February 23, 2013

HYDROGEOLOGICAL ASSESSMENT

Horsecamp Hill Solid Waste Disposal Facility

Submitted to: Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services YG PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6, YT Y1A 2C6

REPORT

Report Number: Distribution: 1114360073-504-R-Rev0-2000

2 copies - Yukon Government Community Services 2 copies - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Horsecamp Hill Solid Waste Disposal Facility (the "Facility" or "Site") is one of the sites included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

- Site Description: The Horsecamp Hill Solid Waste Disposal Facility is located in the southwest portion of the Yukon, within the Klondike Plateau Ecological Region, and on White River First Nation traditional territory at latitude 62°02' North and longitude 140°37' West. The Site is accessed by a gravel road and is located approximately 150 m off the east side of the Alaska Highway (Figure 1), at kilometre 1875, approximately 120 km north of the Community of Burwash Landing, 8 km north of the White River Bridge, and 55 km south of the community of Beaver Creek. Until October 2011, a burn vessel and garbage trench was used at the Site to dispose of domestic and commercial waste from White River Lodge, Koidern River Lodge, and Pine Valley Lodge. During the October 2011, the Facility was closed, the burn vessel was removed, and landfill received final cover. No evidence of chemical or fuel storage, above or below ground storage tanks, spills or discharges, or hazardous materials storage was observed during the Site reconnaissance.
- Site Topography: The Facility is at an elevation of approximately 720 m (2,360 feet) above sea level and lies within the White River Watershed. The Site is situated on the eastern slope of a glacially-formed valley, which is bounded to the east by Horsecamp Hill and by Miles Ridge to the west. Site topography is characteristic of glacial outwash plain and lateral moraine deposits. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes northwest towards Moose Lake in the base of the glacially-formed river channel the Site is situated within. A cleared area of approximately 2,500 square meters, which is generally flat, is present at the Facility. The landfill cover consists primarily of sand and gravel sourced from the Site.
- Stratigraphy and Hydrogeology:
 - Surface expression in the vicinity of the Facility is dominated by quaternary surficial deposits,
 - Subsurface conditions were investigated with the installation of three monitoring wells, identified as HC-MW12-01, HC-MW12-02, and HC-MW12-03, which were installed on June 24 and 25, 2012, under the supervision of Golder Associates for the establishment of a groundwater monitoring well network at the Facility.
 - Evaluation of groundwater flow direction using the newly installed monitoring well network confirmed that one upgradient and two downgradient wells were successfully installed.

- The Site stratigraphy consists of approximately 8 m of unsaturated, well-graded gravel overlying a well-graded sand unit. Topsoil has been removed at a majority of the Site and the underlying gravel is exposed at the surface.
- An unconfined aquifer was encountered at a depth of approximately 11.5 m below grade.
- A series of hydraulic response tests were attempted at the site; however, due to the height of the column of water in the wells the tests were not successful. The typical mid-range hydraulic conductivity values for clean sand (1 x 10⁻⁴ m/s), as presented in Freeze and Cherry (1979), is considered reasonable for the types of sediments encountered during well drilling.
- The horizontal hydraulic gradient at the Site was determined, using water level data in the newly installed monitoring wells, to be approximately 0.017 m/m, sloping to the west.
- Average linear groundwater velocity in the surficial aquifer is estimated to be on the order of 5 x 10⁻⁶ m/s.
- Groundwater Chemistry:
 - Monitoring wells HC-MW12-01 and HC-MW12-02 were developed and sampled, and one surface water sample was taken from Moose Lake during a single monitoring event on August 22, 2012; approximately eight weeks after the wells were installed. The thickness of the water column in downgradient well HC-MW12-03 was insufficient during the monitoring event to develop and sample the well.
 - A review of literature and maps pertaining to the Site, as well as carrying out two Site visits, identified several surface water bodies within a 1 km radius of the Site. It was therefore determined that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life (O.I.C. 2002) should be applied to the Horsecamp Hill Facility, since these water bodies were within the 1 km radius defined under the CSR.
 - No other Yukon CSR standards (e.g., drinking water) were deemed to apply in the evaluation of the Horsecamp Hill Facility.
 - Results of groundwater and surface water sampling performed at the Site indicated either low or non-detect concentrations of all analytes, including those typically associated with contamination from landfill leachate. This suggests that leachate influence on shallow groundwater at the Site is not evident.

The Following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

- As required by the Solid Waste Permit for the Facility, future groundwater monitoring should be conducted twice a year in the spring and late summer.
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate.
- HC-MW12-03 should be developed and sampled during the next spring monitoring event when groundwater levels are higher, and there is sufficient water within the well screen.
- Monitoring well locations and elevations should be surveyed by a professional land surveyor.

Study Limitations

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Horsecamp Hill Solid Waste Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, monitoring wells installation, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Purpose and Objectives	1
	1.3	Scope and Sequence of Work	1
	1.4	Qualifications of Assessors	2
	1.5	Authorization	3
2.0	SITE D	ESCRIPTION AND HISTORY	3
	2.1	Site Location	3
	2.2	Site History	3
3.0	METHO	DDOLOGY	3
	3.1	Preliminary Hydrogeological Assessment	3
	3.1.1	Data sources	4
	3.1.2	Site Inspections	5
	3.1.3	Background Geological Information Sources	5
	3.1.4	Contaminated Sites Registry	5
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	5
	3.1.6	Review of Environment Yukon Information	6
	3.2	FIELD INVESTIGATIONS	6
	3.2.1	Scope of Field Investigations	6
	3.2.2	Groundwater Monitoring Well Network	6
	3.2.3	Monitoring Well Surveying	8
	3.2.4	Groundwater Monitoring Event	9
	3.2.5	Rising Head Hydraulic Response Test	9
	3.3	Laboratory Analysis	9
	3.4	Quality Assurance / Quality Control	.10
	3.5	Application of Applicable Water Quality Standards	. 11
4.0	CONC	EPTUAL HYDROGEOLOGICAL MODEL	.12
	4.1	Setting	.12

HORSECAMP HILL SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

	4.2	Climate	13
	4.3	Geology and Hydrogeology	13
	4.3.1	Geological Framework	13
	4.3.2	Principal Aquifer	13
	4.4	Groundwater Flow Systems	14
	4.4.1	Regional Groundwater Flow	14
	4.4.2	Local Groundwater Flow	14
	4.5	Hydraulic Conductivity of the Surficial Aquifer	14
	4.6	Estimated Linear Groundwater Velocity	15
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	15
5.0	GROU	NDWATER IMPACT ASSESSMENT	16
	5.1	Review of Groundwater Chemistry	16
	5.2	Interpretation of Groundwater Chemistry	17
6.0	CONC	LUSIONS	18
7.0	RECO	MMENDATIONS	19
8.0	CLOSI	JRE	19

HORSECAMP HILL SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

TABLES

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements	6
Table 2: Well Construction Details	8
Table 3: Monitoring Well Locations and Groundwater Elevations on August 22, 2012	8
Table 4: Parameters Sampled in August 2012	9
Table 5: Review of QA/QC Procedures Taken	10
Table 6: Applicable Water Quality Standards	11
Table 7: Aquifer Units Encountered at the Site	14
Table 8: Estimated Hydraulic Conductivity	14
Table 9: Important Groundwater Chemistry Results	16

FIGURES

Figure 1: Key Plan Figure 2: Site Plan & Cross Section Location Figure 3: Regional Surficial Geology Figure 4: Cross Section A-A' Figure 5: Regional Drainage and Land Zoning Figure 6: Monitoring Well Location Map and Groundwater Elevation Figure 7: Schoeller Plot Figure 8: Piper Plot

Figure 9: Stiff Diagram

APPENDICES

APPENDIX A Site Photographs

APPENDIX B Well Construction Logs

APPENDIX C Well Development and Sampling Sheets

APPENDIX D Slug Test Data

APPENDIX E Analytical Reports and Chain of Custody Forms

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Horsecamp Hill Solid Waste Disposal Facility (the "Facility", the "Site") is one of the sites included in the program. This draft Hydrogeological Assessment Report represents the final stage of this project.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7, 2011 and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope of work was completed in order to develop the conceptual hydrogeological model for the Site and installation of a groundwater monitoring well network. This work was performed in accordance with the Waste Disposal Facility Permit (Permit No: 80-009 effective February 2, 2012 to December 31, 2014), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (2011-0308-025-1).

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research;
- Phase 4 consisted of the drilling program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised preparation of a draft Hydrogeological Assessment Report documenting the results of the investigation.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P.Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P.Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012) and has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, EIT, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Horsecamp Hill Solid Waste Disposal Facility is located in the southwest portion of the Yukon; within the Klondike Plateau Ecological Region, and on White River First Nation traditional territory; at latitude 62°02' North and longitude 140°37' West. The Site is accessed by a gravel road and is located approximately 150 m off the east side of the Alaska Highway (Figure 1), at kilometre 1875, approximately 120 km north of the Community of Burwash Landing, 8 km north of the White River Bridge, and 55 km south of the community of Beaver Creek. No civic address or legal description is available for the Site. It is located near the closed Northwestel tramway base station, which used to service the communication equipment on the top of Horsecamp Hill. The Site is on a portion of the Foothills Pipe Lines Ltd. (Foothills) pipeline easement.

2.2 Site History

Permission to use the pipeline easement was granted by Foothills through the Northern Pipeline Agency (NPA) to the Government of Yukon Lands Branch on May 17, 2005. From approximately 2005 through October 2011, a burn vessel and refuse trench was utilized at the Site to service White River Lodge, Koidern River Lodge, and Pine Valley Lodge. The Site was open and unsupervised 24 hours per day until its closure in October 2011. The Facility was designed to handle domestic waste only; therefore, no household hazardous waste, construction or demolition debris, waste oil, batteries, or white metals were accepted at this Site. As of the June 24, 2012 Site inspection, the Facility had received final cover with native material, the burn vessel had been removed along with all of the fencing, and access to the Facility had been blocked by trenching across the access road.

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review and interpretation of existing information followed by an inspection of the Facility. The initial inspection of the Facility was conducted on October 23, 2011, and a follow up inspection was completed on June 24, 2012. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods and equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2011-11-16, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000
- Fetter, C. W., *Applied Hydrogeology*, Third Edition, Prentice Hall, Inc., Englewood Cliffs, New Jersey. 1994.
- Freeze, R.A., and Cherry, J.A., Groundwater, Prentice Hall, Inc., Englewood Cliffs, New Jersey. 1979
- Government of Yukon, Community Services, Community Infrastructure Branch, Solid Waste Operation plan: Horsecamp Hill, 2008.
- Government of Yukon, Yukon Environmental and Socio-economic assessment board, *Designated Office Evaluation Report, Solid Waste Facility, Horsecamp Hill.* Project Number: 2011-0308.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171. Schedule 3-Generic Numerical Water Standards for Protection of Freshwater Aquatic Life and Drinking Water.
- Government of Yukon, Yukon Environment, Protocol for the Contaminated Sites Regulation under the Environment Act. 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aquifermap.html
- Peters, Bethany, Environment Yukon. *Correspondence on October 5, 2012.*
- Rampton, V.N., 1977. Surficial Geology and Geomorphology, Koidern Mountain, Yukon Territory, Geological Survey of Canada, Map 5-1978, scale 1:100,000.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: *http://atlas.nrcan.gc.ca/site/english/maps/topo/map* Map 115 K/2, scale 1:50,000.
- Site inspections on October 23, 2011 and June 24, 2012.

3.1.2 Site Inspections

Site inspections were conducted on October 23, 2011 and June 24, 2012. These two Site visits were conducted to review the layout of the Facility and confirm geological and topographic information obtained from the desktop review of background data. Proposed monitoring well locations were reviewed for access constraints. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Department of Energy Mines and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Water Data Catalogue did not identify water testing results within the vicinity of the Facility.

3.1.4 Contaminated Sites Registry

A Contaminated Sites Registry search was conducted by Yukon Environment on December 1, 2011. The search identified no contaminated sites files or spill reports for the Horsecamp Hill Solid Waste Disposal Facility. However, it was noted that the Facility does not have any analytical results in the file to compare against Yukon CSR standards to determine if any contamination exists. It was also noted that the Facility was largely unmonitored and that there could have been opportunity for improper disposal and potentially unreported spillage of contaminants during its operation.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Solid Waste Permit No. 80-009 was issued on February 29, 2012 for the Facility. It states that the Facility is to be operated in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Solid Waste Permit No. 80-009 include:

- Monitor water levels and collect water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sample downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze water samples at a laboratory that is accredited as meeting ISO/IEC 17025 standards by an accrediting body that conforms to ISO/IEC 17011; and
- Submit monitoring results to Environment Yukon by January 31 each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

Table 1. Summary of Waste Disposal Fashing Ferning and Stoundwater monitoring Requirements							
Site	Site Disposal Facility Permit Number	Permit Type	Solid Waste Operations Plan	Required Groundwater Monitoring			
Horsecamp Hill Solid Waste Disposal Facility	80-009	Landfill Undergoing Decommissioning	Yes (Community Services Branch 2011)	Twice Per Year			

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Horsecamp Hill Facility on the Yukon Environmental and Socioeconomic Board (YESAB) online registry on October 3, 2012. Documents reviewed included: the most current waste facility permit issued for the Facility, the most current Solid Waste Operation Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

3.2 FIELD INVESTIGATIONS

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Three on-Site groundwater monitoring wells were drilled and installed by Midnight Sun Drilling under the supervision of Golder Associates between June 24 and 25, 2012;
- The wells were developed and sampled by Golder Associates on August 22, 2012. The water levels at each well were measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent to ALS Environmental Laboratory in Whitehorse, YT for analysis;
- HC-MW12-01 was slug tested was attempted to assess the hydraulic conductivity and linear groundwater velocity of the shallow aquifer underlying the Site. However, due to the height of the water column in the well, the test was not successful; and
- Results of field and laboratory data are summarized and are interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol (Government of Yukon, 2011).

Three (3) groundwater monitoring wells were proposed for installation at the Site to assess groundwater conditions underlying the waste disposal facility. HC-MW12-01 was targeted to characterize upgradient groundwater conditions, while HC-MW12-02 and HC-MW12-03 were installed with the intention of assessing groundwater quality downgradient of the landfill. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, Site topography and suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- HC-MW12-01 was installed at the northeast corner of the Site and the borehole was advanced to a depth of 17.4 m below grade (bg);
- HC-MW12-02 was installed at the southwest corner of the Site and the borehole was advanced to a depth of 13.7 m bg; and
- HC-MW12-03 was installed near the northwest corner of the Site and the borehole was advanced to a depth of 12.2 m bg.

All wells were installed using a Driltech Marlin 5 truck mounted air rotary drill rig.

Coordinate locations of newly installed wells were obtained using a Trimble handheld GPS to an accuracy of ± 0.6 m or better. Relative elevations for top of casing (TOC) for all wells were obtained by level survey (± 1 cm).

A Site plan showing the monitoring well locations and key Site features is provided in Figure 2.

Grab samples of drill cuttings were taken at regular intervals to log the lithology encountered in each borehole. Borehole logs, documenting observed lithology along with well construction details, are provided in Appendix B, with a summary of well construction details provided in Table 2. The following is a summary of the depth to groundwater and type of sediments that groundwater was encountered at the Site:

- At HC-MW12-01, groundwater was encountered at a depth of approximately 12.0 m bg in well graded sand (>50%) with some gravel (5%-12%);
- At HC-MW12-02, groundwater was encountered at a depth of approximately 11.3 m bg in well graded sand (>50%) with a trace of gravel (<5%); and
- At HC-MW12-03, groundwater was encountered at a depth of approximately 11.2 m bg in well graded sand (>50%) with a trace of gravel (<5%) and a trace of silt (<5%).

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical monitoring well completion details for the three wells included:

- Monitoring wells were completed with flush-threaded, 50 mm Schedule 40 PVC casing;
- A 3 m long PVC, factory-slotted well screen (10-slot) was installed in all three monitoring wells;
- PVC casing was installed above the well screen to about 0.60 m to 0.70 m above grade;

- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1.0 to 1.4 m above the top of the screened interval;
- A bentonite chip seal, approximately 1.5 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;
- Each well was covered with a PVC end-cap and a lockable steel protective casing was installed to protect the wellhead; and,
- Each well (with the exception of HC-MW12-03) was developed by removing a minimum of three well volumes using dedicated WaterraTM tubing and a HydroliftTM pump. HC-MW12-03 could not be developed and sampled due to lack of groundwater in the well during the August 2012 monitoring event. Development logs are provided in Appendix C.

Well ID Drilled Depth (m bg)		Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)	
HC-MW12-01	17.4	Gravelly Sand	50	13.9 – 16.9	12.5 – 16.9	
HC-MW12-02 13.7		Sand	50	10.7 – 13.7	9.8 – 13.7	
HC-MW12-03 12.2 Sand		50	9.1 – 12.2	7.9 – 12.2		

Table 2: Well Construction Details

3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the elevation to the top of the PVC wellhead (measuring point) for each well on June 25, 2012. Initial absolute elevation was surveyed relative to the top of the PVC casing at HC-MW12-01, which was obtained using a Trimble hand-held GPS with a vertical accuracy of \pm 0.6 m. However, relative elevation between wells, as determined from the level survey, has an accuracy of \pm 1 cm. Table 3 presents a summary of survey data and water level measurements.

