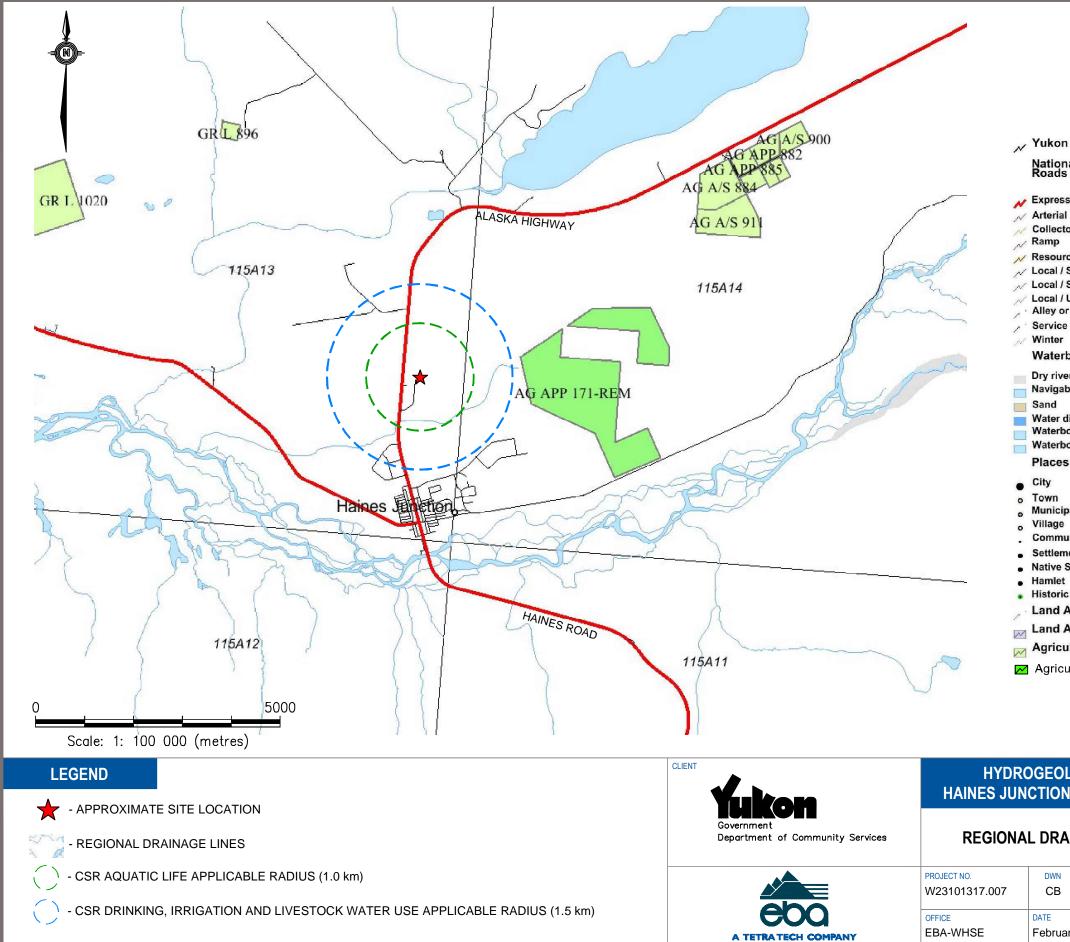
NOTE : THE INFORMATION CONTAINED ON THIS PLAN WAS DERIVED FROM EBA PROJECT # 1240049 DATED SEPTEMBER 2003.



eo ()A TETRATECH COMPAN

HYDROGEOLOGICAL ASSESSMENT HAINES JUNCTION WASTE DISPOSAL FACILITY

REGIONAL CONCEPTUAL HYDROGEOLOGICAL **CROSS-SECTION A - A'**


PROJECT NO. W23101317.007	DWN CB	CKD AJS	REV 0	Figure 5
OFFICE EBA-WHSE	DATE March 1, 20	011		

HYDROGEOLOGICAL ASSESSMENT HAINES JUNCTION WASTE DISPOSAL FACILITY

LOCAL CONCEPTUAL HYDROGEOLOGICAL CROSS SECTION B - B'

 PROJECT NO. W23101317.007	DWN CB	CKD AJS	REV 0	Figure 6
OFFICE EBA-WHSE	DATE February 2	3, 2011		g

Legend

📈 Yukon Border - Surveyed

National Road Network - All Roads

💉 Expressway / Highway

Collector

N Ramp

N Resource / Recreation

N Local / Street

N Local / Strata Local / Unknown

Alley or Service Lane

Service Lane

Winter

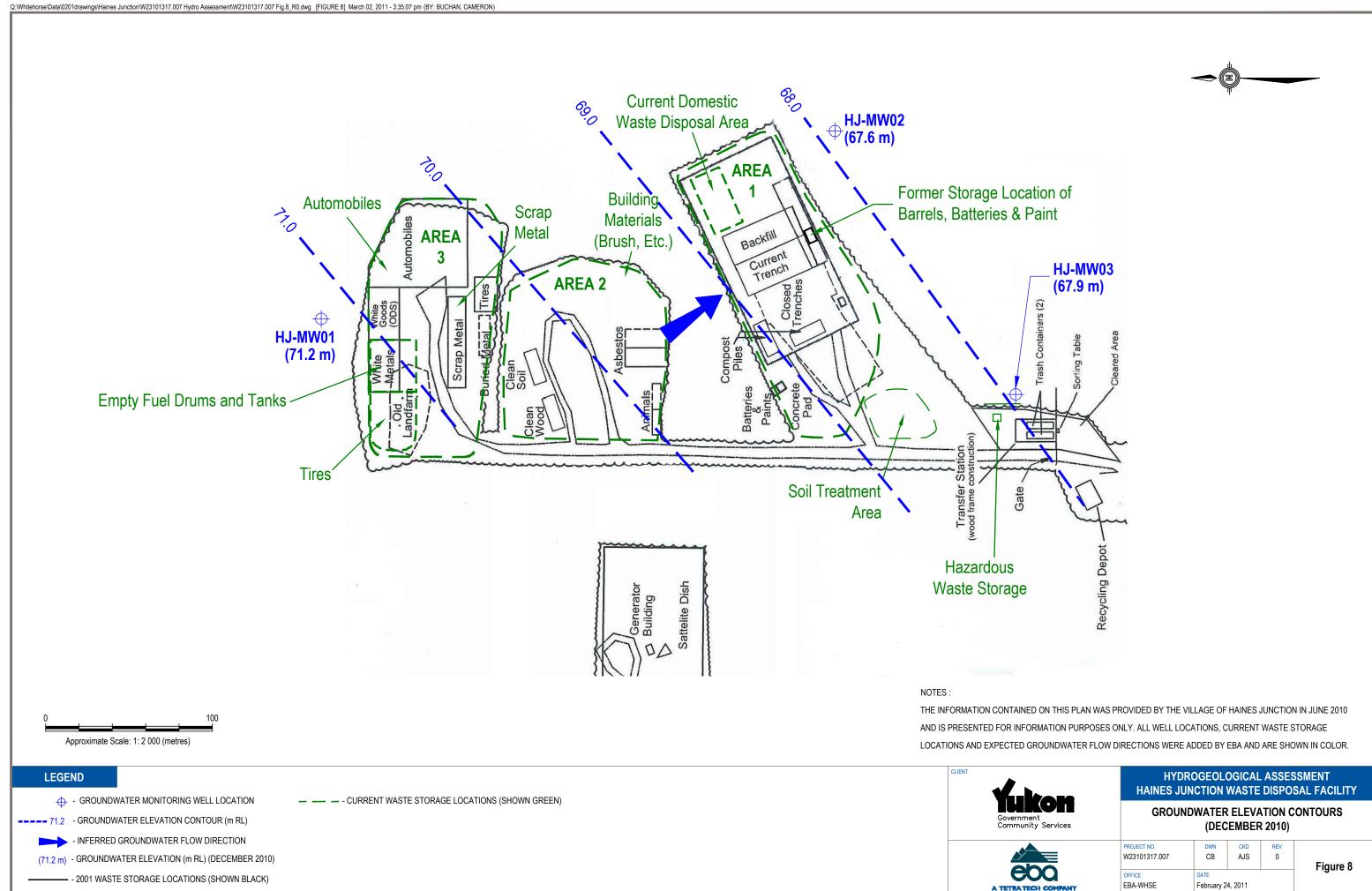
Waterbodies (50k)

Dry river bed Navigable canal Sand Water disturbance Waterbody Waterbody

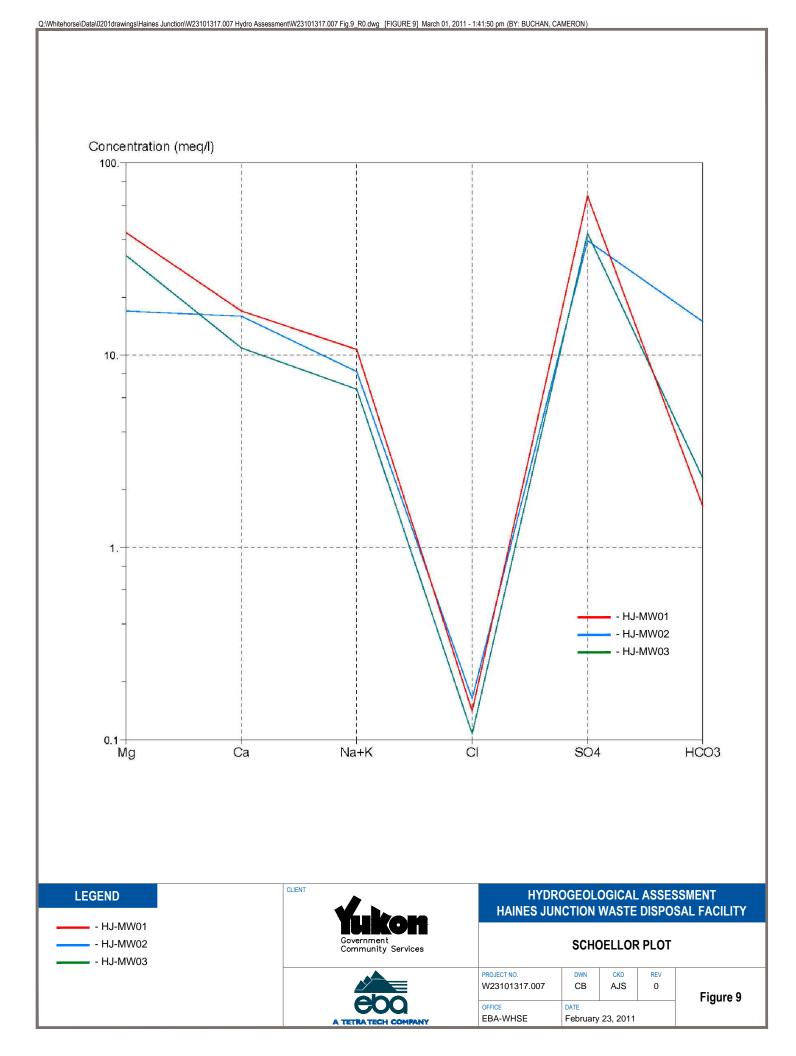
Places (All)

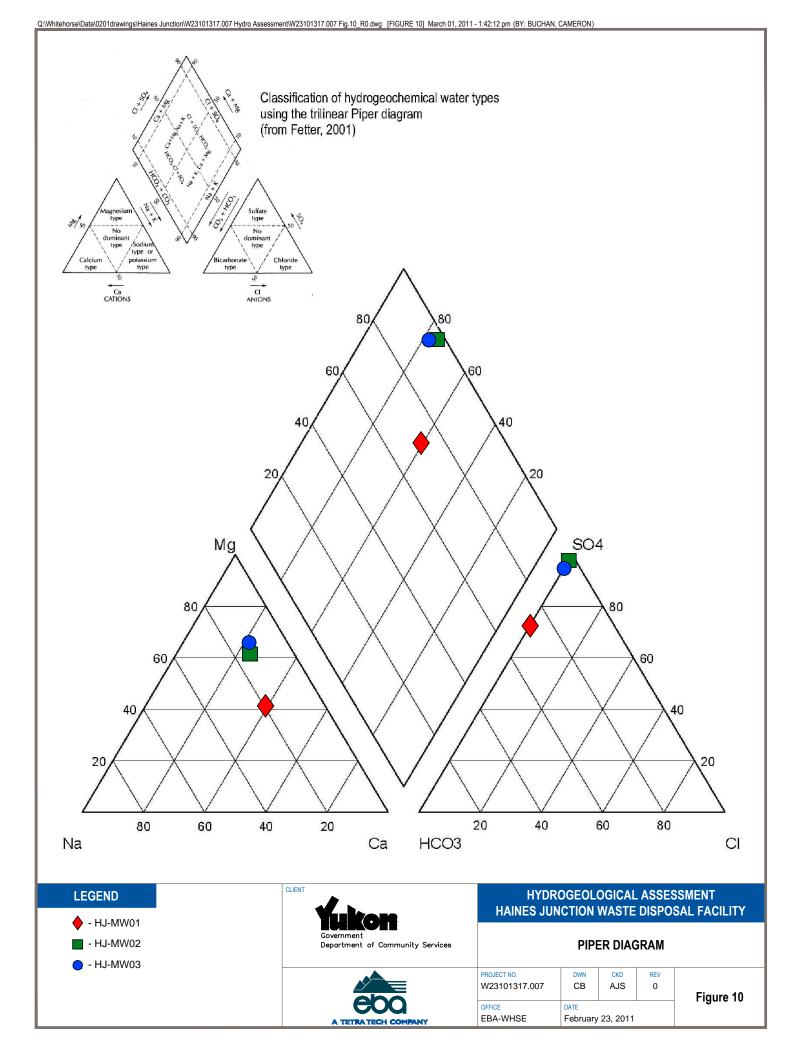
o Town Municipality o Village Community Settlement Native Settle Hamlet Historic Site Land Application - Denied

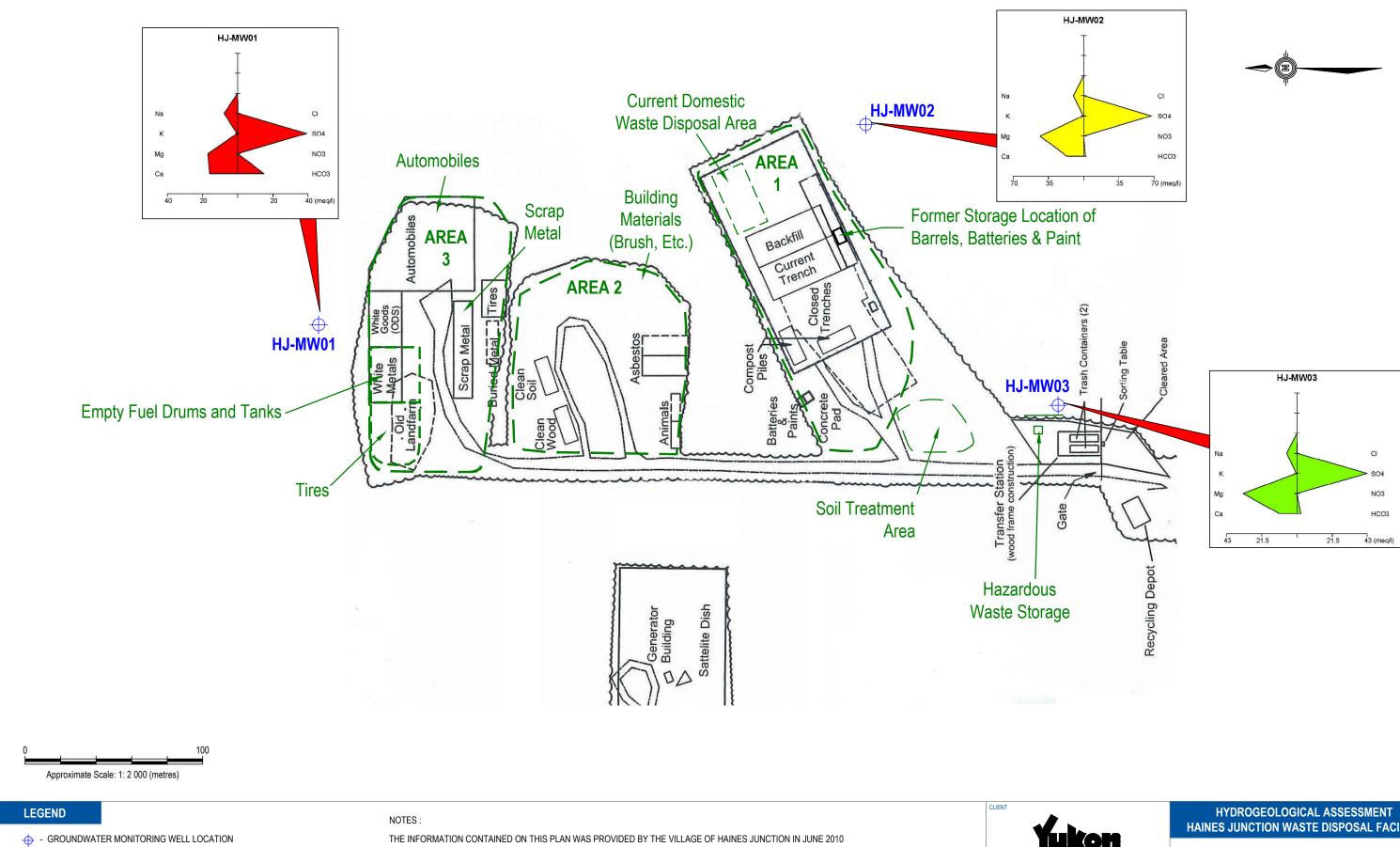
Mand Application (CSW)


Agricultural Disposition (CSW)

Agricultural Applications (CSW)


HYDROGEOLOGICAL ASSESSMENT HAINES JUNCTION WASTE DISPOSAL FACILITY


REGIONAL DRAINAGE AND LAND ZONING


DWN	CKD	REV	Figure 7
CB	AJS	O	
DATE February	23, 2011		

EBA-WHSE	February 2	4, 2011		
OFFICE	DATE			-
W23101317.007	СВ	AJS	0	F
PROJECT NO.	DWN	CKD	REV	

- CROSS SECTION ALIGNMENT B B' (SHOWN BLUE)
- - CURRENT WASTE STORAGE LOCATIONS (SHOWN GREEN)
- 2001 WASTE STORAGE LOCATIONS (SHOWN BLACK)

AND IS PRESENTED FOR INFORMATION PURPOSES ONLY. ALL WELL LOCATIONS AND CURRENT WASTE STORAGE LOCATIONS WERE ADDED BY EBA AND ARE SHOWN IN COLOR.

V -boso		HYDROGEOLOGICAL ASSESSMENT HAINES JUNCTION WASTE DISPOSAL FACILITY					
Government Community Services		STIF	F DIAG	RAMS			
	PROJECT NO.	DWN	CKD	REV			
	W23101317.007	CB	AJS	0	Figure 11		
eba	OFFICE	DATE					
A TETRA TECH COMPANY	EBA-WHSE	February 2	24, 2011				

ITY

GENERAL CONDITIONS

GEO-ENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

APPENDIX B

APPENDIX B HAINES JUNCTION WASTE DISPOSAL FACILITY PERMIT

Permit No: 80-002

WASTE DISPOSAL FACILITY PERMIT

Issued for the Operation of a Waste Disposal Facility Pursuant to Part 6 of the *Environment Act*, s. 8 of the *Solid Waste Regulations*, s. 12 of the *Air Emissions Regulations*, and s. 8 of the *Special Waste Regulations*

Permittee:	Village of Haines Junction
------------	----------------------------

Mailing Address: Box 5339, Haines Junction, YT, Y0B 1L0

Site Location: Village of Haines Junction Solid Waste Disposal Facility Near km 1630 Alaska Highway

Phone/Fax: (867) 634-7100 / (867) 634-2008

Authorized Representative: Michael Riseborough

Email:

<u>cao-vhi@yknet.ca</u>

Effective Date: January 1, 2010

Expiry Date: December 31, 2011

Scope of Authorization: In accordance with your application, you are authorized to:

- a. operate a waste disposal facility;
- b. operate a special waste management facility for the acceptance, storage and transportation of special waste generated by households, waste oil, waste batteries, waste paints, waste solvents, and waste fuels; and
- c. open burn solid waste in an amount greater than 5 kilograms per day

at the above site location (the "site"), as set out in the terms and conditions of this permit.

21 Dated this H day of MARCH , 2010

Director, Environmental Programs Branch Environment Yukon

57

PART 1. GENERAL PROVISIONS

1.1 DEFINITIONS

1. In this permit,

"Act" means the Environment Act, R.S.Y. 2002, c. 76;

"approved plan" means a plan that is submitted by the permittee and approved by an environmental protection officer under this permit and includes any terms and conditions specified by the environmental protection officer in the approval;

"associated personnel" means all employees, contractors and volunteers involved in the permitted activities;

"Branch" means the Environmental Programs Branch, Environment Yukon;

"cell" means a discrete area of a facility into which solid waste is deposited for permanent disposal and includes such areas that are no longer used for that purpose;

"facility" means the waste disposal facility and special waste management facility located at the site;

"groundwater receptor" means a well or receiving water body into which groundwater flows;

"head office" means the office of the permittee located in Yukon;

"listed special waste" means special waste generated by households, waste oil, waste batteries, waste paints, waste solvents, and waste fuels;

"Regulations" means the *Air Emissions Regulations*, O.I.C. 1998/207, the *Solid Waste Regulations*, O.I.C. 2000/11, and the *Special Waste Regulations*, O.I.C. 1995/047;

"service area" means the population that is anticipated to be served by a facility;

"texas gate" means an electrified metal grid on the ground that can be passed over by vehicles but will prevent entry by animals;

"vehicle" has the same meaning as in the Motor Vehicles Act, R.S.Y. 2002, c. 153; and

"waste manifest" means the shipping document required to be completed by the permittee as set out in this permit in the form approved by an environmental protection officer.

2. Any term not defined in this permit that is defined in the Act or the Regulations has the same meaning as in the Act or the Regulations.

1.2 PLANS

 The permittee shall develop and maintain a fire safety/emergency plan which includes notification procedures and a list of emergency phone numbers relevant to the facility. All associated personnel involved with the handling or management of any wastes covered by this permit shall be familiar with this plan.

- 2. The permittee shall submit for approval an open burning transition plan no later than March 31, 2010, which plan shall detail how the permittee will phase out open burning as soon as possible or by January 1, 2012 at the latest.
- 3. The permittee shall submit for approval a spill response plan for the facility no later than June 30, 2010.
- 4. The permittee shall submit for approval, no later than December 31, 2010, a hydrogeological assessment of the facility that determines the potential impact to nearby surface water and groundwater.
- 5. Prior to constructing a new cell, the permittee shall submit a new cell plan for approval.
- 6. No later than six months prior to the planned closure of the facility the permittee shall submit a facility closure plan for approval.
- 7. Prior to undertaking any work toward the partial or full closure of a cell, including progressive capping and reclamation of active cells, the permittee shall submit a cell closure plan for approval.
- 8. When the permittee is required to submit a plan under this permit, the permittee shall:
 - a) ensure the plan meets the requirements for that type of plan as directed by an environmental protection officer from the Branch in writing;
 - b) submit the plan in writing to an environmental protection officer from the Branch;
 - c) not undertake any of the activities described in the plan until the plan is approved in writing by an environmental protection officer from the Branch; and
 - d) implement the plan as of the date it is approved in writing by an environmental protection officer from the Branch.
- 9. If the permittee wants to amend an approved plan, the permittee shall submit the proposed amendment to an environmental protection officer from the Branch as if the amendment were a plan under paragraph 1.2.8 of this permit.
- 10. If an environmental protection officer from the Branch directs in writing and with reasons that an approved plan be amended, the permittee must prepare the required amendment and submit it as if it were a plan referred to in paragraph 1.2.8 of this permit.

1.3 INSPECTIONS

- 1. The permittee shall conduct weekly inspections of all electric fences and shall maintain them as necessary during periods of activation as specified in paragraph 2.3.2 to ensure that:
 - a) the fence is sufficiently charged to deter wildlife; and
 - b) there is no vegetation or windblown litter or other items along the perimeter of the fence, or contacting the fence, that may act as a ground.

- The permittee shall conduct weekly visual site inspections to verify correct segregation of wastes and shall transfer all identified improperly segregated wastes to their appropriate segregation areas, except that the permittee is not required to pick items out of the putrescible waste disposal area.
- 3. The permittee shall ensure that surface water run-off is inspected during spring melt and as required by an environmental protection officer. Such inspections shall include, but not be limited to, qualitative observations regarding flow rate, general flow direction, and any noticeable effects the run-off is having on the facility.

1.4 RECORDS

- 1. The permittee shall keep all records required under this permit in a format acceptable to an environmental protection officer for a minimum of three years and make them available for inspection by an environmental protection officer upon request.
- 2. The permittee shall keep the following records at the head office:
 - a) a copy of each plan submitted under this permit, and any amendments to and approvals of each plan;
 - all inspections carried out under this permit (including the name of the person conducting the inspection, the date of each inspection, any observations recorded during the inspection, actions taken as a result of those observations, and the date each action was taken);
 - c) results of leachate, surface water and groundwater testing conducted at the site, where applicable (including interpretations of monitoring results to determine trends in contaminant levels over time);
 - d) results of hydrogeological assessments undertaken at the site;
 - e) any spills or leaks occurring at the facility, including substance involved, estimated quantity, date of observation of the spill or leak, and clean-up procedures implemented;
 - (f) the types of special wastes segregated at the facility, their estimated volumes, and their storage location(s) at the facility;
 - g) any and all deficiencies remedied in accordance with paragraph 1.5.4, and how and when they were remedied; and
 - h) a copy of any waste manifests used to transport special wastes to or from the facility.
- 3. The permittee shall permanently retain at the head office an updated, detailed site plan showing the locations of all active and closed cells and segregation areas at the facility and shall produce this site plan upon request for inspection by an environmental protection officer.

1.5 OTHER

- 1. The permittee shall ensure that all associated personnel:
 - a) have access to a copy of this permit;
 - b) are knowledgeable of the terms and conditions of this permit; and

- c) receive the appropriate training for the purposes of carrying out the requirements of this permit.
- 2. The permittee shall provide notice in writing to an environmental protection officer from the Branch prior to any significant change of circumstances at the site, including without limitation:
 - a) closure of the facility;
 - b) change of ownership of the site;
 - c) the opening of a new cell;
 - d) changing from a burn to a no-burn or from a no-burn to a burn operation; and
 - e) change to the mailing address or phone number of the permittee.
- 3. Where conflicts exist between this permit, the permit application or any plans, this permit shall prevail.
- 4. If an inspection reveals that the facility is in any way not in compliance with this permit or approved plans, or that surface water run-off is negatively affecting the structure or physical integrity of the facility, the permittee shall repair the damage or take other actions as required to bring the facility into compliance.

PART 2. SOLID WASTE

2.1 OPERATIONS

- 1. The permittee shall not operate a facility for a service area greater than 13,000 people.
- 2. The permittee shall ensure that all solid waste left at the facility that is not separated for recycling or transfer off-site is deposited into a cell.
 - 3. The permittee shall divert surface water run-off away from any area of the facility where waste is stored or deposited.
- 4. The permittee shall ensure that animal carcasses and animal parts are buried at least 2 metres below the surface of the land.

2.2 SIGNAGE AND SEGREGATION

- 1. The permittee shall install and maintain signs at the facility containing the following information:
 - a) entrance and exit location(s) for the facility; and
 - b) telephone contact numbers for the facility manager, the local fire protection
 - services, and the district conservation officer.
- 2. The permittee shall:
 - a) establish and maintain separate areas for the deposit of each type of solid waste accepted at the facility;

- b) install and maintain appropriate signs identifying each of these areas; and
- c) ensure that the facility is maintained to enable vehicles to access each of these areas.

2.3 FENCING AND SECURITY

- The permittee shall install and maintain, in accordance with the manufacturer's operating and maintenance instructions and recommendations, an electric exclusion fence(s) and gates that encompass the putrescibile waste disposal areas at the facility and any other areas of the facility that become or may become an attractant to animals. The fence and gates shall be adequate to prevent animals from entering the encompassed areas of the facility.
- 2. The fences and gates referenced in paragraph 2.3.1 above must be:
 - a) activated continuously from May 1 to October 31 of each year;
 - activated between November 1 and April 30 of each year if there are any tracks or other signs of animals visiting the area; and
 - c) activated upon the written request of an environmental protection officer.
- 3. If the facility is open to the public when staff are not on site, the permittee shall install and maintain a texas gate at each entrance and exit of each facility.
- 4. If the facility is closed to the public when staff are not on site, the permittee shall install and maintain either a texas gate or an electrified rigid swinging gate at each entrance and exit of each facility. Any rigid swinging gates are to be closed and secured every time staff leave the facility.
- 5. The permittee shall install and maintain fencing or other comparable measures to prevent the release of solid waste from the facility.
- 6. The permittee shall install and maintain signs marking the areas, if any, of the facility that are not to be accessed by the public and erect or construct fencing, gates or other similar structures to prevent public access to these areas.

2.4 WASTE COVER

- 1. At any facility where solid waste is burned, the permittee shall cover burned solid waste:
 - a) every month if the facility has a service area of 100 or more people; or

b) every two months if the facility has a service area of less than 100 people, with soil or other comparable material to a depth of 0.1 metres, or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds. In the case of solid waste burned in a <u>burning vessel</u>, the permittee shall remove the waste from the vessel after burning and place it in a cell at the facility before applying cover material.

- At any facility where solid waste will <u>not</u> be <u>burned</u> or transferred off-site, the permittee shall cover any exposed solid waste with soil or other comparable material to a depth of 0.1 metres or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds:
 - a) every day the facility is used if the facility has a service area of more than 5,000 people;
 - b) every seven days if the facility has a service area of 500 to 5,000 people;
 - c) every 21 days if the facility has a service area of less than 500 people; or
 - d) after every 0.5 metres of solid waste is deposited,

whichever occurs first.

3. Paragraphs 2.4.1 and 2.4.2 do not apply between November 15 and April 15 of each year if soil or other comparable cover material cannot reasonably be obtained.

2.5 OPEN BURNING OF SOLID WASTE

- 1: The permittee shall:
 - a) ensure, to the extent practicable, that solid waste to be open burned is dry and shall only burn wet solid waste when to delay such burning may result in attraction of animals or creation of a fire hazard,
 - b) prior to open burning the solid waste, separate combustible solid waste from any underlying grass or peat layer;
 - c) not allow solid waste to smoulder (burn and smoke without flame) during an open burn;
 - d) not use waste oil, tires or aviation gasoline to assist with the incineration of solid waste during an open burn;
 - e) not use any waste petroleum products to assist with the open burning of solid waste without prior approval to do so in writing by an environmental protection officer from the Branch;
 - f) prevent runoff water from entering the active open burning area; and
 - g) not open burn tires or treated wood products, including wood products that have been treated with creosote, chromium copper arsenate (CCA), pentachlorophenol (PCP), or any type of paint.