Table 3: Monitoring Well Locations and Groundwater Elevations on August 22, 2012

Well ID	GPS Location	Top of PVC Casing Elevation (masl ¹)	Standing Water Level (mbtoc ²)	Groundwater Elevation (masl)	
HC-MW12-01	6879534.2 m N	718.17	13.58	704.59	
	519564.3 m E				
HC-MW12-02	6879485.4 m N	717.65	13.50	704.15	
	519537.1 m E			101110	
HC-MW12-03	6879511.5 m N	716.88	12.88	704.00	
	519528.9 m E	710.00	12.00	704.00	

¹ masl = meters above mean sea level

 $^{^{2}}$ mbtob = meters below top of casing

3.2.4 Groundwater Monitoring Event

Monitoring wells HC-MW12-01 and HC-MW12-02 were developed and sampled by Golder on August 22, 2012, approximately two months after installation. The amount of water in HC-MW12-03 was insufficient to carry out development and sampling of this well.

The procedure used for sampling followed Contaminated Sites Regulation Protocol No. 7. Prior to, and during development-purging of each well, the water level was first measured with an electronic measuring tape. Approximately five well volumes were then purged from each well, using 5/8 in. diameter high density polyethylene (HDPE) Waterra[™] tubing, a foot valve, and a Hydrolift[™] pump. Following purging, a sample was collected. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging continued until field parameters were stable before sampling. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the two groundwater monitoring wells that were sampled, a surface water sample was collected from the nearest potential downgradient receptor, which was determined to be Moose Lake located approximately 1.5 km northwest of the Site (Figure 1).

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. Samples were kept in coolers with ice packs prior to delivery to ALS's Whitehorse office, within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025 for analysis.

3.2.5 Rising Head Hydraulic Response Test

A single well hydraulic response (slug) test was attempted on August 22, 2012 to assess the hydraulic conductivity of the surficial aquifer underlying the Site. However, an insufficient water column was present in the wells at that time to successfully complete the test.

3.3 Laboratory Analysis

Parameters included in the laboratory analysis of groundwater and surface water samples are summarized in Table 4. The parameter list complies with the Facility's Solid Waste Disposal Permit (Permit No. 80-009).

Sampling and analysis were undertaken in general accordance with Yukon Contaminated Site Regulation Protocols 2 and 5 (CSR, 2011).

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	VOCs
HC-MW12-01	\checkmark	\checkmark	\checkmark	\checkmark	
HC-MW12-02	\checkmark	\checkmark	\checkmark	\checkmark	
HC-MW12-03	-	-	-	-	-
Moose Lake					

Table 4: Parameters Sampled in August 2012

3.4 Quality Assurance / Quality Control

The following table provides a summary of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis, and an evaluation of the ability to uphold standards.

Table 5 summarizes the QA/QC evaluation.

Table 5: Review	of	QA/QC	Procedures	Taken
	•••		110000000000	i aitori

QA/QC Aspect	Evidence and Evaluation					
Data Representativeness						
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.					
Background Samples	HC-MW12-01 was installed up gradient of the Facility, and is used to provide background levels of physiochemical parameters.					
Field Procedures	Monitoring wells were developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox [™]) and distilled water. Surface water samples were collected using one-time-use syringes.					
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.					
Data Precision and Accuracy						
Blind Duplicate	One blind duplicate was collected from BC-MW12-04 during the August 2012 groundwater monitoring event (See: Report # 1114360073-1500). Of the 110 analyte pairs tested, RPD values could not be calculated for 90 of the pairs as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, none exceeded the RPD ³ acceptance criteria of $\pm 30\%$.					
Trip Blanks	A trip blank was not collected during the August 2012 groundwater monitoring event.					
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the primary lab showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.					
Holding Times	All samples were received outside hold times for physical tests; however, field measurements were provided. Samples were delivered outside the acceptable (24 hour) hold time for physical parameters, however field parameters were taken during sample collection to compensate.					
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.					
Charge Balance Calculation	Charge balance calculations were performed on all samples. Samples from the monitoring wells had a percent error of between 0.8% and 2.1%. The surface water sample had a 16% error.					

³ RPD calculations are presented in Appendix E of Golder's draft report entitled Beaver Creek Solid Disposal Facility Hydrogeological Assessment" dated August 10, 2012

Carbonate

QA/QC Aspect	Evidence and Evaluation		
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.		
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.		

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and the nearest surface water receptor were sampled and tested for the following parameters:

Major ions (Ca, Mg, Na, K, Cl,	Bicarbonate	Chemical oxygen demand
SO_4 , N, NO ₂ , NO ₃ and P)	рН	Total Kjeldahl Nitrogen
Dissolved Metals	Total dissolved solids	EPH _{w10-32} & VH _{w6-10}
Mercury	Ammonia	BTEX
Hardness	Dissolved organic carbon	PAHs
Alkalinity		

VOCs

Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards or to the Canadian Environmental Quality Guidelines, for those analytes where no Yukon standard was available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment
Aquatic Life	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1	Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

Table 6: Applicable Water Quality Standards

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

A search of the Yukon Lands viewer website, conducted by Golder September 4, 2012, showed several small creeks and ponds within a 1 km radius of the Site. A review of Google Earth Images from 2012 conducted by Golder on the same day also identified several visible streams and ponds within 1 km of the Site. The nearest body of water was determined to be a small, unnamed creek; approximately 700 m to the west of the Site. It was determined therefore that aquatic life standards were **applicable** for the Horsecamp Hill Facility.

Drinking Water

A search of drinking water wells on the Groundwater Information Network website (accessed September 4, 2012) showed no drinking water wells located within a 1.5 km radius of the Site. A review of Google Earth Images from 2012 showed buildings within 1.5 km of the Site, but according to the Solid Waste Operation Plan for the Facility, the closest well to the Facility is in the community of Koidern, approximately 12 km southeast of the Site. It was therefore deemed that CSR drinking water standards were **not applicable** for the Horsecamp Hill Facility.

Irrigation and Livestock

A review of the Summary of Yukon Water Wells, compiled from the Yukon Water Well Registry, reviewed by Golder on September 4, 2012, showed no irrigation wells or wells for livestock on record for the Horsecamp Hill area. This is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells or wells for livestock use in the area. A review of Google Earth Images from 2012, conducted by Golder on September 4, 2012, as well as several visits to the Facility conducted in June and August 2012, indicated no agricultural land, active livestock, or active livestock facilities within 1.5 km of the Facility. A review of the Solid Waste Operation Plan for the Facility made no mention of agricultural or livestock facilities within the vicinity of the Site. It is therefore considered that CSR water quality standards for irrigation and livestock are **not applicable** to the Horsecamp Hill Facility.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 Setting

The Facility is at an elevation of approximately 720 m (2,360 feet) above sea level and lies within the White River Watershed. The Site is situated on the eastern slope of a glacially-formed valley, which is bounded to the east by Horsecamp Hill and by Miles Ridge to the west. Site topography is characteristic of glacial outwash plain and lateral moraine deposits. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes northwest towards Moose Lake in the base of the glacially-formed river channel the Site is situated in. A cleared area of approximately 2500 square meters, which is generally flat, is present at the Facility. The landfill cover consists primarily of gravel sourced from the Site.

4.2 Climate

Climate data at the Horsecamp Hill Site is likely similar to that at the Beaver Creek Airport climate station (Climate ID 2100160), located approximately 43 kilometres north of the Facility at an elevation of approximately 649 m above sea level. Average monthly precipitation reported at the Beaver Creek station ranges from a low average of 11.7 mm in April to a high average of 79.2 mm in July. The average annual precipitation is approximately 416.3 mm, including 123.1 cm as snowfall. Temperature ranges from a low average of -26.9° C in January to a high average of 14° C in July (Environment Canada, 2012).

Annual precipitation is relatively low (about 400 mm per year) and would suggest that the degree of infiltration of precipitation through the waste and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The southern Yukon, including the Horsecamp Hill area, has undergone several episodes of glaciation, the most recent being the Quaternary Macauley glaciation and the Mirror Creek glaciations.). During that period, sediments such as glacial till, glaciofluvial, and glaciolacustrine sediments were deposited, especially in low elevation areas such as the low-lying glacial valley around the Horsecamp Hill Site.

The Horsecamp Hill area is mapped as being underlain primarily by unconsolidated till and glaciofluvial deposits of Quaternary origin, with modern alluvial deposits associated with low lying areas adjacent to Horsecamp Hill. Ablation till, colluvial glacial debris, morainal deposits and bedrock exposures are found at higher elevations near the Site (Figure 3).

Surficial geology maps published by the Yukon Geological Survey (YGS) indicate natural surficial materials at the Facility are representative of glaciofluvial outwash plain material deposited by glacial meltwater, and influenced by modern permafrost. In general, deposits consist of well compacted to non-compacted material that is non-stratified and contains a heterogeneous mixture of particle sizes; commonly in a matrix of gravel, with minor sand, cobbles and boulders and thin veneer of silt and peat. The thickness of the unconsolidated sediments was estimated to be between 13 m and 60 m (Rampton, 1977).

4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a shallow unconfined aquifer composed primarily of unconsolidated sand, with minor gravel and silt. A gravel unit overlies the water-bearing sands at the Site, but the gravel was found to be unsaturated at the time of well installation. For the purpose of this report, this aquifer has been named the Surficial Aquifer.

Aquifer Name	Location	Aquifer Type	Comment			
Surficial Aquifer	HC-MW12-01 HC-MW12-02 HC-MW12-03	Unconsolidated, inter-granular, unconfined	Sand with minor gravelModerate hydraulic conductivity			

Table 7: Aquifer Units Encountered at the Site

4.4 Groundwater Flow Systems

4.4.1 Regional Groundwater Flow

Topography in the area surrounding the Facility slopes from Horsecamp Hill (elevation 1415 m amsl), northeast of the Site, towards the bottom of a glacially-formed valley (elevation 895 m amsl) to the west of the Site. A series of ponds and creeks is present in the valley, the bottom of which slopes to the north and west, eventually flowing into the White River. It can be inferred that regional shallow groundwater flow follows the topography and likely eventually discharges to the White River. The surficial aquifer is recharged by direct infiltration of rainwater and surface water.

4.4.2 Local Groundwater Flow

Groundwater at the Site was encountered in an unconfined, surficial aquifer, approximately 11.5 m bg.

Golder used the groundwater depth data and well survey elevation information collected in August 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations on August 22, 2012 are presented in Table 3.

Local groundwater flow direction at the Site is inferred, from groundwater elevations in the newly installed monitoring well network, to be to the west (Figure 6). The horizontal hydraulic gradient at the Site was approximately 0.017 m/m in August 2012.

4.5 Hydraulic Conductivity of the Surficial Aquifer

Due to low groundwater levels during the August 2012 groundwater monitoring event, hydraulic response tests could not performed at any of the monitoring wells at the Site. Instead, a range of hydraulic conductivities was estimated based on the typical hydraulic conductivity for the aquifer material encountered.

Monitoring Well ID	Aquifer Material	Reference Used	Estimated Hydraulic Conductivity (m/s)
HC-MW12-01	Sand (>50%) Gravel (5%-12%)	Freeze & Cherry (1979)	10 ⁻³
HC-MW12-02	Sand (>50%), Silt (~25%), Gravel (~15%)	Freeze & Cherry (1979)	10 ⁻⁵
HC-MW12-03	Sand (~80%), Gravel (~5%), Silt (~5%)	Freeze & Cherry (1979)	10 ⁻⁴

Table 8: Estimated Hydraulic Conductivity

4.6 Estimated Linear Groundwater Velocity

As estimated by grain size composition summarized in Table 8, the hydraulic conductivity of the surficial aquifer 1×10^{-4} m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network and groundwater elevations, to be approximately 0.017 m/m to the west. The linear groundwater velocity is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s).

K: is the hydraulic conductivity in m/s as determined by slug testing

i: is the horizontal hydraulic gradient (m/m)

n: is the porosity which is estimated to be approximately 0.30 for sandy aquifers (Fetter, 1994)

The resulting groundwater velocity is estimated to be between 5×10^{-6} m/s. Groundwater at the Site may travel faster or slower than this estimate due to approximations or seasonal variations in these parameters.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation and contaminant transport principles. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, industrial waste, metals, wood, rubber (tires), construction debris, and any other waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO₃ and NH₃), organic hydrocarbons (fuels, PAH's, and chlorinated hydrocarbons), and salts.
- Leakage and spillage from on-Site hydrocarbon storage areas.

Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone.
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in section 3.2.4, one round of groundwater monitoring was conducted on two of the three newly installed wells and one surface water location at the Horsecamp Hill Solid Waste Disposal Facility on August 22, 2012. Insufficient water was present in HC-MW12-03 to develop and sample on this date. Table 9 summarizes important parameters for characterizing the potential presence of landfill leachate and the groundwater chemistry results. Chain of custody forms for the groundwater samples collected along with the groundwater chemistry results can be found in Appendix E.

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)
HC-MW12-01	106	<0.50	0.0074	2.48	13.6
HC-MW12-02	112	<0.50	0.0337	2.72	11.8
Moose Lake	328	1.78	0.0747	55.8	7.00

Table 9: Important Groundwater Chemistry Results

Total Dissolved Solids

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃.

Values of TDS in the monitoring well samples ranged from 106 mg/L to 112 mg/L. TDS in the surface water sample was slightly higher at 328 mg/L. These concentrations are considered to be within the normal range for naturally occurring groundwater and surface water.

Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater chemistry. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride may be present due to degradation of waste with a high chloride concentration. Chloride levels in the water samples collected from the two monitoring wells were below laboratory detection limits, and the concentration in the surface water sample was well within the normal range for surface water that is not affected by anthropogenic sources. Chloride concentrations in the groundwater and surface water samples showed no evidence of influence by landfill leachate.

Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater and surface water samples were low (0.07 mg/L or less), indicating no evidence of influence from landfill leachate.

Dissolved Organic Carbon

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. Dissolved organic carbon concentrations at both wells that were sampled (11.8 mg/L and 13.6 mg/L) were within the normal range expected for natural background groundwater chemistry, thus indicating no evidence of influence from landfill leachate. DOC levels were slightly lower in the Moose Lake surface water sample at 7.0 mg/L.

Metals

Metals concentrations in the groundwater and surface water samples were all below the CSR standards for freshwater aquatic life, indicating no evidence of influence from landfill leachate.

Organics

Detectable levels of organic constituents are often a sign of leachate contamination. Of the hydrocarbons analyzed (BTEX, PAH, EPH_{w10-32} , VH_{w6-10} and chlorinated hydrocarbons), none were detected in the water samples analyzed.

5.2 Interpretation of Groundwater Chemistry

The ionic compositions of water samples from the Site were compared to discern different water types by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions. In this case the surface water sample contains sodium and chloride, which are below detection limits in the groundwater samples. The surface water sample from Moose Lake contains slightly higher concentrations of major ions compared to the groundwater samples. Sodium and chloride concentrations were below the detection limit in both groundwater samples.
- Piper: The Piper diagram (Figure 8) can be used to graphically compare major cation and anion ratios of different samples and is used to identify different water types. This Piper plot illustrates that both groundwater samples have nearly identical ratios of major ions, as their plot locations overlap. The figure also illustrates that the major ions ratio in the surface water sample is slightly different than the groundwater samples, having slightly more magnesium and sulphate. Both groundwater samples and the surface water sample are classified as a calcium bicarbonate water type.
- Stiff: The stiff plot allows for differences in groundwater chemistry to be presented and viewed spatially. A visual inspection of the Stiff diagram indicates that the groundwater chemistry in all of the samples is similar. The primary difference is that the surface water sample is slightly higher in magnesium and sulphate in comparison to the groundwater samples.

The results of the August 22, 2012 monitoring event show no evidence of landfill leachate contamination of groundwater at the Horsecamp Hill Solid Waste Disposal Facility or to the nearest downgradient surface water receptor that was sampled (Moose Lake). Relatively low concentrations of all analytes were evident, including those typically associated with leachate contamination, and all samples were within values typically found in naturally occurring waters.

6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

- Stratigraphy and Hydrogeology:
 - Subsurface conditions were investigated with the installation of three monitoring wells (HC-MW12-01, HC-MW12-02, and HC-MW12-03), which were installed on June 24 and 25, 2012 under the supervision of Golder Associates, for the establishment of a monitoring well network at the Facility.
 - Evaluation of groundwater flow direction using the newly installed monitoring well network confirmed that one up-gradient and two downgradient wells were successfully installed.
 - The Site stratigraphy consists of approximately 8 m of unsaturated well-graded gravel, overlying a well-graded sand unit. Topsoil has been removed at a majority of the Site and the underlying gravel is exposed at the surface.
 - An unconfined aquifer was encountered at a depth of approximately 11.5 m below grade.
 - The hydraulic conductivity of the unconfined aquifer underlying the Site is approximately 1 x 10⁻⁴ m/s based on a review of values presented in freeze and Cherry (1979).
 - The horizontal hydraulic gradient at the Site was determined, using water level data in the newly installed monitoring wells, to be approximately 0.017 m/m, sloping to the west.
 - Groundwater velocity in the surficial aquifer is estimated to be between 1 x 10⁻⁵ m/s.
- Groundwater Chemistry:
 - Monitoring wells HC-MW12-01 and HC-MW12-02 were developed and sampled, and one surface water sample was taken from Moose Lake during a single monitoring event on August 22, 2012; approximately eight weeks after the wells were installed. The thickness of the water column in downgradient well HC-MW12-03 was insufficient during the monitoring event to develop and sample this well.
 - A review of literature and maps pertaining to the Site, as well as carrying out two Site visits, identified several surface water bodies within a 1 km radius of the Site. It was therefore determined that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life (O.I.C. 2002) should be applied to the Horsecamp Hill Facility, since these water bodies were within the 1 km radius defined under the CSR. No analytes from the water quality samples exceeded CSR aquatic life standards.
 - Results of groundwater and surface water sampling performed at the Site indicated either low or nondetect concentrations of all analytes, including those typically associated with contamination from landfill leachate. This suggests that leachate influence on shallow groundwater at the Site is not evident.

7.0 RECOMMENDATIONS

The following recommendations are made based on the results of the hydrogeological assessment presented in this report:

- As required by the Solid Waste Permit for the Facility, future groundwater monitoring should be conducted twice a year in the spring and late summer.
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate.
- HC-MW12-03 should be developed and sampled during the next spring monitoring event when groundwater levels are higher, and there is sufficient water within the well screen.
- Monitoring well locations and elevations should be surveyed by a professional land surveyor.

8.0 CLOSURE

We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

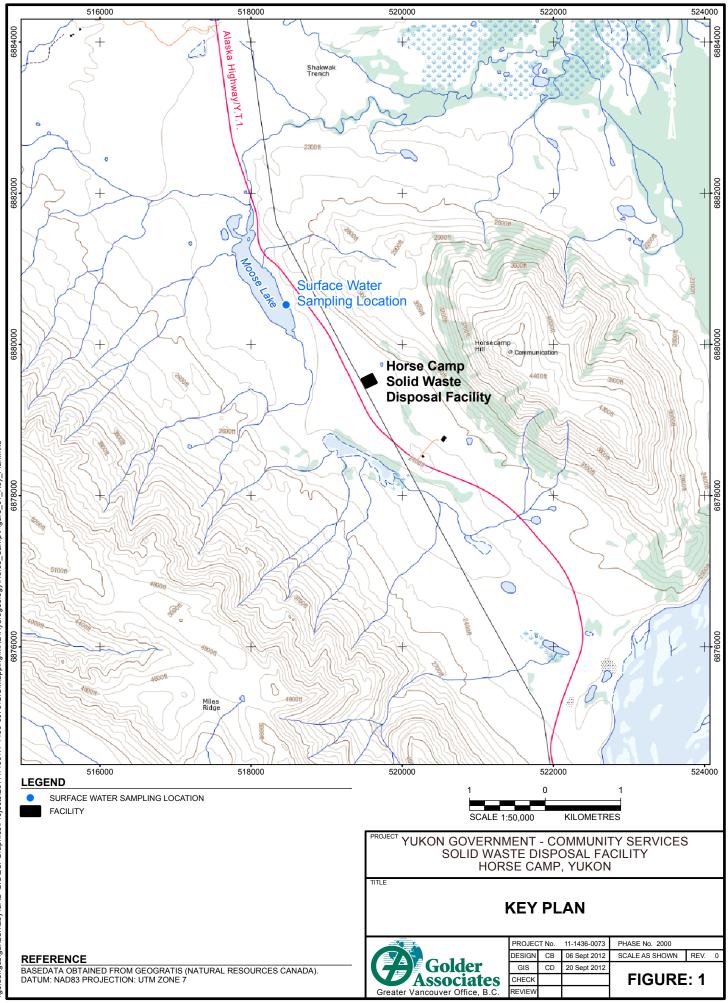
GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

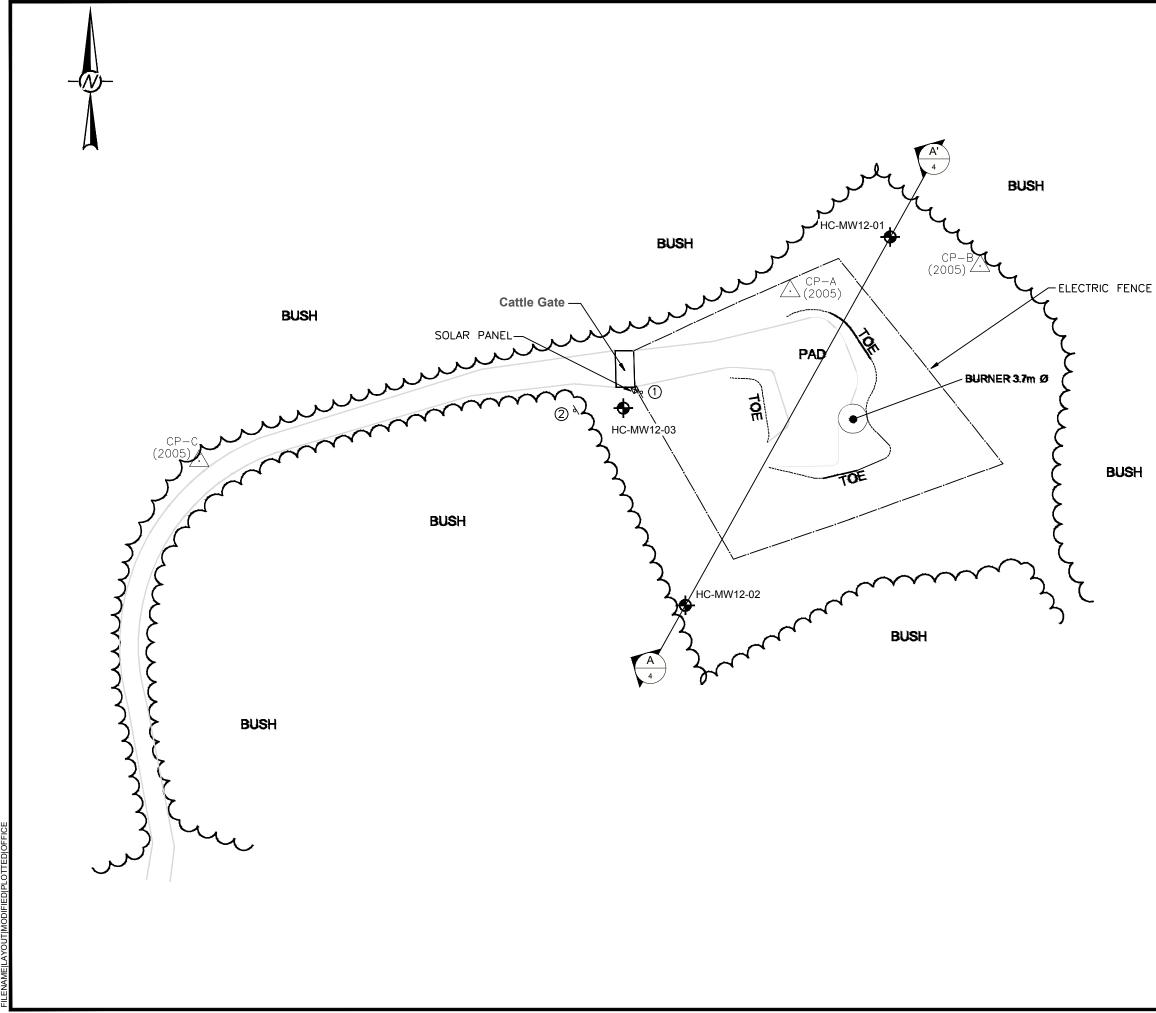
ORIGINAL SIGNED

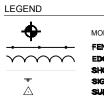
Calvin Beebe, M.Sc. Hydrogeologist Gary Hamilton, P.Geo. Principal Hydrogeologist

Reviewed By:

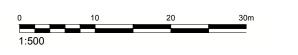

ORIGINAL SIGNED

Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist


CB\GJH\GCP\jcc


o:\final\2011\1436\11-1436-0073\1114360073-504-r-rev0-2000\1114360073-504-r-rev0-2000-horse camp hydrogeo assessment 23feb_13.docx

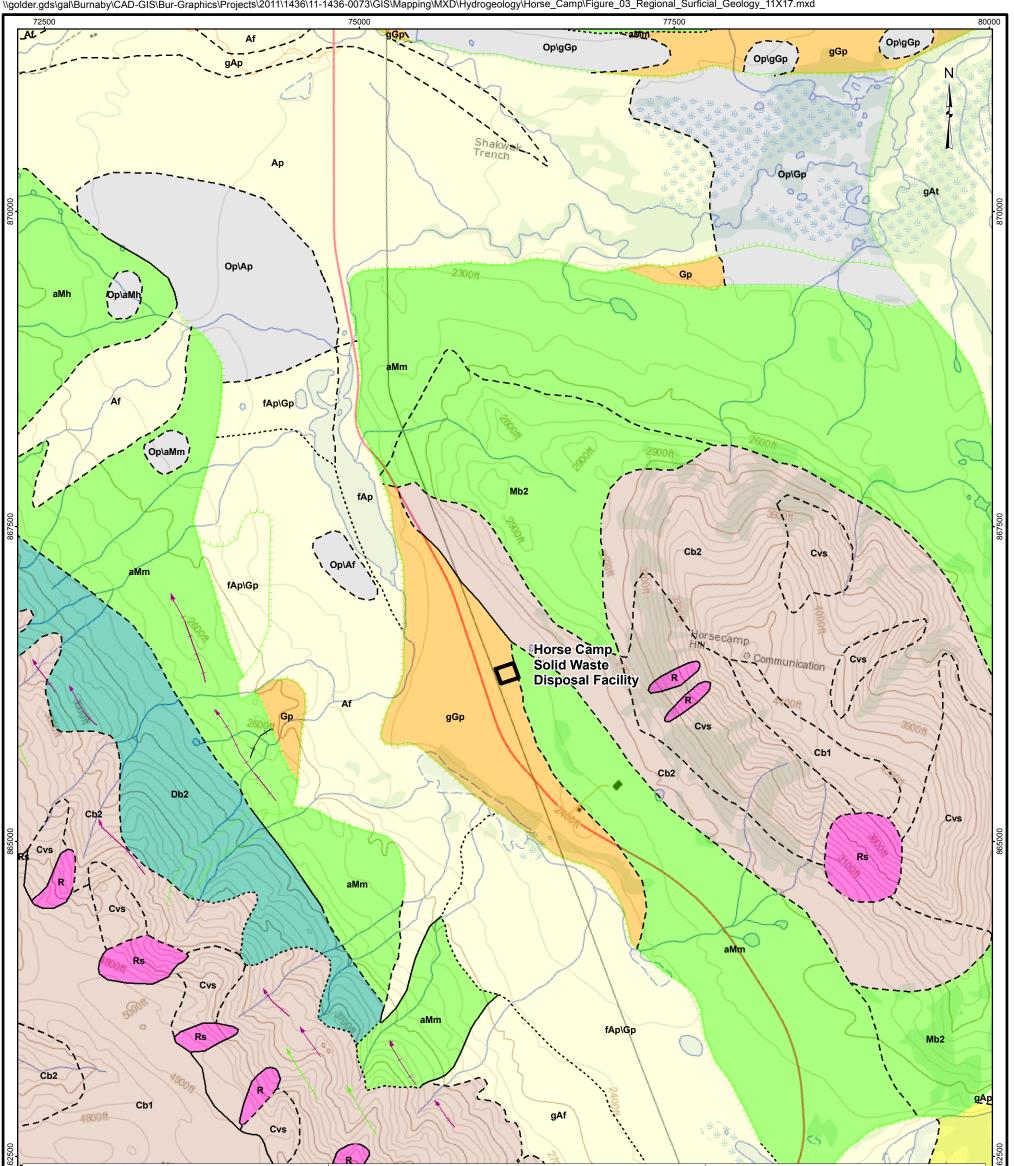
\golder.gds\ga\Burraby\CAD-GIS\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Horse_CampFigure_01_Key_Plan.mxd

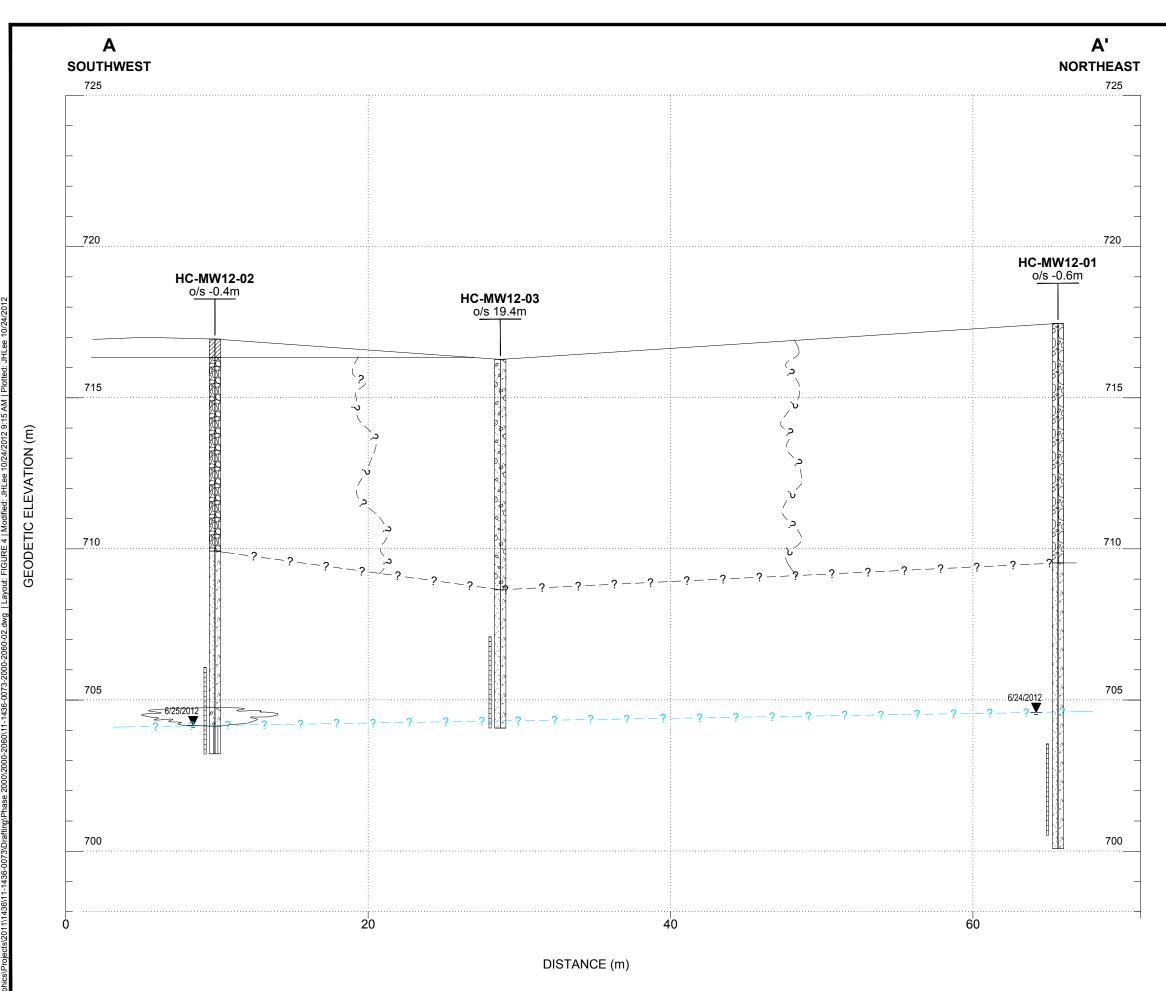

MONITORING WELL LOCATION FENCE EDGE OF CLEARING SHOULDER OF ROAD SIGN SURVEY CONTROL POINT

REFERENCES

1. BASE PLAN PROVIDED BY QUEST ENGINEERING GROUP CAD FILE: HORSECAMP2005.DWG DATED:2005.09.20

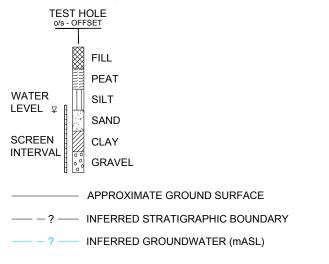
NOTES


1. SITE PLAN IS NOT CONSISTENT WITH OBSERVED CONDITION DURING DRILLING, BUT IS INTENDED TO SHOW LOCATIONS OF NEWLY INSTALLED MONITORING WELLS IN RELATION TO BURIED STRUCTURES.