2.6 MONITORING

gnd

SN

The permittee shall ensure that samples are taken from all active groundwater monitoring wells at the facility in accordance with protocols for groundwater sampling approved by the Branch. The water level in all monitoring wells shall be recorded at each sampling event. Samples shall be taken twice each year the permit is in effect, once in the spring and once in the late summer, or as otherwise directed in writing by an environmental protection officer.

2) The permittee shall ensure that samples are taken from all downgradient surface water bodies within 1 km of the facility using generally-accepted sampling practice. Samples shall be taken concurrently with each groundwater sampling event or as otherwise directed in writing by an environmental protection officer. All groundwater samples shall be analyzed for the following parameters:

- Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
- Dissolved metals
- Mercury

3)

- Hardness
- Alkalinity
- Carbonate
- Bicarbonate
- pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- Volatile organic compounds
- Chemical oxygen demand
- Total Kjeldahl nitrogen
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)
- · Faecal coliforms (for those sites at which biosolids or liquids are deposited)

4. All surface water samples shall be analyzed for the following parameters:

- Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
- Total metals
- Mercury
- Hardness
- Alkalinity
- 🔸 Carbonate
- Bicarbonate
- pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- Chemical oxygen demand
- Biochemical oxygen demand
- Total Kjeldahl nitrogen
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)
- · Faecal coliforms (for those sites at which biosolids or liquids are deposited)

- 5. All water samples required by this permit shall be analyzed at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011.
- 6. The results of the analyses required under sections 2.6.3 and 2.6.4 shall be submitted to the Branch by January 31st of the year following that in which the samples were taken.
- 7. If water quality monitoring reveals that surface or groundwater downgradient of the facility contains contaminants in excess of the standards in the *Contaminated Sites Regulation*, the permittee shall conduct additional monitoring or develop and implement an adaptive management plan to address the contamination, as directed in writing by an environmental protection officer.

PART 3. SPECIAL WASTE

3.1 STORAGE AND HANDLING

- 1. The permittee shall not handle special wastes other than listed special wastes.
- The permittee shall not discard, destroy, treat, process, incinerate, or recycle special wastes, except for mixing or dilution authorized by an environmental protection officer pursuant to section 3.1.3(k) below.
- 3. The permittee shall:
 - a) cover or store out of inclement weather all drums and other portable containers containing special wastes;
 - b) store all drums and other portable containers containing special wastes off the ground;
 - c) immediately remove all special wastes stored in leaking containers or transfer them to intact containers;
 - d) to the extent practicable, handle and store special wastes separately from solid waste;
 - e) store special wastes in a manner that will prevent incompatible substances from reacting adversely with each other;
 - f) post signs identifying examples of common special wastes and phone number(s) and/or website(s) with information on appropriate disposal options for those materials, whether or not those materials are collected onsite;
 - g) ensure that all containers used for the storage of special waste are clearly marked to identify what special waste the container is intended to hold;
 - h) ensure that containers used for the storage of special waste are made of materials that will not adversely react with the special waste;
 - not allow any residue at the bottom of a container used for the storage of special wastes to be released to the environment. Such residue shall be collected by the permittee, separated from other waste and treated as a special waste until proven by testing to not be special waste;

- j) not mix waste oil from piston engine aircraft with other waste oil;
- k) only mix or dilute a special waste with any other material where such mixing or dilution is authorized by an environmental protection officer from the Branch as an acceptable treatment/disposal option for the special waste;
- keep all containers used to store special waste closed at all times during storage and shall not open, handle or store the container in a manner which may cause it to leak or rupture; and
- m) shall have every closed container that
 - (i) has a capacity of more than 230 litres;
 - (ii) is designed to be installed in a fixed location; and
 - (iii) will contain special waste

certified by a testing agency recognized by the Standards Council of Canada prior to putting special waste in the container.

3.2 TRANSPORT AND TRANSFER

- 1. The permittee shall complete a waste manifest documenting each shipment of special wastes from the site. The permittee shall distribute copies of the waste manifest in the manner described thereon.
- 2. The permittee shall ensure that special wastes are transported to a permitted special waste management facility in the Yukon or another jurisdiction by a carrier permitted in the Yukon to receive and transport the special wastes.
- 3. The permittee shall ensure that all vehicles operated by the permittee and carrying any special wastes are secured to prevent access by unauthorized persons.

I, <u>Michael Riseborough</u>, certify that I am an authorized representative of the <u>Village of</u> <u>Haines Junction</u>, and that I have read and understood the terms and conditions of this permit.

Michael Riseborough, Authorized Representative Village of Haines Junction

100311 Date

APPENDIX C APPENDIX C MONITORING WELL LOGS

2010 Monitoring Well Program					CLIENT: YG - Department of Community Services					PROJECT NO BOREHOLE NO.			
Haines Junction Landfill					Geotech	MST	-00	ex	W23101317-HJ-MW01				
Haines Junction, YT					7N; 3631	116E;	Zor	ne 8					
SAMPLE TYPE DISTURBED / NO RECOVE				RY 🔀	SPT		E	A-CASING	SHEL	BY TUBE CORE			
BACKFILL TYPE BENTONITE PEA GRAVEL					SLOUGH		ŀ	GROUT		L CUTTINGS 🔃 SAND			
						ш	ΪĽ						
Ê		SC	NI			TYPE	SAMPLE NUMBER			NOTES &	Monitoring	le l	(ft)
Depth (m)				Ш.	ž				Mon	>	Depth (ft)		
Del				SAMPLE				COMMENTS) <u> </u>		De		
						S :	NAN SAN						
E 0	SILT - some sand, trace clay, fine to medium grained sand, moist, fir brown						G1						0_
<u> </u>	biowii												huuhu
	- some to t				G2						5		
E_ 2	- 501110 101				G3								
	- some cla	у											huh
	- some sar	nd, some gravel, no cla	ay, very fine to medi	um grained	sand,		G4						10_
Ē 4	gravel is	s 5-20 mm, subrounde	d to angular				54						
Ē													15
E 5													
E							_						
<u> </u>							G5						20
	- medium l	orown									N		
E 7 E							36						
													25
8													
ndundundundundundundundundundundundundun													0 ларанная страная с
							37						30_
<u> </u>													
													35
E_ 11	- very fine	to coarse grained sand	d, moist, dark brown										
E 12	- trace clay	γ, damp					38						
H I													
E 13													
	- trace gra	vel											
<u> </u>							3 9		· · · · · · · · · · · ·				40_
E_ 15											N		50
E_ 16 E							510		····) ··· (····)				
Ē 17													55
<u> </u>													<u>م</u> اللله سالله
line 13 14 15 16 17 18 19 20 21	- dark grey	vish brown, damp to me	oist				511						липиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралитиралит 55 боло 60 странования с 65 странования с 66 странования с 66 странования с 66 странования с 66 странования с 6 60 странования с 66 странов
E_ 19													ահափ
													65
E_ 20													
21	- some sar	nd to sandy, no clay, g	ravel is 5-15 mm, da	imp				······································					69
		Engineer	ing Con		nta I	4~		GGED BY: BW		COMPLETION D	DEPTH:	38.4	m
éb	EBA	suital	ns L	.10.		VIEWED BY: RM RAWING NO:	М	COMPLETE: 10, Page 1 of 2	/15/2010)			
1							זטן	VANNING INC.		II ayo I UI Z			

ENVIRONMENTAL W23101317.004.GPJ EBA.GDT 1/28/11

		CLIENT: YG - Department of Community Services					PROJECT NO BOREHOLE NO.			
Haine	s Junction Landfill	DRILL: Geotech	MS	T-0	dex	W23101317-HJ-MW01				
Haine	s Junction, YT	6740207N; 363116E; Zone 8								
SAMP	LE TYPE 📕 DISTURBED 🗌 NO RECOVER	RY 🔀 SPT			A-CASING	SHEL				
BACK	FILL TYPE 🗾 BENTONITE 🚺 PEA GRAVEL	SLOUGH			GROUT					
			ш	ER						
Ê	601		TYPE					p	(H)	
Depth (m)	SOIL		Щ	ž			NOTES &	vell vell	Depth (ft)	
Dep	DESCRIPTION		SAMPLI	Ч			COMMENTS	Monitoring well	Del	
			SA	AM						
E 21				G12				NN	70	
E 22									70 ларана 75 ларана 80 дитеритеритеритеритеритеритеритеритеритер	
E 23									75	
Ē										
Ē 24	SAND - some gravel, some silt, well graded sand, gravel	is 5-20 mm,		G13					mhu	
E	subangular to angular, damp, light grey SAND and GRAVEL - some silt, very fine to coarse grain			010					80	
Ē_ 25	is 5-20 mm, subangular to angular, damp, light grey	eu sanu, graver /		G14					1	
E_ 26									85_	
E 27										
E I	SAND - silty, some gravel, very fine to coarse grained sa	nd, gravel is		- · -					90_	
E_ 28	5-20 mm, subangular to angular, damp, light grey	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		G15						
									1	
E_ 29	- trace gravel, gravel is 5 mm, moist, dark brown			~		· · · · · ·			95_	
21 22 23 24 25 25 26 27 28 29 30 31 31 32 33 33				G16		····			- mp	
E_ 30	SAND and GRAVEL - fine to very coarse grained sand, g 5-10 mm, wet, dark brown	ravel is							100	
E 31	SAND - trace gravel, fine to very coarse grained sand, gra	avel is 5-10 mm,		G17					100_	
E	wet, dark brown			017						
Ē 32									105	
Ē	SAND - some silt, very fine to medium grained sand, wet,	grey								
Ē 33									1	
				G18					110_	
E_ 34	- silty					.;.;				
				040						
<u>=</u> 35				G19					115	
E-	- sandy, very fine to fine grained sand, grey									
34 35 36 37 38 39 40 41 42	SILT - sandy, very fine to fine grained sand, wet, dark gre	y		G20					110	
E				220					120	
E_ 37										
				G21						
E_ 38	- saturated								125_	
E 39	END OF BOREHOLE @ 38.4 m									
	NOTE: These logs refect disturbed material recovered fro	om drill return.								
Ē 40	Particle sizes and shapes (particularly gravel) are a	affected by drilling							130_	
	process. Cobbles and boulders if present are not ir this drilling method. Moisture content is effected by									
Ē 41	recover drill material.								125	
Ē									100_	
E 42									138	
	E CDA Engline oring Care	ام ا		DGGED BY: BW		COMPLETION DEPTH: 38.4m				
ebo	🖞 EBA Engineering Cons	unants L		٠Ħ	<u>EVIEWED BY: RMM</u> RAWING NO:		COMPLETE: 10/15 Page 2 of 2	/2010		
ENVIRONN	IENTAL W23101317.004.GPJ EBA.GDT 1/28/11			טן			Faye 2 01 2			

2010 Monitoring Well Program				CLIENT: YG - Department of Community Services						PROJECT NO BOREHOLE NO.			
Haines Junction Landfill				DRILL: Geotech MST-Odex						W23101317-HJ-MW02			
Haine	s Junction, YT	6739945N; 363298E; Zone 8											
SAMPLE TYPE DISTURBED NO RECOVER					ERY 🔀 SPT			A-CASING		BY TUBE CORE			
BACK	FILL TYPE	L []]]	SLOUGH			GROUT		L CUTTINGS 🔛 SAND					
						Щ	SAMPLE NUMBER				_		
(E)		SC	DIL			TYPE	MU			NOTES &	Monitoring		ŧ
Depth (m)				Щ.	<u>–</u>			COMMENTS	Mor		Depth (ft)		
ð				SAMPLE	MPI			COMMENTO			ŏ		
= 0		brown							_		0 =		
	SILT - some to				G1								
	- some sand gravel is	5, trace gravel, trace 5-10 mm, subangula	clay, very fine to coa ir to angular, dry to d	arse graine amp, firm,	a sana, light		G2						5
E_ 2	brown - dark brow	2			-		G3					8	-
3			e grained sand, grav	el is 5-15	mm,								10
4	damp												uluuluu
	SAND and GR	AVEL - some silt. we	Il graded sand, grave	el is 5-30 r			G4						15
5	\ light grey	1			· 1		G5						4
6	SAND and SIL	l - some gravel, well led to angular, damp	graded sand, grave , yellow brown	I IS 5-15 M	im, j		G6						20
Щ 7	SILT - sandy, s	some gravel, well gra ded to angular, damp	ded sand, gravel is 5	5-15 mm,			G7						
Ľ,		0	, yenew brown										25
8	- trace grav	el, gravel is 5 mm					G8						-
9	- some sand 5-20 mm	d, some gravel, very , medium brown	fine to coarse graine	d sand, gr	avel is								30
E_ 10	0 20 1111	, modium brown											
							G9						35
E_ 11													0
E 12													10
E_ 13							G10						15
E_ 14													4J_
E 15													
	- trace sand	l, trace clay, trace gra	avel, damp, dark bro	wn			G11						50_
16 11			ay, very fine to coars	e grained	sand,								
L 17	gravel is - some to tr	5-10 mm, damp to m ace sand	noist, medium brown										20
E 18													
							G12						60_
E_ 19													
$egin{array}{cccccccccccccccccccccccccccccccccccc$							G13				Σ		555 60 65 70 75 80 85 89
E 21						–	- 10						
uuluu s													/0_
E_ 22													
E_ 23							G14						75
E 24						F)							- The second sec
	- trace clay												80
E_ 25							G15						uhuhu uhu
26													85
27								······································					
		Enginaar		nto l	+~		DGGED BY: BW		COMPLETION D			n	
ebo	Engineer	sulla	ms L		יחן.	EVIEWED BY: RM RAWING NO:	/I	COMPLETE: 10/ Page 1 of 2	17/2010)			
ENVIRON	MENTAL W23101317.00	04.GPJ EBA.GDT 1/28/11					וטן			TUSETUIZ			

	Monitoring Well Program		CLIENT: YG - Department of Community Services					PROJECT NO BOREHOLE NO.		
Haine	s Junction Landfill	DRI	LL: Geotech	n MS	ST-O	dex		W23101317-HJ-MW02		
Haine	s Junction, YT	673	9945N; 363	298E	E; Zo	one 8				
SAMF	PLE TYPE 📕 DISTURBED 🛛 🖉 NO RE	COVERY	SPT			A-CASING	SHEL	.BY TUBE CORE		
BACK	FILL TYPE 🗾 BENTONITE 🛛 🚺 PEA G	RAVEL	SLOUGH	1		GROUT		L CUTTINGS 🔅 SAND		
				ш	ER		_			
Ê	001			TYPE	SAMPLE NUMBER				p	(ff
th (I	SOIL			111	Z			NOTES &	ell itoric	oth (
Depth (m)	DESCRIPTION			SAMPLE	ЫШ			COMMENTS	Monitoring well	Depth (ft)
				SA	AM					
E 27					S		::		NN	90
28					G16					
L 29										95
	- no clay									
<u> </u>										400
E 31					G17					100_
E_ 32										105
E 33										
										110
<u> </u>					G18					
35										115_
11 11 36										
										120
E_ 37					G19					
LL 38										125
					G20					90
11_ 39										
E 40	SILT and SAND - some gravel, very fine to mediu	n grained s	and, gravel		G21					130_
	is 5-10 mm, subangular to angular, moist, s	iff, light grey	/		021					
L 41					G22					135
<u> </u>	- firm				022					
										140
i i i										
E_ 44					G23					145
45										
					G24					150
L 46	SAND and GRAVEL - silty to some silt, very fine t saturated	o coarse gra	ained sand,		G25					
1. 44 45 46 47 48 49 50 51 52 53 54										
48	END OF BOREHOLE @ 47.5 m									
<u>،</u>	NOTE: These logs refect disturbed material reco	ered from a	lrill return.							160
49	Particle sizes and shapes (particularly grav process. Cobbles and boulders if present a	e) are affect e not indica	ted by drilling ted throuah							100
50	this drilling method. Moisture content is effe									
L .	recover drill material.									165_
E_ 51										
52										170
53										175_
54										17
	ERA Engineering Co	neul	tante l	to	내	OGGED BY: BW EVIEWED BY [.] RMM		COMPLETION DEI COMPLETE: 10/17	-111:47 /2010	.∠m
EBA Engineering Consultants Ltd. REVIEWED BY: RMM DRAWING NO:								Page 2 of 2	2010	
ENVIRON	MENTAL W23101317.004.GPJ EBA.GDT 1/28/11									

2010	Monitoring We		CLIENT: YG - Department of Community Services					PROJECT NO BOREHOLE NO.						
Haine	s Junction La	ndfill		DRILL:	Geotech	MS	T-0	dex		W23101317-HJ-MW03				
Haine	s Junction, Y	Г		673980	3N; 3630)94E	; Zo	ne 8						
SAMF	PLE TYPE	DISTURBED	NO RECOVE	RY 🛛	SPT			A-CASING	SHEL	BY TUBE	CORE			
BACK		BENTONITE	PEA GRAVE	il 🎹	SLOUGH			GROUT		CUTTINGS	SAND			
						ш	ER.				<u> </u>			
Ê		0/				ΓYPE	SAMPLE NUMBER			NO		Monitoring	_	(f)
Depth (m)			OIL			Щ	Z				TES &	Monit	×	Depth (ft)
Dep		DESCH	RIPTION			SAMPLI	Ц			COM	MENTS			Dep
						SA	3AM						•	
E 0	SILT - some s	and, poorly graded, v	wet, firm, brown				G1							0
E 1	SAND - unifor	mly graded, fine grain	ned sand. moist. vell	ow brown			G2							-
		vel, gravel is 5-25 mn	-											5_
2	_	ravel, some sand, we					G3							
3	subroun	ded, angular, moist,	brown		~		G4							10
	SAND and SII	T - trace to some gra	avel, well graded sar	id, gravel is	s		G5							4
4	SILT - sandy,	some gravel, well gra	aded sand, gravel is	5-15 mm,	/		G6							15
5	subangu - damp	ilar to angular, damp	, brown				G7							
	- uamp													
6								•••••••••••••••••••••••••••••••••••••••						20_
Ē 7	- trace san	d												1
		d, fine to medium gra	ained aand araval ia	E 10 mm				······						25
8	subroun	ded to angular	allieu saliu, gravel is	5-10 mm,			G8						N	
9														30
E_ 10							G9							_
E 11														35_
							G10							4
E_ 12							GIU							40
E 13														
												N		45
E_ 14	- moist to v	vet, grey brown					G11							0
E 15														50
							G12							
E_ 16												N	N	
E 17									;					55_
														-
L 18							_							60
19							G13							
E 20														65
							G14							
21														70
L. 22														, , 1
E_ 23							G15							/5_
E 24							010							
E_														50
E 25							11	DGGED BY: BW	: :	COM	PLETION DE		\mathbb{N}	
	🚓 EBA Engineering Consultan							EVIEWED BY: RMN	Λ		PLETE: 10/13			<u>лн</u>
eod									Page			-		
ENVIRON	MENTAL W23101317.0	04.GPJ EBA.GDT 2/1/11												

Haines Junction Landfill DRILL: Geotech MST-Odex W23101317 Haines Junction, YT 6739803N; 363094E; Zone 8 SAMPLE TYPE DISTURBED NO RECOVERY SPT A-CASING SHELBY TUBE CORE BACKFILL TYPE BENTONITE YPA GRAVEL SLOUGH GROUT DRILL CUTTINGS SAND	
SAMPLE TYPE DISTURBED NO RECOVERY SPT A-CASING SHELBY TUBE CORE BACKFILL TYPE BENTONITE PEA GRAVEL SLOUGH GROUT DRILL CUTTINGS SAND	
BACKFILL TYPE 🗾 BENTONITE 🚺 PEA GRAVEL 🔟 SLOUGH 💽 GROUT 🔯 DRILL CUTTINGS 💽 SAND	
	ft (t
(m) Hotel Solf Solf Solf Sample Type Solf Comments	Monitoring well Depth (ft)
25 - trace gravel, well graded sand, gravel is 5-20 mm, moist, gray 616 28 - some gravel 617 28 - dark gray 618 30 - dark gray 618 31 - dark gray 618 33 GRAVEL - some sand, fine to coarse grained sand, gravel is 5-20 mm, moist, gray 618 33 GRAVEL - some sand, fine to coarse grained sand, gravel is 5-20 mm, moist, gray 619 34 35 619 36 SL1 and SAND - some gravel, fine to medum grained sand, gravel is 5-20 mm, moist, gray 620 38 SL1 and SAND - some gravel, fine to medum grained sand, gravel is 5-20 mm, solut, gray 621 39 SL1 and SAND - some gravel, fine to medum grained sand, gravel is 5-50 mm, solut, gray 622 41 SAND and GRAVEL - some sind, fine to coarse grained sand, gravel is 5-50 mm, solut, gray 622 41 SAND and GRAVEL - some sind, fine to coarse grained sand, gravel is 5-50 mm, solut, gravel some gravel, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, met on malit, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, met on malit, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, well some gravel, well some gravel, met on malit, well graded sand, gravel is 5-20 mm, solut, gravel some gravel, met on gravel some gravel, well some gravel, well some gravel, well some gravel, well s	
27 - some gravel	90
2 9	
a 30	
- dark grey	
	105
	110
G19	
E 35	
	120
3 7	-
GRAVEL - some sand, fine to coarse grained sand, gravel is 5-20 mm,	
SILT and SAND - some gravel, fine to medium grained sand, gravel is	125_
39 5-15 mm, subangular, stiff, moist, light grey	
SILT - some gravel, some sand, fine to coarse grained sand, gravel is	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
40 1 SILT and SAND - some gravel, well graded sand, gravel is 5-15 mm, 7 1 G22	
41 SAND and GRAVEL - some silt, well graded sand, gravel is 5-25 mm,	135_
E subangular to angular, saturated, medium grey 42 END OF DODE LOLE @ 41.0 m	
END OF BOREHOLE @ 41.9 m	140
43 NOTE: These logs refect disturbed material recovered from drill return. Particle sizes and shapes (particularly gravel) are affected by drilling	
44 process. Cobbles and boulders if present are not indicated through	145
this drilling method. Moisture content is effected by the use of air to recover drill material.	145_
46	150_
	155
48	
49 49 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	160_
E 50	
EBA Engineering Consultants Ltd. REVIEWED BY: RMM COMPLETION	
ENVIRONMENTAL W23101317.004.GPJ EBA.GDT 2/1/11	-

APPENDIX D APPENDIX D GROUNDWATER WELL DEVELOPMENT LOGS

Attachment /.z - www.4219

				·					Development
									Purge/Sample
	WELL NO .:	HJ-M)	RON			JOB N	10: NIZ3101	317.007	
			Junction				BY: Breaning		, <u></u>
	WEATHER:		-			DA	TE: Oct 17	2010	
	TEMPERATURE:								
							`		
	RING WELL INFOR				One well v	volume: 5	8 <u>.</u>		
Depth to V	Nater Below Top of 200 541.440 8 Bottom of Well Belo	Casing: w Top of Casi	A <u>33</u> ing: B 4 <u>1</u> 2	2 <u>53</u> (metres)		(B-A)*2:0 =	= <u>46.</u> litres = litres	•	0 inch) diameter well 5 inch) diameter well
Diameter	Standpipe:		C a	<u>እ </u>	Product	Thickness	:	(by probe or pa	·
EQUIPME	ENT LIST						pro!	olens cal	ibrating, would
pH ai	nd Temp. Meter:	Model	EBA Hana 1	Serial No.	-	Calibrat	tion Buffers: 🛛 4	7	10 calibrate +
Co	nductivity Meter:	Model		Serial No.	_	Calibratio	n Solutions:	an	d —
	d Oxygen Meter:	-	EBA Dalton	· · · ·					
	Turbidity Meter:		~		-				
	• _	-				E	Designation		han and bla
	Pump: L			U Wate		<u> </u>	Peristaltic		omersible
	Bailer:				less Steel		Teflon	PV	
	Filter:] none		🗌 Wate	rra in-line		Vacuum (disposal)	🗌 🗌 Va	cuum (re-usable)
	VELOPMENT/PUR	CINC							
	4.5	COMO ~		h ní			u al la	10.0	
-	ume: Well vol x	3		128.5	litres		Hand be		
Flow Rate		L	/min V	/olume: <u></u>		Start:		Finish:	
	VOLUME		TEMP		0010			······	
TIME	VOLUME REMOVED (L)	ORG. VAF	P. TEMP (oC)	pH (UNITS)	COND. (uS/cm)				REMARKS r, sheen, brittle film, etc.)
1.02			2.2	7.28	3225		1,43	Clear	
1:00	15 L		16.8	8.47	2244		1.5	53	
1.36	201		20	Q.25	3451		1.7	- 1	
2:10	45L (05L	+	6	7.12	3456		2.07	53 . 64	
<u> </u>	0.5 -	1.	111 0	1.14	3314	<u> </u>	201	~~	
		_							
	C	omments (Re	ecovery rate, etc.):						
SAMPLIN	IG Water Odo	ur: 🗌 no	🗌 yes (des	cribe)		She	en 🗆 no 🗆	yes (describe)	
Turbidity:		2012	Clear:	1	2 3	4 5	6 7 8		Very Silty
	relative scale (circl		ate):			-		15 m - + 1	
		Othe	er:						
NAPL Info	ormation (odour, co	lour, etc.)							
BOTTL	F		Size: 40r	ml 100mL	250mL 500)mL 1L	2L 4L	Filtered	Preservatives
	_				200mL 500	ANL IL	. ZL 4L		
1			Blass				l	Yes 🛛	No
2	Plastic		Slass			_ <		Yes 🛛	No
3		_	Blass				[Yes 🗆	No
4	Plastic		Blass					🗆 Yes 🗌	No
5	Plastic		Glass				` <u>_</u> _`1	S Yes 🗆	No
6	Plastic		Slass				[Yes Q	No
7	Plastic		Glass				[🛛 Yes 🗔	`No
8	Plastic		Glass				(Yes 🗆	No

Attachment /.2 - WW4219

												Development
												Purge/Sample
	WELL	NO.: <u>H</u>	J-MV	101				JOB NO .:	W231013	NT.004	F	•
							CO	MPLETED BY:	Breanne			
		_	un +	da	1ds			DATE:	oct 17	,2019	2	
	TEMPERAT	URE: <u>-</u>	2					TIME:	100m			
	RING WELL					174	One well v	olume:	21 L litres			
1	Water Below Bottom of We		+	nina		4.474 (metres)	•	(B-A)*220 = <u>'</u>	<u>21 L</u> litres	-for a 51mm		1
· ·	Standpipe:	SII DEIOM	TOP OF Ca	ising:		<u>. 3</u> (metres)	Product	(B-A) T.T =	litres	-for a 38mm (by probe or		ameter well
Diameter	otanapipo.				·	<u>k i quany</u>	FIGUUG			(by probe or	pasier)	
EQUIPMI	ENT LIST								(
pH a	nd Temp. Me	eter:	Model	EBA	Hanal	Serial No.		Calibration	Buffers: 2 4	2 7	□ 10	
Co	nductivity Me	eter:	Model				-		olutions:		and	
	d Oxygen Me						(41)				<u>.</u>	
	Turbidity Me						<u>~</u>					
	Pump:											
						Wate		_	eristaltic			ourempter
	Bailer:		none				less Steel		eflon		PVC P	
I	Filter:		none			🗆 Wate	rra in-line	🗆 Va	acuum (disposal)		/acuum (re-u	isable)
WELLDE												
1			-			0.04	14-			1.0		
						63	litres	Method: +	cind ba	ILK		
Flow Rate	e	No.		L/min	Vo	olume:		Start:		Finish	າ:	
	VOLUN	AF 1	ØRĠ. VA	D	TEMP	pН	COND.	TURBIDITY	DIS.02	1	REMARK	<u> </u>
TIME	REMOVE		(PPM)		(oÇ)	(UNITS)	(uS/cm)	(NTU)	(mg/L) or %	(colour. od		orittle film, etc.)
10:10	1				14	7.85	1478		2.73		mur	
10:25	101				1.8	1.6	1728		2.88		brown)
10:26	20L 301				1.8	7.88	1299	<u>├</u> \	2.68	1	1.1	
انوند					1.8	8.01	2460		2.45	11		
11:15	50) [1.8	8.01	2 4 10		241	11		
				+				\				
		·		++		-		<u> </u>				
									\mathbb{N}			
ļi				<u> </u>					Ľ.			
		Cor	nments (I	Recover	y rate, etc.):							
SAMPLIN	IG Wate	er Odour		-	yes (desci	rihe)		Sheen		yes (describe)		
Turbidity:		ITU	. 🗗 🔟		Clear:	1	2 3 4	4 5 6		9 10	Very Silty	
	relative seal		as approp	riate):	olour.	•	2 0 -		, , ,	5 10	Very Only	
			Ot	ner:					parter approx			
NAPL Info	ormation (odd	our, colou	ur, etc.)									
DOTT					01 10		050 1 500		<u> </u>			
BOTTL		D I 41 -	-	0	Size: 40m	1 100mL	250mL 500a	mL 1L	2L 4L	Filtered		eservatives
1	_	Plastic		Glass							No	
2		Plastic		Glass					L	Yes 🗆	No	
3		Plastic		Glass		·			[Yes 🛛	No	
4		Plastic		Glass					C	Yes 🗆	No	
5	D F	Plastic		Glass						Yes 🗆	No	
6		Plastic		Glass	_				[Yes 🗆	No	
_ 7		Plastic		Glass						Yes 🛛	No	
8		Plastic		Glass					C	Yes 🗆	No	