ROJECT YUKON GOVERNMENT-COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY HORSE CAMP , YUKON

SITE PLAN AND CROSS-SECTION LOCATION

	PROJECT N	lo. 1	1-1436-0073	FILE No.	2000-2060
	DESIGN	CB	30AUG12	SCALE	AS SHOWN
Golder	CADD	TS	12SEP12		
Associates	CHECK	GCP		FIG	SURE 2
- 115500010000	REVIEW				

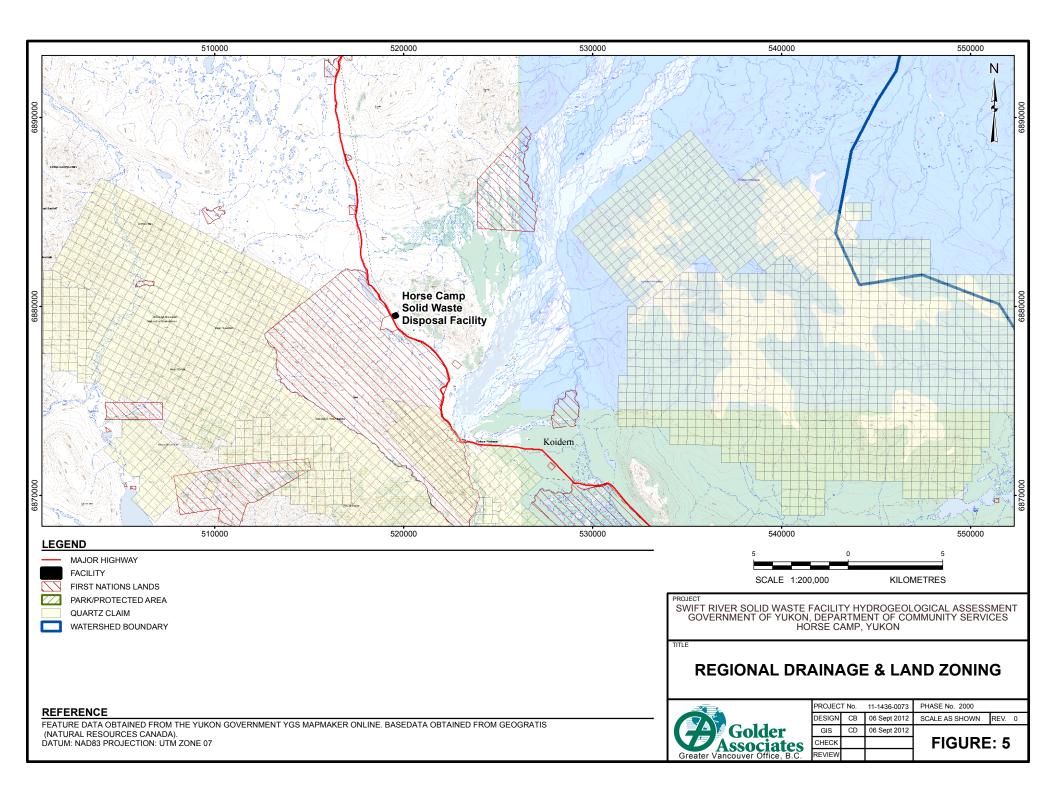


			LAN	IDFORM OR LANDSCAPE	
		MATERIAL ORIGIN TOPOGRAPHY		COMMENT	
	Gp	Sand and Gravel with a thin blanket of silt or peat	Outwash plain	Flat to gently sloping, terraced in places, pitted. 3 to 60 m thick.	Usually underlain by till, lacustrine deposits, alluvium, and rarely bedrock.
	Mm	Sand, with some silt and stone	Till plain	Gently rolling to undulating with gentle to moderate slopes. Between 3 and 40 m thick.	Generally underlain by drift or alluvium.
	Cb	Poorly sorted diamicton; cobbles and boulders	Colluviam Blanket	Ubiquitous on slopes underlain by bedrock.	May contain some drift or alluvium.
	Af	Gravel with a veneer of sand and silt.	Alluvial fan	Gently sloping. Between 3 and 35 m thick.	Common along edges of glaciated valleys.
72500 EGEND			75000	77500	
	IG ROAD COURSE			PROJECT SWIFT RIV	SCALE 1:30,000 KILOMETRES
WATERE	BODY			πιε	HORSE CAMP, YUKON
	OGY DATA (GEOGRATIS (NATURAL RESOURCES CANADA). OBTAINED FROM THE YUKON GOVERNMENT, ENER(1: ALBERS	GY, MINES AND RESOUCES.		PROJECT No. 11-1436-0073 PHASE No. 2000 DESIGN CB 06 Sept 2012 SCALE AS SHOWN RI Gis CD 06 Sept 2012 SCALE AS SHOWN RI CHECK FIGURE:

LEGEND

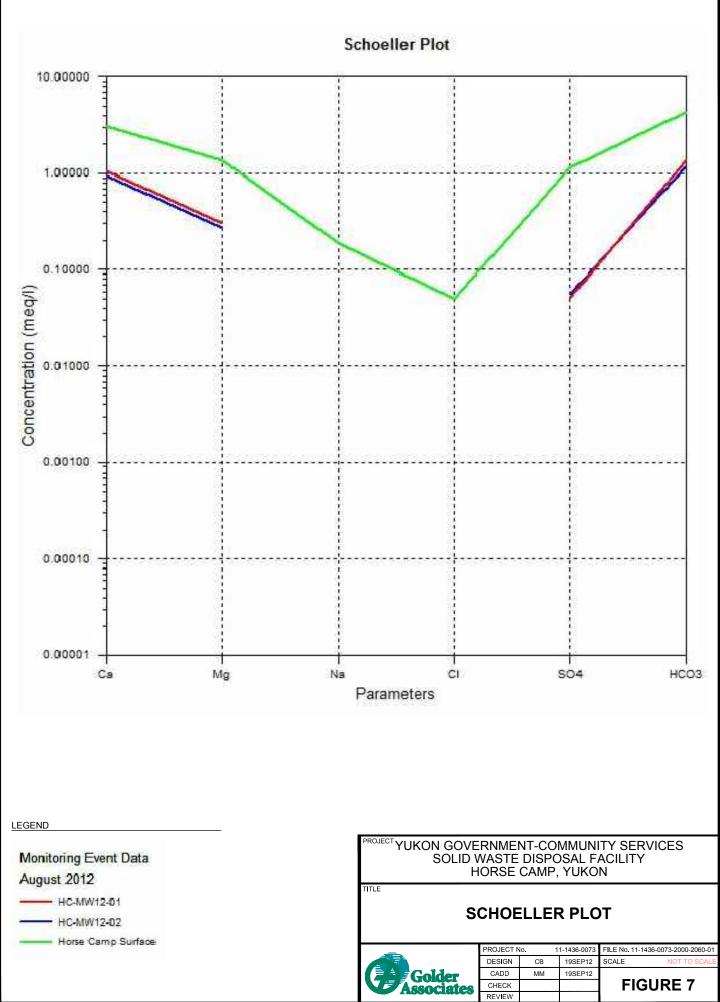
TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).

SPECIAL NOTE: DATA CONCERNING THE VARIOUS STRATA HAVE BEEN OBTAINED AT TEST HOLE LOCATIONS ONLY. THE SOIL STRATIGRAPHY BETWEEN TEST HOLES HAS BEEN INFERRED FROM GEOLOGICAL EVIDENCE AND MAY VARY FROM THAT SHOWN.

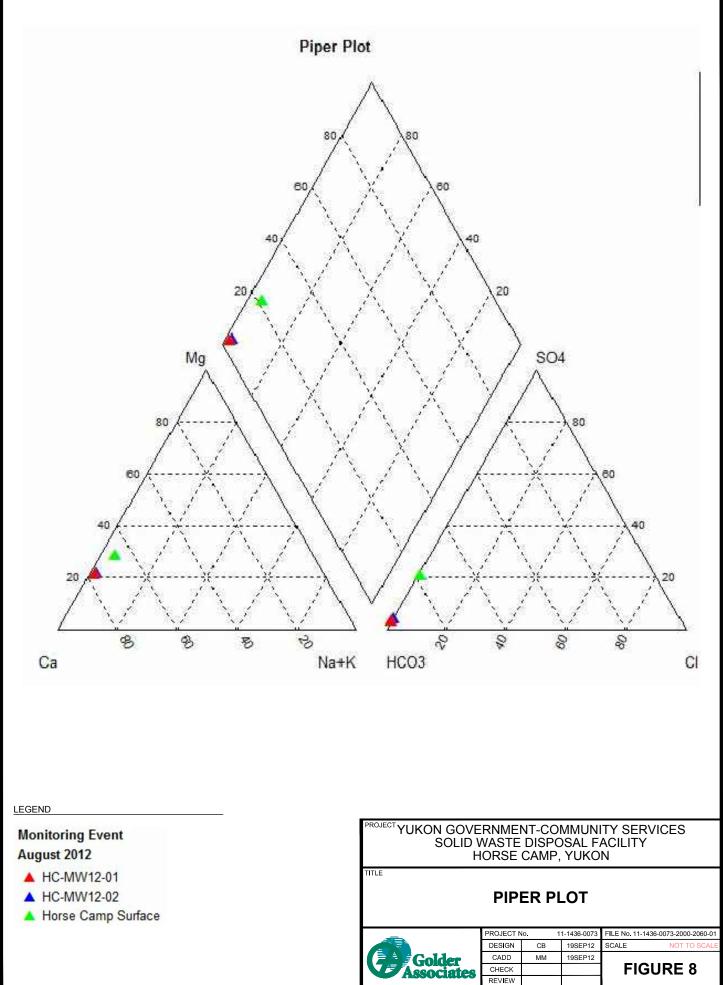

PROJECT


TITLE

GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES HORSECAMP HILL, Y.T.


CONCEPTUAL HYDROGEOLOGICAL CROSS - SECTION A-A'

-	PROJECT N	lo.	11-1436-0073	FILE No. 11-1436-0	073-2000-2060-02
Golder	DESIGN	GH	220CT12	SCALE	AS SHOWN
	CADD	GG	220CT12		
	CHECK			FIGU	RE 4
115500010005	REVIEW				



igolder.gds/ga/Burnaby/CAD-GIS/Bur-Graphics/Projects/2011/1436/11-1436-0073/GIS/Mapping/MXD/Hydrogeology/Horse_Camp/Figure_06_Borehole_location.mxd



MMatie 12 3:08 PM 09/21/20 nmai Modified: FIG 7 ANSI 2060-01.dwg afting/Phase 1436-0073\Dr ojects/2011/1436\

/201

mmatienzo 09/19/2012 mmatienzo 09/19/2012 3:22 PM | Plotted: FIG 8 | Modified: Layout: ANSI_A 2000\2000-2060\11-1436-0073-2000-2060-01.dwg 1-1436-0073\Drafting\Phase Graphics/Projects/2011/1436 ÷

lgolder.gds/ga/Burnaby/CAD-GIS/Bur-Graphics/Projects/2011/1436/11-1436-0073/GIS/Mapping/MXD/Hydrogeology/Horse_Camp/Eigure_09_Stiff_Diagram.mxd

Site Photographs

Photograph 1: Photograph taken during the initial Site visit October 23, 2011. A view from the access road on the west corner of the Facility looking east at the burning vessel and Horse Camp Hill.

Photograph 2: Photograph taken during the initial Site visit October 23, 2011. A view from the east side of the Facility looking west at the burning vessel and access road.

Photograph 3: Photograph taken during the initial Site visit October 23, 2011. A view from the south corner of the Facility looking north.

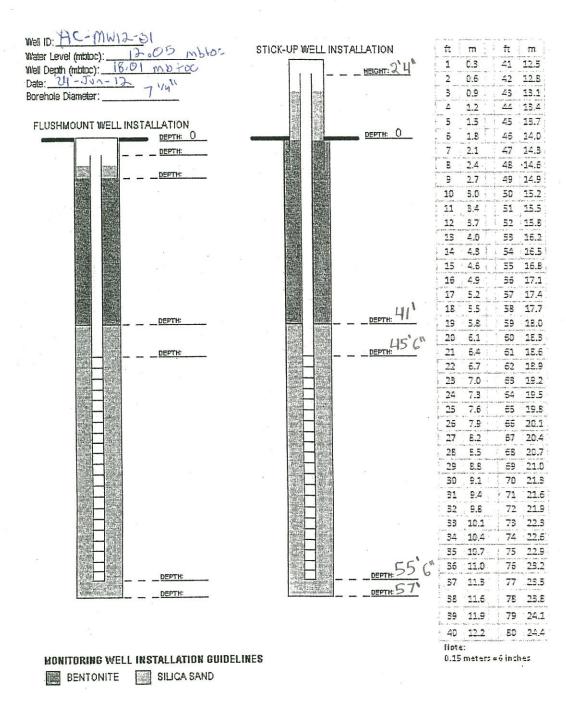
Photograph 4: Photograph taken shortly after the drilling program concluded in June 2012. Shows the north corner, monitoring well HC-MW12-01, and Horse Camp Hill as seen from the northwest side of the Facility near the access road.

Photograph 5: Photograph taken shortly after the drilling program concluded in June 2012. Looking west to east across the Site.

Photograph 6: Photograph taken shortly after the drilling program concluded in June 2012. Shows a view of the south corner and HC-MW12-02 taken from the west corner near the access road.

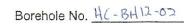
o:\final\2011\1436\11-1436-0073\1114360073-504-r-rev0-2000\appendices\app a\site photos.docx

APPENDIX B


Well Construction Logs

	FIELD	BOREH	OLE LO	G		Borehole No. HC-BH12-01
	the second s	2" Sched y Moo	ULL UD F	1564.3 1 VC	Date: Depth Contr	12 - 55'6'' to $245'6''$
DEPTH ELEV. SOIL STRATIGRAPH	WEL SKET			No. Recov	PID (ppm)	SAMPLE DESCRIPTION & BORING NOTES
GW - GRAJEL and COBBLES (and trace sand trace Silt, greyish bra- dry. - moist 8-26 - some sand less cobbles - 20-26 some abbles - 20-26 some abbles	10-20 ne sal	60	TYPES	C.C Son		O'= 2.C' (AU GRAVEL (40%) ad CABBLES (40%), trace Sond, trace silt, arcyish brown, dry. - moist 9'-26' - some sand less cobbles (0'-20' - 20'-2C', some cobbles, trace sand - 21'-22' Roulder Ze'-57' SU - SAUD Some gravel, brown, wet. Wetter at 35' Droducing water 43' - drilling through top of water column (10's not producing peter because the box sand and gravel was always arising trace of some the facmation - drilling through the facmation - drilling the drilling through the facmation - drilling through the drilling
C:\Users\BrMacdonald\Desktop\New Form	LOST	C.S Chi S.S Spi	unk sample (odex)			Est. Volume of drill H ₂ 0 used:L(sonic) Depth of H ₂ 0: Drum No.: Date: Time: Note: this log is double-sided.

Ā


FIELD BOREHOLE LOG

Coldo-

			IELD B	OREHO	LE LO	G				Borehole No. 11C - BHD - 02
\cap	Boring Met	Horse Camp ening Method: 10-5	lot Z' Rotary	Model	sle 40	pvc pvc) tech	Date: Depth Contr	:: actor:	1-1436-0073 25-30-12 Time: 09:00 45' to 35' Midnight Sun Disiling Calvin Beebe
	DEPTH ELEV.	SOIL STRATIGRAPHY	WELL SKETCH	DEPTH SCALE C	ond. Type	SAMPL No.		PID (ppm)	S	AMPLE DESCRIPTION & BORING NOTES
	SLOF GUL-	ML-SELT		- 5 6 5 6 7 7 7 7 7 7 7 7 7			.C Soni		gravel by Z ¹ - Z ³ Some a bleta - 11 Z ³ - 40 der K br - 30 - 40 - 42 - 45 gravel - 42 - 45 gravel - 45 - 40 - 45 - 40 - 45 - 40 - 45 - 45 - 40 - 45 - 45 - 40 - 40	GW, GRAVEL some sand. abbles, trace silt, darke bar Moist 8'-13' iyer is coarser gravel 13'-16' 6'-23' wet, slightly more silt I SW, SAND, trace gravel awa, wet, me fire gravel 30' 410' race silt 34'-40' SW-GrW SAND and IEL, trace silt, brown, ML, STAT, some rounded, trace sand, grey to bu with producing water at 43' producing water at 43' producing water at 43' DUS colleposed between and 36'
\bigcirc	C:\Users\BrMa	FAIR LOS	T	C.S Chunk S.S Split sp	sample (ode		.P Direc		Est. Volume of Depth of H ₂ 0: Drum No.:	

Â

m

12.5

12.8

13.1 43

13.4

13.7

14.0

14.3

47

45 .14.6

49 14.9

50 15.2

51 15.5

52 15.B

53 16.2

35

35 17.1

57 17.4

60 1E.3

61 15.6

52

63 19.2

54 19.5

E5 19.8

55 20.1

67 20.4

65

59 21.0

70

71

72 22.5

73 74 22.6

75

77

78 23.8

79 24.1

50 . 24.4

54 16.5

58 17.7

59 18.0

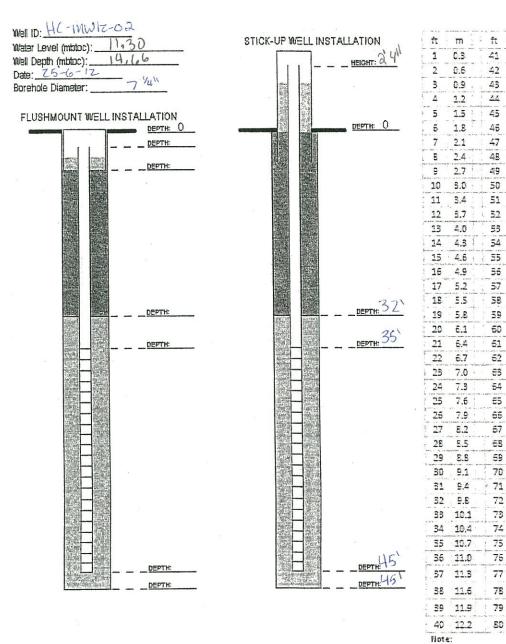
18.9

20.7

21.5

21.5

21.9


22.9 75

23.2

25.5

16.B

FIELD BOREHOLE LOG

MONITORING WELL INSTALLATION GUIDELINES BENTONITE SILICA SAND

0.15 meters = 6 inches

25 OF casing left at adell

	IELD B	OREHOL	.E LOG			Borehole No. <u>HC-BHI2-03</u>
			<u>5195</u> 40 P. 145 I	28.9 1 10 21.)tech	E Date: Depth Contra	$\frac{25 - 30 - 12}{40} \text{ Time: } \frac{13230}{30}$
DEPTH ELEV. SOIL STRATIGRAPHY	WELL SKETCH	DEPTH SCALE Cond		MPLES o. Recov	PID (ppm)	SAMPLE DESCRIPTION & BORING NOTES
Geb. Sondy GRAVEL trace silt, trace obd Drown, moist, SW-SAND, trace growel, trace silt, brown, moist Zq'-HO'gravelysha 31' wet 		+5	5			O'-25' (nw), Sandy GARAVEL, Jrace silt, brown, moist, trace cobbles 3'-4' boulder 25'-40' SW - SAND, trace gravel, trace silt, brown, moist -29'-40' gravely SAND -31' water table (wet- -poduing water at 37' 40' started comming into (NL STLTY SAND STLTY SAND SPECIAL NOTES:
C:\Users\BrMacdonald\Desktop\New Forms\Field		A.S Auger sam C.S Chunk sar S.S Split spoor	mple (odex)	C.C Sonic D.P Direc		Est. Volume of drill H ₂ 0 used:L(sonic) Depth of H ₂ 0: Drum No.: Date: Time: Note: this log is double-sided.