Attachment /.2 - WWW4219

											0	Development
											Π	Purge/Sample
	WE	LL NO.:	H.T-N	rmog	L			JOB NO	DIE <u>WZ 31013</u>	17.004	ц.,	
	LOC	ATION:	Haino	s du	nctio	sn	CON		Y: Breanny			
									E: Oct 19			
		ATURE:							IE: 8:00am			
				15	5-3.	282 -1	17.24					
MONITO	RING WEI	LL INFOR					One well v	olume:				
1		ow Top of	-		A <u>38</u>	505 (metres)	(B-A)*2:0=	43L litres	-for a 51mm (2.0 i	nch) diai	meter well
1		Well Below	w Top of C	asing:		18 A (metres)	(B -A)*1.1 =	litres	-for a 38mm (1.5 i	nch) diar	meter well
Diameter	Standpipe	э:			<u>ر</u> ۲	. · · (mm)	Product	Thickness:	<u> </u>	(by probe or paste	?)	
FOLIDM												
1	ENT LIST		Mada	ERN (1	0		0.0			40	
	nd Temp.								on Buffers: 2 4		10	
	nductivity					_		Calibration	Solutions:	and		
Dissolved	d Oxygen	Meter:	Mode	I EGA	Oakton	∖ Serial No	~					
	Turbidity	Meter:	Mode	I		Serial No.	~					
F	Pump:		none				erra		Peristaltic	Subm	ersible	
	Bailer:		none			_	less Steel	_	Teflon	PVC		remylene
	Filter:											
'			none				erra in-line	L	Vacuum (disposal)		um (re-us	sable)
WELL DE	VELOPM	ENT/PUR	GING									
	ume: Wel	3		W	olumos -	120	litroe	Mothod:	Hand b.	0.01.		
1 °												
FIUW Rate		-		UIIIII	V		\sim	Start:		Finish:		
70.07	VOL	UME	ORG. V	AP.	TEMP	pН	COND.	TURBIDI	TY DIS.02	R	MARKS	
TIME	REMO\		(PPN)	(oC)	(UNITS)	(uS/cm)			(colour, odour, s		
8.03	16				. ° O	8.73	2814		1-78	Clear		
8:25	151		\vdash		B	1.12	3995	<u> </u>	1.5.1	.\	1 1-	
9:01	45		$ \rightarrow $			7.12	3999	<u>├</u>	0.7	shant verel	<u>nup</u>	W WWW
					<u></u>					veren	INAL	~~~
			<u> </u>									
								<u> </u>				
								·····	-			
			· · · · · · · · · · · · · · · · · · ·						\			
I												
	~	Co	mments i	Recovery i	rate, etc.):							
SAMPLIN		ater Odou			yes (desc	ribo)		Charr	n 🗆 no 🗆 y			
Turbidity:		NTU			Clear:	1	2 3 4	Sheer		ves (describe)	Cilia	
		ale (circle	as appror	priate):	UICOL.	I	۷ ۲ ۲	0	6 7 8	9 10 Ve	ry Silty	
		, - ·· - · •		ther:								
NAPL Info	ormation (c	odour, colo	our, etc.)	-								
						\sim						
BOTTLE					ize: 40m	I 100mL	250mL 5001	nL 1L	2L 4L	Filtered	Pre	servatives
1		Plastic		Glass					[]	Yes 🗌 No)	
2		Plastic		Glass		·		$\geq -$		Yes 🗆 No)	
3		Plastic		Glass			<u> </u>		□	Yes 🗆 No	,	
4		Plastic		Glass						Yes 🗌 No	, —	
5		Plastic		Glass						Yes 🗌 No		
6		Plastic		Glass						Yes 🗌 No		
7		Plastic		Glass	_			_	U	Yes I No		
8					_			·				
<u> </u>		Plastic		Glass					U	Yes 🗆 No)	

APPENDIX E APPENDIX E GROUNDWATER SAMPLING FIELD SHEETS

Attachment /.z - WW4219

	WELL NO .: HJ - MWCA LOCATION: Hames lunction	COMPLETED BY: Breanne Krisken
	WEATHER: - Claudy	$\qquad \qquad $
	have TEMPERATURE: -10	TIME: 10:15
ner	om 38.4 mbas, su: 84.7 - 29.24	
	MONITORING WELL INFORMATION 35 - 18%	One well volume: 4.5
	Depth to Water Below Top of Casing: A <u>38.706 (metres</u>)	$(B-A)^{*}2.0 = 15.57$ litres -for a 51mm (2.0 inch) diameter well
	Depth to Bottom of Well Below Top of Casing: B 39.24 (metres) Diameter Standpipe: C 21 (mm)	(B-A)*1.1 = litres -for a 38mm (1.5 inch) diameter well Product Thickness: (by probe or paste?)
	B- $A = 3.4$ (mm)	Product Thickness: (by probe or paste?)
	EQUIPMENT LIST	
	pH and Temp. Meter: Model <u>Hanna # 2</u> Serial No. <u>EP</u>	Calibration Buffers: 🗹 4 🗹 7 🗆 10
	Conductivity Meter: Model Serial No	Calibration Solutions: and
	Dissolved Oxygen Meter: Model $\Delta c_1 + 2$ Serial No.	BA
	Turbidity Meter: Model <u>Hanna # 2</u> Serial No. E	BA
	Pump:	Peristaltic Submersible
	Bailer: none Stainles	is Steel Teflon PVC
	Filter: none 🛛 Waterra	
Horn's		
	WELL DEVELOPMENT/PURGING	
5/	Purge volume: Well vol x 3 volumes = 46	litres Method: Waterra oumo
,	Flow Rate L/min Volume:	Start: 12:20 pm Finish: 1:30 pm
		, to turbid.
	TIME VOLUME ORG. VAP. TEMP pH REMOVED (L) (PPM) (oC) (UNITS)	COND. TURBIDITY DIS.02 REMARKS (uS/cm) (NTU) (mg/L) or % (colour, odour, sheen, brittle film, etc.)
	12:20 IL 869 0 7.86	1847 LLOER 4.3 dark wown
	1512:35 - 15L 1056 0.1 $7.9810:11:50$ $30L$ 108 0.4 8.11	1400
	401 14 07 82	220 " 7.9 " 2300 " 16.7 " water coming of
síksť		2818 Very Sioust
(v.191)	Notes slow bic so	and sediment in tubing, it was
, at the	freezing wo	Her came out very cions
-10 شرق		
-30°'		
	Comments (Recovery rate, etc.):	
	SAMPLING Water Odour: no uses (describe)	Sheen I no U yes (describe)
	Turbidity: NTU ⇒ extrem Clear: 1 2 or 1 – 10 relative scale (circle as appropriate);	3 4 5 6 7 8 9 (10) Very Silty
		sample bottles filled 1/2 w/ sediment
	NAPL Information (odour, colour, etc.) - <u>samples bubl</u>	oled when HCL or H2SOL waradded
	BOTTLE Size: 40ml 100mL 25	Some Soom 11 01 4t Ellered Descention
ſ	BOTTLE Size: 40ml 100mL 25 B→TE×1 □ Plastic ☑ Glass <u>3</u>	50mL 500mL 1L 2L 4L Filtered Preservatives ロ Yes ロイ No RTEX
-	2 Plastic & Glass <u>></u>	- bioken work in the
	3 I Plastic I Glass	Bottly
	$2 \propto 4$ 2° Plastic \Box Glass <u> </u>	
v≪ 4	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
NJ V	μ	
Ň	1 1 1 1 1 1 1 1 1 1	⊥ No <u>H SO4</u> Yes ☑ No H C ↓
IN A	tals 8 Plastic D Glass	
vvv		
	when HCITHSON added bubblod.	later 125 mL filtered of Nitric acid

Attachment /.2 - WW4219

Groundwater Development and Purging/Sampling Sheet

		Development
	WELL NO.: HSHW02 LOCATION: HAINES Jun Chim WEATHER: COUCH TEMPERATURE: -10	Z Purge/Sample
	WELL NO .: HSM WOZ	JOB NO .: 1123101317.007
	2 mbg LOCATION: Haines Jun Chan	COMPLETED BY: <u>Ryeanie (Eristen</u> DATE: <u>Dec 6 + Dec Tam</u>
	WEATHER: <u>doudy</u>	DATE: Dec 6 TWC I GM
$\mathcal{L}_{\mathcal{H}}$		TIME: <u>5: 10 pm</u>
	MONITORING WELL INFORMATION	ne well volume:
	Depth to Water Below Top of Casing: As <u>36.65</u> (metres)	$(B-A)^{*}2.0^{=}$ 4.2 litres -for a 51mm (2.0 inch) diameter well
	Depth to Bottom of Well Below Top of Casing:	(B-A)*1.1 = litres -for a 38mm (1.5 inch) diameter well
	Diameter Standpipe: $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	Product Thickness: (by probe or paste?)
	EQUIPMENT LIST	
		Calibration Buffers: 2 4 2 7 1 10
	Conductivity Meter: Model Serial No	
	Dissolved Oxygen Meter: Model Day ton #2 Serial No. ES	
	Turbidity Meter: Model <u>Hanna</u> +2 Serial No. EB	<u>+</u>
	Pump: Onone Waterra	Peristaltic Submersible
	Bailer: 🗆 none 🗌 Stainless Sto	eel 🗆 Teflon 💭 PVC
	Filter: 🗆 none 🗌 Waterra in-li	ne 🔲 Vacuum (disposal) 🗌 Vacuum (re-usable)
	WELL DEVELOPMENT/PURGING	
	Purge volume: Well vol x volumes = 127 L litre:	s Method: Waterra pump
	Flow Rate L/min Volume:	Start: 510 Finish: 7pm
		4(1 Q:0D
		DND. TURBIDITY DIS.02 REMARKS S/cm) (NTU) (mg/L) or % (colour, odour, sheen, brittle film, etc.)
346	EPM 12 707 0 7.92 14	63 Error 44.3 Clear
:-7	<u>(4:37 40 2000 p.1 8.11 30</u>	and " 1000 clear slight grey
		190 11 7 80 11 UN O 1
	8.3	
		ster level after each holding
	Volume	
	Comments (Recovery rate, etc.):	
	SAMPLING Water Odour: I no I yes (describe)	Sheen 🗹 no 🗌 yes (describe)
	Turbidity:NTU Clear: 1 2	3 (4) 5 6 7 8 9 10 Very Silty
	or 1 – 10 relative scale (circle as appropriate): Other:	
	NAPL Information (odour, colour, etc.)	
	BOTTLE Size: 40ml 100mL 250ml	500mL 1L 2L 4L Filtered Preservatives
	א=ד≺+1 □ Plastic ☑ Glass <u>3</u>	CYes C_ No <u>ATEX</u>
	2 🛛 Plastic 🗹 Glass	Yes No
	3 🛛 Plastic 🗆 Glass	U Yes 🖞 No
	▷ ୦୦୦ 4 🗹 Plastic 🗆 Glass 1	Yes B No
	Nut 5 1 Plastic □ Glass	[] Yes [] No(
	Nul 6 2 Plastic C Glass	Ves 🕑 No <u></u>
	(0D 7 2 Plastic Glass	$_$ $_$ $_$ $_$ \Box Yes \Box No $_$ $\boxed{12SO_{4}}$
	Melal:8 🛛 Plastic 🗌 Glass	Yes D No

Galter Filler in 125m Attachment 7.2 - WW4219

	Development
Z	Purge/Sample

7	Purge/Samp!	۵
1	ruiye/oampi	С.

	WELL NO .: HJ-MWO3 (paints	hed.	JOB NO .: W231013	17.007						
	LOCATION: Houses Junction	C(COMPLETED BY: Breanne +Kristen							
	WEATHER: <u>Cloudy</u>		DATE: Decl	2						
			TIME: 2:30							
47	19 bg + 85 34 = 42.75									
	MONITORING WELL INFORMATION	One well	volume: (B-A)*20= <u>45.5</u> litres							
	Depth to Water Below Top of Casing: A 32.62 Depth to Bottom of Well Below Top of Casing: B 42.14			-for a 51mm (2.0 inch) diameter well -for a 38mm (1.5 inch) diameter well						
	Diameter Standpipe: C		(B-A)*1.1 = litres ct Thickness:							
	B~K~ 10.	 12m								
	EQUIPMENT LIST			_						
	pH and Temp. Meter: 1 Model <u>HanNa#2</u> Si	erial No. <u>EBA</u>	_ Calibration Buffers: 🗹 4	2 7 🗆 10						
	Conductivity Meter: Model S	erial No	Calibration Solutions:	and						
	Dissolved Oxygen Meter: 1 Model Oak ton # 25	erial No. EBA								
	Turbidity Meter:) Model Hannatzs		_							
		Waterra	- D Peristaltic							
		Stainless Steel	-							
		Waterra in-line	Vacuum (disposal)							
		- Wateria III-line								
	WELL DEVELOPMENT/PURGING									
	Purge volume: Well vol x 3 volumes = 130 litres Method: Watterra former									
	Flow Rate L/min Volun	ne:		Finish: 5						
þ			dua error							
¢	TIME VOLUME ORG. VAP. TEMP REMOVED (L) (PPM) (oC)	pH COND. (UNITS) (uS/cm)	TURBIDITY DIS.02 (NTU) (mg/L) or %	REMARKS (colour, odour, sheen, brittle film, etc.)						
		8.19 31 5V	- 162	direr Driven, murky						
- 0	3 35 404 1669 0.8 9	81 3345	ENTOS 3.9	strantymuleur						
	3.50 POL 1672 09 4.64 120L 1681 12	816 3339	ENSON &	cipar - nurry						
till till		5. Frank (2. 2. 3. Fra	error 14.8							
*										
14										
In	Comments (Recovery rate, etc.):									
1	SAMPLING Water Odour: 🗹 no 🗌 yes (describe	»)	Sheen 🗗 no 🗌	yes (describe)						
t	Turbidity:NTU Clear:	1 2 3	4 5 6 7 8	9 10 Very Silty						
	or 1 – 10 relative scale (circle as appropriate): Other: QCOV	(to exova)	$\Omega COZ (to$	maxxam						
		-trio blank) water in lah						
		•								
	BOTTLE Size: 40ml	100mL 250mL 50	10mL 1L 2L 4L	Filtered Preservatives						
	1 🛛 Plastic 🗗 Glass <u>3</u>	<u> </u>								
	2 D Plastic C Glass		_ L] Yes [] No						
	©o⊂ 3 I Plastic I Glass	<u> </u>	L	Yes I No <u>دن</u>						
	COD4 ☐ Plastic □ Glass	$- \frac{1}{1} -$		Yes I No <u>HSU3</u>						
	VW 5 Plastic Glass	<u> </u>	[
	Nut 6 Plastic Glass	<u> </u>	n1 (1) +, 1 kv, n to	Les V No ASO3						
('94) \	Plet 7 Plastic Glass	<u> </u>		Yes I No NOz						
[Pourtin 8 Plastic Glass		MEICIS LE	Yes Yo						
4	acol - Field spirt toero	X 1	We the tells with the	°3						
	filler. OCC2 - Inter lab - Moral	with the off	al arrest a service of							

APPENDIX F APPENDIX F LABORATORY ANALYTICAL RESULTS

Report Transmission Cover Page

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Contact & Affiliation	Address	Delivery Commitments									
Adam Seeley	Unit 6, 151 Industrial Road	On [Lot Verification] send									
EBA Engineering Consultants Ltd -	Whitehorse, Yukon Territory Y1A 2V3	(COA) by Email - Merge Reports									
	Phone: (867) 668-3068 Fax: (867) 668-4349	On [Report Approval] send									
	Email: aseeley@eba.ca	(Test Report) by Email - Multiple Reports									
		On [Report Approval] send									
		(COC, Test Report) by Email - Merge Reports									
		On [Report Approval] send									
		(Test Report) by Email - Single Report									
		On [Report Approval] send									
		(Test Report) by Email - Multiple Reports									
		On [Report Approval] send									
		(Test Report) by Email - Multiple Reports									
		On [Report Approval] send									
		(COC, Test Report) by Email - Merge Reports									
		On [Report Approval] send									
											(Test Report) by Email - Single Report
		On [Report Approval] send									
		(Test Report) by Email - Multiple Reports									
		On [Lot Approval and Final Test Report Approval] send									
		(Invoice) by Email - Merge Reports									

Notes To Clients:

• Report was re-issued to correct the titanium result on 778356-1 to 4 previously reported on Test Report 1394453. Report 1400028 replaces report 1394453.

• 778356-1 to 4: the repeated result for titanium analysis analysis differs significantly from the original. The cause of the difference is matrix interferences, repeat results reported from a different method.

• pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Sample Custody

	EBA Engineering Consultants EBA Engineering Consultants Unit 6, 151 Industrial Road	Project: ID: Name:	W23101317	Control Number:	778356
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Received: Date Reported:	
Attn:	Y1A 2V3 Adam Seeley	LSD: P.O.:		Report Number:	,
Sampled By:	Breanne Waggott	Acct code:			

Sample Disposal Date: March 15, 2011

All samples will be stored until this date unless other instructions are received. Please indicate other requirements below and return this form to the address or fax number on the top of this page.

L				L
L				L
L				L
L	_	_	_	

 Extend Sample Storage Until
 (MM/DD/YY)

 The following charges apply to extended sample storage:
 \$ 2.50 per sample

 Storage for an additional 30 days
 \$ 2.50 per sample

 Storage for an additional 60 days
 \$ 5.00 per sample

 Storage for an additional 90 days
 \$ 7.50 per sample

 Return Sample, collect, to the address below via:
 \$ 7.50 per sample

Greynound	
DHL	
Purolator	
Other (specify)	

Name Company Address	
Phone Fax	
Signature	

Analytical Report

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

	Re	eference Number	778356-1	778356-2	778356-3	
		Sample Date	Dec 06, 2010	Dec 07, 2010	Dec 06, 2010	
		Sample Time	NA	NA	NA	
		Sample Location				
	Sar	nple Description	HJ-MW01	HJ-MW02	HJ-MW03	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Aggregate Organic Const						
Chemical Oxygen Demand	1	mg O2/L	120	30	60	10
Inorganic Nonmetallic Par	rameters					
Ammonium - N		mg/L	0.94	0.44	0.37	0.05
Kjeldahl Nitrogen	Total	mg/L	9.5	0.74	0.60	0.06
Phosphorus	Total	mg/L	109	0.93	0.41	0.05
Orthophosphate-P	Dissolved	mg/L	0.05	0.11	0.09	0.01
Organic Carbon	Dissolved Nonpurgeable	e mg/L	3.8	3.6	3.3	0.5
Metals Dissolved						
Sulfur	Dissolved	mg/L	632	1060	737	0.2
Physical and Aggregate P	Properties					
Solids	Total Dissolved	mg/L	2930	5020	3420	5
Routine Water						
Nitrate - N		mg/L	<0.05	<0.05	<0.05	0.01
Nitrite - N		mg/L	<0.02	<0.02	<0.02	0.005
Nitrate and Nitrite - N		mg/L	<0.07	<0.07	<0.07	0.01
рН	@ 25 °C	-	7.87	7.74	7.86	
Calcium	Dissolved	mg/L	319	339	218	0.1
Magnesium	Dissolved	mg/L	206	526	400	0.1
Phosphorus	Dissolved	mg/L	0.01	<0.01	0.02	0.01
Potassium	Dissolved	mg/L	12.9	17.6	14.6	0.1
Silicon	Dissolved	mg/L	3.32	6.94	6.73	0.05
Sodium	Dissolved	mg/L	181	235	144	0.1
Bicarbonate		mg/L	910	100	140	5
Carbonate		mg/L	<6	<6	<6	6
Hydroxide		mg/L	<5	<5	<5	5
T-Alkalinity	as CaCO3	mg/L	744	88	118	5
Chloride	Dissolved	mg/L	5.8	5.0	3.8	0.02
Sulfate (SO4)	Dissolved	mg/L	1890	3230	2060	0.05
Hardness	as CaCO3	mg/L	1640	3010	2190	5
Salinity	Dissolved	g/L	0.457	0.592	0.364	0.0001
Volatile Petroleum Hydrod		3' -	0.101	3.002	0.001	0.0001
VHw6-10		ug/L	<50	<50	<50	50
VPHw (VHw6-10 minus		ug/L	<50	<50	<50	50
BTEX)		~g/ ⊏				
Extractable Petroleum Hy	drocarbons - Water					
LEPHw		ug/L	<100	<100	<100	100
HEPHw		ug/L	<100	<100	<100	100

Analytical Report

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada Y1A 2V3	ID: Name: Location: LSD:	W23101317 Haines Junction	Control Number: Date Received: Date Reported: Report Number:	Dec 8, 2010 Jan 10, 2011
	Adam Seeley Breanne Waggott EBA	P.O.: Acct code:		Report Number.	1400020

		Reference Number Sample Date Sample Time	778356-1 Dec 06, 2010 NA	778356-2 Dec 07, 2010 NA	778356-3 Dec 06, 2010 NA	
		Sample Location Sample Description Matrix	HJ-MW01 Water	HJ-MW02 Water	HJ-MW03 Water	
Analyte		Units	Results	Results	Results	Nominal Detection
Polycyclic Aromatic Hy	drocarbons - Water					Limit
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acridine		ug/L	< 0.05	<0.05	< 0.05	0.05
Anthracene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(a)pyrene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(b)fluoranthene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(g,h,i)perylene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.02	<0.02	<0.02	0.02
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene)	ug/L	<0.01	<0.01	<0.01	0.01
Fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Indeno(1,2,3-c,d)pyrene	•	ug/L	<0.1	<0.1	<0.1	0.1
Naphthalene		ug/L	0.3	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Pyrene		ug/L	<0.02	<0.02	<0.02	0.02
Quinoline		ug/L	<3.4	<3.4	<3.4	3.4
PAH - Water - Surrogate	e Recovery	-				
2-Fluorobiphenyl	PAH - Surrogate	%	80	68	79	30-130
Nitrobenzene-d5	PAH - Surrogate	%	93	68	76	23-130
p-Terphenyl-d14	PAH - Surrogate	%	81	50	73	18-137
VOC Screen - Water						
Benzene		ug/L	<1	<1	<1	1
Bromodichloromethane		ug/L	<1	<1	<1	1
Bromoform		ug/L	<1	<1	<1	1
Bromomethane		ug/L	<10	<10	<10	10
Carbon Tetrachloride		ug/L	<1	<1	<1	1
Chlorobenzene		ug/L	<1	<1	<1	1
Chloroethane		ug/L	<10	<10	<10	10
2-Chloroethyl Vinyl Ethe	r	ug/L	<1	<1	<1	1
Chloroform		ug/L	<1	<1	<1	1
Chloromethane		ug/L	<10	<10	<10	10
Dibromochloromethane		ug/L	<1	<1	<1	1
1,2-Dichlorobenzene		ug/L	<1	<1	<1	1
1,3-Dichlorobenzene		ug/L	<1	<1	<1	1

Analytical Report

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada	ID: Name: Location:	W23101317 Haines Junction	Control Number: Date Received: Date Reported:	Dec 8, 2010
Attn:	Y1A 2V3 Adam Seeley	LSD: P.O.:		Report Number:	
	Breanne Waggott	Acct code:			

		Reference Number Sample Date Sample Time	778356-1 Dec 06, 2010 NA	778356-2 Dec 07, 2010 NA	778356-3 Dec 06, 2010 NA	
		Sample Location Sample Description Matrix	HJ-MW01 Water	HJ-MW02 Water	HJ-MW03 Water	
Analyte		Units	Results	Results	Results	Nominal Detectio
VOC Screen - Water - Cor	atinuad		Roouno	Roound	Roouno	Limit
1,4-Dichlorobenzene	lilliueu	ug/L	<1	<1	<1	1
1,1-Dichloroethane		ug/L	<1	<1	<1	1
1,2-Dichloroethane		ug/L	<1	<1	<1	1
1,1-Dichloroethene		ug/L	<1	<1	<1	1
1,2-Dichloroethene(cis)		ug/L	<1	<1	<1	1
1,2-Dichloroethene(trans)		ug/L	<1	<1	<1	1
1,2-Dichloropropane		ug/L	<1	<1	<1	1
1,3-Dichloropropene(cis)		ug/L	<1	<1	<1	1
1,3-Dichloropropene(trans)	ug/L	<1	<1	<1	1
Ethylbenzene)	ug/L	<1	<1	<1	1
Methylene Chloride		ug/L	<5	<5	<5	5
Styrene		ug/L	<1	<1	<1	1
1,1,2,2-Tetrachloroethane		ug/L	<1	<1	<1	1
Tetrachloroethene		ug/L	<1	<1	<1	1
Toluene		ug/L	<1	<1	<1	1
1,1,1-Trichloroethane		ug/L	<1	<1	<1	1
1,1,2-Trichloroethane		ug/L	<1	<1	<1	1
Trichloroethene		ug/L	<1	<1	<1	1
Trichlorofluoromethane		ug/L	<1	<1	<1	1
Vinyl Chloride		ug/L	<2	<2	<2	2
Xylene-m&p		ug/L	<1	<1	<1	-
Xylene-o		ug/L	<1	<1	<1	1
Total Xylenes (m,p,o)		ug/L	<1	<1	<1	1
VOC - Water - Surrogate I	Recoverv	- 0-				
Dibromofluoromethane	EPA Surrogate	%	102	113	111	86-118
Toluene-d8	EPA Surrogate	%	101	102	102	85-115
Bromofluorobenzene	EPA Surrogate	%	92	93	91	86-115
Trace Metals Dissolved	0					
Aluminum	Dissolved	µg/L	<5	<5	<5	5
Antimony	Dissolved	μg/L	11.2	<0.2	0.7	0.2
Arsenic	Dissolved	μg/L	6.4	3.0	2.8	0.2
Barium	Dissolved	μg/L	15	10	11	1
Beryllium	Dissolved	μg/L	<0.04	<0.04	<0.04	0.04
Bismuth	Dissolved	μg/L	<1	<1	<1	1
Boron	Dissolved	μg/L	285	559	503	4
Cadmium	Dissolved	μg/L	0.10	0.05	0.04	0.01

Analytical Report

	EBA Engineering Consultants EBA Engineering Consultants	Project: ID:	W23101317	Lot ID: Control Number:	778356
	Unit 6, 151 Industrial Road Whitehorse, YT, Canada	Name: Location:	Haines Junction	Date Received:	,
	Y1A 2V3	LSD:		Date Reported: Report Number:	
	Adam Seeley	P.O.:			
Company:	Breanne Waggott EBA	Acct code:			

		Reference Number Sample Date Sample Time	778356-1 Dec 06, 2010 NA	778356-2 Dec 07, 2010 NA	778356-3 Dec 06, 2010 NA	
		Sample Location Sample Description Matrix	HJ-MW01 Water	HJ-MW02 Water	HJ-MW03 Water	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Trace Metals Dissol	ved - Continued					Linit
Chromium	Dissolved	µg/L	<0.4	0.5	0.6	0.4
Cobalt	Dissolved	µg/L	1.37	0.94	0.84	0.02
Copper	Dissolved	µg/L	1	4	2	1
Iron	Dissolved	ug/L	17	99	5	10
Lead	Dissolved	µg/L	<0.1	<0.1	0.2	0.1
Lithium	Dissolved	µg/L	6	4	4	1
Manganese	Dissolved	ug/L	443	340	175	5
Mercury	Total Dissolved	ug/L	<0.01	<0.01	<0.01	0.01
Molybdenum	Dissolved	µg/L	113.8	12.4	17.9	0.1
Nickel	Dissolved	µg/L	10	5	4	1
Selenium	Dissolved	µg/L	1.5	1.2	1.1	0.6
Silver	Dissolved	µg/L	<0.01	<0.01	<0.01	0.01
Strontium	Dissolved	µg/L	3544	5888	3927	1.0
Tellurium	Dissolved	µg/L	<0.1	<0.1	<0.1	0.1
Thallium	Dissolved	µg/L	<0.01	0.01	0.03	0.01
Thorium	Dissolved	µg/L	<0.4	<0.4	<0.4	0.4
Tin	Dissolved	µg/L	0.2	1.2	0.4	0.1
Titanium	Dissolved	ug/L	<10	<10	<10	10
Uranium	Dissolved	μg/L	6.1	3.0	3.0	0.4
Vanadium	Dissolved	µg/L	0.5	1	1.4	0.1
Zinc	Dissolved	µg/L	2	4	4	1
Zirconium	Dissolved	µg/L	<0.1	<0.1	<0.1	0.1

Analytical Report

EBA Engineering Consultants EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada	Project: ID: Name: Location:	W23101317 Haines Junction	Control Number: Date Received:	
Y1A 2V3 Adam Seeley Breanne Waggott	LSD: P.O.: Acct code:		Date Reported: Report Number:	

		Reference Number Sample Date Sample Time Sample Location	778356-4 Dec 06, 2010 NA			
		Sample Description Matrix	QC01 Water			
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Inorganic Nonmetallic Pa	rameters					
Ammonia - N		mg/L	0.34			
Nitrate - N		mg/L	<0.01			0.01
Metals Dissolved						
Sulfur	Dissolved	mg/L	686			0.2
Routine Water						
pН	@ 25 °C		7.87			
Calcium	Dissolved	mg/L	203			0.1
Magnesium	Dissolved	mg/L	370			0.1
Phosphorus	Dissolved	mg/L	<0.01			0.01
Potassium	Dissolved	mg/L	13.7			0.1
Silicon	Dissolved	mg/L	6.40			0.05
Sodium	Dissolved	mg/L	137			0.1
Hardness	as CaCO3	mg/L	2030			5
Salinity	Dissolved	g/L	0.346			0.0001
Volatile Petroleum Hydro		0.				
VHw6-10		ug/L	<50			50
VPHw (VHw6-10 minus BTEX)		ug/L	<50			50
Trace Metals Dissolved						
Aluminum	Dissolved	µg/L	<5			5
Antimony	Dissolved	µg/L	0.6			0.2
Arsenic	Dissolved	µg/L	2.4			0.2
Barium	Dissolved	μg/L	11			1
Beryllium	Dissolved	μg/L	<0.04			0.04
Bismuth	Dissolved	µg/L	<1			1
Boron	Dissolved	µg/L	500			4
Cadmium	Dissolved	μg/L	0.04			0.01
Chromium	Dissolved	µg/L	0.7			0.4
Cobalt	Dissolved	μg/L	0.77			0.02
Copper	Dissolved	μg/L	1			1
Iron	Dissolved	ug/L	7			10
Lead	Dissolved	μg/L	<0.1			0.1
Lithium	Dissolved	µg/L	4			1
Manganese	Dissolved	ug/L	167			5
Mercury	Total Dissolved	ug/L	<0.01			0.01
Molybdenum	Dissolved	μg/L	17.0			0.1
Nickel	Dissolved	μg/L	4			1

Analytical Report

Report To:	EBA Engineering Consultants EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada Y1A 2V3 Adam Seeley	Project: ID: Name: Location: LSD: P.O.:	W23101317 Haines Junction	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Jan 10, 2011
Sampled By: Company:	Breanne Waggott EBA	Acct code:			

		Reference Number Sample Date Sample Time Sample Location Sample Description Matrix	778356-4 Dec 06, 2010 NA QC01 Water			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Trace Metals Disso	olved - Continued					
Selenium	Dissolved	μg/L	1			0.6
Silver	Dissolved	μg/L	<0.01			0.01
Strontium	Dissolved	μg/L	3704			1.0
Tellurium	Dissolved	μg/L	<0.1			0.1
Thallium	Dissolved	μg/L	0.03			0.01
Thorium	Dissolved	μg/L	<0.4			0.4
Tin	Dissolved	μg/L	<0.1			0.1
Titanium	Dissolved	ug/L	<10			10
Uranium	Dissolved	μg/L	3.0			0.4
Vanadium	Dissolved	μg/L	1.3			0.1
Zinc	Dissolved	μg/L	2			1
Zirconium	Dissolved	μg/L	<0.1			0.1

Approved by: Andrew Carrarl

Andrew Garrard, BSc General Manager Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road	ID: Name:	W23101317	Control Number: Date Received:	
Attn:	Whitehorse, YT, Canada Y1A 2V3 Adam Seeley	Location: LSD: P.O.:	Haines Junction	Date Reported: Report Number:	,
Sampled By: Company:	Breanne Waggott EBA	Acct code:			

Aggregate Organic Constituents

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chemical Oxygen Deman	nd mg/L	0	-5	6		yes
Date Acquired: Decen	nber 09, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Chemical Oxygen Deman	nd mg/L	100.48	95	107		yes
Date Acquired: Decen	nber 09, 2010					
Chemical Oxygen Deman	nd mg/L	100.28	70	130		yes
Date Acquired: Decen	nber 09, 2010					
Certified Reference Materi	ial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Chemical Oxygen Deman	nd mg O2/L	40	36	27	45	yes
Date Acquired: Decen	nber 09, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chemical Oxygen Deman	nd mg O2/L	<10	10	30	50	yes
Date Acquired: Decen	nber 09, 2010					
norganic Nonmetallic	Parameters					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Ammonium - N	ug/L	-66.957	-110.00	10.00		yes
Date Acquired: Decen	nber 10, 2010					
Ammonium - N	mg/L	0	-0.05	0.05		yes
Nitrogen	mg/L	0.03375	-0.06	0.06		yes
Phosphorus	mg/L	-0.008	-0.05	0.05		yes
Orthophosphate-P	mg/L	0.004	-0.05	0.05		yes
Organic Carbon	mg/L	-0.45	-0.5	0.5		yes
Date Acquired: Decen	nber 13, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Ammonium - N	ug/L	99.98	85	115		yes
Date Acquired: Decen	nber 10, 2010					
Ammonium - N	ug/L	101.26	70	130		yes
Date Acquired: Decen	nber 10, 2010					
Nitrite - N	mg/L	96.00	90	110		yes
Nitrate and Nitrite - N	mg/L	92.27	90	110		yes
Date Acquired: Decen	nber 09, 2010					
Certified Reference Materi	ial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
America NI	~~~~/l	0.0		0.00	0.00	

0.6

0.60

0.62

0.62

0.65

0.00

0.52

0.55

0.00

0.72

0.75

yes

yes

yes

mg/L

mg/L

mg/L

Ammonia - N

Nitrate - N

Ammonium - N

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Inorganic Nonmetallic Parameters -Continued

Continued										
Certified Reference M	laterial	Units		Measured	٦	Farget	Lower Li	mit	Upper Limit	Passed QC
Nitrate and Nitrite - N	N	mg/L		0.63		0.65	C).55	0.75	yes
Date Acquired: D	Decembe	er 09, 2010								
Nitrate - N		mg/L		0.15		0.00	-C).15	0.15	yes
Nitrite - N		mg/L		1.20		1.192	1.0	040	1.340	yes
Nitrate and Nitrite - N	N	mg/L		1.35		1.19	C	.89	1.49	yes
Date Acquired: D	Decembe	er 09, 2010								
Replicates		Units	[Replicate 1	Repli	cate 2	% RSD Crite	eria	Absolute Criteria	Passed QC
Ammonium - N		mg/L		5950		5970		10	0.10	yes
Nitrogen		mg/L		6.54		6.44		10	0.06	yes
Phosphorus		mg/L		4.67		4.27		10	0.20	yes
Orthophosphate-P		mg/L		1.38		1.34		10	0.05	yes
Organic Carbon		mg/L		2.5		2.5		10	1.0	yes
Date Acquired: D	Decembe	er 13, 2010								
Ammonia - N		mg/L		6.5		6.5		20	0.50	yes
Nitrate - N		mg/L		1.30		1.30		15	0.05	yes
Nitrite - N		mg/L		0.028		0.022		10	0.030	yes
Nitrate and Nitrite - N	N	mg/L		1.32		1.33		10	0.05	yes
Date Acquired: D	Decembe	er 09, 2010								

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Nitrate - N	mg/L	0.01	-0.01	0.02	yes
Nitrite - N	mg/L	<0.005	-0.004	0.006	yes
Nitrate and Nitrite -	N mg/L	0.01	0.00	0.01	yes
Date Acquired:	December 09, 2010				
Ammonium - N	mg/L	2.98	2.77	3.19	yes
Nitrogen	mg/L	125	103.98	137.82	yes
Phosphorus	mg/L	8.27	7.64	8.36	yes
Organic Carbon	mg/L	116	102.8	128.8	yes
Date Acquired:	December 13, 2010				
Ammonium - N	mg/L	0.83	0.73	0.85	yes
Nitrogen	mg/L	15.2	12.99	16.41	yes
Phosphorus	mg/L	2.08	1.92	2.16	yes
Orthophosphate-P	mg/L	0.38	0.37	0.42	yes
Organic Carbon	mg/L	15.1	13.3	16.7	yes
Date Acquired:	December 13, 2010				
Nitrogen	mg/L	0.98	0.81	1.23	yes
Orthophosphate-P	mg/L	0.07	0.07	0.09	yes
Organic Carbon	mg/L	2.8	2.5	3.8	yes
Date Acquired:	December 13, 2010				

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Inorganic Nonmetallic Parameters -Continued

Metals Dissolved						
Certified Reference	Material Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Aluminum	mg/L	0.066	0.060	0.052	0.068	yes
Antimony	mg/L	0.0144	0.0150	0.0110	0.0190	yes
Arsenic	mg/L	0.0104	0.0109	0.0089	0.0131	yes
Barium	mg/L	0.066	0.070	0.063	0.077	yes
Beryllium	mg/L	0.0118	0.01200	0.01029	0.01371	yes
Boron	mg/L	0.087	0.075	0.050	0.110	yes
Cadmium	mg/L	0.01650	0.01790	0.01533	0.02067	yes
Chromium	mg/L	0.0683	0.0677	0.0563	0.0797	yes
Cobalt	mg/L	0.0813	0.07980	0.07010	0.08990	yes
Copper	mg/L	0.063	0.065	0.060	0.070	yes
Lead	mg/L	0.0512	0.0531	0.0451	0.0610	yes
Molybdenum	mg/L	0.0725	0.07390	0.06161	0.08639	yes
Nickel	mg/L	0.063	0.063	0.057	0.069	yes
Selenium	mg/L	0.0202	0.0190	0.0147	0.0234	yes
Silver	mg/L	0.01150	0.01250	0.01041	0.01359	yes
Strontium	mg/L	0.044	0.043	0.037	0.049	yes
Thallium	mg/L	0.00946	0.00996	-0.01370	0.03370	yes
Vanadium	mg/L	0.0558	0.05390	0.04740	0.06060	yes
Zinc	mg/L	0.066	0.067	0.059	0.075	yes
Date Acquired:	December 09, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Sulfur	mg/L	0.5	0.5	30	3.0	yes
Titanium	mg/L	<0.01	<0.01	30	0.012	yes

Physical and Aggregate Properties

Date Acquired: December 09, 2010

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Solids	mg/L	278	276	30	25	yes
Date Acquired:	December 10, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Solids	mg/L	580	471	619		yes
Date Acquired:	December 10, 2010					
Solids	mg/L	28	19	34		yes
Date Acquired:	December 10, 2010					
Solids	mg/L	<5	-5	5		yes
Date Acquired:	December 10, 2010					

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Physical and Aggregate Properties -Continued

Routine Water

llanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Calcium	mg/L	-0.0135	-0.05	0.05	yes
Iron	mg/L	0.0175	-0.031	0.029	yes
Magnesium	mg/L	0.0073	-0.05	0.07	yes
Manganese	mg/L	-0.0049	-0.007	0.001	yes
Phosphorus	mg/L	-0.0021	-0.04	0.04	yes
Potassium	mg/L	0.0178	-0.4	0.4	yes
Silicon	mg/L	-0.0052	-0.20	0.25	yes
Sodium	mg/L	0.0023	-0.2	0.2	yes
Date Acquired:	December 09, 2010				
Calcium	mg/L	<0.1	-0.13	0.16	yes
Iron	mg/L	<0.005	-0.024	0.025	yes
Magnesium	mg/L	<0.1	-0.07	0.08	yes
Manganese	mg/L	<0.001	-0.009	0.002	yes
Phosphorus	mg/L	<0.01	-0.14	0.16	yes
Potassium	mg/L	<0.1	-0.8	0.8	yes
Silicon	mg/L	<0.05	-1.76	2.02	yes
Sodium	mg/L	<0.1	-0.3	0.4	yes
Date Acquired:	December 09, 2010				
Nitrate - N	mg/L	0	-0.01	0.01	yes
Nitrite - N	mg/L	0	-0.005	0.005	yes
Date Acquired:	December 09, 2010				
Chloride	mg/L	0	-0.20	0.20	yes
Sulfate (SO4)	mg/L	0.697	-0.99	0.99	yes
Date Acquired:	December 09, 2010				

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
рН	pН	100.21	98	101	yes
Date Acquired:	December 08, 2010				
Calcium	mg/L	95.57	91	109	yes
Iron	mg/L	114.60	0	0	yes
Magnesium	mg/L	96.71	91	109	yes
Manganese	mg/L	96.50	90	110	yes
Phosphorus	mg/L	95.62	90	110	yes
Potassium	mg/L	89.36	85	115	yes
Silicon	mg/L	88.44	80	120	yes
Sodium	mg/L	91.79	90	110	yes
Date Acquired:	December 09, 2010				
Chloride	mg/L	117.02	85	115	yes
Sulfate (SO4)	mg/L	96.18	85	115	yes

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada	ID: Name: Location:	W23101317 Haines Junction	Control Number: Date Received:	Dec 8, 2010
Attn:	Y1A 2V3 Adam Seeley	LSD: P.O.:		Date Reported: Report Number:	
Sampled By: Company:	Breanne Waggott EBA	Acct code:			

Routine Water - Continued

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Date Acquired:	December 09, 2010					
Chloride	mg/L	97.04	90	110		yes
Sulfate (SO4)	mg/L	97.04	90	110		yes
Date Acquired:	December 09, 2010					
Certified Reference	Material Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
T-Alkalinity	mg/L	10	10	8	11	yes
Date Acquired:	December 08, 2010					
Calcium	mg/L	13.6	14.85	11.55	18.25	yes
Magnesium	mg/L	8.8	9.07	6.88	11.26	yes
Manganese	mg/L	0.070	0.078	0.072	0.084	yes
Potassium	mg/L	7.6	8.6	6.4	10.8	yes
Sodium	mg/L	13.1	14.2	11.7	16.7	yes
Date Acquired:	December 09, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Nitrate - N	mg/L	0.03	0.03	10	0.01	yes
Nitrite - N	mg/L	<0.005	<0.005	10	0.010	yes
Date Acquired:	December 09, 2010					
Calcium	mg/L	2.0	2.0	30	1.00	yes
Iron	mg/L	0.023	0.020	30	0.060	yes
Magnesium	mg/L	0.6	0.6	30	1.00	yes
Manganese	mg/L	<0.001	<0.001	30	0.015	yes
Phosphorus	mg/L	0.14	0.14	30	0.10	yes
Potassium	mg/L	0.6	0.7	30	1.0	yes
Silicon	mg/L	2.99	3.00	30	0.15	yes
Sodium	mg/L	280	278	30	1.0	yes
Date Acquired:	December 09, 2010					
рН		8.09	8.17	2		yes
Electrical Conduct	ivity dS/m at 25 C	0.198	0.200	10	0.005	yes
Bicarbonate	mg/L	120	130	10	10	yes
Carbonate	mg/L	<6	<6	10	10	yes
Hydroxide	mg/L	<5	<5	10	10	yes
P-Alkalinity	mg/L	<5	<5	10	5	yes
T-Alkalinity	mg/L	102	104	10	5	yes
Chloride	mg/L	11.2	11.3	15	0.25	yes
Sulfate (SO4)	mg/L	7.96	8.09	15	0.50	yes
Date Acquired:	December 09, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chloride	mg/L	0.81	0.82	6	0.01	yes
Sulfate (SO4)	mg/L	4.26	4.57	6	0.01	yes

T: +1 (604) 514-3322

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Routine Water - Continued

Replicates		Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria Passed QC
Date Acquired:	Decem	nber 09, 2010				
Control Sample		Units	Measured	Lower Limit	Upper Limit	Passed QC
рН			9.99	9.08	10.92	yes
Electrical Conduct	tivity	µS/cm at 25 C	206	165	243	yes
P-Alkalinity		mg/L	36	9	53	yes
T-Alkalinity		mg/L	97	90	101	yes
Date Acquired:	Decem	nber 08, 2010				
Electrical Conduc	tivity	µS/cm at 25 C	1420	1330	1510	yes
Date Acquired:	Decem	nber 08, 2010				
Electrical Conduc	tivity	µS/cm at 25 C	<1	-2	2	yes
Date Acquired:	Decem	nber 08, 2010				
Nitrate - N		mg/L	9.90	9.51	10.49	yes
Nitrite - N		mg/L	9.86	9.510	10.530	yes
Nitrate and Nitrite	- N	mg/L	20.0	18.09	22.11	yes
Date Acquired:	Decem	nber 09, 2010				
Nitrate - N		mg/L	0.48	0.45	0.55	yes
Nitrite - N		mg/L	0.480	0.452	0.548	yes
Nitrate and Nitrite	- N	mg/L	0.96	0.79	1.19	yes
Date Acquired:	Decem	nber 09, 2010				

Extractable Petroleum Hydrocarbons -

Vater						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
EPHw10-19	ug/mL	84.12	-100	100		yes
EPHw19-32	ug/mL	49.32	-100	100		yes
Date Acquired:	December 13, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
EPHw10-19	ug/mL	104.52	85	115		yes
EPHw19-32	ug/mL	104.52	85	115		yes
Date Acquired:	December 13, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
EPHw10-19	ug/L	400	400	60	500	yes
EPHw19-32	ug/L	400	400	60	500	yes
Date Acquired:	December 13, 2010					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
EPHw10-19	ug/L	91	79	128		yes
EPHw19-32	ug/L	90	81	136		yes

T: +1 (604) 514-3322

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road	ID: Name:	W23101317	Control Number: Date Received:	
Attn:	Whitehorse, YT, Canada Y1A 2V3 Adam Seeley	Location: LSD: P.O.:	Haines Junction	Date Reported: Report Number:	
	Breanne Waggott	Acct code:			

Extractable Petroleum Hydrocarbons -

Water - Continue	ed				
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Date Acquired:	December 13, 2010				

Polycyclic Aromatic Hydrocarbons -

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed Q
Acenaphthene	ng/mL	0.00059	-0.1	0.1	уе
Acenaphthylene	ng/mL	0.00066	-0.1	0.1	уе
Acridine	ng/mL	0.00057	-0.05	0.05	ye
Anthracene	ng/mL	0.00045	-0.1	0.1	ye
Benzo(a)anthracene	ng/mL	0.00024	-0.01	0.01	ує
Benzo(a)pyrene	ng/mL	0	-0.01	0.01	ує
Benzo(b)fluoranthene	ng/mL	0	-0.01	0.01	ує
Benzo(g,h,i)perylene	ng/mL	0.00047	-0.1	0.1	ує
Benzo(k)fluoranthene	ng/mL	0	-0.01	0.01	ує
Chrysene	ng/mL	0.00033	-0.1	0.1	ує
Dibenzo(a,h)anthracene	ng/mL	0.00039	-0.01	0.01	ує
Fluoranthene	ng/mL	0.00093	-0.1	0.1	ує
Fluorene	ng/mL	0.00098	-0.1	0.1	ує
Indeno(1,2,3-c,d)pyrene	ng/mL	0.00047	-0.1	0.1	ує
Naphthalene	ng/mL	0.02898	-0.1	0.1	ує
Phenanthrene	ng/mL	0.00644	-0.1	0.1	ує
Pyrene	ng/mL	0.0047	-0.02	0.02	ye
Quinoline	ng/mL	0	-3.4	3.4	ye

Quintennie	<u>g</u> ,=	v		011	,
Date Acquired: Decem	ber 13, 2010				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Acenaphthene	ng/mL	99.09	80	120	yes
Acenaphthylene	ng/mL	98.62	80	120	yes
Acridine	ng/mL	98.68	80	120	yes
Anthracene	ng/mL	98.72	80	120	yes
Benzo(a)anthracene	ng/mL	98.50	80	120	yes
Benzo(a)pyrene	ng/mL	98.09	80	120	yes
Benzo(b)fluoranthene	ng/mL	96.90	80	120	yes
Benzo(g,h,i)perylene	ng/mL	100.21	80	120	yes
Benzo(k)fluoranthene	ng/mL	100.14	80	120	yes
Chrysene	ng/mL	98.42	80	120	yes
Dibenzo(a,h)anthracene	ng/mL	97.64	80	120	yes
Fluoranthene	ng/mL	98.44	80	120	yes
Fluorene	ng/mL	99.40	80	120	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	97.63	80	120	yes
Naphthalene	ng/mL	98.38	80	120	yes

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	,
	Y1A 2V3	LSD:		Report Number:	,
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Polycyclic Aromatic Hydrocarbons -Water - Continued

Water - Continued						
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Phenanthrene	ng/mL	98.92	80	120		yes
Pyrene	ng/mL	98.30	80	120		yes
Quinoline	ng/mL	98.19	80	120		yes
Date Acquired: Decem	ber 13, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Acenaphthene	ug/L	99.5	96.5	60	0.5	yes
Acenaphthylene	ug/L	95.3	93.7	60	0.5	yes
Acridine	ug/L	92.7	90.3	60	0.25	yes
Anthracene	ug/L	91.1	94.7	60	0.5	yes
Benzo(a)anthracene	ug/L	96.0	94.2	60	0.05	yes
Benzo(a)pyrene	ug/L	92.6	90.9	60	0.05	yes
Benzo(b)fluoranthene	ug/L	97.2	97.8	60	0.05	yes
Benzo(g,h,i)perylene	ug/L	91.7	89.8	60	0.5	yes
Benzo(k)fluoranthene	ug/L	96.4	93.4	60	0.05	yes
Chrysene	ug/L	97.5	96.8	60	0.5	yes
Dibenzo(a,h)anthracene	ug/L	83.7	79.6	60	0.05	yes
Fluoranthene	ug/L	97.9	96.1	60	0.5	yes
Fluorene	ug/L	97.5	102	60	0.5	yes
Indeno(1,2,3-c,d)pyrene	ug/L	86.5	84.7	60	0.5	yes
Naphthalene	ug/L	113	111	60	0.5	yes
Phenanthrene	ug/L	106	99.2	60	0.5	yes
Pyrene	ug/L	101	101	60	0.10	yes
Quinoline	ug/L	99.9	98.5	60	17.0	yes
Date Acquired: Decem	ber 13, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Acenaphthene	ug/L	99.5	50.0	130.0		yes
Acenaphthylene	ug/L	95.3	50.0	130.0		yes
Acridine	ug/L	92.7	50.01	129.99		yes

•	5				,
Acenaphthylene	ug/L	95.3	50.0	130.0	yes
Acridine	ug/L	92.7	50.01	129.99	yes
Anthracene	ug/L	91.1	50.0	130.0	yes
Benzo(a)anthracene	ug/L	96.0	50.01	129.99	yes
Benzo(a)pyrene	ug/L	92.6	50.01	129.99	yes
Benzo(b)fluoranthene	ug/L	97.2	50.01	129.99	yes
Benzo(g,h,i)perylene	ug/L	91.7	50.0	130.0	yes
Benzo(k)fluoranthene	ug/L	96.4	50.01	129.99	yes
Chrysene	ug/L	97.5	50.0	130.0	yes
Dibenzo(a,h)anthracene	ug/L	83.7	50.01	129.99	yes
Fluoranthene	ug/L	97.9	50.0	130.0	yes
Fluorene	ug/L	97.5	50.0	130.0	yes
Indeno(1,2,3-c,d)pyrene	ug/L	86.5	50.0	130.0	yes
Naphthalene	ug/L	113	50.0	130.0	yes

T: +1 (604) 514-3322

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Polycyclic Aromatic Hydrocarbons -

Water - Continue					
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Phenanthrene	ug/L	106	50.0	130.0	yes
Pyrene	ug/L	101	50.01	129.99	yes
Quinoline	ug/L	99.9	50.0	130.0	yes
Date Acquired:	December 13, 2010				

PAH - Water - Surrogate Recovery

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
2-Fluorobiphenyl	%	99.76	80	120	yes
Nitrobenzene-d5	%	98.58	80	120	yes
p-Terphenyl-d14	%	98.42	80	120	yes
Date Acquired:	December 13, 2010				

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
2-Fluorobiphenyl	%	99	101	60	0	yes
Nitrobenzene-d5	%	110	111	60	0	yes
p-Terphenyl-d14	%	96	97	60	0	yes
Date Acquired:	December 13, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
2-Fluorobiphenyl	%	99	40	130		yes
Nitrobenzene-d5	%	110	40	130		yes
p-Terphenyl-d14	%	96	40	130		yes

Date Acquired: December 13, 2010

VOC Screen - Water

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Benzene	ng	0	-2	2	yes
Bromodichloromethane	ng	0	-2	2	yes
Bromoform	ng	0	-2	2	yes
Bromomethane	ng	0	-15	15	yes
Carbon Tetrachloride	ng	0	-2	2	yes
Chlorobenzene	ng	0	-2	2	yes
Chloroethane	ng	0	-15	15	yes
2-Chloroethyl Vinyl Ether	ng	0	-2	2	yes
Chloroform	ng	0	-2	2	yes
Chloromethane	ng	0	-15	15	yes
Dibromochloromethane	ng	0	-2	2	yes
1,2-Dichlorobenzene	ng	0	-2	2	yes
1,3-Dichlorobenzene	ng	0	-2	2	yes
1,4-Dichlorobenzene	ng	0	-2	2	yes

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

VOC Screen - Water - Continued

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
1,1-Dichloroethane	ng	0	-2	2	yes
1,2-Dichloroethane	ng	0	-2	2	yes
1,1-Dichloroethene	ng	0	-2	2	yes
1,2-Dichloroethene(cis)	ng	0	-2	2	yes
1,2-Dichloroethene(trans)	ng	0	-2	2	yes
1,2-Dichloropropane	ng	0	-2	2	yes
1,3-Dichloropropene(cis)	ng	0	-2	2	yes
1,3-Dichloropropene(trans)	ng	0	-2	2	yes
Ethylbenzene	ng	0	-2	2	yes
Methylene Chloride	ng	0	-15	15	yes
Styrene	ng	0	-2	2	yes
1,1,2,2-Tetrachloroethane	ng	0	-2	2	yes
Tetrachloroethene	ng	0	-2	2	yes
Toluene	ng	0	-2	2	yes
1,1,1-Trichloroethane	ng	0	-2	2	yes
1,1,2-Trichloroethane	ng	0	-2	2	yes
Trichloroethene	ng	0	-2	2	yes
Trichlorofluoromethane	ng	0	-2	2	yes
Vinyl Chloride	ng	0	-15	15	yes
Xylene-m&p	ng	0	0	0	yes
Xylene-o	ng	0	0	0	yes
Total Xylenes (m,p,o)	ng	0	-2	2	yes

Date Acquired: December 10, 2010

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Benzene	ng	101.76	78	122	yes
Bromodichloromethane	ng	88.92	78	122	yes
Bromoform	ng	91.12	78	122	yes
Bromomethane	ng	104.12	78	122	yes
Carbon Tetrachloride	ng	98.54	78	122	yes
Chlorobenzene	ng	107.66	78	122	yes
Chloroethane	ng	103.44	78	122	yes
2-Chloroethyl Vinyl Ether	ng		78	122	yes
Chloroform	ng	106.80	78	122	yes
Chloromethane	ng	90.26	78	122	yes
Dibromochloromethane	ng	93.80	78	122	yes
1,2-Dichlorobenzene	ng	106.18	78	122	yes
1,3-Dichlorobenzene	ng	103.54	78	122	yes
1,4-Dichlorobenzene	ng	97.44	78	122	yes
1,1-Dichloroethane	ng	110.60	78	122	yes
1,2-Dichloroethane	ng	97.60	78	122	yes
1,1-Dichloroethene	ng	110.58	78	122	yes
1,2-Dichloroethene(cis)	ng	110.80	78	122	yes

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:			
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

VOC Screen - Water - Continued

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
1,2-Dichloroethene(trans)	ng	105.40	78	122	yes
1,2-Dichloropropane	ng	100.76	78	122	yes
1,3-Dichloropropene(cis)	ng	95.81	78	122	yes
1,3-Dichloropropene(trans)	ng	89.61	78	122	yes
Ethylbenzene	ng	104.00	78	122	yes
Methylene Chloride	ng		78	122	yes
Styrene	ng	103.03	78	122	yes
1,1,2,2-Tetrachloroethane	ng	109.40	78	122	yes
Tetrachloroethene	ng	107.30	78	122	yes
Toluene	ng	102.87	78	122	yes
1,1,1-Trichloroethane	ng	100.20	78	122	yes
1,1,2-Trichloroethane	ng	104.02	78	122	yes
Trichloroethene	ng	95.68	78	122	yes
Trichlorofluoromethane	ng	102.42	78	122	yes
Vinyl Chloride	ng	101.58	78	122	yes
Xylene-m&p	ng	110.55	78	122	yes
Xylene-o	ng	106.06	78	122	yes
Total Xylenes (m,p,o)	ng	109.05	78	122	yes

Date Acquired: December 10, 2010

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	ug/L	3	3	15	2	yes
Bromodichloromethane	ug/L	<1	<1	15	2	yes
Bromoform	ug/L	<1	<1	15	2	yes
Bromomethane	ug/L	<10	<10	15	20	yes
Carbon Tetrachloride	ug/L	<1	<1	15	2	yes
Chlorobenzene	ug/L	<1	<1	15	2	yes
Chloroethane	ug/L	<10	<10	15	20	yes
2-Chloroethyl Vinyl Ether	ug/L	<1	<1	15	2	yes
Chloroform	ug/L	<1	<1	15	2	yes
Chloromethane	ug/L	<10	<10	15	20	yes
Dibromochloromethane	ug/L	<1	<1	15	2	yes
1,2-Dichlorobenzene	ug/L	<1	<1	15	2	yes
1,3-Dichlorobenzene	ug/L	<1	<1	15	2	yes
1,4-Dichlorobenzene	ug/L	<1	<1	15	2	yes
1,1-Dichloroethane	ug/L	<1	<1	15	2	yes
1,2-Dichloroethane	ug/L	<1	<1	15	2	yes
1,1-Dichloroethene	ug/L	<1	<1	15	2	yes
1,2-Dichloroethene(cis)	ug/L	<1	<1	15	2	yes
1,2-Dichloroethene(trans)	ug/L	<1	<1	15	2	yes
1,2-Dichloropropane	ug/L	<1	<1	15	2	yes
1,3-Dichloropropene(cis)	ug/L	<1	<1	15	2	yes
1,3-Dichloropropene(trans)	ug/L	<1	<1	15	2	yes

T: +1 (604) 514-3322

Quality Control

EBA Engineering Consultants EBA Engineering Consultants	Project: ID:	W23101317	Lot ID: Control Number:	778356
Unit 6, 151 Industrial Road Whitehorse, YT, Canada Y1A 2V3	Name: Location: LSD:	Haines Junction	Date Received: Date Reported: Report Number:	Jan 10, 2011
Adam Seeley Breanne Waggott EBA	P.O.: Acct code:			

VOC Screen - Water - Continued

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Ethylbenzene	ug/L	<1	<1	15	2	yes
Methylene Chloride	ug/L	<5	<5	30	20	yes
Styrene	ug/L	<1	<1	15	2	yes
1,1,2,2-Tetrachloroethane	ug/L	<1	<1	15	2	yes
Tetrachloroethene	ug/L	<1	<1	15	2	yes
Toluene	ug/L	<1	<1	15	2	yes
1,1,1-Trichloroethane	ug/L	<1	<1	15	2	yes
1,1,2-Trichloroethane	ug/L	<1	<1	15	2	yes
Trichloroethene	ug/L	<1	<1	15	2	yes
Trichlorofluoromethane	ug/L	<1	<1	15	2	yes
Vinyl Chloride	ug/L	<2	<2	15	20	yes
Xylene-m&p	ug/L	<1	<1	15	2	yes
Xylene-o	ug/L	<1	<1	15	2	yes
Total Xylenes (m,p,o)	ug/L	<1	<1	15	2	yes
Date Acquired: Decemb	er 10, 2010					

VOC - Water - Surrogate Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Dibromofluoromethane	%	99.93	85	115	yes
Toluene-d8	%	100.38	85	115	yes
Bromofluorobenzene	%	91.91	85	115	yes
Date Acquired: Decem	ber 10, 2010				

Trace Metals Dissolved

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	µg/L	0.54	-10	10	yes
Antimony	µg/L	0.01	-0.4	0.2	yes
Arsenic	µg/L	-0.007	-0.5	0.5	yes
Barium	µg/L	0.005	-0	0	yes
Beryllium	µg/L	-0.008	-0.10	0.10	yes
Bismuth	µg/L	0.043	-1.0	1.0	yes
Boron	µg/L	-0.251	-6	5	yes
Cadmium	μg/L	0.004	-0.03	0.03	yes
Chromium	µg/L	0.042	-0.1	0.2	yes
Cobalt	μg/L	-0.006	-0.07	0.07	yes
Copper	µg/L	-0.217	-1	1	yes
Lead	µg/L	-0.002	-0.1	0.1	yes
Lithium	µg/L	-0.034	-1	1	yes
Molybdenum	µg/L	0.025	-0.31	0.29	yes
Nickel	µg/L	-0.11	-1	1	yes
Selenium	µg/L	0.166	-1.7	1.3	yes

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
	Adam Seeley	P.O.:			
, ,	Breanne Waggott	Acct code:			
Company:	EBA				

Trace Metals Dissolved - Continued

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed Q
Silver	µg/L	-0.025	-0.05	0.05	ye
Strontium	µg/L	-0.005	-0	0	ye
Tellurium	µg/L	-0.061	-0.7	0.7	ye
Thallium	µg/L	-0.002	-0.03	0.03	ye
Thorium	μg/L	-1.03	-1.5	1.5	ye
Tin	µg/L	0.018	-3.0	3.0	ye
Titanium	µg/L	-0.152	-0.2	0.2	ye
Uranium	µg/L	-0.007	-0.03	0.03	ye
Vanadium	µg/L	0.028	-0.35	0.35	ye
Zinc	µg/L	0.226	-2	4	ye
Zirconium	µg/L	0.019	-0.1	0.1	ye
Date Acquired:	December 09, 2010				
Aluminum	µg/L	-1.191	-6	6	ye
Antimony	µg/L	0.008	-0.4	0.3	ye
Arsenic	µg/L	0.029	-0.4	0.3	ye
Barium	µg/L	-0.003	-0	1	ye
Beryllium	µg/L	-0.02	-0.10	0.10	y
Bismuth	µg/L	-0.003	0.0	0.0	y
Boron	µg/L	10.63	-18	19	У
Cadmium	µg/L	0	-0.03	0.03	y
Chromium	µg/L	0.08	-0.1	0.2	ye
Cobalt	µg/L	-0.003	-0.30	0.30	ye
Copper	μg/L	-0.192	-1	1	ye
Lead	µg/L	-0.018	-0.3	0.4	ye
Lithium	µg/L	-0.056	-0	0	ye
Molybdenum	µg/L	0.108	-0.95	0.85	ye
Nickel	µg/L	-0.135	-1	1	ye
Selenium	µg/L	0.254	-1.7	1.7	ye
Silver	µg/L	-0.03	-0.67	0.47	ye
Strontium	μg/L	0.087	-2	4	ye
Tellurium	µg/L	-0.104	-0.7	0.7	ye
Thallium	µg/L	0	-0.06	0.06	ye
Thorium	µg/L	-1.136	-0.7	0.5	y
Tin	µg/L	-0.02	-3.8	4.0	ye
Titanium	µg/L	-0.112	-0.3	0.2	У
Uranium	µg/L	-0.006	-0.04	0.02	у
Vanadium	µg/L	0.047	-0.30	0.30	У
Zinc	µg/L	0.377	-11	19	y
Zirconium	µg/L	0.005	-0.0	0.0	y
Date Acquired:	December 09, 2010				
Mercury	ug/L	<0.01	-9.99	9.99	ye
Date Acquired:	December 13, 2010				,