Ā

FIELD BOREHOLE LOG

m

12.5

<u>12,5</u>

13.4

15.7

15.2

15.5

35 17.1

58 17.7

59 18.0

52 1E.9

55 19.2

54 19.5

85 19.5

55 20.1

67 20.4

53 20.7

59 21.0

71 21.6

73 22.3

74 12.6

75 23.5

79 24.1

50 24.4

22.5

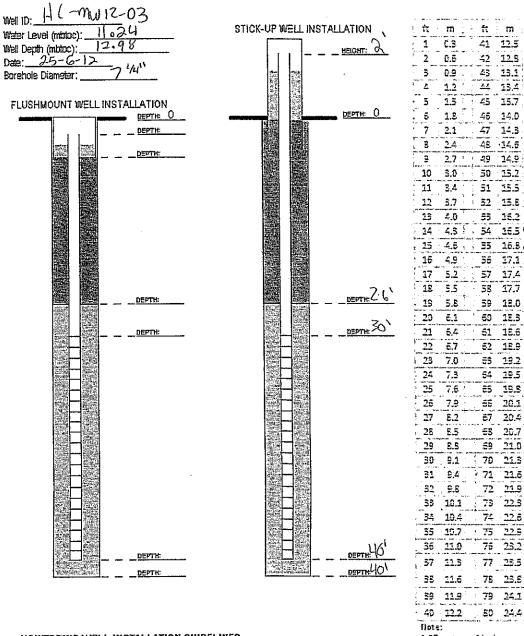
72 21.9

75 23.2

÷.

41

42


43 13.1

45

45 14.0

47 14.3 45 14.6

29 14.9

MONITORING WELL INSTALLATION GUIDELINES BENTONITE SILICA SAND

20 of asing left in well

0.15 meters = 6 inches

Calda-

APPENDIX C

Well Development and Sampling Sheets

The second se			The second se
	2450	C. martine	
the second strategy and the second	See	ALC: NO.	and the second second
Anone segurate	ALC: LABOR	Viteran	

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development

	MW12-						Project N	0.:	11-14	36-00	073/20	000
	ECAN	ME	Tompo	erature:	15 °C		Date:	_7	2-Auc			4.5
			- //	alature:	-12 0		Complete	d by:	A BAC	2 her		
MONITORING W Time of Measurement Depth to product: Depth to water Below Depth to Bottom of W Diameter Standpipe:	E Pro	oduct thickr	ness:	· 58 m	netres (netres (Fidally Influ One well vo B-A)*2.0 = B-A)*1.1 = Sample inta	Diume: 2. 4.40	1	CX No itres - for a 5 itres - for a 3 netres	1 mm (2.0 8 mm (1.5	inch) diamete	er well er well
EQUIPMENT LIS pH and Temp. Meter: Conductivity Meter: Dissolved Oxygen Me Pump: INone Pump Details:	Mode	el			Serial No. Serial Ño. Serial No.		(Calibration E Calibration S D.O. Che Bailer Typ	Solution:	14 Dá	7 🗆 10	
WELL DEVELOP Purge Volume: V		Contraction and an and		15		. 24	ar		0.00	duant.		
Avg. Flow Rate:	Vell. Vol. X	<u>9.8</u> C	1 =	22	litre	5	Start	16:	45 E	nish: (7:00	
(1	oved (°C	(Uni	ts) (L	Cond. JS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %	autori Centre	Water Level (m)		Remar		
16.45 0.				271								
16.53 25		and the second data was seen as		62				13.58				
16.57 35	2:	the second second		12								
17:00 40	3.	6.0		3	-			13.59	SAMP	LE C	DLLECTO	2
		-										
												-
	-											
<u> </u>						-	1		1.			
Comments: Odour: □ Yi Sheen: □ Yi Turbidity: Clea	es 🗆 No	If yes If yes		rbon-like IIII		and a second	o-like □ I Very S	Silty			D Yes	
Analysis	Тур			_	C	ontainer Size	1		-	- 1		
			40 mL	100 mL	250 mL	500 mL	1L	2 L	4 L Filt	ered	Preservative	IS
	Plastic	D Glass		-	-				D Yes	D No		
	D Plastic	D Glass							🗆 Yes	D No		
	Plastic Plastic	Giass Glass							D Yes	□ No		
1		D Glass		-	-				D Yes	D No		
									🗆 Yes	D No .		-
									□ Yes	D No	12	
-									D Yes	D No		
SCN No			-	-					□ Yes	□ No	1	
SCN No	Consu	imables:		rra Tubin n Tubing			OPE/Tefior O. Ampou	Tubing		iroundwate	er Filter	

C:\Users\BrMacdonald\Desktop\New Forms\GW Development and Purging Sampling Data Sheet.docm

à.

							ATA SI		ID		HUOS Marit		velopment rging/Samplin
No.: HC- tion: HOR; ther: CLOR;	TE C		and the second second second	Tempe	erature:	15 ' 0		Project N Date: Complete	. 2	2-A.		z T	ime: <u>7:50</u>
DNITORING W e of Measurement oth to product:	t:/	Prod	SO Juct thickn	ess:	3.50 m 1.66 m 5.1 m	etres etres	Tidally Influ One well v (B-A)*2.0 = (B-A)*1.1 = Sample int	olume: = 1.16 =	2.4	litres litres metre	- for a 51 - for a 38	1 mm (2.0 3 mm (1.9) inch) diameter v 5 inch) diameter v
UIPMENT LIS and Temp. Meter nductivity Meter: solved Oxygen M mp:	eter: I D Wate	Model Model Model rra	D Perista	ltic 🗆		Serial No. Serial Ño. Serial No.		(Calibration Calibratior I D.O. Ch I Bailer T	Solution	on: 14	-113	7 🗆 10
ELL DEVELO ge Volume: g. Flow Rate:			RGING	Hi 	15	litre	es nin.	Start	17	56	Fir	nish:	
Time Ren	ume noved L)	Temp. (°C)	(Uni	ts) (I	Cond. uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)			Rema	
17:56 0		10.2	7.0		40				14.02				
18.06 1		4.5			52				13.90				
8:12 1:	5	4.1	6-8	36 1	57				· .	57	mp	NE	COLLEGE
							1					1.	
								-					
								1					
mments: Odour: D Sheen: D Turbidity: Cle	′es □	No No IIII			arbon-like		R Metalii IIIIII	c-like 🗆 I Very	Silty				
Analysis		Туре		10 -1	100	1	Container Siz				Filte	ered	Brossenfine
	D Pias	stic	Glass	'40 mL	100 mL	250 mL	. 500 mL	1L	2 L	4 L	D Yes		Preservatives
	D Pla	stic	Glass							-	U Yes		
	D Pla	stic	D Glass								U Yes		
	D Pla	stic	D Glass								D Yes		
	D Pla	stic	Glass								□ Yes	D No	1
	D Pla		Glass								D Yes	D No	
	D Pia		D Glass	-	-		_				D Yes	D No	
	D Pia	stic	D Glass	_	1						□ Yes	D No	
SCN No Field Dup.	c	onsun	nables:		erra Tubir on Tubing			DPE/Tefio			🗆 G	roundwa	ter Filter

3

-

ation: 1	ORS	WIZ ECA	with	NG/S/	AMPLI	NG DA	ATA SH	Project N Date:	0.:	2-A	NG-	- 00	
DNITORIN ne of Measur pth to produc pth to water f pth to Bottom ameter Stand	ement: t: Below To n of Well	Pro op of Casir	duct thickr	ess: A 12		C etres (l etres (l	idally Influ one well vo B-A)*2.0 = B-A)*1.1 = Sample inta	enced: lume:	□ Yes	À No litres	- for a 51 - for a 38	mm (2.0	inch) diameter we inch) diameter we
QUIPMENT and Temp. M nductivity Me isolved Oxyg mp: Do mp Details: ELL DEVE	Meter: en Mete ne	Mode Mode T: Mode Waterra	el D Perista JRGING			erial No. Serial Ño. Serial No. ible		(Calibration Calibration D.O. Ch Bailer T	Solutionemet A	on:	34 0	7 🗆 10
rge Volume: g. Flow Rate:	We	ell. Vol. X		=		litre:		Start:			Eir	nish:	
Time	Volum Remov (L)				Cond. (S/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)		Remarks		cs
		_								N	OT SU	IFFE	CIENT
mments:										-			
Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	No No	If yes If yes		rbon-like	11111	IIIII		Silty				
Analysis		Тур	De	40 mL	100 mL	250 mL	500 mL	11	21	4 L	Filte	bered	Preservalives
		D Plastic	D Glass					1		4L	D Yes	D No	10
		D Plastic	Giass								□ Yes		
		D Plastic	D Glass								🗆 Yes	D No	0
		D Plastic	Glass	-							I Yes	D No	
		Plastic	Glass								I Yes	D No	
		D Plastic	D Glass					-			□ Yes	D No	a
		D Plastic	Glass		1						□ Yes	DAV	
			D Glass								Lites	D No	

A

Surface Water Sampling Data Sheet

Field Characterization

Sampling

	67 V 1	REACE	15 1	0.0 16	77	Project No. Completed By		11-1436-0073/2000 A BADDER				
tion: her:			00 6	0 000	05	Date:		AVG-				
perature:	17°2					Time:	19:3		1			
rerature.	17 -					Reviewed By:	14.5	0				
UIPMEN	TUST	HANN	10- 1	11 95	15							
and Temp. M Inductivity Me	Meter: Mo eter: Mo	del		S	erial No. erial No.		Calibratio Calibratio	n Solutio	n:	1413	7 🗆 10	
solved Oxyge	en Meter: Mo	del		S	erial No.		D.O. C					
np: Nor Nor Nor Nor Nor Nor Nor Nor		Perist	taltic	Submersi	ble	Bailer:	□ None	□ Sta	inless S	teel 🗆	Teflon D PV	
RFACE	WATER SA	MPLING	ì									
Time	Volume Removed (L)	Temp. (°C)	pH (Units)	Cond. (uS/cm			6		R	emarks		
9.30		17.0	7.77	520		/						
12				9.0								
1	L		-	-				-				
	-			-								
nments:												
nments: Odour: Sheen: Turbidity: Other:		o Ifyes	111111 T			III Very Stainer Size	Silty					
Odour: Sheen: Turbidity:	□ Yes □ N Clear []]	o If yes	1	100 mL			Silty	4L	Filte	ered	Preservatives	
Odour: Sheen: Turbidity: Other:	□ Yes □ N Clear []]	o Ifyes			Con	tainer Size		41	Filte	ered	Preservatives	
Odour: Sheen: Turbidity: Other:	□ Yes □ N Clear I I I s	o If yes			Con	tainer Size		4L			Preservatives	
Odour: Sheen: Turbidity: Other:	Ves No Clear III Plastic	ype			Con	tainer Size		4L	□ Yes	□ No	Preservatives	
Odour: Sheen: Turbidity: Other:	Yes No Clear III Clear III Plastic Plastic Plastic	ype Glass Glass Glass Glass Glass			Con	tainer Size		41	□ Yes □ Yes	□ No □ No	Preservatives	
Odour: Sheen: Turbidity: Other:	Yes No Clear III Clear IIII Clear III Cle	ype			Con	tainer Size		4L	Yes Yes Yes	□ No □ No □ No	Preservatives	
Odour: Sheen: Turbidity: Other:	Clear III clear III s T Plastic Plastic Plastic	ype Glass Glass Glass Glass Glass Glass Glass Glass Glass			Con	tainer Size		4L	Yes Yes Yes Yes Yes	No No No No	Preservatives	
Odour: Sheen: Turbidity: Other:	Clear III Clear III Plastic Plastic Plastic Plastic	ype Gass Gass Gass Gass Gass Gass Gass			Con	tainer Size		4L	□ Yes □ Yes □ Yes □ Yes □ Yes	No No No No No No No No	Preservatives	

APPENDIX D

Slug Test Data

Single-well Response Test Data Sheet

Rising Head

P

Falling Head

	Well No .:	HC-MW12-	-01				
	Location:	NORSE CI	AMP				
	Project No .:	11-14136-00	73/				
	Completed By:						
	Date:	22-AUG-			-		
	Time:	17.00			-		
MONITOR	RING WELL INFO	ORMATION			-		
	Depth to water	below top of cas	sing:	13.58	meters		
		n of well below to	-	7.98	meters		
		top of pipe to gro		0.78	meters		
	Well casing dia			010	meters	(1 inch = 0.025 meters)	
1.	Borehold diame				meters	(1 mon - 0.020 motors)	
	Screen length:				meters	(1 foot = 0.3048 meters)	
	Screened unit:			-	(eg: sand, s	Automatic and a second second second	
EQUIPME							
	Slug				Bailer		
	Mass:		kilograms			lumn height:	meters
	Length:	1.5	meters		Inside dia		meters
	Diameter:	6-0375	meters	and/c	or Volume o	f water removed:	litres
r	Pressure trans	ducer serial #:	0011049	3419			
	Sampling Inter	val:	1		seconds	or minutes (circle one)	
SINGLE-V	VELL RESPONS Start time:		Finish time:	17:36	_		
	Time	Elapsed Time	Water Level (m)		Cor	mments .	
	17.10		13.58	Tx IN	(0.2,	- OFF BOTTOM	
L'AMA SA	(7:13		13.53	Since	IN	0011	
	17.17			sung a	out.	e	-
	17.21			sung.			
	17.25			sche o			-
	17.29			SLUG II			-
	17.34			sche a			
	17.36			Tr on			
M					*		

APPENDIX E

Analytical Reports and Chain of Custody Forms

Table E-1 **Results of Water Analyses - Metals** YTG Landfill Monitoring, Watson Lake, Yukon