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants	ID:	W23101317	Control Number:	
	Unit 6, 151 Industrial Road	Name:		Date Received:	Dec 8, 2010
	Whitehorse, YT, Canada	Location:	Haines Junction	Date Reported:	Jan 10, 2011
	Y1A 2V3	LSD:		Report Number:	1400028
Attn:	Adam Seeley	P.O.:		·	
Sampled By:	Breanne Waggott	Acct code:			
Company:	EBA				

Trace Metals Dissolved - Continued

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Mercury	ng/L	103.80	85	115		yes
Date Acquired:	December 13, 2010					
Aluminum	μg/L	101.24	70	130		yes
Antimony	µg/L	91.48	85	115		yes
Arsenic	µg/L	95.80	90	110		yes
Barium	µg/L	93.28	90	110		yes
Beryllium	μg/L	96.96	90	110		yes
Bismuth	μg/L	99.28	90	110		yes
Boron	μg/L	95.56	70	130		yes
Cadmium	μg/L	99.40	90	110		yes
Chromium	μg/L	94.66	90	110		yes
Cobalt	μg/L	94.48	90	110		yes
Copper	µg/L	92.02	90	110		yes
Lead	μg/L	99.16	90	110		yes
Lithium	µg/L	95.26	90	110		yes
Molybdenum	μg/L	92.96	90	110		yes
Nickel	µg/L	93.24	90	110		yes
Selenium	µg/L	100.52	90	110		yes
Silver	µg/L	0.06	0	0		yes
Strontium	µg/L	97.52	90	110		yes
Thallium	µg/L	95.92	90	110		yes
Tin	µg/L	96.00	90	110		yes
Titanium	µg/L	95.96	90	110		yes
Uranium	µg/L	102.86	85	115		yes
Vanadium	µg/L	94.28	90	110		yes
Zinc	µg/L	94.54	90	110		yes
Zirconium	µg/L	102.08	90	110		yes
Date Acquired:	December 09, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Aluminum	µg/L	27	28	20	20	yes
Antimony	µg/L	0.4	0.5	20	1.0	yes
Arsenic	µg/L	1	1.0	20	1.0	yes
Barium	µg/L	102	102	20	5	yes
Beryllium	µg/L	<0.04	<0.04	20	1.00	yes
Boron	µg/L	377	389	20	5	yes
Cadmium	µg/L	0.02	0.02	20	0.50	yes
Chromium	μg/L	0.8	0.8	20	5.0	yes
Oshall		0.00	0.07		0.50	

0.08

<0.1

2

8

0.07

<0.1

2

8

20

20

20

20

0.50

5

5

0.5

yes

yes

yes

yes

µg/L

µg/L

µg/L

µg/L

Cobalt

Copper

Lithium

Lead

 Exova
 T:

 #104, 19575-55 A Ave.
 F:

 Surrey, British Columbia
 E:

 V3S 8P8, Canada
 W

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road	ID: Nome:	W23101317	Control Number:	
	Whitehorse, YT, Canada	Name: Location:	Haines Junction	Date Received:	
	Y1A 2V3	LSD:		Date Reported: Report Number:	
Attn:	Adam Seeley	P.O.:		Report Number.	1400020
1 3	Breanne Waggott	Acct code:			
Company:	EBA				

Trace Metals Dissolved - Continued

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Molybdenum	μg/L	2.6	2.6	20	0.50	yes
Nickel	μg/L	1	1	20	5	yes
Selenium	μg/L	<0.6	<0.6	20	0.5	yes
Silver	μg/L	<0.01	<0.01	20	0.50	yes
Strontium	μg/L	89	91	20	0	yes
Tellurium	μg/L	0.2	0.2	20	0.5	yes
Thallium	μg/L	0.01	0.02	20	0.10	yes
Thorium	μg/L	<0.4	<0.4	10	0.1	yes
Tin	μg/L	1.8	1.9	20	0.5	yes
Titanium	μg/L	3.0	2.6	20	0.5	yes
Uranium	μg/L	<0.4	<0.4	20	0.10	yes
Vanadium	μg/L	1.3	1.4	20	0.50	yes
Zinc	μg/L	<1	1	20	5	yes
Zirconium	μg/L	0.2	0.2	20	0.5	yes
Date Acquired:	December 09, 2010					
Mercury	ug/L	<0.01	<0.01	20	0.05	yes
Date Acquired:	December 13, 2010					

Methodology and Notes

Bill To:	EBA Engineering Consultants	Project:		Lot ID:	778356
Report To:	EBA Engineering Consultants Unit 6, 151 Industrial Road	ID: Name:	W23101317	Control Number: Date Received:	
	Whitehorse, YT, Canada Y1A 2V3	Location: LSD:	Haines Junction	Date Reported:	Jan 10, 2011
Attn:	Adam Seeley	P.O.:		Report Number: 1400028	1400020
Sampled By: Company:	Breanne Waggott EBA	Acct code:			

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Alk, pH, EC, Turb in water	APHA *	Alkalinity - Titration Method, 2320 B	08-Dec-10	Exova Surrey
Alk, pH, EC, Turb in water	APHA *	pH - Electrometric Method, 4500-H+ B	08-Dec-10	Exova Surrey
Ammonia-N in Water	APHA *	Titrametric, 4500-NH3 C	10-Dec-10	Exova Surrey
Ammonium-N in Water	АРНА	Automated Phenate Method, 4500- NH3 G	09-Dec-10	Exova Edmonton
Anions (Routine) by Ion Chromatography	APHA ,	f Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B	09-Dec-10	Exova Edmonton
Anions by IEC in water (Surrey)	APHA ,	f Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B	09-Dec-10	Exova Surrey
BTEX-VPH - Water	BCELM	Volatile Hydrocarbons in Water by GC/FID, VH Water	09-Dec-10	Exova Surrey
Carbon Organic (Dissolved) in water (DOC)	АРНА	High-Temperature Combustion Method, 5310 B	13-Dec-10	Exova Edmonton
Chemical Oxygen Demand (water- Surrey)	APHA ,	Closed Reflux, Colorimetric Method, 5220 D	09-Dec-10	Exova Surrey
EPH - Water	BCELM	Extractable Petroleum Hydrocarbons (EPH) in Water by GC/FID, EPH Water	13-Dec-10	Exova Surrey
Mercury Low Level (Total) in water	EPA ,	Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, 245.7	09-Dec-10	Exova Surrey
Metals SemiTrace (Dissolved) in water	US EPA	Metals & Trace Elements by ICP-AES, 6010C	09-Dec-10	Exova Surrey
Nitrogen - nitrite+nitrate-N	АРНА	Automated Cadmium Reduction Method, 4500-NO3- F	09-Dec-10	Exova Surrey
Orthophosphate-P in Water	APHA ,	Automated Ascorbic Acid Reduction Method, 4500-P F	09-Dec-10	Exova Edmonton
PAH - Water (Surrey)	BCELM	Polycyclic Aromatic Hydrocarbons in Water by GC/MS - PBM, PAH Water	13-Dec-10	Exova Surrey
Phosphorus - Total in Water	АРНА	Automated Ascorbic Acid Reduction Method, 4500-P F	10-Dec-10	Exova Edmonton
Solids Dissolved (Total, Fixed and Volatile)2	АРНА	Total Dissolved Solids Dried at 180 C, 2540 C	10-Dec-10	Exova Surrey
Total and Kjeldahl Nitrogen (Total) in Water	ISO	Water Quality - Determination of nitrogen, ISO/TR 11905-2	10-Dec-10	Exova Edmonton
VOC - Water	US EPA	US EPA method, 8260B/5030B	10-Dec-10	Exova Calgary
		* Reference Method Modified		

References

APHA	Standard Methods for the Examination of Water and Wastewater
B.C.M.O.E	B.C. Ministry of Environment
BCELM	B.C. Environmental Laboratory Manual
EPA	Environmental Protection Agency Test Methods - US
ISO	International Organization for Standardization
100	

 Exova
 T: +1 (604) 514-3322

 #104, 19575-55 A Ave.
 F: +1 (604) 514-3323

 Surrey, British Columbia
 E: Surrey@exova.com

 V3S 8P8, Canada
 W: www.exova.com

Methodology and Notes

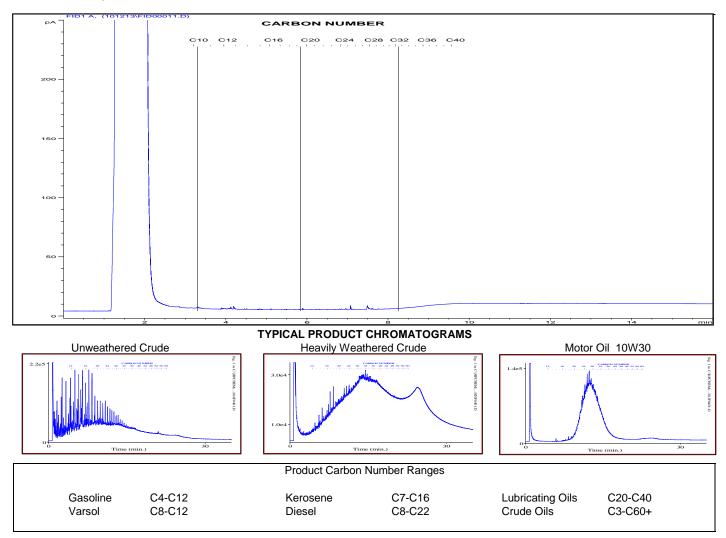
	EBA Engineering Consultants EBA Engineering Consultants Unit 6, 151 Industrial Road Whitehorse, YT, Canada Y1A 2V3	Project: ID: Name: Location: LSD:	W23101317 Haines Junction	Control Number: Date Received: Date Reported:	Jan 10, 2011
1 ,	Adam Seeley Breanne Waggott EBA	P.O.: Acct code:		Report Number:	1400026

US EPA

US Environmental Protection Agency Test Methods

Comments:

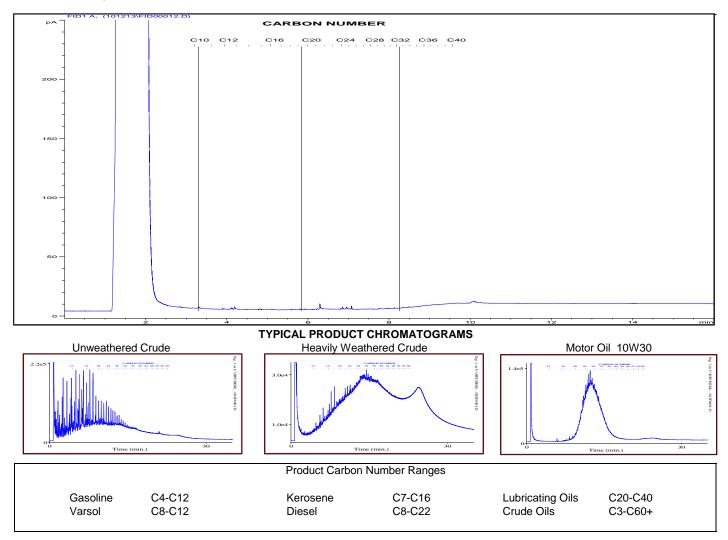
- Report was re-issued to correct the titanium result on 778356-1 to 4 previously reported on Test Report 1394453. Report 1400028 replaces report 1394453.
- 778356-1 to 4: the repeated result for titanium analysis analysis differs significantly from the original. The cause of the difference is matrix interferences, repeat results reported from a different method.
- pH analysis was performed past the recommended holding time of 15 minutes from sample collection.


Exova	T: +1 (604) 514-3322
#104, 19575 - 55A Avenue	F: +1 (604) 514-3323
Surrey, B.C.	E: NWL-Surrey@exova.com
V3S-8P8, Canada	W: www.exova.com

Hydrocarbon Chromatogram

	EBA Engineering Consultants Lt EBA Engineering Consultants Lt	Name:	W23101317	Control Number:	778356
		Location:	Haines Junction	Date Received:	
	Unit 6, 151 Industrial Road	LSD:		Date Reported:	,
	Whitehorse, YT, Canada	P.O.:		Report Number:	1394453
	Y1A 2V3				
Attn:	Adam Seeley				
Sampled by:	Breanne Waggott				
Company:	EBA				

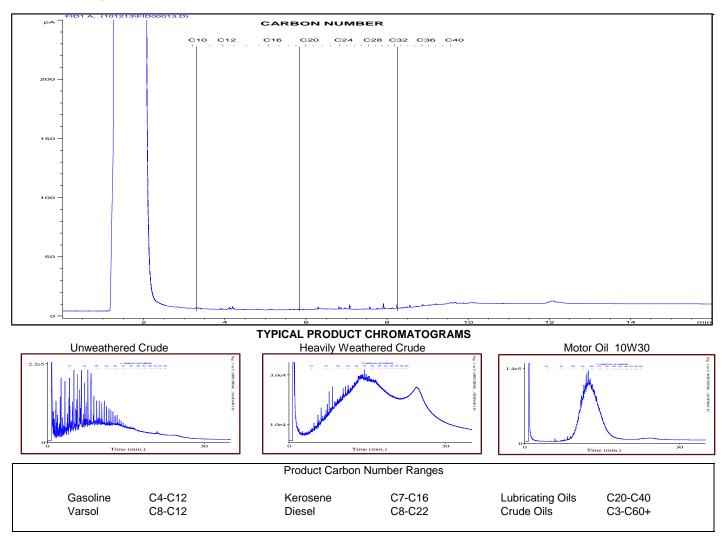
Exova Number: 778356-1 Sample Date: Dec 6, 2010 Sample Description: HJ-MW01


Exova	T: +1 (604) 514-3322
#104, 19575 - 55A Avenue	F: +1 (604) 514-3323
Surrey, B.C.	E: NWL-Surrey@exova.com
V3S-8P8, Canada	W: www.exova.com

Hydrocarbon Chromatogram

	EBA Engineering Consultants Lt EBA Engineering Consultants Lt	Project ID: Name:	W23101317	Lot ID: Control Number:	778356
		Location:	Haines Junction	Date Received:	Dec 8, 2010
	Unit 6, 151 Industrial Road	LSD:		Date Reported:	Dec 14, 2010
	Whitehorse, YT, Canada	P.O.:		Report Number:	1394453
	Y1A 2V3				
Attn:	Adam Seeley				
Sampled by:	Breanne Waggott				
Company:	EBA				

Exova Number: 778356-2 Sample Date: Dec 7, 2010 Sample Description: HJ-MW02


Exova	T: +1 (604) 514-3322
#104, 19575 - 55A Avenue	F: +1 (604) 514-3323
Surrey, B.C.	E: NWL-Surrey@exova.com
V3S-8P8, Canada	W: www.exova.com

Hydrocarbon Chromatogram

	EBA Engineering Consultants Lt EBA Engineering Consultants Lt	Project ID: Name:	W23101317	Lot ID: Control Number:	778356
		Location:	Haines Junction	Date Received:	Dec 8, 2010
	Unit 6, 151 Industrial Road	LSD:		Date Reported:	Dec 14, 2010
	Whitehorse, YT, Canada	P.O.:		Report Number:	1394453
	Y1A 2V3				
Attn:	Adam Seeley				
Sampled by:	Breanne Waggott				
Company:	EBA				

Exova Number: 778356-3 Sample Date: Dec 6, 2010 Sample Description: HJ-MW03

778356

Control Number

Environmental Sample Information Sheet

LOT:

Note: Proper completion of this form is required in order to proceed with analysis See reverse for your nearest Bodycote location and proper sampling protocol

Billing Add	Iress:				····	Copy of I	Report T	<u>.</u>		
Company:	EBA Engineering Consulti	ng Ltd.				Company:			Consulting Ltd.	Copy of invoice:
Address:	Unit 6, 151 Industrial Rd	QA	/QC I	Report [x	Address:		151 Industria		Mail invoice to this
	Whitehorse, YT			• •			Whiteho			address for approval
	Y1A 2V3						Y1A 2V			
Attention:	Adam Seeley		R	eport Re	sult:					Report Resul
Phone:	867-668-3068			Fax		Attention:	Adam S	Seeley		Fax
Fax:	867-668-4349		~		즤	Phone:	867-668			Mail x
Cell:	00, 000-4049			ourier	_	Fax:	867-668	-4349		Courier
e-mail:	aseeley@eba.ca				×	Cell:				e-mail x
	<u> </u>	······································	e-3	ervice		e-mail:	<u>aseeley</u>	@eba.ca	······································	e-Service
Informatio	n to be included on		RUS	<u>.</u>		en contrat	the lab	1		
Report and			iOe			se contact			Sample Custody (I	
						onfirm rush			Sampled by: Brean	ne Waggott
Project ID:	W00101017			Ľ	oeto	re submitti	ng samp	les.	Company EBA	Signature
Project Name	W23101317		Up	on filling	out	this section,	client acco	epts that	I authorize Bodycote to	proceed with the work
Project Locati					es wi	ill be attache	d to this ar	nalysis	work indicated on this	
		1	RUSH			All Analysis	As ind	licated	Date: 6-Dec	Initial:
Legal Location	n:	11	•	ed on:			or [7	Received by:	Sample
	.de.		ate F	Required	: <u>R</u> e	egular TAT			, ·	Temp.
Proj. Acct. Co Agreement II			lignat						Waybill #:	Date
		B	odyco	te Author	izatio	on:			Company	Time
special inst	ructions / Comments					FOR	AB USE O	DNLY	N	odycote is required
						Condiftion				directly to a regulatory body
							n arrival at			contact information)
										u are testing POTABLE
										AN CONSUMPTION
									+ 0 *	
									ALK	UH8 C
-								·	Number of Containers 38BC JTR SO, ALK, SO, ALK,	
Please indica	te which regulations you are rec	quired to meet:	<u>CCI</u>	ME Aquati	ic Life	2			Numb Contai W38BC W38BC NUTR ICSO, A	DOC COD CTEH6 VOW2B1 CVPH3 N3 and 1 HOLD
Samp	le Identification	Location	Т	Denth			T		Sheetille Streetillingsoff	
		Location	IN	Depth CM	м	Date/Time Sampled	Matrix	Sampling		Enter tests above
1 HJ-MW01			1	011	- 101		<u> </u>	Method		levant samples below)
	N	HJ-MW01	+			06-Dec-10	Water	L	10 🗵 🗵 🗵	
2 HJ-MW02		HJ-MW02				07-Dec-10	Water			
3 нј-мwoз		HJ-MW03							2322/2429 2050/2020/00/00/00 P	
4 QC01			1 .			06-Dec-10	Water	<u> </u>		
		QCo1				06-Dec-10	Water		7 🗵	XX
5 QCO3		QCO3	<u> </u>			06-Dec-10	Water		7	X
6										
7										
3		1	†		-+			<u> </u>		
	·····		 		-+					
		_								
0					T			l l		
1					-+					
2			L							
3					Т					
4										
5	······	1			+					
DTE: All ha	zardous samples must t	e labelled ad	cor	dina to	WH	MIS quide	ines			
	-									Page <u>1</u> of <u>1</u>

Your Project #: W23101317.007 Your C.O.C. #: F92322

Attention: Adam Seeley EBA ENGINEERING CONSULTANTS LTD. WHITEHORSE - Rebate CALCITE BUSINESS CENTRE UNIT 6, 151 INDUSTRIAL ROAD WHITEHORSE, YT CANADA Y1A 2V3

Report Date: 2010/12/14

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B0B9368 Received: 2010/12/08, 13:15

Sample Matrix: Water # Samples Received: 1

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	1	2010/12/09	2010/12/10 BBY8-SOP-00010	Based on EPA 8260C
Hardness (calculated as CaCO3)	1	N/A	2010/12/11	
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	1	N/A	2010/12/11 BRN SOP-00206	Based on EPA 200.8
Elements by CRC ICPMS (dissolved)	1	N/A	2010/12/10 BRN SOP-00206	Based on EPA 200.8
Ammonia-N	1	N/A	2010/12/09 BBY6SOP-00044	Based on EPA 350.1
Nitrate + Nitrite (N)	1	N/A	2010/12/09	Based on USEPA 353.2
Nitrite (N) by CFA	1	N/A	2010/12/09 BRN SOP-00233 R1.0	EPA 353.2
Nitrogen - Nitrate (as N)	1	N/A	2010/12/10 BBY6SOP-00010	Based on EPA 353.2
Filter and HNO3 Preserve for Metals	1	N/A	2010/12/08 BRN WI-00006 R1.0	Based on EPA 200.2
Volatile HC-BTEX	1	N/A	2010/12/10	

* Results relate only to the items tested.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Amanda Hart, Burnaby Customer Service Email: AHart@maxxam.ca Phone# (604) 639-2605

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

EBA ENGINEERING CONSULTANTS LTD. Client Project #: W23101317.007

Sampler Initials: BW

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		Y92593		
Sampling Date		2010/12/06 17:00		
	Units	MJ MW03 DUPLICATE	RDL	QC Batch
ANIONS				
Nitrite (N)	mg/L	<0.005	0.005	4491629
Calculated Parameters				
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE
Nitrate (N)	mg/L	<0.02	0.02	4487848
Nutrients		•		•
Ammonia (N)	mg/L	0.44	0.005	4491627
Nitrate plus Nitrite (N)	mg/L	<0.02	0.02	4491623

BCCSR BTEX/VPH IN WATER (WATER)

Maxxam ID		Y92593		
Sampling Date		2010/12/06 17:00		
	Units	MJ MW03 DUPLICATE	RDL	QC Batch
Volatiles				
VPH (VH6 to 10 - BTEX)	ug/L	<300	300	4486522
Methyl-tert-butylether (MTBE)	ug/L	<4	4	4491618
Benzene	ug/L	<0.4	0.4	4491618
Toluene	ug/L	<0.4	0.4	4491618
Ethylbenzene	ug/L	<0.4	0.4	4491618
m & p-Xylene	ug/L	<0.4	0.4	4491618
o-Xylene	ug/L	<0.4	0.4	4491618
Styrene	ug/L	<0.4	0.4	4491618
Xylenes (Total)	ug/L	<0.4	0.4	4491618
VH C6-C10	ug/L	<300	300	4491618
Surrogate Recovery (%)				
4-BROMOFLUOROBENZENE (sur.)	%	90		4491618
D4-1,2-DICHLOROETHANE (sur.)	%	102		4491618
D8-TOLUENE (sur.)	%	100		4491618

EBA ENGINEERING CONSULTANTS LTD. Client Project #: W23101317.007

Sampler Initials: BW

CSR DISSOLVED METALS IN WATER (WATER)

Maxxam ID		Y92593		
Sampling Date		2010/12/06 17:00		
	Units	MJ MW03 DUPLICATE	RDL	QC Batch
Misc. Inorganics				
Dissolved Hardness (CaCO3)	mg/L	1990	0.5	4489651
Dissolved Metals by ICPMS				
Dissolved Aluminum (Al)	mg/L	0.004	0.003	4491528
Dissolved Antimony (Sb)	mg/L	0.0008	0.0005	4491528
Dissolved Arsenic (As)	mg/L	0.0024	0.0001	4491528
Dissolved Barium (Ba)	mg/L	0.012	0.001	4491528
Dissolved Beryllium (Be)	mg/L	<0.0001	0.0001	4491528
Dissolved Bismuth (Bi)	mg/L	<0.001	0.001	4491528
Dissolved Boron (B)	mg/L	0.53	0.05	4491528
Dissolved Cadmium (Cd)	mg/L	0.00003	0.00001	4491528
Dissolved Chromium (Cr)	mg/L	<0.001	0.001	4491528
Dissolved Cobalt (Co)	mg/L	0.0007	0.0005	4491528
Dissolved Copper (Cu)	mg/L	0.0010	0.0002	4491528
Dissolved Iron (Fe)	mg/L	0.009	0.005	4491528
Dissolved Lead (Pb)	mg/L	<0.0002	0.0002	4491528
Dissolved Lithium (Li)	mg/L	<0.005	0.005	4491528
Dissolved Manganese (Mn)	mg/L	0.179	0.001	4491528
Dissolved Mercury (Hg)	mg/L	<0.00002	0.00002	4491528
Dissolved Molybdenum (Mo)	mg/L	0.016	0.001	4491528
Dissolved Nickel (Ni)	mg/L	0.002	0.001	4491528
Dissolved Selenium (Se)	mg/L	0.0003	0.0001	4491528
Dissolved Silicon (Si)	mg/L	7.1	0.1	4491528
Dissolved Silver (Ag)	mg/L	<0.00002	0.00002	4491528
Dissolved Strontium (Sr)	mg/L	2.99	0.001	4491528
Dissolved Thallium (TI)	mg/L	<0.00005	0.00005	4491528
Dissolved Tin (Sn)	mg/L	<0.005	0.005	4491528
Dissolved Titanium (Ti)	mg/L	<0.005	0.005	4491528
Dissolved Uranium (U)	mg/L	0.0030	0.0001	4491528
Dissolved Vanadium (V)	mg/L	<0.005	0.005	4491528
Dissolved Zinc (Zn)	mg/L	<0.005	0.005	4491528
Dissolved Zirconium (Zr)	mg/L	<0.0005	0.0005	4491528
Dissolved Calcium (Ca)	mg/L	211	0.05	4486630
Dissolved Magnesium (Mg)	mg/L	355	0.05	4486630
Dissolved Potassium (K)	mg/L	14.3	0.05	4486630
Dissolved Sodium (Na)	mg/L	132	0.05	4486630
Dissolved Sulphur (S)	mg/L	744	3	4486630

RDL = Reportable Detection Limit

EBA ENGINEERING CONSULTANTS LTD. Client Project #: W23101317.007

Sampler Initials: BW

Package 1	7.0°C

 Package 1
 7.0°C

 Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

EBA ENGINEERING CONSULTANTS LTD. Client Project #: W23101317.007

Sampler Initials: BW

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method B	Blank	RF	۶D	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
4491528	Dissolved Arsenic (As)	2010/12/10	100	80 - 120	101	80 - 120	<0.0001	mg/L	NC	20	-	
4491528	Dissolved Beryllium (Be)	2010/12/10	108	80 - 120	107	80 - 120	<0.0001	mg/L	NC	20		
4491528	Dissolved Cadmium (Cd)	2010/12/10	103	80 - 120	101	80 - 120	<0.00001	mg/L	NC	20		
4491528	Dissolved Chromium (Cr)	2010/12/10	101	80 - 120	101	80 - 120	< 0.001	mg/L	NC	20		
4491528	Dissolved Cobalt (Co)	2010/12/10	99	80 - 120	103	80 - 120	< 0.0005	mg/L	NC	20		
4491528	Dissolved Copper (Cu)	2010/12/10	98	80 - 120	110	80 - 120	<0.0002	mg/L	NC	20		
4491528	Dissolved Lead (Pb)	2010/12/10	102	80 - 120	105	80 - 120	<0.0002	mg/L	NC	20		
4491528	Dissolved Lithium (Li)	2010/12/10	NC	80 - 120	109	80 - 120	< 0.005	mg/L	NC	20		
4491528	Dissolved Nickel (Ni)	2010/12/10	99	80 - 120	101	80 - 120	< 0.001	mg/L	NC	20		
4491528	Dissolved Selenium (Se)	2010/12/10	105	80 - 120	105	80 - 120	<0.0001	mg/L	NC	20		
4491528	Dissolved Uranium (U)	2010/12/10	109	80 - 120	105	80 - 120	<0.0001	mg/L	NC	20		
4491528	Dissolved Vanadium (V)	2010/12/10	101	80 - 120	100	80 - 120	< 0.005	mg/L	NC	20		
4491528	Dissolved Zinc (Zn)	2010/12/10	108	80 - 120	102	80 - 120	< 0.005	mg/L	NC	20		
4491528	Dissolved Aluminum (Al)	2010/12/10					< 0.003	mg/L	NC	20		
4491528	Dissolved Antimony (Sb)	2010/12/10					<0.0005	mg/L	NC	20		
4491528	Dissolved Barium (Ba)	2010/12/10					<0.001	mg/L	0.2	20		
4491528	Dissolved Bismuth (Bi)	2010/12/10					< 0.001	mg/L	NC	20		
4491528	Dissolved Boron (B)	2010/12/10					<0.05	mg/L	NC	20		
4491528	Dissolved Iron (Fe)	2010/12/10					< 0.005	mg/L	NC	20		
4491528	Dissolved Manganese (Mn)	2010/12/10					<0.001	mg/L	0.8	20		
4491528	Dissolved Mercury (Hg)	2010/12/10					<0.00002	mg/L	NC	20		
4491528	Dissolved Molybdenum (Mo)	2010/12/10					<0.001	mg/L	NC	20		
4491528	Dissolved Silicon (Si)	2010/12/10					<0.1	mg/L	0.8	20		
4491528	Dissolved Silver (Ag)	2010/12/10					<0.00002	mg/L	NC	20		
4491528	Dissolved Strontium (Sr)	2010/12/10					<0.001	mg/L	0.7	20		
4491528	Dissolved Thallium (TI)	2010/12/10					<0.00005	mg/L	NC	20		
4491528	Dissolved Tin (Sn)	2010/12/10					<0.005	mg/L	NC	20		
4491528	Dissolved Titanium (Ti)	2010/12/10					<0.005	mg/L	NC	20		
4491528	Dissolved Zirconium (Zr)	2010/12/10					<0.0005	mg/L	NC	20		
4491618	4-BROMOFLUOROBENZENE (sur.)	2010/12/10	90	70 - 130	93	70 - 130	88	%			92	70 - 130
4491618	D4-1,2-DICHLOROETHANE (sur.)	2010/12/10	101	70 - 130	103	70 - 130	99	%			98	70 - 130
4491618	D8-TOLUENE (sur.)	2010/12/10	99	70 - 130	98	70 - 130	90	%			101	70 - 130
4491618	Methyl-tert-butylether(MTBE)	2010/12/10	98	70 - 130	108	70 - 130	<4	ug/L				
4491618	Benzene	2010/12/10	97	70 - 130	107	70 - 130	<0.4	ug/L	NC	30		
4491618	Toluene	2010/12/10	98	70 - 130	108	70 - 130	<0.4	ug/L	NC	30		
4491618	Ethylbenzene	2010/12/10	98	70 - 130	107	70 - 130	<0.4	ug/L	NC	30		
4491618	m & p-Xylene	2010/12/10	94	70 - 130	103	70 - 130	<0.4	ug/L	NC	30		
4491618	o-Xylene	2010/12/10	96	70 - 130	105	70 - 130	<0.4	ug/L	NC	30		
4491618	Styrene	2010/12/10	109	70 - 130	120	70 - 130	<0.4	ug/L				
4491618	VH C6-C10	2010/12/10					<300	ug/L			80	70 - 130

EBA ENGINEERING CONSULTANTS LTD. Client Project #: W23101317.007

Sampler Initials: BW

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method E	lank	RF	PD	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
4491618	Xylenes (Total)	2010/12/10					<0.4	ug/L	NC	30		
4491623	Nitrate plus Nitrite (N)	2010/12/09	95	80 - 120	97	80 - 120	<0.02	mg/L	NC	25		
4491627	Ammonia (N)	2010/12/09	84	80 - 120	95	80 - 120	<0.005	mg/L	4.9	20		
4491629	Nitrite (N)	2010/12/09	96	80 - 120	101	80 - 120	<0.005	mg/L	NC	20		

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

	Maylam	8577 Commerce Court		Phone:	(604) 444-480	8		CHAIN	-OF-CUST	ODY RE	CORD AND	ANALYSIS REQ	JEST	PAGE_	OF	
6		8577 Commerce Court Burnaby, BC V5A 4N5 Www.maxxamanalytics			(604) 444-480 (604) 444-451 1-800-440-48		2	B	08930	8	ANA	YSIS REQUEST	F	923	22	
	EBAENGINGERI	ng	PH. #: 86 E-mail: 0, 5 FAX #:	7669 Seerer	2071 ×	-243 Ca						r St inge, som Nationalis				aðyr, sa i
	COMPANY ADDRESS: 6-151 industr White horse, YT	iq1 Rd. . Y1A2N3	CLIENT PRO	JECT ID: (#)		2		5								h
	SAMPLER NAME (PRINT): BURGANU WA		PROJECT M		eley	68.8	6 	metal								
8		00-	MATRI			MPLING		102								
	FIELD SAMPLE ID		GROUND WATER SURFACE WATER	OTHER X		TIME	HEADSPACE VAPOUR	Dissolu	DI FUN	a						
	1 MJ MWOB Dupli	Cal	7		06/12/10			-	111	-	- R				-	-
	2						-1 -3									
	4	 An and the second s					_			-					-	
	5	nanya Manya Jawa Katalan Manya Jawa Katalan Manya						500 0 53 100000 0								
	67			_						10						
	8			5									_			
Ϋ́	9							_								
	10 11	and a second						2					_			1
	12	$C_{\rm eff}(t) = t$								8						
a	TAT (Turnaround Time) <5 DAY TAT MUST HAVE PRIOR APPROVAL *some exceptions apply	P.O. NUMBER / QUOTE NUMBER	R:	SPECIAL D	ETECTION LIMIT	S / CONTAMIN	VANT TY	(PE:		RTA TIER 1			а			1 - <u>1</u>
7	please contact lab STANDARD 5 BUSINESS DAYS RUSH 3 BUSINESS DAYS RUSH 2 BUSINESS DAYS USH 2 BUSINESS DAYS RUSH 3 BUSINESS RUSH	ACCOUNTING CONTACT:		SPECIAL R	EPORTING OR B	ILLINĢ INSTRU	UCTION	S:	# JARS			t 	ĩ		342	ĩ
	URGENT 1 BUSINESS DAY	RELINQUISHED BY SAMPLER:	- Page	⊥	DATE DD/MM	1/YY		TIME:			CEIVED BY:	1				(b)
<i>~</i>	CUSTODY	RELINQUISHED BY: BURGIN	ne Wao	<u>igot</u>	In. A DESIGN	MAY UT IL	10	TIME:	1000		CEIVED BY:	OBATORY				_
	RECORD		2		DD/MN	1181	10		515		NUC	SHW-				

COCFORM - BC - 06/06

.