Location OND Augustic Life (SRA, AW (reshwater) HC-MW12-02 HC-MW12-0		SCN		1	L1199825-7	L1199825-8	L1199825-9
QAQC CSR-AW Interwater Note 22-AUG-12			Aquatic Life				
Date (resistancy) 22-AUG-12							
Parameters Proparater C 6.9 6.86 7.27 Conductivity (uScm) 138 157 520 Declored Oxygen (mgL) - - - Laboratory Parameters 7,17 7,65 7,66 Pf (delocatry) 138 105 122 328 Aggraget Organic arbon 0,02 0,005 - - - Disolved Mults 0,02 0,005 - 0,005 0,005 0,005 0,005 0,005 - 0,005 -					22-AUG-12	22-AUG-12	22-AUG-12
phi (find.) 6.9 6.8 7.27 Conduction (uscam) 310 4.1 17.00 Disadvad Oxygan (mg.l.) 158 157 520 Labotatop Tarameters 7.17 7.65 7.66 pH (disontroy) 6.5 6.68.5 6.68.5 6.68.5 thandams (as CaCO3) 6.65 6.63 6.63 112 328 Agerogan Organic carbon 54 7.77 7.65 7.66 COD 54 7.9 42 33.6 11.8 7.00 Disorbed Metals 0.091 0.061 <0.0081 <0.0081 <0.0080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080 <0.00080			Note	tes			
İnaponator 'C 3.10 4.1 17.00 Cabarchity (KSCm) 158 157 520 Disobved Drygen (ng1.) - - - Laboratory 7.17 7.55 7.66 Hanbass (a CaC03) 665 608 220 total dissolved solids 106 112 328 Agregate Organic acbon 54 79 42 COD 54 79 42 dissolved organic carbon 0.05 - - Disobred Mata' 0.05 - - - animana 0.05 - - - - binamin 0.05 - - - - - cachinam 0.010 - 0.00043 - - - binamin 0.025 - - - - - - cachinam 0.015 0.025 - - - - - - -	Parameters						
Conductive (usion) 158 157 500 Disorder Oxygen (mg.L) - - - Libratives (manuters 7.17 7.65 7.66 pH (ubranney) 68.5 60.83 220 total disorder organic carbon 7.17 7.65 7.66 Disorder Organics 68.5 60.83 7.9 42 Science organic carbon 0.65 7.00 54 7.9 42 Disorder Matalit 0.65 0.00050 -0.00050 -0.00050 -0.00050 atminum 0.65 0.0001 0.0001 -0.00050 -0.00050 -0.00050 atminum 0.065 0.0001 -0.0005 -0.00050 -0.00050 atminum 0.001 0.0001 -0.0006 -0.0000 -0.0000 -0.0000 -0.0000 atminum 0.001 0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 atminum 0.001 0.0001 0.0001 -0.0000 -0.00001 <	pH (field)				6.9	6.86	7.27
Disolved Oxygen (ng1.) - - - Laboratory Parameters (Habonicov) - - - Hardness (as CuCO3) 68.5 60.8 229 otad disolved organic acbon 106 112 328 Aggregate Organic acbon 54 79 42 disolved organic carbon 0.091 0.081 -0.0050 Disolved Metals 0.051 -0.0050 -0.0050 atminum 0.051 -0.0050 -0.0050 -0.0050 atminum 0.0051 -0.0050 -0.0050 -0.0050 atminum 0.0051 -0.0050 -0.0050 -0.0050 atminum 0.0051 -0.0050 -0.0050 -0.0050 atminum 0.0061 0.0081 -0.0070 -0.0020 -0.00020 atminum 0.0061 -0.0050 -0.0050 -0.0020 -0.00020 atminum 0.0061 0.0081 -0.0070 -0.0020 -0.00020 atminum 0.0061 0.0071 4	Temperature °C						
Autonotory Pf (laboratory) 7.17 7.65 7.68 Pf (laboratory) 106 112 329 Agerogate Organic carbon 106 112 329 COD 13.6 11.8 7.00 Disolved Metals 0.001 -0.0050 -0.0050 -0.0050 attimizeria 0.05 0.0031 0.0003 0.00033 0.0081 CoD 0.050 0.0050 -0.0050 <					158	157	520
pH (laboratory) 7.17 7.65 7.66 Interders (ar CO3) in teacher (ar CO3) in te	Dissolved Oxygen (mg/L)				-	-	-
pH (laboratory) 7.17 7.65 7.66 Interders (ar CO3) in teacher (ar CO3) in te	I aboratory Parameters						
Bandbases (sa CaC03) 68.5 60.8 220 106 112 328 Aggregate Organic carbon 54 79 42 disolved organic carbon 13.6 11.8 7.00 Disolved Metals 0.091 0.001 -0.0050 -0.00050 -0.00050 abunitum 0.05 -0.0050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00020 <t< td=""><td>-</td><td></td><td></td><td></td><td>7 17</td><td>7.65</td><td>7.66</td></t<>	-				7 17	7.65	7.66
Intel disolved solids 106 112 328 Agrorgat Organic carbon 54 79 42 Sidoled organic carbon 13.5 71.8 7.00 Disolved Metals 0.091 0.081 <0.0003							
Agground Organics 54 79 42 CoD 54 79 42 Isadived urganic carbon 136 11.8 7.00 Dissolved Metals 0.091 0.091 -0.0050 <-0.00003							
COD 54 79 42 dissolved organic carbon 13.6 11.8 7.00 Dissolved Metals							
dissolved organic carbon 13.6 11.8 7.00 Dissolved Metals aluminum amenic barnimony 0.091 0.081 <0.010	Aggregate Organics						
Disolved Metals 0.091 0.081 <0.010 aluminum 0.05 0.00043 0.00050 <0.00050	COD				54		42
aluminum antimony antimony strenic barium barium birum	dissolved organic carbon				13.6	11.8	7.00
aluminum antimony antimony strenic barium barium birum	Dissolved Metals						
0.2 -0.00050 -0.00050 -0.00050 ansenic 0.05 -0.0053 -0.00060 -0.0003 0.00033 barium 0.053 -0.0050 -0.0050 -0.0050 -0.0050 beryllium 0.001 0.0001 -0.0066 H -0.0020 -0.0020 -0.0020 calcium 0.001 ⁻¹ .0.0066 H -0.0020 -0.0020 -0.0020 -0.0020 calcium 0.001 ⁻¹ .0.006 H -0.0020 -0.0020 -0.0020 -0.0020 calcium 0.001 ⁻¹ .0.007 ⁻¹ W -0.0020 -0.0020 -0.0020 calcium 0.001 ⁻¹ .0.007 ⁻¹ W -0.0020 -0.0020 -0.0020 calcium 0.001 ⁻¹ .0.007 ⁻¹ W -0.0010 -0.0100 -0.0100 calcium 0.001 ⁻¹ .0.007 ⁻¹ H -0.0020 -0.0020 -0.0020 colbal 0.001 ⁻¹ .0.007 ⁻¹ H -0.010 -0.0100 -0.0020 colbal 0.0040 ⁻¹ .0.010 ⁻¹ -0.010 -0.0000	aluminum				0.091	0.081	<0.010
arsenic 0.65 0.00043 0.00033 0.00033 barium 0.0 0.0003 0.0003 0.0003 0.00050 bismuth 0.0001 0.0001 -0.0000 -0.20 -0.20 -0.20 cadmium 0.0001 0.0001 -0.0006 H -0.0020 -0.0020 -0.0020 cadmium 0.001 ⁻¹ .0.090 ^{III} V -0.0020 -0.0020 -0.0020 cadmium 0.010 ⁻¹ .0.090 ^{III} V -0.0020 -0.0020 -0.0020 copper 0.0001 -0.0114 0.0066 0.0012 0.001 inon 0.020 -0.0020 -0.0020 -0.0020 -0.0020 inon 0.002 -0.0114 0.0066 0.0011 -0.010 -0.010 inin 0.001 -0.010 -0.0100 -0.0100 -0.0100 -0.0100 maganese 0.001 -0.030 -0.030 -0.030 -0.030 -0.030 mecury 0.001 -0.0101 -0.0101	antimony		0.2		<0.00050		
0.053 < 0.0050	arsenic		0.05				
bimuth boron boron cadrium cadrium cadrium cadrium cadrium cadrium cadrium cadrium cadrium chromium cobalt chromium cobalt coba	barium						
boron	beryllium		0.053		<0.0050	<0.0050	
cadium 0.0001 · 0.0006 H <0.00020	bismuth						
calcium 21.4 18.9 61.3 chromium 0.010 ⁺¹ , 0.090 ^m V <0.0020	boron						
$ \begin{array}{ccccc} chromium cohonium $			0.0001 - 0.0006 H	[
0.009 < 0.010 < 0.010 < 0.010 < 0.010 < 0.012 copper $0.020 \cdot 0.090$ H 0.0144 0.0096 0.0012 lead $0.040 \cdot 0.160$ H < 0.0050 < 0.00050 < 0.00050 manganese $0.040 \cdot 0.160$ H < 0.00050 < 0.00050 < 0.00020 marganese 0.001 < 0.001 < 0.00020 < 0.00020 < 0.00020 marganese 0.001 < 0.0005 < 0.0020 < 0.00020 < 0.00020 marganese 0.001 < 0.0002 < 0.00020 < 0.00020 < 0.00020 molybelnum 0.001 < 0.0002 < 0.00020 < 0.00020 < 0.00020 plotssium 0.001 < 0.001 < 0.0000 < 0.0001 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.001			VI				
copper $0.020 \cdot 0.090$ H 0.0114 0.0096 0.0012 iron 0.062 0.152 0.084 lead $0.040 \cdot 0.160$ H -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00020 -0.0000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000	chromium			r			
imm 0.062 0.152 0.084 lead 0.040 \cdot 0.160 H <0.00050							
lead $0.040 \cdot 0.160$ H <0.00050 <0.00050 <0.00050 lithium $a.010$ <0.010 <0.010 <0.010 <0.010 magnessum 3.65 3.30 16.3 0.0025 <0.00020 <0.00020 mercury 0.001 <0.001 <0.0030 <0.0300 <0.030 <0.030 nickel $0.250 \cdot 1.5$ H <0.050 <0.050 <0.050 <0.050 phosphorus 0.01 <0.030 <0.30 <0.30 <0.30 <0.30 potassium 0.01 <0.0050 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0000 <0.030 <0			0.020 - 0.090 H	[
ithium -0.010 -0.010 -0.010 magnesium 3.65 3.30 16.3 manganese 0.001 -0.0005 0.0014 0.00326 molybdenum 10 -0.030 -0.030 -0.030 -0.030 phosphorus 0.001 -0.010 -0.050 -0.050 -0.050 potasium 0.01 -0.010 -0.010 -0.030 -0.030 -0.30 siltor 0.01 -0.01 -0.0010 -0.0010 -0.0010 -0.0010 siltor 0.01 -0.01 -0.010 -0.010 -0.010 -0.010 siltor 0.01 -0.01 -0.010 -0.010 -0.010 -0.010 siltor 0.0005 - 0.015 H -0.010 -0.010 -0.010 -0.010 siltor 0.0003 -0.030 -0.030 -0.030 -0.030 -0.030 siltinim 0.001 0.0011 -0.010 -0.010 -0.010 -0.010 siltinimim 0.002 -0.030 -0.030 -0.030 -0.030 -0.030							
magnesium 3.65 3.30 16.3 manganese 0.001 0.0025 0.0614 0.0326 molybdenum 10 0.0020 <0.00020 <0.00020 molybdenum 0.01 <0.030 <0.030 <0.030 phosphorus $0.0259 \cdot 1.5$ H <0.050 <0.050 <0.050 potassium 0.01 <0.010 <0.0010 <0.0010 <0.0010 <0.0010 selenium 0.01 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 solium $0.0005 \cdot 0.015$ H <0.0010 <0.0010 <0.0010 <0.0010 solium 0.003 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 </td <td></td> <td></td> <td>0.040 - 0.160 H</td> <td></td> <td></td> <td></td> <td></td>			0.040 - 0.160 H				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						
10 < 0.030 < 0.030 < 0.030 < 0.030 nickel 0.250 \cdot 1.5 H < 0.050 < 0.050 < 0.050 phosphorus 0.99 1.10 1.42 selenium 0.01 < 0.0010 < 0.0010 < 0.0010 < 0.0010 silicon 0.00 < 0.0010 < 0.0010 < 0.0010 < 0.0010 silicon 0.0005 \cdot 0.015 H < 0.010 < 0.010 < 0.010 sitrontium 0.0003 < 0.020 < 0.20 < 0.20 < 0.20 tin 0.0003 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 <td< td=""><td>0</td><td></td><td>0.001</td><td></td><td></td><td></td><td></td></td<>	0		0.001				
nickel $0.250 \cdot 1.5$ H < 0.050 < 0.050 < 0.050 phosphorus 0.30 < 0.30 < 0.30 < 0.30 < 0.30 potassium 0.01 < 0.0010 < 0.0010 < 0.0010 < 0.0010 silver 0.01 < 4.66 4.50 4.87 silver $0.0005 \cdot 0.015$ H < 0.010 < 0.010 < 0.010 sodium $0.0005 \cdot 0.015$ H < 0.010 < 0.010 < 0.010 sodium $0.0005 \cdot 0.015$ H < 0.010 < 0.010 < 0.010 sodium 0.0003 < 0.030 < 0.030 < 0.030 < 0.030 strontium 0.0003 < 0.020 < 0.20 < 0.20 < 0.20 tin 1 < 0.0001 < 0.0001 < 0.0001 < 0.0002 vanadium 1 $0.075 \cdot 2.4$ H < 0.050 < 0.050 zinc $0.075 \cdot 2.4$ H < 0.050 < 0.050 < 0.050 Dher Inorganics $0.075 \cdot 2.4$ H < 0.05							
phosphorus $< 0.30 \\ 0.99 \\ 1.10 \\ 0.001 \\ 0.0001 \\ 0.003 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0000 \\ 0.0001 \\ 0.0000 \\ 0.0001 \\ 0.0000 \\ 0.0001 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.000 \\ 0$	nickel			[
potassium 0.99 1.10 1.42 selenium 0.01 <0.0010						<0.30	
silicon 4.66 4.50 4.87 silver 0.0005 \cdot 0.015 H <0.010	potassium						
silver sodium sodium strontium thalium tium titanium uranium vanadium zinc Other Inorganics bicarbonate (CaCO3) carbonate (CaCO3) carbonate (CaCO3) total alkalinity (CaCO3) total bit (CaCO3) total	selenium		0.01			<0.0010	
sodium - - - 2.0 - 2.0 4.3 strontium 0.003 0.0440 0.0430 0.210 thallium 0.003 - 0.20 - 0.20 tin 1 - - - 0.030 - - 0.20 - 0.20 vanadium 1 - - - - 0.0010 - 0.000 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.00010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 -	silicon						
strontium 0.0440 0.0430 0.210 thallium 0.003 <0.20	silver		0.0005 - 0.015 H	[
thallium 0.003 <0.20	sodium						
in < 0.030 < 0.030 < 0.030 itianium1 < 0.010 < 0.010 < 0.010 uranium3 < 0.030 < 0.030 < 0.030 vanadium3 < 0.030 < 0.0010 < 0.00010 0.00082 zinc $0.075 \cdot 2.4$ H < 0.050 < 0.050 < 0.050 Other Inorganicsbicarbonate (CaCO3) $0.075 \cdot 2.4$ H < 0.050 < 0.050 < 0.050 bicarbonate (CaCO3) < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 hydroxide (CaCO3) $< 1.31 \cdot 18.5$ pH 0.0074 0.0337 0.0747 chloride $2 \cdot 3$ H 0.062 0.048 0.071 fluoride $2 \cdot 3$ H 0.062 0.048 0.071 nitrate (as N) $0.2 \cdot 2$ CI < 0.0010 < 0.0010 < 0.0010 total kjeldahl nitrogen 0.537 0.91 0.650 < 0.650			0.000				
titanium uranium vanadium zinc 1 3 <0.010<0.010<0.0100.0075 - 2.4H<0.00010			0.003				
3 <0.00010 <0.00010 0.00082 vanadium zinc $0.075 \cdot 2.4$ H <0.030 <0.030 <0.030 Other Inorganics bicarbonate (CaCO3) carbonate (CaCO3) hydroxide (CaCO3) total alkalinity (CaCO3) ammonia 67.9 59.5 216 2.0 <2.0 <2.0 <2.0 <2.0 4000 67.9 59.5 216 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2			1				
vanadium zinc < 0.030 < 0.030 < 0.030 Other Inorganics $0.075 - 2.4$ H < 0.050 < 0.050 < 0.050 bicarbonate (CaCO3) carbonate (CaCO3) 67.9 59.5 216 hydroxide (CaCO3) total alkalinity (CaCO3) < 2.0 < 2.0 < 2.0 $1.31 - 18.5$ pH 0.0074 0.0337 0.0747 chloride $2 - 3$ H 0.0622 0.048 0.071 nitrate (as N) nitrite (as N) $0.2 - 2$ Cl < 0.0010 < 0.0010 total Kjeldahl nitrogen $0.2 - 2$ Cl < 0.0010 < 0.0010 total Kjeldahl nitrogen 0.537 0.91 0.650							
vinc 0.075 - 2.4 H <0.050 <0.050 <0.050 Other Inorganics 67.9 59.5 216 bicarbonate (CaCO3) <2.0 <2.0 <2.0 <2.0 hydroxide (CaCO3) 67.9 59.5 216 hydroxide (CaCO3) 67.9 59.5 216 carbonate (CaCO3) 67.9 59.5 216 hydroxide (CaCO3) 67.9 59.5 216 collal alkalinity (CaCO3) 1.31 - 18.5 pH 0.0074 0.0337 0.0747 chloride 2 - 3 H 0.062 0.048 0.071 nitrate (as N) 0.106 0.243 <0.0050 nitrite (as N) 0.2 - 2 Cl <0.0010 <0.0010 <0.0010 total Kjeldahl nitrogen 0.537 0.91 0.650			3				
bicarbonate (CaCO3) carbonate (CaCO3) hydroxide (CaCO3) total alkalinity (CaCO3) ammonia 67.9 59.5 216 2.0 <2.0 <2.0 <2.0 <2.0 $ammonia$ $1.31 - 18.5$ pH 0.0074 0.0337 0.0747 chloride fluoride nitrate (as N) nitrite (as N) $2 - 3$ HH 0.062 0.048 0.071 $0.2 - 2$ Cl <0.0010 <0.0010 <0.0010 <0.0010 total Kjeldahl nitrogen 0.537 0.91 0.650	zinc		0.075 - 2.4 H	[
$\begin{array}{c} \mbox{carbonate (CaCO3)} \\ \mbox{hydroxide (CaCO3)} \\ \mbox{total alkalinity (CaCO3)} \\ \mbox{anmonia} \\ \mbox{chloride} \\ \mbox{fluoride} \\ \mbox{fluoride} \\ \mbox{nitrate (as N)} \\ \mbox{nitrite (as N)} \\ \mbox{total Kjeldahl nitrogen} \end{array} \qquad \begin{array}{c} \mbox{-}2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <2.0 & <2.0 \\ <0.0074 & 0.0337 & 0.0747 \\ <0.050 & <0.50 & 1.78 \\ 0.062 & 0.048 & 0.071 \\ 0.106 & 0.243 & <0.0050 \\ 0.2 - 2 & Cl & <0.0010 & <0.0010 \\ <0.0010 & <0.0010 \\ <0.0010 & <0.0010 \\ \end{array}$	Other Inorganics						
hydroxide (CaCO3) total alkalinity (CaCO3) ammonia < 2.0 < 2.0 < 2.0 $1.31 - 18.5$ chloride $1.31 - 18.5$ pHpH 0.0074 0.0337 0.0747 < 0.50 < 0.50 1.78 fluoride nitrate (as N) nitrite (as N) $2 - 3$ HH 0.062 0.048 0.071 $0.2 - 2$ Cl < 0.0010 < 0.0010 < 0.0010 total Kjeldahl nitrogen 0.537 0.91 0.650							
total alkalinity (CaCO3) 67.9 59.5 216 ammonia 1.31 - 18.5 pH 0.0074 0.0337 0.0747 chloride 2 - 3 H 0.062 0.048 0.071 nitrate (as N) 400 0.2 - 2 Cl <0.0010							
ammonia 1.31 - 18.5 pH 0.0074 0.0337 0.0747 chloride <0.50							
chloride <0.50	-		1.31 - 18 5 nH	-			
1000000000000000000000000000000000000			101 - 1010 pri	•			
400 0.106 0.243 <0.0050 nitrite (as N) 0.2 - 2 Cl <0.0010	fluoride		<mark>2-3</mark> H	[
0.2 - 2 Cl <0.0010 <0.0010 <0.0010 total Kjeldahl nitrogen 0.537 0.91 0.650	nitrate (as N)						
total Kjeldahl nitrogen 0.537 0.91 0.650	nitrite (as N)			1	<0.0010	<0.0010	
	total Kjeldahl nitrogen				0.537	0.91	0.650
	sulphate		1000		2.48	2.72	55.8