**... .

.

•

8

•

×

te ^{te N}n a N

.

-472

3

.

APPENDIX G APPENDIX G HYDRAULIC RESPONSE TEST DATA AND ANALYSIS

Serial Number	1023050
Project ID	W23101317

Location Haines Junction HJ-MW01

Channel 1

Identification

2.89

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:01:52	1.9231	0	0.96854	11:02:47	2.5449	55	0.34674	11:03:42	2.61733	110	0.27431
11:01:53	2.08821	1	0.80343	11:02:48	2.5472	56	0.34444	11:03:43	2.62045	111	0.27119
11:01:54	2.1085	2	0.78314	11:02:49	2.54872	57		11:03:44	2.61848	112	
11:01:55	2.13596	3		11:02:50	2.55063	58			2.6225	113	
11:01:56	2.15829	4		11:02:51	2.55255	59			2.62128	114	
11:01:57	2.1816	5		11:02:52	2.55419	60			2.62379	115	
11:01:58	2.19979	6		11:02:53	2.55623	61			2.62341	116	
11:01:59	2.21999	7		11:02:54	2.5569	62			2.62454	110	
11:02:00	2.24687	8		11:02:55	2.55907	63			2.62492	117	
11:02:01	2.24007	9		11:02:56	2.56076	64			2.62566	110	
11:02:02	2.27332	10		11:02:57	2.56213	65			2.62668	120	
11:02:02	2.29604	10		11:02:58	2.56354	66		11:03:52	2.6271	120	
	2.29004	11		11:02:59	2.56504	67			2.62781	121	
11:02:04	2.31402				2.56504	68			2.62/81	122	
11:02:05		13		11:03:00							
11:02:06	2.3358	14		11:03:01	2.56857	69 70			2.63185	124	
11:02:07	2.35086	15		11:03:02	2.5707	70			2.63301	125	
11:02:08	2.36604	16		11:03:03	2.57225	71			2.63367	126	
11:02:09	2.36388	17		11:03:04	2.57478	72			2.63445	127	
11:02:10	2.39093	18		11:03:05	2.57549	73			2.63551	128	
11:02:11	2.39941	19		11:03:06	2.5943	74			2.63645	129	
11:02:12	2.41327	20		11:03:07	2.58217	75			2.63772	130	
11:02:13	2.40829	21		11:03:08	2.58068	76			2.63935	131	
11:02:14	2.42799	22		11:03:09	2.58155	77			2.6367	132	
11:02:15	2.43705	23		11:03:10	2.58339	78			2.63752	133	
11:02:16	2.44156	24		11:03:11	2.58345	79			2.64011	134	
11:02:17	2.44953	25	0.44211	11:03:12	2.58555	80	0.30609	11:04:07	2.64247	135	0.24917
11:02:18	2.44809	26	0.44355	11:03:13	2.5865	81	0.30514	11:04:08	2.64444	136	0.2472
11:02:19	2.18028	27	0.71136	11:03:14	2.58744	82	0.3042	11:04:09	2.646	137	0.24564
11:02:20	2.39294	28	0.4987	11:03:15	2.58896	83	0.30268	11:04:10	2.63999	138	0.25165
11:02:21	2.37516	29		11:03:16	2.59105	84	0.30059	11:04:11	2.64111	139	0.25053
11:02:22	2.35449	30		11:03:17	2.59213	85	0.29951	11:04:12	2.64148	140	0.25016
11:02:23	2.33076	31		11:03:18	2.59272	86		11:04:13	2.6423	141	0.24934
11:02:24	2.33341	32		11:03:19	2.59347	87			2.6459	142	
11:02:25	2.33729	33		11:03:20	2.59569	88			2.64444	143	
11:02:26	2.34862	34		11:03:21	2.59742	89			2.64797	144	
11:02:27	2.37066	35		11:03:22	2.59779	90			2.64713	145	
11:02:28	2.42634	36		11:03:23	2.59851	91			2.647	146	
11:02:29	2.44858	37		11:03:24	2.5992	92			2.6481	147	
11:02:30	2.49814	38		11:03:25	2.60025	93			2.647	148	
11:02:31	2.50997	39		11:03:26	2.60098	94			2.64817	149	
11:02:32	2.51007	40		11:03:27	2.60185	95			2.64898	150	
11:02:33	2.51211	41		11:03:28	2.60307	96			2.65255	150	
11:02:34	2.51211	42	0.37675	11:03:29	2.60371	97	0.28793		2.65037	151	
11:02:35	2.51726	43		11:03:30	2.60437	98	0.28727	11:04:25	2.6506	152	
11:02:36	2.51909	44		11:03:31	2.60546	99	0.28618		2.65082	155	
11:02:37	2.52275	45	0.36889	11:03:32	2.60709	100	0.28455		2.6523	154	
11:02:38	2.52483	46	0.36681	11:03:32	2.60754	100	0.2841	11:04:27	2.65332	155	
11:02:39	2.52485	40	0.36333	11:03:34	2.60867	101	0.28297	11:04:29	2.65352	150	
11:02:39	2.53068	47	0.36096	11:03:34	2.60007	102			2.65413	157	
11:02:40	2.53008	40	0.35953	11:03:35	2.6136	103			2.65468	150	
11:02:41	2.53211	49 50		11:03:36	2.6130	104	0.27804		2.65468	159	
11:02:42	2.53588	50	0.35776	11:03:37	2.61291		0.27873		2.65834		
						106				161	
11:02:44	2.53875	52 53		11:03:39	2.61683	107		11:04:34	2.65944	162	
11:02:45	2.54066	53 54		11:03:40	2.61823	108	0.27341	11:04:35	2.65931	163	
11:02:46	2.54257	54	0.34907	11:03:41	2.61831	109	0.27333	11:04:36	2.65993	164	0.23171

Serial Number	1023050
Project ID	W23101317

Location Haines Junction HJ-MW01

2.89

Channel 1

Identification

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:04:37	2.66127	165	0.23037	11:05:32	2.69061	220	0.20103	11:06:27	2.71577	275	0.17587
11:04:38	2.66122	166		11:05:33	2.69041	221			2.71683	276	
11:04:39	2.66168	167		11:05:34	2.69249	222		11:06:29	2.71728	277	
11:04:40	2.66293	168	0.22871	11:05:35	2.69363	223		11:06:30	2.71765	278	0.17399
11:04:41	2.66274	169	0.2289	11:05:36	2.69414	224		11:06:31	2.7177	279	
11:04:42	2.66419	170	0.22745	11:05:37	2.6949	225	0.19674	11:06:32	2.71864	280	0.173
11:04:43	2.66416	171	0.22748	11:05:38	2.69505	226		11:06:33	2.71917	281	
11:04:44	2.66507	172	0.22657	11:05:39	2.69559	227		11:06:34	2.72039	282	
11:04:45	2.66569	173	0.22595	11:05:40	2.69636	228	0.19528	11:06:35	2.72092	283	0.17072
11:04:46	2.66703	174	0.22461	11:05:41	2.69647	229	0.19517	11:06:36	2.72726	284	0.16438
11:04:47	2.66708	175	0.22456	11:05:42	2.6969	230	0.19474	11:06:37	2.72648	285	0.16516
11:04:48	2.66823	176	0.22341	11:05:43	2.6975	231	0.19414	11:06:38	2.72836	286	0.16328
11:04:49	2.66601	177	0.22563	11:05:44	2.69809	232	0.19355	11:06:39	2.72006	287	0.17158
11:04:50	2.66906	178	0.22258	11:05:45	2.69851	233	0.19313	11:06:40	2.72286	288	0.16878
11:04:51	2.67006	179	0.22158	11:05:46	2.6992	234	0.19244	11:06:41	2.72382	289	0.16782
11:04:52	2.66834	180	0.2233	11:05:47	2.69989	235	0.19175	11:06:42	2.72431	290	0.16733
11:04:53	2.67011	181	0.22153	11:05:48	2.70041	236		11:06:43	2.72415	291	
11:04:54	2.66977	182	0.22187	11:05:49	2.70133	237	0.19031	11:06:44	2.72406	292	0.16758
11:04:55	2.67019	183		11:05:50	2.70146	238		11:06:45	2.72473	293	
11:04:56	2.67054	184		11:05:51	2.70225	239		11:06:46	2.72422	294	
11:04:57	2.67129	185		11:05:52	2.70032	240			2.72593	295	
11:04:58	2.67161	186		11:05:53	2.70209	241			2.72447	296	
11:04:59	2.67367	187		11:05:54	2.7032	242			2.72701	297	
11:05:00	2.67448	188		11:05:55	2.70161	243			2.72461	298	
11:05:01	2.67529	189		11:05:56	2.70363	244			2.72573	299	
11:05:02	2.67603	190		11:05:57	2.70408	245			2.72678	300	
11:05:03	2.67711	191		11:05:58	2.70375	246			2.72833	301	
11:05:04	2.67786	192		11:05:59	2.70395	247			2.72868	302	
11:05:05	2.67785	193		11:06:00	2.70459	248			2.72762	303	
11:05:06	2.67854	194		11:06:01	2.70363	249			2.728	304	
11:05:07	2.67899	195		11:06:02	2.70376	250			2.72894	305	
11:05:08	2.67928	196		11:06:03	2.70453	251			2.72946	306	
11:05:09	2.67945	197		11:06:04	2.70632	252			2.72958	307	
11:05:10	2.68094	198		11:06:05	2.70605	253			2.73011	308	
11:05:11	2.68109	199		11:06:06	2.70684	254			2.73104	309	
11:05:12	2.68176	200		11:06:07	2.70741	255			2.73205	310	
11:05:13	2.68229	201	0.20935	11:06:08	2.70817	256			2.73238	311	
11:05:14 11:05:15	2.68126	202		11:06:09	2.70849 2.70904	257			2.73224	312	
11:05:15	2.68128 2.68322	203 204		11:06:10 11:06:11	2.70904 2.70878	258 259			2.7328 2.73344	313 314	
11:05:16	2.68322	204 205	0.20842	11:06:11	2.70878	259 260			2.73344	314	
11:05:17	2.68513	205 206		11:06:12	2.70971 2.70987	260 261			2.73251	315	
11:05:19	2.68534	200 207		11:06:13	2.70987	261			2.73233	317	
11:05:20	2.68609	207		11:06:14	2.71072	262			2.73241	318	
11:05:20	2.68524	208		11:06:16	2.71129	263			2.73376	319	
11:05:22	2.6854	209		11:06:17	2.71148	265			2.73370	320	
11:05:22	2.68484	210		11:06:18	2.71130	265			2.73447	320	
11:05:24	2.68656	211		11:06:19	2.71318	260			2.73583	321	
11:05:25	2.68822	212		11:06:20	2.71310	268			2.73588	323	
11:05:26	2.68883	213		11:06:20	2.71354	260			2.73583	323	
11:05:27	2.69023	214		11:06:21	2.71489	270			2.73659	325	
11:05:28	2.69064	216		11:06:22	2.71453	270			2.73683	326	
11:05:29	2.69127	210		11:06:24	2.71532	272			2.73749	320	
11:05:30	2.6911	218		11:06:25	2.71512	273			2.73756	328	
11:05:31	2.69	219		11:06:26	2.71615	274			2.738	329	

Serial Number	1023050
Project ID	W23101317

Location Haines Junction HJ-MW01

Channel 1

Identification c) 2.89

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:07:22	2.73836	330	0.15328	11:08:17	2.7535	385	0.13814	11:09:12	2.77155	440	0.12009
11:07:23	2.73856			11:08:18	2.75445	386			2.7717	441	
11:07:24	2.73897	332		11:08:19	2.75432	387		11:09:14	2.77282	442	
11:07:25	2.7394			11:08:20	2.75478	388		11:09:15	2.76989	443	
11:07:26	2.73947	334	0.15217	11:08:21	2.7548	389		11:09:16	2.76688	444	
11:07:27	2.73999	335	0.15165	11:08:22	2.75546	390	0.13618	11:09:17	2.76953	445	0.12211
11:07:28	2.74068	336		11:08:23	2.75452	391		11:09:18	2.76775	446	
11:07:29	2.74073	337	0.15091	11:08:24	2.75647	392		11:09:19	2.76727	447	
11:07:30	2.74105	338	0.15059	11:08:25	2.7574	393		11:09:20	2.76812	448	0.12352
11:07:31	2.74131	339	0.15033	11:08:26	2.75681	394	0.13483	11:09:21	2.76944	449	0.1222
11:07:32	2.74164	340	0.15	11:08:27	2.75777	395	0.13387	11:09:22	2.77022	450	0.12142
11:07:33	2.74212	341	0.14952	11:08:28	2.75792	396	0.13372	11:09:23	2.77069	451	0.12095
11:07:34	2.74193	342	0.14971	11:08:29	2.75827	397	0.13337	11:09:24	2.77047	452	0.12117
11:07:35	2.74272	343	0.14892	11:08:30	2.75838	398	0.13326	11:09:25	2.77125	453	0.12039
11:07:36	2.74282	344	0.14882	11:08:31	2.75902	399	0.13262	11:09:26	2.77139	454	0.12025
11:07:37	2.74307	345	0.14857	11:08:32	2.75753	400	0.13411	11:09:27	2.77139	455	0.12025
11:07:38	2.74368	346	0.14796	11:08:33	2.75846	401	0.13318	11:09:28	2.77171	456	0.11993
11:07:39	2.74219	347	0.14945	11:08:34	2.75962	402	0.13202	11:09:29	2.77186	457	0.11978
11:07:40	2.74341	348	0.14823	11:08:35	2.75788	403	0.13376	11:09:30	2.77228	458	0.11936
11:07:41	2.74389	349	0.14775	11:08:36	2.75941	404	0.13223	11:09:31	2.77189	459	0.11975
11:07:42	2.74474	350	0.1469	11:08:37	2.76029	405	0.13135	11:09:32	2.77309	460	0.11855
11:07:43	2.74387	351	0.14777	11:08:38	2.76031	406	0.13133	11:09:33	2.77298	461	0.11866
11:07:44	2.7448	352	0.14684	11:08:39	2.76032	407	0.13132	11:09:34	2.77329	462	0.11835
11:07:45	2.74425	353	0.14739	11:08:40	2.7604	408	0.13124	11:09:35	2.77322	463	0.11842
11:07:46	2.74477	354	0.14687	11:08:41	2.76138	409	0.13026	11:09:36	2.77332	464	0.11832
11:07:47	2.74551	355	0.14613	11:08:42	2.76127	410	0.13037	11:09:37	2.77367	465	0.11797
11:07:48	2.74476	356	0.14688	11:08:43	2.76135	411	0.13029	11:09:38	2.7741	466	0.11754
11:07:49	2.74588	357	0.14576	11:08:44	2.76093	412	0.13071	11:09:39	2.7745	467	0.11714
11:07:50	2.74733	358	0.14431	11:08:45	2.76199	413	0.12965	11:09:40	2.77442	468	0.11722
11:07:51	2.74707	359	0.14457	11:08:46	2.76226	414	0.12938	11:09:41	2.77476	469	0.11688
11:07:52	2.74766	360	0.14398	11:08:47	2.76216	415	0.12948	11:09:42	2.77507	470	0.11657
11:07:53	2.74788	361	0.14376	11:08:48	2.76252	416	0.12912	11:09:43	2.7752	471	0.11644
11:07:54	2.74746	362	0.14418	11:08:49	2.76294	417	0.1287	11:09:44	2.77572	472	0.11592
11:07:55	2.74778	363	0.14386	11:08:50	2.76318	418	0.12846	11:09:45	2.77597	473	0.11567
11:07:56	2.74778	364	0.14386	11:08:51	2.76401	419	0.12763	11:09:46	2.77568	474	0.11596
11:07:57	2.74801	365	0.14363	11:08:52	2.7639	420	0.12774	11:09:47	2.77588	475	0.11576
11:07:58	2.7481	366	0.14354	11:08:53	2.76355	421	0.12809	11:09:48	2.77613	476	0.11551
11:07:59	2.74867	367		11:08:54	2.76484	422	0.1268	11:09:49	2.77673	477	
11:08:00	2.74852	368	0.14312	11:08:55	2.76445	423	0.12719	11:09:50	2.77704	478	
11:08:01	2.74882			11:08:56	2.76497	424			2.77721	479	
11:08:02	2.74928			11:08:57	2.76546	425			2.77744	480	
11:08:03	2.74962	371		11:08:58	2.76539	426			2.7776	481	
11:08:04	2.75018			11:08:59	2.76569	427			2.77763	482	
11:08:05	2.75045			11:09:00	2.76571	428			2.77756	483	
11:08:06	2.75031	374		11:09:01	2.76627	429			2.77769	484	
11:08:07	2.75077			11:09:02	2.76669	430		11:09:57	2.77821	485	0.11343
11:08:08	2.75109			11:09:03	2.76607	431			2.7787	486	
11:08:09	2.75121	377		11:09:04	2.76711	432			2.77873	487	
11:08:10	2.75141	378		11:09:05	2.76791	433			2.7789	488	
11:08:11	2.75131	379		11:09:06	2.76905	434			2.77871	489	
11:08:12	2.7518			11:09:07	2.76919	435			2.77967	490	
11:08:13	2.75231	381		11:09:08	2.77016	436			2.77954	491	
11:08:14	2.75276			11:09:09	2.76961	437			2.78001	492	
11:08:15	2.75303			11:09:10	2.77083	438		11:10:05	2.7796	493	
11:08:16	2.75368	384	0.13796	11:09:11	2.77104	439	0.1206	11:10:06	2.77966	494	0.11198

Serial Number	1023050
Project ID	W23101317

Haines Junction HJ-MW01 Location Identification

2.89

Channel 1

Static (m btoc)

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:10:07	2.77987	495	0.11177	11:11:02	2.79004	550	0.1016	11:11:57	2.79907	605	0.09257
11:10:08	2.78035	496	0.11129	11:11:03	2.78994	551			2.79944	606	
11:10:09	2.78128	497	0.11036	11:11:04	2.78962	552		11:11:59	2.80002	607	0.09162
11:10:10	2.78083	498	0.11081	11:11:05	2.78991	553		11:12:00	2.7997	608	0.09194
11:10:11	2.78147	499	0.11017	11:11:06	2.7897	554		11:12:01	2.79991	609	0.09173
11:10:12	2.78123	500	0.11041	11:11:07	2.79041	555		11:12:02	2.79941	610	0.09223
11:10:13	2.78183	501	0.10981	11:11:08	2.78986	556	0.10178	11:12:03	2.79987	611	0.09177
11:10:14	2.78164	502	0.11	11:11:09	2.79051	557		11:12:04	2.80018	612	0.09146
11:10:15	2.78174	503	0.1099	11:11:10	2.78977	558	0.10187	11:12:05	2.8001	613	0.09154
11:10:16	2.78198	504	0.10966	11:11:11	2.79137	559	0.10027	11:12:06	2.80006	614	0.09158
11:10:17	2.78251	505	0.10913	11:11:12	2.79048	560	0.10116	11:12:07	2.80049	615	0.09115
11:10:18	2.78236	506	0.10928	11:11:13	2.79093	561	0.10071	11:12:08	2.80056	616	0.09108
11:10:19	2.78301	507	0.10863	11:11:14	2.791	562		11:12:09	2.80075	617	0.09089
11:10:20	2.78323	508	0.10841	11:11:15	2.79096	563	0.10068	11:12:10	2.80072	618	0.09092
11:10:21	2.78346	509	0.10818	11:11:16	2.79146	564	0.10018	11:12:11	2.80143	619	0.09021
11:10:22	2.78333	510	0.10831	11:11:17	2.791	565	0.10064	11:12:12	2.80187	620	0.08977
11:10:23	2.78381	511	0.10783	11:11:18	2.79124	566	0.1004	11:12:13	2.80187	621	0.08977
11:10:24	2.78392	512	0.10772	11:11:19	2.79126	567	0.10038	11:12:14	2.80206	622	0.08958
11:10:25	2.78365	513	0.10799	11:11:20	2.79169	568	0.09995	11:12:15	2.80326	623	0.08838
11:10:26	2.78407	514	0.10757	11:11:21	2.79243	569	0.09921	11:12:16	2.80391	624	0.08773
11:10:27	2.78404	515	0.1076	11:11:22	2.79551	570	0.09613	11:12:17	2.8009	625	0.09074
11:10:28	2.78407	516	0.10757	11:11:23	2.79299	571	0.09865	11:12:18	2.80253	626	0.08911
11:10:29	2.78867	517	0.10297	11:11:24	2.79281	572	0.09883	11:12:19	2.80184	627	0.0898
11:10:30	2.79343	518	0.09821	11:11:25	2.79352	573	0.09812	11:12:20	2.80149	628	0.09015
11:10:31	2.7866	519	0.10504	11:11:26	2.79375	574	0.09789	11:12:21	2.80253	629	0.08911
11:10:32	2.78638	520	0.10526	11:11:27	2.79349	575	0.09815	11:12:22	2.80165	630	0.08999
11:10:33	2.78864	521	0.103	11:11:28	2.794	576	0.09764	11:12:23	2.80253	631	0.08911
11:10:34	2.78439	522	0.10725	11:11:29	2.79293	577	0.09871	11:12:24	2.80257	632	0.08907
11:10:35	2.78481	523	0.10683	11:11:30	2.79334	578	0.0983	11:12:25	2.80308	633	0.08856
11:10:36	2.78589	524	0.10575	11:11:31	2.79398	579	0.09766	11:12:26	2.80336	634	0.08828
11:10:37	2.78618	525	0.10546	11:11:32	2.79417	580	0.09747	11:12:27	2.80349	635	0.08815
11:10:38	2.7874	526	0.10424	11:11:33	2.79424	581	0.0974	11:12:28	2.80382	636	0.08782
11:10:39	2.78572	527	0.10592	11:11:34	2.79443	582	0.09721	11:12:29	2.80349	637	0.08815
11:10:40	2.78439	528	0.10725	11:11:35	2.79493	583	0.09671	11:12:30	2.80378	638	0.08786
11:10:41	2.78695	529	0.10469	11:11:36	2.79543	584	0.09621	11:12:31	2.8045	639	0.08714
11:10:42	2.78527	530	0.10637	11:11:37	2.79531	585	0.09633	11:12:32	2.80407	640	0.08757
11:10:43	2.78714	531	0.1045	11:11:38	2.79602	586	0.09562	11:12:33	2.80457	641	0.08707
11:10:44	2.78529	532	0.10635	11:11:39	2.79644	587	0.0952	11:12:34	2.80479	642	0.08685
11:10:45	2.78685	533	0.10479	11:11:40	2.7968	588			2.80512	643	0.08652
11:10:46	2.78705	534	0.10459	11:11:41	2.79662	589			2.80479	644	
11:10:47	2.78526	535	0.10638	11:11:42	2.79741	590			2.80518	645	
11:10:48	2.78708	536	0.10456	11:11:43	2.79703	591			2.80583	646	
11:10:49	2.78711	537		11:11:44	2.79721	592			2.80592	647	
11:10:50	2.78861	538	0.10303	11:11:45	2.79763	593			2.80551	648	
11:10:51	2.78876	539	0.10288	11:11:46	2.79782	594			2.80554	649	0.0861
11:10:52	2.78845	540	0.10319	11:11:47	2.79724	595			2.80629	650	
11:10:53	2.78887	541	0.10277	11:11:48	2.79805	596			2.80621	651	
11:10:54	2.78942	542		11:11:49	2.79783	597			2.80641	652	
11:10:55	2.78776	543		11:11:50	2.79834	598			2.80648	653	
11:10:56	2.78936	544	0.10228	11:11:51	2.79874	599	0.0929	11:12:46	2.80622	654	
11:10:57	2.78776	545		11:11:52	2.79821	600			2.80654	655	
11:10:58	2.7887	546		11:11:53	2.79827	601	0.09337		2.80715	656	
11:10:59	2.78968	547	0.10196	11:11:54	2.79894	602	0.0927	11:12:49	2.80708	657	
11:11:00	2.78993	548	0.10171	11:11:55	2.799	603			2.80719	658	
11:11:01	2.78955	549	0.10209	11:11:56	2.79935	604	0.09229	11:12:51	2.8074	659	0.08424

Serial Number	1023050
Project ID	W23101317

Haines Junction HJ-MW01 Location Identification

2.89

Channel 1

Time	LEVEL	Seconde	Drawdown	Time	LEVEL	Seconde	Drawdown	Time	LEVEL	Seconde	Drawdown
11:12:52	2.80764		0.084	11:13:47	2.81411	715			2.82071	770	
11:12:53	2.80769	661	0.084	11:13:47	2.81411	715			2.82071	770	
11:12:53	2.80709	662	0.08393	11:13:49	2.81431	710			2.82032	772	
11:12:55	2.80769	663	0.08404	11:13:50	2.81436	718			2.82080	772	
11:12:55	2.80789	664	0.08373	11:13:50	2.81440	718			2.82055	774	
11:12:57	2.80080	665	0.08478						2.82030	774	
11:12:57	2.8074	666	0.08424	11:13:52 11:13:53	2.81447 2.81473	720 721			2.82076	776	
11:12:59	2.80733	667	0.08411	11:13:53	2.81473	721			2.82149	770	
11:12:59	2.80713	668	0.08451	11:13:55	2.81520	723			2.82098	778	
11:13:00	2.80842	669	0.08374	11:13:56	2.81504	723			2.82131	778	
11:13:01	2.80791	670	0.08322	11:13:50	2.81539	724			2.82124	779	
11:13:02	2.80791	670	0.08375	11:13:57	2.81539				2.8216	780 781	
		671	0.08316			726 727				781	
11:13:04	2.80839	672		11:13:59	2.81547 2.8156				2.8217 2.82163	782	
11:13:05	2.80841	673	0.08323	11:14:00	2.8156	728 729			2.82103	783 784	
11:13:06	2.80862		0.08302	11:14:01							
11:13:07	2.80871	675	0.08293	11:14:02	2.81593	730			2.82234	785	
11:13:08	2.80897	676	0.08267	11:14:03	2.81584	731			2.82266	786	
11:13:09	2.80891	677	0.08273	11:14:04	2.81658	732			2.82165	787	
11:13:10	2.80933	678	0.08231	11:14:05	2.81658	733			2.82296	788	
11:13:11	2.80886	679	0.08278	11:14:06	2.81671	734			2.82298	789	
11:13:12	2.809	680	0.08264	11:14:07	2.81642	735			2.82337	790 794	
11:13:13	2.80974	681	0.0819	11:14:08	2.81723	736			2.82321	791	
11:13:14	2.80987	682	0.08177	11:14:09	2.8168	737			2.82166	792	
11:13:15	2.80972	683	0.08192	11:14:10	2.81687	738			2.82324	793	
11:13:16	2.80864	684	0.083	11:14:11	2.81707	739			2.82226	794	
11:13:17	2.81033	685	0.08131	11:14:12	2.81628	740			2.82286	795	
11:13:18	2.81004	686		11:14:13	2.81583	741			2.82172	796	
11:13:19	2.81011	687	0.08153	11:14:14	2.81622	742			2.82231	797	
11:13:20	2.81042	688	0.08122	11:14:15	2.81743	743		11:15:10	2.82259	798 799	
11:13:21	2.81003	689	0.08161	11:14:16	2.81754	744			2.82324	799	
11:13:22	2.80995	690	0.08169	11:14:17	2.81813	745			2.82395	800	
11:13:23	2.81097	691	0.08067	11:14:18	2.81807	746			2.82393	801	
11:13:24	2.81135	692	0.08029	11:14:19	2.8181	747			2.82445	802	
11:13:25	2.81154	693	0.0801	11:14:20	2.81751	748			2.82414	803	
11:13:26	2.81059	694	0.08105	11:14:21	2.81794	749			2.82467	804	
11:13:27	2.8111	695	0.08054	11:14:22	2.81838	750			2.82476	805	
11:13:28	2.81127	696	0.08037	11:14:23	2.81815	751			2.82493	806	
11:13:29	2.81202	697	0.07962	11:14:24	2.81833	752			2.82531	807	
11:13:30	2.81169	698	0.07995	11:14:25	2.81887	753			2.8248	808	
11:13:31	2.81181	699 700	0.07983	11:14:26	2.81838	754			2.82526	809	
11:13:32	2.81199 2.8124	700	0.07965	11:14:27	2.81865	755			2.82513	810	
11:13:33		701	0.07924 0.07915	11:14:28	2.81921	756 757			2.82513	811	
11:13:34	2.81249	702		11:14:29	2.81952		0.07212		2.82579	812	
11:13:35	2.81234	703	0.0793 0.07841	11:14:30	2.81961	758 759			2.82505	813	
11:13:36	2.81323	704		11:14:31	2.819				2.82558	814	
11:13:37	2.81252	705	0.07912	11:14:32	2.81961	760			2.82563	815	
11:13:38	2.81348	706	0.07816	11:14:33	2.81988	761			2.82568	816	
11:13:39	2.81297	707	0.07867	11:14:34	2.81974	762			2.82547	817	
11:13:40	2.8132	708	0.07844	11:14:35	2.81953	763			2.82615	818	
11:13:41	2.81347	709	0.07817	11:14:36	2.81974	764			2.82554	819	
11:13:42	2.81377	710	0.07787	11:14:37	2.81965	765			2.82589	820	
11:13:43	2.81337	711	0.07827	11:14:38	2.82003	766			2.82649	821	
11:13:44	2.81366	712		11:14:39	2.82068	767			2.82628	822	
11:13:45	2.81415	713	0.07749	11:14:40	2.81982	768			2.82636	823	
11:13:46	2.81353	714	0.07811	11:14:41	2.82064	769	0.071	11:15:36	2.82658	824	0.06506

Serial Number	1023050
Project ID	W23101317

Haines Junction HJ-MW01 Location Identification

2.89

Channel 1

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:15:37	2.82615			11:16:32	2.83089	880	0.06075		2.83522	935	
11:15:38	2.82638			11:16:32	2.83089	881	0.0604		2.83593	936	
11:15:39	2.82643			11:16:34	2.83101	882	0.06063		2.83603	937	
11:15:40	2.82719	828		11:16:35	2.83104	883	0.0606		2.83696	938	
11:15:40	2.82709			11:16:36	2.83157	884			2.83694	939	
11:15:42	2.82728			11:16:37	2.83057	885	0.06107		2.83707	940	
11:15:43	2.82726			11:16:38	2.83101	886			2.83788	941	
11:15:44	2.82719			11:16:39	2.83157	887	0.06007		2.83859	942	
11:15:45	2.82699	833		11:16:40	2.83152	888	0.06012		2.83782	943	
11:15:46	2.82774			11:16:41	2.83124	889	0.0604		2.83794	944	
11:15:47	2.82781	835		11:16:42	2.83206	890			2.83646	945	
11:15:48	2.82741	836		11:16:43	2.83168	891	0.05996		2.83626	946	
11:15:49	2.82834			11:16:44	2.83165	892			2.83683	947	
11:15:50	2.82775			11:16:45	2.83196	893			2.83635	948	
11:15:50	2.82725			11:16:46	2.83218	894			2.83661	949	
11:15:52	2.82777	840		11:16:47	2.83152	895	0.06012		2.83651	950	
11:15:53	2.82788			11:16:48	2.83243	896			2.83706	950	
11:15:55	2.82821	842		11:16:49	2.83245	897	0.05921		2.83565	952	
11:15:55	2.82824			11:16:50	2.83238	898	0.05926		2.83632	953	
11:15:56	2.8282			11:16:51	2.8328	899	0.05920		2.83661	954	
11:15:57	2.82859			11:16:52	2.83253	900			2.83633	955	
11:15:58	2.82869			11:16:52	2.83225	900 901	0.05939		2.83769	956	
11:15:59	2.82814			11:16:54	2.83306	902	0.05858		2.83729	950	
11:16:00	2.82924			11:16:55	2.83286	903	0.05878		2.83662	958	
11:16:01	2.82862			11:16:56	2.83356	904			2.83726	950	
11:16:02	2.82913			11:16:57	2.83461	905	0.05703		2.8371	960	
11:16:03	2.82897			11:16:58	2.83399	906	0.05765		2.83707	960	
11:16:04	2.82911	852		11:16:59	2.83492	907	0.05672		2.83704	962	
11:16:05	2.82971	853		11:17:00	2.83508	908	0.05656		2.83697	963	
11:16:06	2.82907	854		11:17:01	2.83525	909	0.05639		2.83688	964	
11:16:07	2.82962			11:17:02	2.83505	910			2.83772	965	
11:16:08	2.82978			11:17:03	2.83525	911	0.05639		2.83732	966	
11:16:09	2.82937			11:17:04	2.83487	912			2.83765	967	
11:16:10	2.82991	858		11:17:05	2.83581	913			2.83779	968	
11:16:11	2.83021	859		11:17:06	2.83387	914			2.83798	969	
11:16:12	2.83036			11:17:07	2.83386	915	0.05778		2.83779	970	
11:16:13	2.83025			11:17:08	2.83364	916			2.83807	971	
11:16:14	2.83017			11:17:09	2.83444	917			2.83811	972	
11:16:15	2.83005			11:17:10	2.83561	918			2.83801	973	
11:16:16	2.83072			11:17:11	2.83601	919			2.83827	974	
11:16:17	2.83041	865		11:17:12	2.83622	920			2.83813	975	
11:16:18	2.83085	866		11:17:13	2.83667	921	0.05497		2.83842	976	
11:16:19	2.8307	867	0.06094	11:17:14	2.83609	922	0.05555	11:18:09	2.83862	977	
11:16:20	2.83014			11:17:15	2.83452	923	0.05712		2.83853	978	
11:16:21	2.83099			11:17:16	2.83461	924	0.05703		2.8383	979	
11:16:22	2.83099			11:17:17	2.83483	925	0.05681		2.83832	980	
11:16:23	2.83137			11:17:18	2.83486	926	0.05678		2.83827	981	
11:16:24	2.8305	872		11:17:19	2.83457	927	0.05707		2.83879	982	
11:16:25	2.83147			11:17:20	2.83468	928	0.05696		2.8391	983	
11:16:26	2.83136			11:17:21	2.83508	929	0.05656		2.83911	984	
11:16:27	2.83128			11:17:22	2.83515	930	0.05649		2.83903	985	
11:16:28	2.83155			11:17:23	2.83476	931	0.05688		2.83872	986	
11:16:29	2.83114			11:17:24	2.83476	932	0.05688		2.83894	987	
11:16:30	2.83224			11:17:25	2.83545	933			2.83919	988	
11:16:31	2.83066			11:17:26	2.83521	934			2.83908	989	

Serial Number	1023050
Project ID	W23101317

Haines Junction HJ-MW01 Location Identification

2.89

Channel 1

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:18:22	2.83906	990	0.05258	11:19:17	2.84527	1045	0.04637	11:20:12	2.84711	1100	0.04453
11:18:23	2.83963	991	0.05201	11:19:18	2.84455	1046	0.04709	11:20:13	2.84716	1101	0.04448
11:18:24	2.83927	992	0.05237	11:19:19	2.8441	1047	0.04754	11:20:14	2.84704	1102	0.0446
11:18:25	2.83934	993		11:19:20	2.8451	1048	0.04654	11:20:15	2.84765	1103	0.04399
11:18:26	2.83962	994	0.05202	11:19:21	2.84458	1049	0.04706	11:20:16	2.84788	1104	0.04376
11:18:27	2.83928	995	0.05236	11:19:22	2.84439	1050	0.04725	11:20:17	2.84787	1105	0.04377
11:18:28	2.83947	996		11:19:23	2.84419	1051			2.84772	1106	
11:18:29	2.83947	997		11:19:24	2.84494	1052			2.84778	1107	
11:18:30	2.83969	998		11:19:25	2.84479	1053			2.84743	1108	
11:18:31	2.83986	999		11:19:26	2.84484	1054			2.84788	1109	
11:18:32	2.83999	1000		11:19:27	2.84471	1055			2.848	1110	
11:18:33	2.8394	1001		11:19:28	2.84419	1056			2.84755	1111	
11:18:34	2.83949	1002		11:19:29	2.84513	1057		11:20:24	2.84797	1112	
11:18:35	2.83999	1003		11:19:30	2.84533	1058		11:20:25	2.84816	1113	
11:18:36	2.83975	1004		11:19:31	2.84532	1059			2.84849	1114	
11:18:37	2.84039	1005		11:19:32	2.8448	1060			2.84768	1115	
11:18:38	2.83998	1006		11:19:33	2.84525	1061			2.84836	1116	
11:18:39	2.84073	1007		11:19:34	2.84535	1062			2.84843	1110	
11:18:40	2.84028	1008		11:19:35	2.8448	1063			2.84798	1118	
11:18:41	2.84183	1009		11:19:36	2.84519	1064			2.8479	1119	
11:18:42	2.84282	1010		11:19:37	2.84538	1065			2.84854	1120	
11:18:43	2.8427	1011		11:19:38	2.84501	1066			2.8484	1121	
11:18:44	2.84315	1012		11:19:39	2.84543	1067			2.84856	1122	
11:18:45	2.84325	1012		11:19:40	2.84548	1068			2.84901	1123	
11:18:46	2.84183	1014		11:19:41	2.84519	1069			2.8486	1124	
11:18:47	2.8414	1015		11:19:42	2.8459	1070			2.84863	1125	
11:18:48	2.84263	1016		11:19:43	2.84603	1071			2.84905	1126	
11:18:49	2.84264	1017		11:19:44	2.84562	1072			2.84888	1127	
11:18:50	2.84338	1018		11:19:45	2.84601	1073			2.84883	1128	
11:18:51	2.84227	1019		11:19:46	2.84564	1074			2.84859	1129	
11:18:52	2.84193	1020		11:19:47	2.84596	1075			2.84914	1130	
11:18:53	2.84186	1021		11:19:48	2.84648	1076			2.84899	1131	
11:18:54	2.84167	1022		11:19:49	2.84622	1077			2.84899	1132	
11:18:55	2.84177	1023		11:19:50	2.84601	1078			2.84888	1133	
11:18:56	2.84224	1024		11:19:51	2.84639	1079			2.84936	1134	
11:18:57	2.84219	1025		11:19:52	2.84593	1080		11:20:47	2.84927	1135	
11:18:58	2.84257	1026		11:19:53	2.84648	1081			2.84896	1136	
11:18:59	2.84211	1027		11:19:54	2.84614	1082			2.84912	1137	
11:19:00	2.84322	1028		11:19:55	2.84651	1083			2.84867	1138	
11:19:01	2.84285	1029		11:19:56	2.84604	1084			2.84915	1139	
11:19:02	2.84307	1030		11:19:57	2.8463	1085			2.84963	1140	
11:19:03	2.84263	1031		11:19:58	2.84632	1086			2.84995	1141	
11:19:04	2.84261	1032		11:19:59	2.84681	1087			2.8492	1142	
11:19:05	2.84266			11:20:00	2.84721	1088			2.84972	1143	
11:19:06	2.84292	1034	0.04872	11:20:01	2.84645	1089	0.04519		2.84937	1144	0.04227
11:19:07	2.84352			11:20:02	2.84676	1090			2.84956	1145	
11:19:08	2.84312	1036		11:20:03	2.84622	1091			2.85004	1146	
11:19:09	2.84323	1037		11:20:04	2.84676	1092			2.85037	1147	
11:19:10	2.84405	1038		11:20:05	2.84649	1093			2.84983	1148	
11:19:11	2.84322	1039		11:20:06	2.84597	1094			2.84989	1149	
11:19:12	2.84275	1040		11:20:07	2.84633	1095			2.84995	1150	
11:19:13	2.84422	1041		11:20:08	2.84721	1096			2.85007	1151	
11:19:14	2.84445	1042		11:20:09	2.8474	1097			2.8503	1152	
11:19:15	2.84355	1043		11:20:10	2.84689	1098			2.85002	1153	
11:19:16	2.84438	1044		11:20:11	2.84688	1099			2.85028	1154	

Serial Number	1023050
Project ID	W23101317

Location Haines Junction HJ-MW02

Channel 1 Static (m btoc)

Identification

9.06

17:26:35	EVEL	Seconds		Time	LEVEL	Seconds	Drawdown	Time	LEVEL		Drawdown
	10.571	0	1.511	17:27:30	9.74523	55		17:28:25	9.54209	110	
17:26:36	9.94294	1	0.88294	17:27:31	9.74102	56	9.28365	17:28:26	9.53918	111	0.47918
17:26:37	10.2043	2	1.1443	17:27:32	9.73621	57		17:28:27	9.5365	112	0.4765
17:26:38	10.3213	3	1.2613	17:27:33	9.73189	58	9.27452	17:28:28	9.53385	113	0.47385
17:26:39	10.1837	4	1.1237	17:27:34	9.727	59			9.53048	114	
17:26:40	9.91442	5	0.85442	17:27:35	9.72342	60			9.52846	115	
17:26:41	10.0788	6	1.0188	17:27:36	9.71841	61			9.52504	116	
17:26:42	10.1733	7		17:27:37	9.71429	62			9.52264	117	
17:26:43	10.1715	8	1.1115	17:27:38	9.70998	63		17:28:33	9.52013	118	
17:26:44	9.92756	9	0.86756	17:27:39	9.70574	64		17:28:34	9.51737	119	
17:26:45	10.3751	10	1.3151	17:27:40	9.70098	65		17:28:35	9.51462	120	
17:26:46	10.1657	11	1.1057	17:27:41	9.6969	66			9.5118	121	
17:26:47	10.0527	12	0.9927	17:27:42	9.69241	67			9.50983	122	
17:26:48	10.0221	13	0.9621	17:27:43	9.68807	68		17:28:38	9.50723	123	
17:26:49	10.0333	14	0.9733	17:27:44	9.68396	69			9.50449	124	
17:26:50	10.0266	15	0.9666	17:27:45	9.67987	70		17:28:40	9.50196	125	
17:26:51	10.0111	16	0.9511	17:27:46	9.67596	71			9.49976	126	
17:26:52	10.0033	17	0.9433	17:27:47	9.6721	72			9.49732	127	
17:26:53	10.0015	18	0.9415	17:27:48	9.66807	73		17:28:43	9.49446	128	
17:26:54	9.9949	19	0.9349	17:27:49	9.66266	74			9.49232	129	
17:26:55	10.0148	20	0.9548	17:27:50	9.65978	75		17:28:45	9.48959	130	
17:26:56	10.0053	21	0.9453	17:27:51	9.65608	76		17:28:46	9.48724	131	
17:26:57	9.97586	22	0.91586	17:27:52	9.65187	77			9.4851	132	
17:26:58	9.97271	23	0.91271	17:27:53	9.648	78			9.48288	133	
17:26:59	9.97676	24	0.91676	17:27:54	9.6445	79			9.4801	134	
17:27:00	9.95753	25	0.89753	17:27:55	9.64018	80			9.47835	135	
17:27:01	9.95132	26	0.89132	17:27:56	9.63683	81			9.47519	136	
17:27:02	9.94484	27	0.88484	17:27:57	9.63339	82			9.47389	137	
17:27:03	9.93778	28	0.87778	17:27:58	9.62954	83			9.47163	138	
17:27:04	9.93079	29	0.87079	17:27:59	9.62653	84			9.46881	139	
17:27:05	9.92545	30	0.86545	17:28:00	9.62338	85		17:28:55	9.46716	140	
17:27:06	9.89946	31	0.83946	17:28:01	9.61843	86			9.46451	141	
17:27:07	9.90373	32	0.84373	17:28:02	9.61501	87			9.46245	142	
17:27:08	9.87987	33	0.81987	17:28:03	9.61173	88	9.15436	17:28:58	9.46009	143	0.40009
17:27:09	9.87473	34	0.81473	17:28:04	9.6082	89			9.45819	144	
17:27:10	9.87369	35	0.81369	17:28:05	9.60465	90			9.45577	145	
17:27:11	9.83168	36	0.77168	17:28:06	9.60137	91	9.144	17:29:01	9.45408	146	0.39408
17:27:12	9.83489	37	0.77489	17:28:07	9.59798	92		17:29:02	9.45191	147	0.39191
17:27:13	9.83001	38	0.77001	17:28:08	9.59455	93	9.13718	17:29:03	9.45004	148	0.39004
17:27:14	9.82465	39	0.76465	17:28:09	9.59111	94			9.44786	149	
17:27:15	9.81917	40	0.75917	17:28:10	9.58819	95			9.44568	150	
17:27:16	9.81442	41	0.75442	17:28:11	9.58463	96			9.44395	151	
17:27:17	9.80912	42	0.74912	17:28:12	9.58122	97	9.12385		9.44183	152	
17:27:18	9.80461	43	0.74461	17:28:13	9.57849	98	9.12112		9.4399	153	
17:27:19	9.79966	44	0.73966	17:28:14	9.57508	99	9.11771	17:29:09	9.4375	154	0.3775
17:27:20	9.7948	45	0.7348	17:28:15	9.57204	100			9.43575	155	
17:27:21	9.78977	46	0.72977	17:28:16	9.56851	101	9.11114		9.43388	156	0.37388
17:27:22	9.78402	47	0.72402	17:28:17	9.56619	102	9.10882	17:29:12	9.43239	157	0.37239
17:27:23	9.79496	48	0.73496	17:28:18	9.56243	103			9.43066	158	0.37066
17:27:24	9.78255	49	0.72255	17:28:19	9.55991	104			9.42822	159	
17:27:25	9.7786	50	0.7186	17:28:20	9.55679	105	9.09942		9.427	160	
17:27:26	9.77056	51	0.71056	17:28:21	9.55373	106	9.09636		9.42462	161	
17:27:27	9.76044	52	0.70044	17:28:22	9.55088	107		17:29:17	9.42259	162	
17:27:28	9.75735	53	0.69735	17:28:23	9.54786	108			9.42076	163	
17:27:29	9.75	54		17:28:24	9.54462	109	9.08725		9.41879	164	

Preliminary Hydrogeological Assessment | Haines Junction Waste Disposal Facility

CONSULTING ENGINEERS & SCIENTISTS . www.eba.ca

Location Haines Junction HJ-MW02 Channel 1 Identification

Channel 1 Static (m btoc)

Static (m btoc)9.06TimeLEVELSecondsDrawdownTimeLEVELSecondsDrawdownTimeLEVELSeconds $17:29:20$ 9.417171650.3571717:30:189.331962238.8745917:31:169.27509281 $17:29:21$ 9.415721660.3557217:30:199.330862248.8734917:31:179.27413282 $17:29:22$ 9.412931670.3529317:30:209.329712258.8723417:31:189.27333283 $17:29:23$ 9.412291680.3522917:30:219.32842268.8710317:31:199.27244284 $17:29:24$ 9.409891690.3498917:30:229.327462278.8700917:31:209.27156285 $17:29:25$ 9.406331710.3483117:30:239.326242288.8688717:31:219.27049286 $17:29:26$ 9.406531710.3465317:30:249.325492298.861217:31:229.26994287 $17:29:27$ 9.405131720.3451317:30:259.324492308.8671217:31:239.269288 $17:29:28$ 9.403311730.3433117:30:279.32152328.8641317:31:249.26837289 $17:29:29$ 9.401431740.3414317:30:279.32152328.861317:31:259.26746290 $17:29:30$ 9.40523175	Drawdown 0.21509 0.21413 0.21333 0.21244 0.21156 0.21049 0.20994 0.209 0.20837
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.21509 0.21413 0.21333 0.21244 0.21156 0.21049 0.20994 0.209
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.21413 0.21333 0.21244 0.21156 0.21049 0.20994 0.209
17:29:229.412931670.3529317:30:209.329712258.8723417:31:189.2733328317:29:239.412291680.3522917:30:219.32842268.8710317:31:199.2724428417:29:249.409891690.3498917:30:229.327462278.8700917:31:209.2715628517:29:259.408311700.3483117:30:239.326242288.8688717:31:219.2704928617:29:269.406531710.3465317:30:249.325492298.8681217:31:229.2699428717:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.21333 0.21244 0.21156 0.21049 0.20994 0.209
17:29:239.412291680.3522917:30:219.32842268.8710317:31:199.2724428417:29:249.409891690.3498917:30:229.327462278.8700917:31:209.2715628517:29:259.408311700.3483117:30:239.326242288.8688717:31:219.2704928617:29:269.406531710.3465317:30:249.325492298.8681217:31:229.2699428717:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.21244 0.21156 0.21049 0.20994 0.209
17:29:249.409891690.3498917:30:229.327462278.8700917:31:209.2715628517:29:259.408311700.3483117:30:239.326242288.8688717:31:219.2704928617:29:269.406531710.3465317:30:249.325492298.8681217:31:229.2699428717:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.21156 0.21049 0.20994 0.209
17:29:259.408311700.3483117:30:239.326242288.8688717:31:219.2704928617:29:269.406531710.3465317:30:249.325492298.8681217:31:229.2699428717:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.21049 0.20994 0.209
17:29:269.406531710.3465317:30:249.325492298.8681217:31:229.2699428717:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.20994 0.209
17:29:279.405131720.3451317:30:259.324492308.8671217:31:239.26928817:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.209
17:29:289.403311730.3433117:30:269.322522318.8651517:31:249.2683728917:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	
17:29:299.401431740.3414317:30:279.32152328.8641317:31:259.2674629017:29:309.405231750.3452317:30:289.320412338.8630417:31:269.26662291	0.20837
17:29:30 9.40523 175 0.34523 17:30:28 9.32041 233 8.86304 17:31:26 9.26662 291	
	0.20746
1 1/(20/31 - 0.40633 - 1/6 - 0.34633 - 1/(30/20 - 0.32006 - 234 - 9.86360 - 1/(31/21) - 0.02606 - 202	0.20662
	0.20606
17:29:32 9.41905 177 0.35905 17:30:30 9.31892 235 8.86155 17:31:28 9.26487 293 17:29:32 9.41905 170 0.35905 17:30:30 9.31892 235 8.86155 17:31:28 9.26487 293	0.20487
17:29:33 9.41925 178 0.35925 17:30:31 9.31789 236 8.86052 17:31:29 9.26446 294	0.20446
17:29:34 9.41699 179 0.35699 17:30:32 9.31701 237 8.85964 17:31:30 9.26375 295 17:29:34 9.41699 100 9.35699 17:30:32 9.31701 237 8.85964 17:31:30 9.26375 295	0.20375
17:29:35 9.41562 180 0.35562 17:30:33 9.31588 238 8.85851 17:31:31 9.26256 296 17:29:35 9.41562 164 9.5542 17:30:33 9.31588 238 8.85851 17:31:31 9.26256 296	0.20256
17:29:36 9.41312 181 0.35312 17:30:34 9.31458 239 8.85721 17:31:32 9.26163 297 17:29:36 9.41415 182 9.26145 17:30:34 9.31458 239 8.85721 17:31:32 9.26163 297	0.20163
17:29:37 9.41145 182 0.35145 17:30:35 9.31351 240 8.85614 17:31:33 9.26108 298 17:29:37 9.41145 182 0.35145 17:30:35 9.31351 240 8.85614 17:31:33 9.26108 298	0.20108
17:29:38 9.40826 183 0.34826 17:30:36 9.31226 241 8.85489 17:31:34 9.26058 299	0.20058
17:29:39 9.39096 184 0.33096 17:30:37 9.31087 242 8.8535 17:31:35 9.25952 300 17:29:40 0.30047 17:30:37 9.31087 242 8.8535 17:31:35 9.25952 300	0.19952
17:29:40 9.38017 185 0.32017 17:30:38 9.31027 243 8.8529 17:31:36 9.25851 301 17:29:40 9.38017 185 0.32017 17:30:38 9.31027 243 8.8529 17:31:36 9.25851 301	0.19851
17:29:41 9.38014 186 0.32014 17:30:39 9.30884 244 8.85147 17:31:37 9.25838 302 17:29:40 0.37724 17:30:39 0.30884 244 8.85147 17:31:37 9.25838 302	0.19838
17:29:42 9.37731 187 0.31731 17:30:40 9.30844 245 8.85107 17:31:38 9.25773 303 17:29:42 9.37235 189 0.31731 17:30:40 9.30844 245 8.85107 17:31:38 9.25773 303	0.19773
17:29:43 9.37635 188 0.31635 17:30:41 9.30754 246 8.85017 17:31:39 9.25638 304 17:29:44 9.37466 189 0.31466 17:30:42 9.30635 247 8.84898 17:31:40 9.25577 305	0.19638
17:29:44 9.37466 189 0.31466 17:30:42 9.30635 247 8.84898 17:31:40 9.25577 305 17:29:45 9.37331 190 0.31331 17:30:43 9.3052 248 8.84783 17:31:41 9.25535 306	0.19577 0.19535
17.29.45 9.37351 190 0.31351 17.30.45 9.3032 248 8.8466 17.31.41 9.25353 500 17:29:46 9.37285 191 0.31285 17:30:44 9.30397 249 8.8466 17:31:42 9.25451 307	0.19555
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19233
17:29:50 9.36768 195 0.30768 17:30:47 9.30109 232 8.8425 17:31:45 9.25233 310	0.19233
17:29:51 9.36603 196 0.30603 17:30:49 9.29898 254 8.84161 17:31:47 9.25084 312	0.19084
17:29:52 9.36476 197 0.30476 17:30:50 9.2986 255 8.84123 17:31:48 9.25017 313	0.19017
17:29:53 9.36341 198 0.30341 17:30:51 9.29732 256 8.83995 17:31:49 9.24939 314	0.18939
17:29:54 9.36191 199 0.30191 17:30:51 9.29573 257 8.83836 17:31:50 9.24855 315	0.18855
17:29:55 9.36071 200 0.30071 17:30:53 9.29528 258 8.83791 17:31:51 9.24783 316	0.18783
17:29:56 9.35968 201 0.29968 17:30:54 9.29438 259 8.83701 17:31:52 9.24718 317	0.18718
17:29:57 9.35797 202 0.29797 17:30:55 9.29376 260 8.83639 17:31:53 9.24658 318	0.18658
17:29:58 9.35679 203 0.29679 17:30:56 9.29214 261 8.83477 17:31:54 9.24575 319	0.18575
17:29:59 9.35567 204 0.29567 17:30:57 9.29159 262 8.83422 17:31:55 9.24476 320	0.18476
17:30:00 9.35385 205 0.29385 17:30:58 9.29051 263 8.83314 17:31:56 9.24443 321	0.18443
17:30:01 9.35259 206 0.29259 17:30:59 9.28978 264 8.83241 17:31:57 9.2434 322	0.1834
17:30:02 9.35166 207 0.29166 17:31:00 9.28852 265 8.83115 17:31:58 9.24291 323	0.18291
17:30:03 9.34998 208 0.28998 17:31:01 9.2879 266 8.83053 17:31:59 9.24219 324	0.18219
17:30:04 9.34954 209 0.28954 17:31:02 9.28684 267 8.82947 17:32:00 9.24123 325	0.18123
17:30:05 9.34803 210 0.28803 17:31:03 9.28594 268 8.82857 17:32:01 9.24071 326	0.18071
17:30:06 9.34667 211 0.28667 17:31:04 9.28509 269 8.82772 17:32:02 9.23961 327	0.17961
17:30:07 9.34549 212 0.28549 17:31:05 9.28434 270 8.82697 17:32:03 9.2389 328	0.1789
17:30:08 9.34469 213 0.28469 17:31:06 9.28371 271 8.82634 17:32:04 9.23848 329	0.17848
17:30:09 9.34327 214 0.28327 17:31:07 9.2823 272 8.82493 17:32:05 9.23831 330	0.17831
17:30:10 9.34178 215 0.28178 17:31:08 9.28141 273 8.82404 17:32:06 9.23952 331	0.17952
17:30:11 9.34068 216 0.28068 17:31:09 9.28052 274 8.82315 17:32:07 9.24573 332	0.18573
17:30:12 9.33964 217 0.27964 17:31:10 9.28023 275 8.82286 17:32:08 9.25797 333	0.19797
17:30:13 9.3385 218 0.2785 17:31:11 9.27944 276 8.82207 17:32:09 9.2589 334	0.1989
17:30:14 9.33679 219 0.27679 17:31:12 9.27874 277 8.82137 17:32:10 9.2624 335	0.2024
17:30:15 9.33585 220 0.27585 17:31:13 9.27769 278 8.82032 17:32:11 9.25949 336	0.19949
17:30:16 9.33439 221 0.27439 17:31:14 9.27699 279 8.81962 17:32:12 9.25942 337	0.19942
17:30:17 9.333 222 0.273 17:31:15 9.27593 280 8.81856 17:32:13 9.25754 338	0.19754