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules

Land Use abbreviations: AW (Aquatic Life)

H = standard is Hardness dependent

CL = standard is chloride dependent

pH = standard is pH dependent

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperature

MCS = Most Conservative Standard

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Italics indicates standard is below detection limit

COC = Chain of Custody

* = Samples tested for dissolved metals were unfiltered

Table E-2 Results of Water Analyses - Hydrocarbons YTG Landfill Monitoring, Watson Lake, Yukon

	SCN		L1199825-7	L1199825-8	L1199825-9
	Location	Aquatic Life	HC-MW12-01	HC-MW12-02	HC SURFACE
	QA/QC	CSR-AW			
	Date	(freshwater)	22-AUG-12	22-AUG-12	22-AUG-12
		Notes			
Aonoaromatic Hydrocarbons			0.00050	0.00050	0.00050
enzene		4	< 0.00050	< 0.00050	< 0.00050
thylbenzene		2	< 0.00050	< 0.00050	< 0.00050
tyrene		0.72	< 0.00050	<0.00050	< 0.00050
oluene		0.390	< 0.00050	< 0.00050	< 0.00050
ortho-xylene			< 0.00050	< 0.00050	< 0.00050
neta- & para-xylene			< 0.00050	< 0.00050	< 0.00050
otal xylene			<0.00075	<0.00075	<0.00075
/Hw ₆₋₁₀		15	<0.10	<0.10	< 0.10
/PHw		1.5	<0.10	< 0.10	< 0.10
Polycyclic Aromatic Hydrocarbons					
cenaphthene			<0.000050	< 0.000050	< 0.000050
cenaphthylene			< 0.000050	< 0.000050	< 0.000050
cridine		0.0005	< 0.000050	< 0.000050	< 0.000050
nthracene		0.001	< 0.000050	<0.000050	< 0.000050
enzo(a)anthracene		0.001	< 0.000050	< 0.000050	<0.000050
enzo(a)pyrene		0.0001	< 0.000010	< 0.000010	< 0.000010
enzo(b)fluoranthene			< 0.000050	<0.000050	< 0.000050
enzo(g,h,i)perylene			< 0.000050	< 0.000050	< 0.000050
enzo(k)fluoranthene			< 0.000050	<0.000050	< 0.000050
hrysene			<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050
ibenzo(a,h)anthracene		0.003	<0.000050	<0.000050	<0.000050
uoranthene		0.002	<0.000050	<0.000050	<0.000050
uorene		0.12	<0.000050	<0.000050	< 0.000050
ndeno(1,2,3-c,d)pyrene		0.01	<0.000050	<0.000050	<0.000050
aphthalene henanthrene		0.01 0.003	<0.000050	<0.000050	<0.000050
		0.0002	<0.000050	<0.000050	< 0.000050
yrene juinoline		0.0002	<0.000050	<0.000050	<0.000050
Other Hydrocarbons					
EPHw ₁₀₋₁₉		5	< 0.25	< 0.25	< 0.25
	-	5	<0.25	<0.25	<0.25
EPHw ₁₉₋₃₂					
JEPHw IEPHw		0.5	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25
Miscellaneous Organics					
nethyl tertiary butyl ether (MTBE)			< 0.00050	< 0.00050	< 0.00050
Chlorinated Hydrocarbons					
oromodichloromethane (BDCM) ribromomethane (bromoform)			<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010
etrachloromethane (carbon tetrachloride)		0.13	<0.00050	<0.00050	< 0.00050
nonochlorobenzene (chlorobenzene)		0.013	<0.0010	<0.00050	<0.0010
ibromochloromethane (DBCM)		0.015	<0.0010	< 0.0010	<0.0010
hloroethane (ethyl chloride)			<0.0010	<0.0010	<0.0010
richloromethane (chloroform)		0.02	<0.0010	< 0.0010	< 0.0010
hloromethane (methyl chloride)		0.02	< 0.0050	< 0.0050	< 0.0050
,2-dichlorobenzene			<0.00070	<0.00070	<0.00070
,3-dichlorobenzene		1.5	<0.0010	< 0.0010	< 0.0010
,4-dichlorobenzene		0.26	<0.0010	<0.0010	< 0.0010
,1-dichloroethane			< 0.0010	< 0.0010	< 0.0010
,2-dichloroethane		1	<0.0010	<0.0010	< 0.0010
,1-dichloroethylene (1,1-dichloroethene)		4	<0.0010	<0.0010	<0.0010
,2-dichloroethylene (cis) (1,2-dichloroethene (cis))			<0.0010	<0.0010	<0.0010
,2-dichloroethylene (trans) (1,2-dichloroethene (trans))			<0.0010	<0.0010	< 0.0010
,3-dichloropropene			< 0.0010	<0.0014	< 0.0014
ichloromethane (methylene chloride)		0.98	< 0.0050	< 0.0050	< 0.0050
,2-dichloropropane (propylene dichloride)			< 0.0010	< 0.0010	< 0.0010
is-1,3-Dichloropropylene			<0.0010	<0.0010	<0.0010
rans-1,3-Dichloropropylene			<0.0010	<0.0010	<0.0010
,1,1,2-tetrachloroethane			<0.0010	<0.0010	< 0.0010
,1,2,2-tetrachloroethane			<0.0010	<0.0010	<0.0010
etrachloroethylene (1,1,2,2-tetrachloroethene)		1.1	< 0.0010	< 0.0010	< 0.0010
1 1 1-trichloroethane	I		<0.0010	<0.0010	<0.0010

1,1,1-trichloroethane		< 0.0010	< 0.0010	< 0.0010
1,1,2-trichloroethane		< 0.0010	< 0.0010	< 0.0010
trichloroethylene (1,1,2-trichloroethene)	0.2	< 0.0010	< 0.0010	< 0.0010
trichlorofluromethane (freon 11)		< 0.0010	< 0.0010	< 0.0010
vinyl chloride (chloroethene)		< 0.0010	< 0.0010	< 0.0010

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life).

Italics indicates standard is below detection limit.

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19} = extractable petroleum hydrocarbons, carbon range 10-19$

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for EPHw₁₀₋₁₉ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} =$ volatile hydrocarbons, carbon range 6-10

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

GOLDER ASSOCIATES LTD. ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received:24-AUG-12Report Date:13-SEP-12 15:40 (MT)Version:FINAL REV. 2

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L1199825

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 11-1436-0073/1600 1, 2

Comments: This report contains missing VOC data.

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1199825 CONTD.... PAGE 2 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	160	161	157	162	163
	рН (рН)	8.01	8.08	8.01	7.91	7.96
	Total Dissolved Solids (mg/L)	220	220	209	219	224
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	132	134	130	139	139
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	132	134	130	139	139
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	0.0106	<0.0050	<0.0050
	Chloride (Cl) (mg/L)	0.62	0.63	0.59	0.61	0.62
	Fluoride (F) (mg/L)	0.038	0.035	0.038	0.038	0.036
	Nitrate (as N) (mg/L)	0.275	0.283	0.305	0.337	0.337
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.051	<0.050	0.099	0.054	0.051
	Sulfate (SO4) (mg/L)	39.5	39.9	38.9	39.3	39.5
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	0.69	0.54	0.52	0.74	0.71
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.012
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00083	0.00078	0.00089	0.00086	0.00085
	Barium (Ba)-Dissolved (mg/L)	0.025	0.021	0.023	0.024	0.024
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	52.2	52.7	49.4	53.3	53.4
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	7.13	7.14	8.30	7.10	7.19
	Manganese (Mn)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 3 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	157	68.5	60.8	220	306
	рН (рН)	8.04	7.17	7.65	7.66	8.09
	Total Dissolved Solids (mg/L)	192	106	112	328	449
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	148	67.9	59.5	216	161
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	148	67.9	59.5	216	161
	Ammonia, Total (as N) (mg/L)	0.0063	0.0074	0.0337	0.0747	0.0054
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	1.78	<0.50
	Fluoride (F) (mg/L)	0.039	0.062	0.048	0.071	0.058
	Nitrate (as N) (mg/L)	0.0512	0.106	0.243	<0.0050	0.398
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.156	0.537	0.91	0.650	0.052
	Sulfate (SO4) (mg/L)	21.5	2.48	2.72	55.8	186
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.28	13.6	11.8	7.00	1.92
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	0.043	0.091	0.081	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00071	0.00043	0.00043	0.00033	0.00021
	Barium (Ba)-Dissolved (mg/L)	0.027	<0.020	0.023	0.081	0.034
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	49.7	21.4	18.9	61.3	77.6
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	0.0032
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	0.0015	0.0114	0.0096	0.0012	<0.0010
	Iron (Fe)-Dissolved (mg/L)	0.074	0.062	0.152	0.084	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	8.01	3.65	3.30	16.3	27.3
	Manganese (Mn)-Dissolved (mg/L)	0.0342	0.0065	0.0614	0.0326	<0.0020
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 4 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	318	320	130	351	360
	рН (рН)	8.03	8.08	8.17	8.05	7.97
	Total Dissolved Solids (mg/L)	465	457	180	490	498
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	154	155	87.8	184	186
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	154	155	87.8	184	186
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0054	<0.0050	<0.0050	<0.0050
	Chloride (Cl) (mg/L)	<0.50	<0.50	<0.50	<0.50	<0.50
	Fluoride (F) (mg/L)	0.058	0.057	0.070	0.054	0.061
	Nitrate (as N) (mg/L)	0.316	0.358	0.0058	0.436	0.446
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050	0.069	<0.050	<0.050
	Sulfate (SO4) (mg/L)	195	195	56.8	204	205
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	0.50	1.38	<0.50	<0.50
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00016	0.00020	0.00040	0.00014	0.00014
	Barium (Ba)-Dissolved (mg/L)	0.026	0.028	0.025	0.060	0.060
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	80.9	82.5	36.5	92.6	96.5
	Chromium (Cr)-Dissolved (mg/L)	0.0031	0.0031	<0.0020	0.0032	0.0030
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	28.1	27.7	9.53	29.1	28.8
	Manganese (Mn)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	0.0054
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

L1199825 CONTD.... PAGE 5 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	361	365	351	223	258
	рН (рН)	8.06	8.34	7.91	8.15	8.07
	Total Dissolved Solids (mg/L)	510	486	526	345	328
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	188	192	245	175	219
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	2.7	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	188	195	245	175	219
	Ammonia, Total (as N) (mg/L)	<0.0050	0.0057	0.0201	0.147	0.168
	Chloride (Cl) (mg/L)	<0.50	0.62	15.3	<0.50	<0.50
	Fluoride (F) (mg/L)	0.058	0.068	0.116	0.137	0.109
	Nitrate (as N) (mg/L)	0.457	0.135	0.125	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	0.0039	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.085	0.146	0.170	0.415	0.198
	Sulfate (SO4) (mg/L)	207	194	129	83.7	71.1
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	1.83	1.78	1.43	<0.50
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.010	0.020	<0.010	0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	0.00018	0.00056	0.00080	0.00600	0.00570
	Barium (Ba)-Dissolved (mg/L)	0.058	0.039	0.042	0.026	0.028
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	0.11	<0.10	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	94.9	96.2	65.3	35.8	43.6
	Chromium (Cr)-Dissolved (mg/L)	0.0034	<0.0020	<0.0020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	<0.0010	0.0013	<0.0010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.030	0.032	<0.030	<0.030	<0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	30.0	30.2	45.6	32.5	36.2
	Manganese (Mn)-Dissolved (mg/L)	0.0168	0.0106	0.0984	0.354	0.0796
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050

GroupingAnalyteWATERPhysical TestsHardness (as CaCO3) (mg/L) pH (pH)884 8.09Total Dissolved Solids (mg/L)1150Anions and NutrientsAlkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L)<2.0 <2.0 336Alkalinity, Total (as CaCO3) (mg/L) Alkalinity, Total (as CaCO3) (mg/L)<2.0 <336
Physical Tests Hardness (as CaCO3) (mg/L) 884 pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0 Alkalinity, Hydroxide (as CaCO3) (mg/L) <2.0
pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
pH (pH) 8.09 Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Total Dissolved Solids (mg/L) 1150 Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Anions and Nutrients Alkalinity, Bicarbonate (as CaCO3) (mg/L) 336 Alkalinity, Carbonate (as CaCO3) (mg/L) <2.0
Alkalinity, Hydroxide (as CaCO3) (mg/L) <2.0
Alkalinity, Total (as CaCO3) (mg/L) 336
Ammonia, Total (as N) (mg/L) <0.0050
Chloride (Cl) (mg/L) <5.0
Fluoride (F) (mg/L) <0.20
Nitrate (as N) (mg/L) DLA <0.050
Nitrite (as N) (mg/L) DLA <0.010
Total Kjeldahl Nitrogen (mg/L) 0.166
Sulfate (SO4) (mg/L) 557
Drganic / Dissolved Organic Carbon (mg/L) 5.95
Dissolved Metals Dissolved Metals FIELD
Aluminum (Al)-Dissolved (mg/L)
Antimony (Sb)-Dissolved (mg/L)
Arsenic (As)-Dissolved (mg/L) 0.00074
Barium (Ba)-Dissolved (mg/L) 0.074
Beryllium (Be)-Dissolved (mg/L) <0.0050
Bismuth (Bi)-Dissolved (mg/L) <0.20
Boron (B)-Dissolved (mg/L)
Cadmium (Cd)-Dissolved (mg/L) <0.00040
Calcium (Ca)-Dissolved (mg/L) 225
Chromium (Cr)-Dissolved (mg/L)
Cobalt (Co)-Dissolved (mg/L) <0.010
Copper (Cu)-Dissolved (mg/L)
Iron (Fe)-Dissolved (mg/L) 0.076
Lead (Pb)-Dissolved (mg/L) <0.0010
Lithium (Li)-Dissolved (mg/L) <0.010
Magnesium (Mg)-Dissolved (mg/L) 78.5
Manganese (Mn)-Dissolved (mg/L) 0.248
Mercury (Hg)-Dissolved (mg/L) <0.00020
Molybdenum (Mo)-Dissolved (mg/L) <0.030
Nickel (Ni)-Dissolved (mg/L) <0.050

L1199825 CONTD.... PAGE 7 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.28	1.27	1.47	1.33	1.36
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	6.33	6.34	6.29	6.42	6.45
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	3.6	3.6	3.7	3.6	3.6
	Strontium (Sr)-Dissolved (mg/L)	0.167	0.170	0.171	0.167	0.168
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00034	0.00032	0.00036	0.00033	0.00033
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	<20	<20	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 8 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.51	0.99	1.10	1.42	1.43
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	0.0071
	Silicon (Si)-Dissolved (mg/L)	5.81	4.66	4.50	4.87	4.65
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	3.9	<2.0	<2.0	4.3	8.0
	Strontium (Sr)-Dissolved (mg/L)	0.158	0.0440	0.0430	0.210	0.301
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	< 0.030
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.011
	Uranium (U)-Dissolved (mg/L)	0.00033	<0.00010	<0.00010	0.00082	0.00053
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	54	79	42	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 9 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.40	1.40	2.24	1.37	1.38
	Selenium (Se)-Dissolved (mg/L)	0.0073	0.0075	<0.0010	0.0083	0.0083
	Silicon (Si)-Dissolved (mg/L)	4.56	4.59	1.77	4.36	4.21
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	8.0	8.2	2.6	8.0	8.0
	Strontium (Sr)-Dissolved (mg/L)	0.295	0.298	0.207	0.327	0.324
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.011	0.011	<0.010	0.012	0.012
	Uranium (U)-Dissolved (mg/L)	0.00054	0.00053	0.00080	0.00053	0.00057
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	<20	<20	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 10 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.42	1.86	4.42	3.59	3.32
	Selenium (Se)-Dissolved (mg/L)	0.0084	0.0063	0.0014	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	4.18	4.93	7.01	8.05	9.85
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	8.2	8.2	8.7	10.9	7.6
	Strontium (Sr)-Dissolved (mg/L)	0.330	0.337	0.450	0.278	0.347
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.012	0.013	0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00061	0.00053	0.00149	0.00104	0.00077
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
Aggregate Organics	COD (mg/L)	<20	<20	32	45	<20
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1199825 CONTD.... PAGE 11 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
WATER				
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30		
	Potassium (K)-Dissolved (mg/L)	7.52		
	Selenium (Se)-Dissolved (mg/L)	DLA <0.0020		
	Silicon (Si)-Dissolved (mg/L)	5.34		
	Silver (Ag)-Dissolved (mg/L)	<0.010		
	Sodium (Na)-Dissolved (mg/L)	5.0		
	Strontium (Sr)-Dissolved (mg/L)	0.952		
	Thallium (TI)-Dissolved (mg/L)	<0.20		
	Tin (Sn)-Dissolved (mg/L)	<0.030		
	Titanium (Ti)-Dissolved (mg/L)	0.018		
	Uranium (U)-Dissolved (mg/L)	0.00236		
	Vanadium (V)-Dissolved (mg/L)	<0.030		
	Zinc (Zn)-Dissolved (mg/L)	DLA <0.10		
Aggregate Organics	COD (mg/L)	<20		
Volatile Organic Compounds	Benzene (mg/L)	<0.00050		
	Bromodichloromethane (mg/L)	<0.0010		
	Bromoform (mg/L)	<0.0010		
	Carbon Tetrachloride (mg/L)	<0.00050		
	Chlorobenzene (mg/L)	<0.0010		
	Dibromochloromethane (mg/L)	<0.0010		
	Chloroethane (mg/L)	<0.0010		
	Chloroform (mg/L)	<0.0010		
	Chloromethane (mg/L)	<0.0050		
	1,2-Dichlorobenzene (mg/L)	<0.00070		
	1,3-Dichlorobenzene (mg/L)	<0.0010		
	1,4-Dichlorobenzene (mg/L)	<0.0010		
	1,1-Dichloroethane (mg/L)	<0.0010		
	1,2-Dichloroethane (mg/L)	<0.0010		
	1,1-Dichloroethylene (mg/L)	<0.0010		
	cis-1,2-Dichloroethylene (mg/L)	<0.0010		
	trans-1,2-Dichloroethylene (mg/L)	<0.0010		
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014		
	Dichloromethane (mg/L)	<0.0050		
	1,2-Dichloropropane (mg/L)	<0.0010		
	cis-1,3-Dichloropropylene (mg/L)	<0.0010		
	trans-1,3-Dichloropropylene (mg/L)	<0.0010		