Preliminary Hydrogeological Assessment | Haines Junction Waste Disposal Facility

CONSULTING ENGINEERS & SCIENTISTS . www.eba.ca

Haines Junction HJ-MW02 Location

	•
Identification	

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
17:32:14	9.25667	339	0.19667	Time	DE (DE	occontas	Diawaowii	Time	DETE	occontas	Diawaowii
17:32:15	9.25602	340	0.19602								
17:32:16	9.2558	341	0.1958								
17:32:17	9.25538	342	0.19538								
17:32:18	9.25317	343	0.19317								
17:32:19	9.25247	344	0.19247								
17:32:20	9.26258	345	0.20258								
17:32:21	9.25188	346	0.19188								
17:32:22	9.23944	347	0.17944								
17:32:23	9.24797	348	0.18797								
17:32:24	9.24747	349	0.18747								
17:32:25	9.24615	350	0.18615								
17:32:26	9.24515	351	0.18515								
17:32:27	9.24408	352	0.18408								
17:32:28	9.24553	353	0.18553								
17:32:29	9.2424	354	0.1824								
17:32:30	9.24006	355	0.18006								
17:32:31	9.23401	356	0.17401								
17:32:32	9.23708	357	0.17708								
17:32:33	9.24451	358	0.18451								
17:32:34	9.23721	359	0.17721								
17:32:35	9.23248	360	0.17248								
17:32:36	9.23165	361	0.17165								
17:32:37	9.23333	362	0.17333								
17:32:38	9.23259	363	0.17259								
17:32:39	9.22446	364	0.16446								
17:32:40	9.21481	365	0.15481								
17:32:41	9.21139	366	0.15139								
17:32:42	9.21327	367	0.15327								
17:32:43	9.21118	368	0.15118								
17:32:44	9.20497	369	0.14497								
17:32:45	9.20506	370	0.14506								
17:32:46	9.20526	371	0.14526								
17:32:47	9.20477	372									
17:32:48	9.20417	373	0.14417								
17:32:49	9.20385	374	0.14385								
17:32:50	9.20351	375	0.14351								
17:32:51	9.20312	376	0.14312								
17:32:52	9.20293	377	0.14293								
17:32:53	9.20219	378	0.14219								
17:32:54	9.20203	379	0.14203								
17:32:55	9.20177	380	0.14177								
17:32:56	9.20143	381	0.14143								
17:32:57	9.2007	382	0.1407								

Preliminary Hydrogeological Assessment | Haines Junction Waste Disposal Facility

Serial Number	1023050
Project ID	W23101317

Haines Junction HJ-MW03 Location Identification

10.136

Channel 1

Time	LEVEL	Seconda	Drawdown	Time	LEVEL	Seconde	Drawdown	Time	LEVEL	Secondo	Drawdown
14:51:42	10.3333	0	0.1973	14:52:37	10.2106	56	0.0746		10.195	111	
14:51:42	10.3306	0	0.1973	14:52:37	10.2100	57	0.0740		10.193	111	
14:51:44	10.3300	2	0.1633	14:52:38	10.2102	58	0.0742		10.1947	112	
14:51:44	10.2993	2	0.1033	14:52:39	10.21	59	0.074		10.1942	113	
14:51:45	10.3266		0.1906	14:52:40	10.2098	59 60	0.0738		10.1942	114	
		4									
14:51:47	10.2504	5	0.1144	14:52:42	10.2085	61	0.0725		10.1936	116	
14:51:48	10.2175	6	0.0815	14:52:43	10.2099	62	0.0739		10.1935	117	
14:51:49	10.2588	7	0.1228	14:52:44	10.2083	63	0.0723		10.193	118	
14:51:50	10.319	8	0.183	14:52:45	10.2067	64	0.0707		10.1928	119	
14:51:51	10.304	9	0.168	14:52:46	10.2064	65	0.0704		10.1929	120	
14:51:52	10.1965	10	0.0605	14:52:47	10.2066	66	0.0706		10.1923	121	
14:51:53	10.217	11	0.081	14:52:48	10.2067	67	0.0707		10.192	122	
14:51:54	10.2717	12	0.1357	14:52:49	10.2064	68	0.0704		10.1922	123	
14:51:55	10.2285	13	0.0925	14:52:50	10.2064	69 70	0.0704		10.192	124	
14:51:56	10.2432	14	0.1072	14:52:51	10.2054	70	0.0694		10.1917	125	
14:51:57	10.2422	15	0.1062	14:52:52	10.205	71	0.069		10.1917	126	
14:51:58	10.2351	16	0.0991	14:52:53	10.2049	72	0.0689		10.1912	127	
14:51:59	10.2165	17	0.0805	14:52:54	10.2046	73	0.0686		10.191	128	
14:52:00	10.247	18	0.111	14:52:55	10.2045	74	0.0685		10.1909	129	
14:52:01	10.2362	19	0.1002	14:52:56	10.2039	75	0.0679		10.1909	130	
14:52:02	10.2377	20	0.1017	14:52:57	10.2036	76	0.0676		10.1907	131	
14:52:03	10.2099	21	0.0739	14:52:58	10.2035	77	0.0675		10.1901	132	
14:52:04	10.3038	22	0.1678	14:52:59	10.2031	78 70	0.0671		10.1904	133	
14:52:05	10.2699	23	0.1339	14:53:00	10.2027	79	0.0667		10.1898	134	
14:52:06	10.2165	24	0.0805	14:53:01	10.2022	80 84	0.0662		10.19	135	
14:52:07	10.2508	25	0.1148	14:53:02	10.2022	81	0.0662		10.1894	136	
14:52:08	10.2418	26	0.1058	14:53:03	10.2018	82	0.0658		10.189	137	
14:52:09	10.256	27	0.12	14:53:04	10.2015	83	0.0655		10.1894	138	
14:52:10	10.3467	28 20	0.2107	14:53:05	10.201	84	0.065		10.1888	139	
14:52:11	10.1833	29 20	0.0473	14:53:06	10.2013	85	0.0653		10.1885	140	
14:52:12 14:52:13	10.2586 10.1725	30	0.1226 0.0365	14:53:07 14:53:08	10.2008 10.2002	86	0.0648 0.0642		10.1887 10.1884	141 142	
		32				87					
14:52:14	10.2397	33	0.1037	14:53:09	10.1999	88	0.0639		10.1882	143	
14:52:15 14:52:16	10.2886	34 35	0.1526 0.1272	14:53:10	10.2 10.1998	89 90	0.064 0.0638		10.1879 10.1873	144 145	
	10.2632	35 36		14:53:11	10.1998	90 91					
14:52:17 14:52:18	10.2281 10.2076	30 37	0.0921 0.0716	14:53:12 14:53:13	10.1993	91	0.0635 0.0629		10.1874 10.1873	146 147	
14:52:18	10.2076	37	0.0655	14:53:13	10.1989	92 93	0.0629		10.1873	147	
14:52:20	10.2013	30 39	0.0033	14:53:14	10.1988	93 94	0.0628		10.1872	140	
14:52:20	10.2085	39 40	0.0725	14:53:15	10.1988	94 95	0.0628		10.1869	149	
14:52:21	10.2181	40 41	0.0821	14:53:16	10.1982	95	0.0622		10.1860	150	
14:52:22	10.22	41	0.084	14:53:17	10.1985	96 97	0.0623		10.1869	151	
14:52:23	10.2193		0.0833	14:53:18	10.1977	97	0.0617		10.1865	152	
14:52:25	10.2101	43 44	0.0793	14:53:20	10.1973	98 99	0.0613		10.1858	155	
14:52:26	10.2135	45	0.0795	14:53:20	10.1974	100	0.0612		10.1853	154	
14:52:27	10.2143	46	0.0783	14:53:22	10.1972	100	0.0607		10.1857	155	
14:52:28	10.2143	40	0.0783	14:53:22	10.1965	101	0.0605		10.1856	150	
14:52:29	10.2143	47	0.0783	14:53:23	10.1963	102	0.0603		10.1854	157	
14:52:29	10.2141	48 49	0.0781	14:53:24	10.1962	103	0.0602		10.1854	158	
14:52:30	10.2138	49 50	0.0778	14:53:25	10.196	104	0.0599		10.1831	159	
14:52:31	10.2129	50	0.0769	14:53:26	10.1959	105	0.0599		10.1845	160	
14:52:32	10.2128	52	0.0768	14:53:27	10.1955	100	0.0596		10.1840	161	
14:52:33	10.2122	52	0.0762	14:53:28	10.1955	107	0.0593		10.1847	162	
14:52:34	10.2118	53 54	0.0758	14:53:29	10.1955	108	0.0593		10.1844	165	
			0.0749								
14:52:36	10.2108	55	0.0748	14:53:31	10.1945	110	0.0585	14:54:26	10.1839	165	0.0479

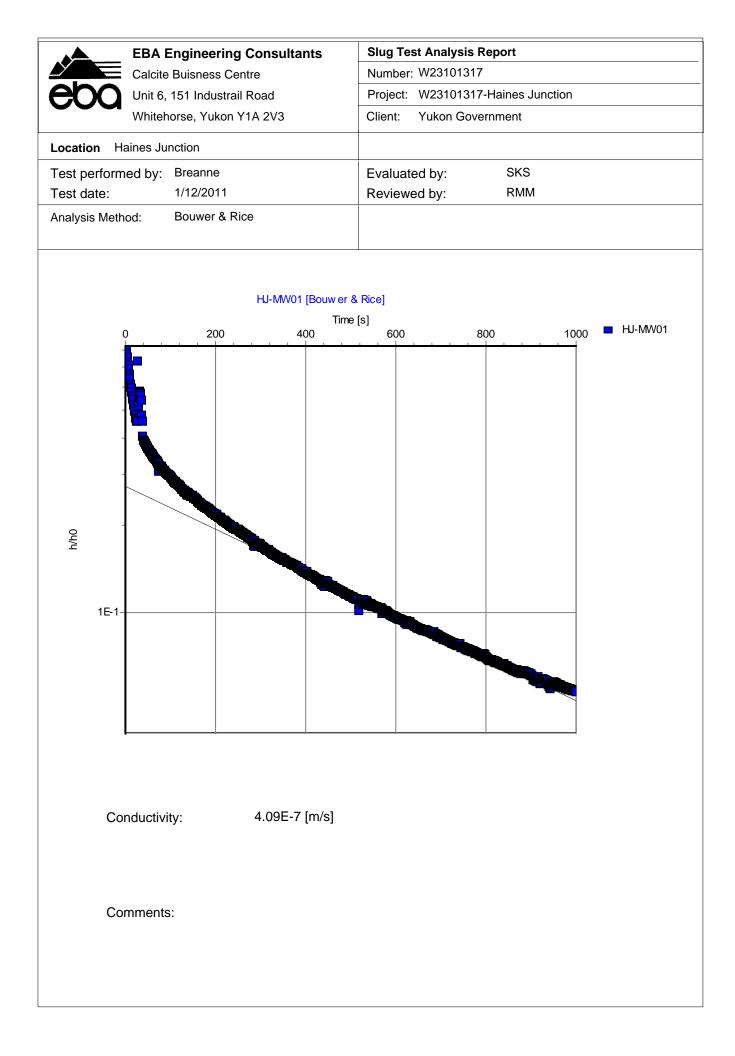
Serial Number	1023050
Project ID	W23101317

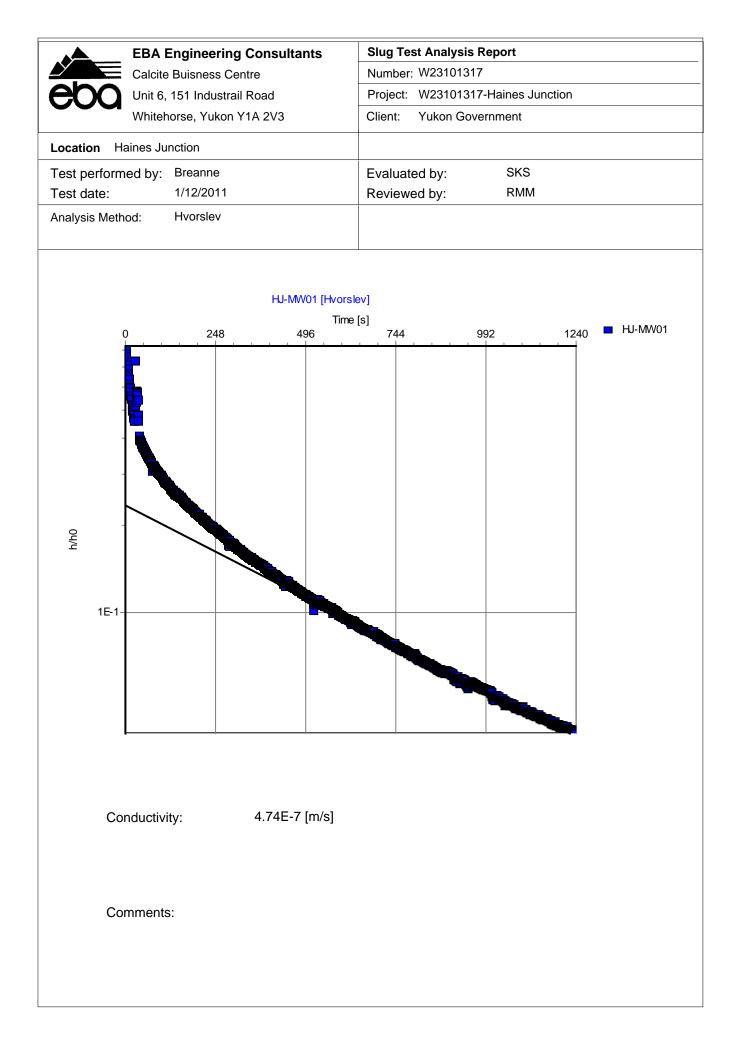
Location Haines Junction HJ-MW03

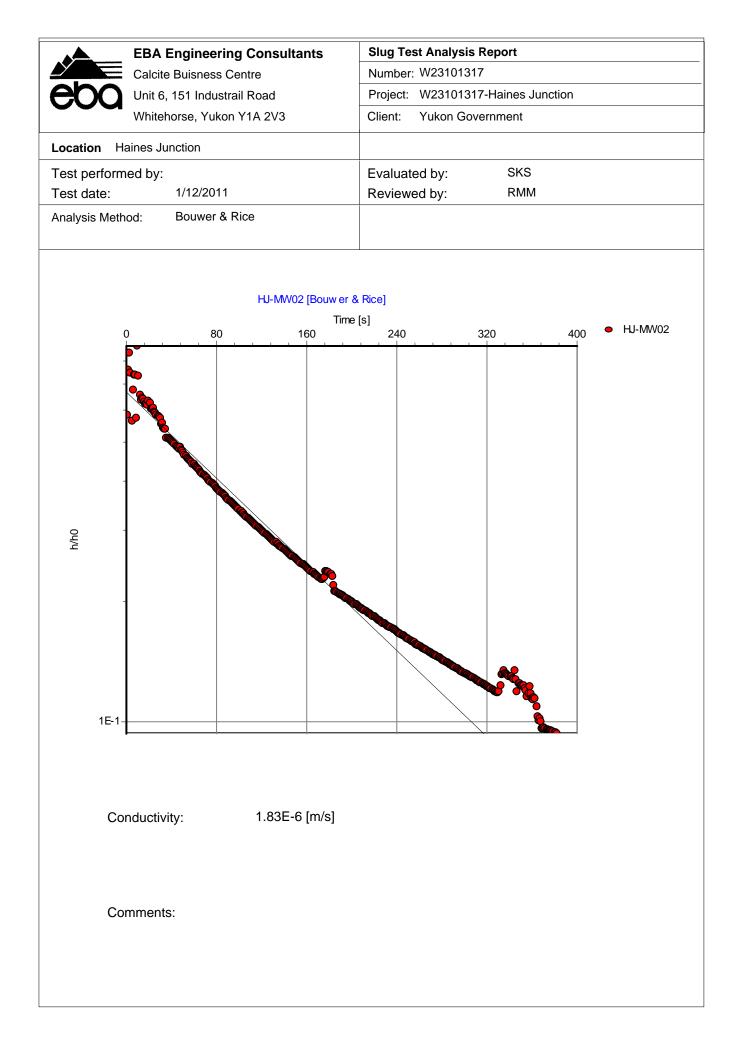
10.136

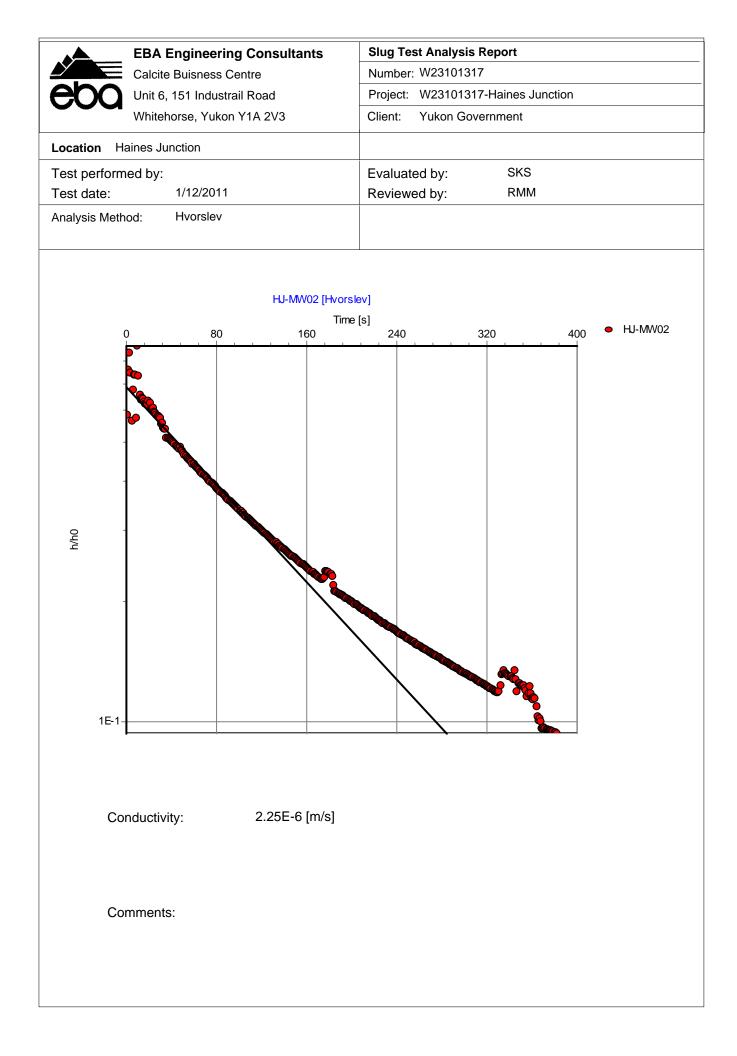
Channel 1 Identification

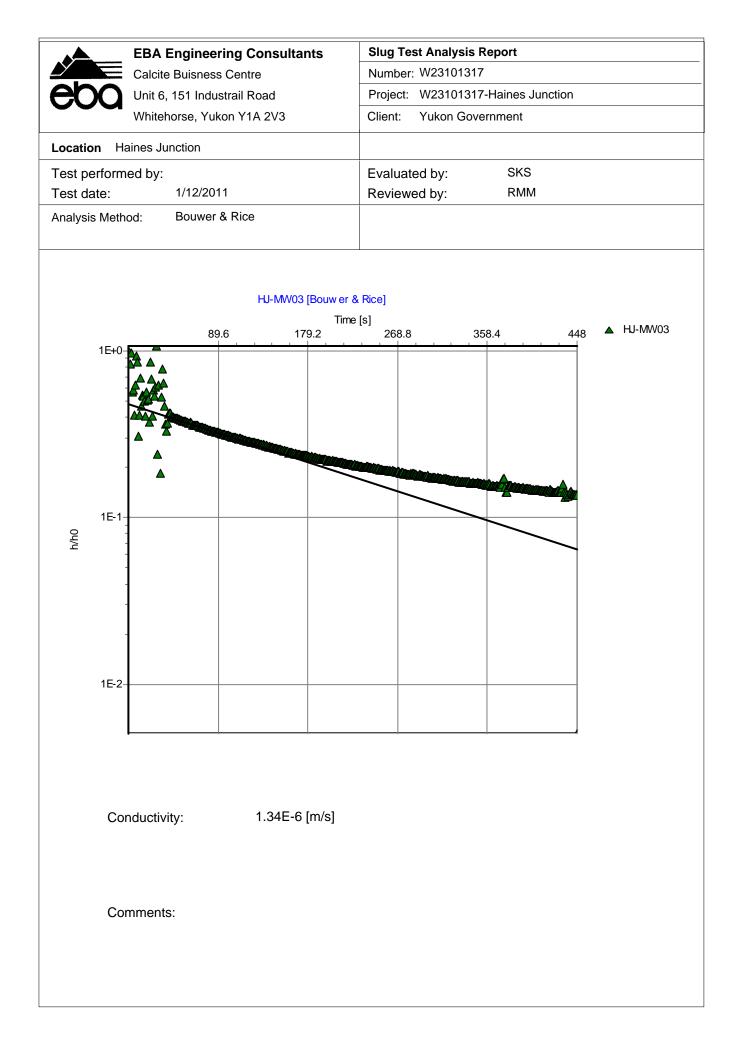
Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
14:54:27	10.1836	166	0.0476	14:55:22	10.177	221	0.041	14:56:17	10.1725	276	0.0365
14:54:28	10.1837	167	0.0477	14:55:23	10.1773	222	0.0413	14:56:18	10.1724	277	0.0364
14:54:29	10.1835	168	0.0475	14:55:24	10.1772	223	0.0412	14:56:19	10.172	278	0.036
14:54:30	10.1834	169	0.0474	14:55:25	10.1769	224	0.0409	14:56:20	10.1719	279	0.0359
14:54:31	10.1832	170	0.0472	14:55:26	10.1765	225	0.0405	14:56:21	10.172	280	0.036
14:54:32	10.1834	171	0.0474	14:55:27	10.1771	226	0.0411	14:56:22	10.1715	281	0.0355
14:54:33	10.1829	172	0.0469	14:55:28	10.1763	227	0.0403	14:56:23	10.1725	282	0.0365
14:54:34	10.1829	173	0.0469	14:55:29	10.1767	228	0.0407	14:56:24	10.172	283	0.036
14:54:35	10.1827	174	0.0467	14:55:30	10.1764	229	0.0404	14:56:25	10.1723	284	0.0363
14:54:36	10.1826	175	0.0466	14:55:31	10.1761	230	0.0401	14:56:26	10.1723	285	0.0363
14:54:37	10.1827	176		14:55:32	10.1763	231		14:56:27	10.1719	286	
14:54:38	10.1824	177		14:55:33	10.1761	232		14:56:28	10.172	287	
14:54:39	10.1824	178		14:55:34	10.1761	233			10.1712	288	
14:54:40	10.1822	179		14:55:35	10.1758	234			10.1711	289	
14:54:41	10.1823	180		14:55:36	10.1758	235			10.1714	290	
14:54:42	10.1814	181		14:55:37	10.1758	236			10.1717	291	
14:54:43	10.1816	182		14:55:38	10.1757	237			10.1712	292	
14:54:44	10.1818	183		14:55:39	10.1759	238			10.1716	293	
14:54:45	10.1815	184		14:55:40	10.1759	239			10.171	294	
14:54:46	10.181	185		14:55:41	10.1757	240			10.1708	295	
14:54:47	10.1812	186		14:55:42	10.1758	241			10.1709	296	
14:54:48	10.1812	187		14:55:43	10.1753	242			10.1707	297	
14:54:49	10.1807	188		14:55:44	10.1752	243			10.1703	298	
14:54:50	10.1807	189		14:55:45 14:55:46	10.1751	244			10.1712	299	
14:54:51	10.1803	190			10.1753	245			10.1706	300	
14:54:52 14:54:53	10.1805	191 192		14:55:47 14:55:48	10.1752 10.1749	246			10.1706	301 302	
14:54:55	10.1802 10.1804	192		14:55:48	10.1749	247 248			10.1706 10.1702	302	
14:54:54	10.1804	193		14:55:50	10.1747	240			10.1702	303 304	
14:54:56	10.1799	194		14:55:51	10.1749	249			10.1705	305	
14:54:57	10.1802	195		14:55:52	10.1748	250			10.1703	305	
14:54:58	10.1801	190		14:55:53	10.1750	251			10.1704	300	
14:54:59	10.1789	198		14:55:54	10.1743	252			10.1701	308	
14:55:00	10.1793	199		14:55:55	10.1742	254			10.1705	309	
14:55:01	10.1794	200		14:55:56	10.174	255			10.1699	310	
14:55:02	10.1794	201		14:55:57	10.1741	256			10.1701	311	
14:55:03	10.1788	202		14:55:58	10.1741	257			10.1698	312	
14:55:04	10.179	203		14:55:59	10.174	258			10.1697	313	
14:55:05	10.1793	204	0.0433	14:56:00	10.1738	259		14:56:55	10.1696	314	0.0336
14:55:06	10.1787	205	0.0427	14:56:01	10.1734	260	0.0374	14:56:56	10.1699	315	0.0339
14:55:07	10.1788	206	0.0428	14:56:02	10.174	261	0.038	14:56:57	10.1695	316	0.0335
14:55:08	10.1788	207		14:56:03	10.1734	262	0.0374	14:56:58	10.1698	317	
14:55:09	10.179	208	0.043	14:56:04	10.1735	263	0.0375	14:56:59	10.1695	318	0.0335
14:55:10	10.1786	209	0.0426	14:56:05	10.1737	264	0.0377	14:57:00	10.1694	319	
14:55:11	10.1783	210	0.0423	14:56:06	10.1736	265	0.0376	14:57:01	10.1695	320	0.0335
14:55:12	10.1784	211		14:56:07	10.1734	266	0.0374	14:57:02	10.1691	321	0.0331
14:55:13	10.1781	212		14:56:08	10.1731	267		14:57:03	10.169	322	0.033
14:55:14	10.1782	213		14:56:09	10.173	268			10.1691	323	
14:55:15	10.1783	214		14:56:10	10.1733	269			10.1687	324	
14:55:16	10.178	215		14:56:11	10.1734	270			10.1691	325	
14:55:17	10.1779	216		14:56:12	10.1726	271			10.169	326	
14:55:18	10.1779	217		14:56:13	10.1724	272			10.1687	327	
14:55:19	10.1773	218		14:56:14	10.1729	273			10.1689	328	
14:55:20	10.1775	219		14:56:15	10.1727	274			10.1689	329	
14:55:21	10.1773	220	0.0413	14:56:16	10.1721	275	0.0361	14:57:11	10.1682	330	0.0322


Serial Number	1023050
Project ID	W23101317


Haines Junction HJ-MW03 Location Identification


10.136


Channel 1


Tim	e	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
14:5	7:12	10.1684	331	0.0324	14:58:07	10.1664	386	0.0304	14:59:02	10.1641	441	0.0281
14:5	7:13	10.1683	332	0.0323	14:58:08	10.1661	387	0.0301	14:59:03	10.1642	442	0.0282
14:5	7:14	10.1685	333	0.0325	14:58:09	10.1656	388	0.0296	14:59:04	10.1636	443	0.0276
14:5	7:15	10.1686	334	0.0326	14:58:10	10.1658	389	0.0298	14:59:05	10.1632	444	0.0272
14:5	7:16	10.1682	335	0.0322	14:58:11	10.1659	390	0.0299	14:59:06	10.1633	445	0.0273
14:5	7:17	10.1687	336	0.0327	14:58:12	10.1657	391	0.0297	14:59:07	10.163	446	0.027
14:5	7:18	10.1681	337	0.0321	14:58:13	10.1657	392	0.0297	14:59:08	10.1633	447	0.0273
14:5	7:19	10.1686	338	0.0326	14:58:14	10.1657	393	0.0297	14:59:09	10.163	448	0.027
14:5	7:20	10.1682	339	0.0322	14:58:15	10.1658	394	0.0298				
14:5	7:21	10.1686	340	0.0326	14:58:16	10.1657	395	0.0297				
14:5	7:22	10.1679	341	0.0319	14:58:17	10.1652	396	0.0292				
14:5	7:23	10.1679	342	0.0319	14:58:18	10.1655	397	0.0295				
14:5	7:24	10.1679	343	0.0319	14:58:19	10.1655	398	0.0295				
14:5	7:25	10.1681	344	0.0321	14:58:20	10.1654	399	0.0294				
14:5	7:26	10.1679	345	0.0319	14:58:21	10.1652	400	0.0292				
14:5	7:27	10.1676	346	0.0316	14:58:22	10.1655	401	0.0295				
14:5	7:28	10.1679	347	0.0319	14:58:23	10.1652	402	0.0292				
14:5	7:29	10.1678	348	0.0318	14:58:24	10.1649	403	0.0289				
14:5	7:30	10.1681	349	0.0321	14:58:25	10.165	404	0.029				
14:5	7:31	10.1678	350	0.0318	14:58:26	10.1649	405	0.0289				
14:5	7:32	10.1676	351	0.0316	14:58:27	10.1647	406	0.0287				
14:5	7:33	10.1679	352		14:58:28	10.1652	407	0.0292				
14:5		10.1671	353		14:58:29	10.1648	408	0.0288				
14:5	7:35	10.1673	354	0.0313	14:58:30	10.1651	409	0.0291				
14:5	7:36	10.1678	355		14:58:31	10.1648	410	0.0288				
14:5		10.1674	356		14:58:32	10.1647	411					
14:5		10.167	357		14:58:33	10.1646	412					
14:5		10.1671	358		14:58:34	10.1648	413					
14:5	7:40	10.1669	359	0.0309	14:58:35	10.1643	414	0.0283				
14:5	7:41	10.1676	360	0.0316	14:58:36	10.1646	415	0.0286				
14:5	7:42	10.1673	361	0.0313	14:58:37	10.1643	416	0.0283				
14:5	7:43	10.1666	362	0.0306	14:58:38	10.1648	417	0.0288				
14:5	7:44	10.1666	363	0.0306	14:58:39	10.1646	418	0.0286				
14:5	7:45	10.1669	364	0.0309	14:58:40	10.1642	419	0.0282				
14:5	7:46	10.1663	365	0.0303	14:58:41	10.1639	420	0.0279				
14:5	7:47	10.1663	366	0.0303	14:58:42	10.1651	421	0.0291				
14:5	7:48	10.1663	367	0.0303	14:58:43	10.1646	422	0.0286				
14:5	7:49	10.1667	368	0.0307	14:58:44	10.1645	423	0.0285				
14:5	7:50	10.1663	369	0.0303	14:58:45	10.1641	424	0.0281				
14:5	7:51	10.1664	370	0.0304	14:58:46	10.1639	425					
14:5		10.1662	371	0.0302	14:58:47	10.1639	426					
14:5	7:53	10.1675	372		14:58:48	10.1639	427	0.0279				
14:5	7:54	10.1671	373	0.0311	14:58:49	10.1644	428	0.0284				
14:5		10.1696	374		14:58:50	10.1646	429					
14:5	7:56	10.17	375	0.034	14:58:51	10.1639	430	0.0279				
14:5		10.166	376	0.03	14:58:52	10.1639	431	0.0279				
14:5		10.1639	377		14:58:53	10.1639	432	0.0279				
14:5	7:59	10.1638	378	0.0278	14:58:54	10.1655	433	0.0295				
14:5	8:00	10.1659	379	0.0299	14:58:55	10.1674	434	0.0314				
14:5	8:01	10.1668	380	0.0308	14:58:56	10.1639	435	0.0279				
14:5		10.167	381	0.031	14:58:57	10.1621	436	0.0261				
14:5	8:03	10.1667	382	0.0307	14:58:58	10.1639	437	0.0279				
14:5		10.1659	383		14:58:59	10.1633	438	0.0273				
14:5	8:05	10.1658	384	0.0298	14:59:00	10.1626	439	0.0266				
14:5	8:06	10.1658	385	0.0298	14:59:01	10.1631	440	0.0271				