L1199825 CONTD.... PAGE 12 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Water 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	87.3	84.8	86.0	85.6	86.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.3	85.0	84.9	85.2	84.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	113.3	104.9	105.6	103.4	105.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 13 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Water 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	86.4	85.4	83.5	86.5	86.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.1	84.9	85.5	84.9	85.4
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	101.2	108.7	99.4	104.9	101.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 14 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-11 Ground Water 23-AUG-12 11:30 DB-MW12-02	L1199825-12 Ground Water 23-AUG-12 12:30 DB-MW12-03	L1199825-13 Surface Water 24-AUG-12 09:30 DB SURFACE	L1199825-14 Ground Water 23-AUG-12 15:45 BU-MW12-01	L1199825-15 Ground Water 23-AUG-12 17:20 BU-MW12-02
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	84.8	86.0	85.7	85.3	84.2
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.0	84.9	85.0	84.9	84.8
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	99.6	101.2	100.8	100.8	93.8
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 15 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Water 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	83.3	83.6	83.7	84.5	83.5
	Surrogate: 1,4-Difluorobenzene (SS) (%)	84.6	84.9	85.1	84.6	84.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	LEPH (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<1.0	<0.25	<0.25	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	93.8	99.4	89.9	95.1	89.6
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Acenaphthylene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000040	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Fluoranthene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050

L1199825 CONTD.... PAGE 16 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
WATER				
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050		
	Styrene (mg/L)	<0.00050		
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010		
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010		
	Tetrachloroethylene (mg/L)	<0.0010		
	Toluene (mg/L)	<0.00050		
	1,1,1-Trichloroethane (mg/L)	<0.0010		
	1,1,2-Trichloroethane (mg/L)	<0.0010		
	Trichloroethylene (mg/L)	<0.0010		
	Trichlorofluoromethane (mg/L)	<0.0010		
	Vinyl Chloride (mg/L)	<0.0010		
	ortho-Xylene (mg/L)	<0.00050		
	meta- & para-Xylene (mg/L)	<0.00050		
	Xylenes (mg/L)	<0.00075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	85.0		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	84.9		
Hydrocarbons	EPH10-19 (mg/L)	<0.25		
	EPH19-32 (mg/L)	<0.25		
	LEPH (mg/L)	<0.25		
	HEPH (mg/L)	<0.25		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10		
	VPH (C6-C10) (mg/L)	<0.10		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	99.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050		
	Acenaphthylene (mg/L)	<0.000050		
	Acridine (mg/L)	<0.000050		
	Anthracene (mg/L)	<0.000050		
	Benz(a)anthracene (mg/L)	<0.000050		
	Benzo(a)pyrene (mg/L)	<0.000010		
	Benzo(b)fluoranthene (mg/L)	<0.000050		
	Benzo(g,h,i)perylene (mg/L)	<0.000050		
	Benzo(k)fluoranthene (mg/L)	<0.000050		
	Chrysene (mg/L)	<0.000050		
	Dibenz(a,h)anthracene (mg/L)	<0.000050		
	Fluoranthene (mg/L)	<0.000050		

L1199825 CONTD.... PAGE 17 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-1 Ground Water 22-AUG-12 11:35 BC-MW12-01	L1199825-2 Ground Water 22-AUG-12 13:00 BC-MW12-02	L1199825-3 Ground Water 22-AUG-12 14:10 BC-MW12-03	L1199825-4 Ground Water 22-AUG-12 09:30 BC-MW12-04	L1199825-5 Ground Wate 22-AUG-12 09:30 BC-MW12-05
Grouping	Analyte					
VATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	91.3	90.0	92.0	92.8	95.5
	Surrogate: Acridine d9 (%)	91.9	95.4	94.1	94.4	90.4
	Surrogate: Chrysene d12 (%)	88.1	87.4	86.0	87.6	86.4
	Surrogate: Naphthalene d8 (%)	89.7	87.9	88.6	90.4	94.6
	Surrogate: Phenanthrene d10 (%)	92.2	93.4	94.0	93.6	94.2

L1199825 CONTD.... PAGE 18 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-6 Surface Water 22-AUG-12 15:20 BC SURFACE	L1199825-7 Ground Water 22-AUG-12 17:00 HC-MW12-01	L1199825-8 Ground Water 22-AUG-12 18:15 HC-MW12-02	L1199825-9 Surface Water 22-AUG-12 19:30 HC SURFACE	L1199825-10 Ground Wate 23-AUG-12 14:10 DB-MW12-01
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	86.7	92.2	96.8	100.1	96.0
	Surrogate: Acridine d9 (%)	85.5	94.0	91.4	102.8	97.9
	Surrogate: Chrysene d12 (%)	82.0	85.3	89.2	92.8	91.1
	Surrogate: Naphthalene d8 (%)	86.2	89.4	93.4	103.3	92.9
	Surrogate: Phenanthrene d10 (%)	89.5	94.1	93.8	100.5	97.6

L1199825 CONTD.... PAGE 19 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

ng/L) 3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%) Phenanthrene d10 (%)	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7 94.7	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2 99.1	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3 95.0	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6 98.0	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2 94.8
3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
3-c,d)pyrene (mg/L) e (mg/L) ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
e (mg/L) ne (mg/L) /L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
ne (mg/L) /L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 <0.000050 92.0 91.1 87.2 89.2
/L) ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 <0.000050 92.6 93.1 90.4 89.7	<0.000050 <0.000050 95.7 98.3 90.6 92.2	<0.000050 <0.000050 91.4 101.1 87.2 89.3	<0.000050 <0.000050 95.9 98.2 89.6 93.6	<0.000050 <0.000050 92.0 91.1 87.2 89.2
ng/L) Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	<0.000050 92.6 93.1 90.4 89.7	<0.000050 95.7 98.3 90.6 92.2	<0.000050 91.4 101.1 87.2 89.3	<0.000050 95.9 98.2 89.6 93.6	<0.000050 92.0 91.1 87.2 89.2
Acenaphthene d10 (%) Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	92.6 93.1 90.4 89.7	95.7 98.3 90.6 92.2	91.4 101.1 87.2 89.3	95.9 98.2 89.6 93.6	92.0 91.1 87.2 89.2
Acridine d9 (%) Chrysene d12 (%) Naphthalene d8 (%)	93.1 90.4 89.7	98.3 90.6 92.2	101.1 87.2 89.3	98.2 89.6 93.6	91.1 87.2 89.2
Chrysene d12 (%) Naphthalene d8 (%)	90.4 89.7	90.6 92.2	87.2 89.3	89.6 93.6	87.2 89.2
Naphthalene d8 (%)	89.7	92.2	89.3	93.6	89.2
Phenanthrene d10 (%)	94.7	99.1	95.0	98.0	94.8
	0			00.0	0110

L1199825 CONTD.... PAGE 20 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-16 Ground Water 23-AUG-12 16:40 BU-MW12-03	L1199825-17 Surface Water 23-AUG-12 18:30 BU-SURFACE	L1199825-18 Ground Water 24-AUG-12 14:00 SC-MW12-01	L1199825-19 Ground Water 24-AUG-12 13:00 SC-MW12-02	L1199825-20 Ground Wate 24-AUG-12 11:50 SC-MW12-03
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Naphthalene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Phenanthrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Pyrene (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Quinoline (mg/L)	<0.000050	<0.00020	<0.000050	<0.000050	<0.000050
	Surrogate: Acenaphthene d10 (%)	92.3	SOL:P P 31.6	98.4	93.7	100.4
	Surrogate: Acridine d9 (%)	96.2	SOL:P P 31.7	94.5	96.5	102.4
	Surrogate: Chrysene d12 (%)	86.2	SOL:P P 28.1	90.5	82.0	91.7
	Surrogate: Naphthalene d8 (%)	88.6	SOL:P P	95.2	97.8	103.3
	Surrogate: Phenanthrene d10 (%)	95.1	15.5 SOL:P	103.6	96.3	105.2

L1199825 CONTD.... PAGE 21 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L1199825-21 Surface Water 24-AUG-12 14:40 SC SURFACE		
Grouping	Analyte			
NATER				
Polycyclic Aromatic Hydrocarbons	Fluorene (mg/L)	<0.000050		
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050		
	Naphthalene (mg/L)	<0.000050		
	Phenanthrene (mg/L)	<0.000050		
	Pyrene (mg/L)	<0.000050		
	Quinoline (mg/L)	<0.000050		
	Surrogate: Acenaphthene d10 (%)	99.5		
	Surrogate: Acridine d9 (%)	102.8		
	Surrogate: Chrysene d12 (%)	92.4		
	Surrogate: Naphthalene d8 (%)	97.4		
	Surrogate: Phenanthrene d10 (%)	101.8		

L1199825 CONTD.... PAGE 22 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Aluminum (Al)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chromium (Cr)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chromium (Cr)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Lead (Pb)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Selenium (Se)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Zinc (Zn)-Dissolved	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Duplicate	Chloride (CI)	DLA	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -5, -6, -7, -8, -9
Matrix Spike	Dissolved Organic Carbon	MS-B	L1199825-4
Matrix Spike	Sulfate (SO4)	MS-B	L1199825-1, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -20, -21, -3, -4, -5, -6, -7, -8, -9

 Qualifiers for Individual Parameters Listed:

 Qualifier
 Description

 DLA
 Detection Limit Adjusted For required dilution

 MS-B
 Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

 SOL:PP
 Surrogate recovery outside acceptable limits due to prep process

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
2	01	•	kalinity". Total alkalinity is determined by potentiometric titration to a methological physical physical structures and total alkalinity values.
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
2	01	•	kalinity". Total alkalinity is determined by potentiometric titration to a methologic probability and total alkalinity values.
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. OR This analysis is carried	out using proce	dures adapted from APHA Method 2320 "A	alinity". Total Alkalinity is determined using the methyl orange kalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ANIONS-CL-IC-WR	Water	Chloride by Ion Chromatography	EPA 300.1
2	01	dures adapted from EPA Method 300.1, "De	etermination of Inorganic Anions by Ion Chromatography", Revision ers Using a Hydroxide-Selective Column", Application Note 154 v.15
ANIONS-F-IC-WR	Water	Fluoride by Ion Chromatography	EPA 300.1

L1199825 CONTD.... PAGE 23 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

ANIONS-NO2-IC-WR Water Nitrite Nitrogen by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-NO3-IC-WR Water Nitrate Nitrogen by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003. Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-WR Water Sulphate by Ion Chromatography

This analysis is carried out using procedures adapted from EPA Method 300.1, "Determination of Inorganic Anions by Ion Chromatography", Revision 1.0, April 1999 and from "Determination of Inorganic Anions in Environmental Waters Using a Hydroxide-Selective Column", Application Note 154 v.19, Dionex 2003.

CARBONS-DOC-VA Water Dissolved organic carbon by combustion

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

COD-COL-VA Water Chemical Oxygen Demand by Colorimetric

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

EPH-SF-FID-VA Water EPH in Water by GCFID

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

HARDNESS-CALC-VA Water Hardness

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-CVAFS-VA Water Dissolved Mercury in Water by CVAFS

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA Water LEPHs and HEPHs

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

MET-DIS-ICP-VA Water Dissolved Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Ammonia in Water by Fluorescence

NH3-F-VA Water

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al

PAH-SF-MS-VA

Water PAH in Water by GCMS

EPA 3510, 8270

APHA 2340B

BCMOE EPH GCFID

EPA 300.1

FPA 300 1

EPA 300.1

EPA SW-846 3005A & EPA 245.7

BC MOE LABORATORY MANUAL (2005)

APHA 5310 TOTAL ORGANIC CARBON (TOC)

APHA 5220 D. CHEMICAL OXYGEN DEMAND

.

L1199825 CONTD.... PAGE 24 of 25 13-SEP-12 15:40 (MT) Version: FINAL REV. 2

		h dichloromethane, prior to analysis by gas chromatogr dily chromatographically separated, benzo(j)fluoranther	
PAH-SURR-MS-VA	Water	PAH Surrogates for Waters	EPA 3510, 8270
Analysed as per the corresp demonstrate analytical accu	0	I test method. Known quantities of surrogate compound	Is are added prior to analysis to each sample to
PH-MAN-WR	Water	pH by Meter	АРНА 4500-Н (В)
"This analysis is carried out electrode."	using proce	dures adapted from APHA Method 4500-H ""pH Value"	". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
		dures adapted from APHA Method 2540 "Solids". Solids ple through a glass fibre filter, TDS is determined by ev	are determined gravimetrically. Total Dissolved Solids aporating the filtrate to dryness at 180 degrees celsius.
TKN-F-VA	Water	TKN in Water by Fluorescence	APHA 4500-NORG D.
		dures adapted from APHA Method 4500-Norg D. "Block stion followed by Flow-injection analysis with fluorescer	
VH-HSFID-VA	Water	VH in Water by Headspace GCFID	B.C. MIN. OF ENV. LAB. MAN. (2009)
		, is heated in a sealed vial to equilibrium. The headspace and n-decane are measured and summed together usin	
VH-SURR-FID-VA	Water	VH Surrogates for Waters	B.C. MIN. OF ENV. LAB. MAN. (2009)
VOC-HSMS-VA	Water	VOCs in water by Headspace GCMS	EPA8260B, 5021
		, is heated in a sealed vial to equilibrium. The headspace easured using mass spectrometry detection.	e from the vial is transferred into a gas chromatograph.
VOC7-HSMS-VA	Water	BTEX/MTBE/Styrene by Headspace GCMS	EPA8260B, 5021
		, is heated in a sealed vial to equilibrium. The headspace easured using mass spectrometry detection.	e from the vial is transfered into a gas chromatograph.
VOC7/VOC-SURR-MS-VA	Water	VOC7 and/or VOC Surrogates for Waters	EPA8260B, 5021
VPH-CALC-VA	Water	VPH is VH minus select aromatics	BC MOE LABORATORY MANUAL (2005)
Volatile Petroleum Hydroca	rbons in Soli , in solids, Si	to the British Columbia Ministry of Environment Analytids or Water". The concentrations of specific Monocyclic tyrene) are subtracted from the collective concentration	c Aromatic Hydrocarbons (Benzene, Toluene,
XYLENES-CALC-VA	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Calculation of Total Xylenes	6		
		rations of the ortho, meta, and para Xylene isomers. R ie no less than the square root of the sum of the square	
* ALS test methods may inco	rporate modi	ifications from specified reference methods to improve	performance.
The last two letters of the ab	ove test code	e(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:
Laboratory Definition Code	Labora	tory Location	
WR	ALS EN	IVIRONMENTAL - WHITEHORSE, YUKON, CANADA	
VA		IVIRONMENTAL - VANCOUVER, BRITISH COLUMBI	A, CANADA

Chain of Custody Numbers:

2

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorde	er: L119982	5 Re	eport Date:	13-SEP-12	Pa	ge 1 of 22
Client: Contact:	GOLDER ASSOCIATES # 201B, 170 Titanium W Whitehorse YT Y1A 00 Andrea Badger	/ay						
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch	R2431168							
WG1540768 Alkalinity, T	3-10 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.0		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-11 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.0		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-12 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.7		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-13 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.9		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-14 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 102.3		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-15 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.5		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-16 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 105.7		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-9 CRM Total (as CaCO3)	VA-ALK-PO	CT-CONTROL 104.8		%		85-115	06-SEP-12
WG1540768 Alkalinity, T	3-31 DUP fotal (as CaCO3)	L1199825- 195	17 198		mg/L	1.5	20	06-SEP-12
Alkalinity, B	Bicarbonate (as CaCO3)	192	195		mg/L	1.2	20	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)	2.7	3.2		mg/L	18	25	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	20	06-SEP-12
WG1540768 Alkalinity, T	3-1 MB Total (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, B	Bicarbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768			4.0					
-	otal (as CaCO3)		<1.0		mg/L		1	06-SEP-12
-	Sicarbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
	Carbonate (as CaCO3) Iydroxide (as CaCO3)		<1.0 <1.0		mg/L mg/L		1	06-SEP-12
-			<1.U		mg/∟		1	06-SEP-12
WG1540768 Alkalinity, T	3-3 MB Total (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, B	Bicarbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, H	lydroxide (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768 Alkalinity, T	3-4 MB Total (as CaCO3)		<1.0		mg/L		1	06-SEP-12

		Workorder:	L119982	25	Report Date: 1	3-SEP-12	Pa	age 2 of 22
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch R243	31168							
	MB		-1.0				4	
Alkalinity, Bicarbo			<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbon			<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi			<1.0		mg/L		1	06-SEP-12
WG1540768-5 I Alkalinity, Total (a	MB s CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo			<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona			<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi			<1.0		mg/L		1	06-SEP-12
	MB				····3 [,] =		·	
Alkalinity, Total (a			<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo	nate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona	ate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
WG1540768-7 I	MB							
Alkalinity, Total (a	s CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo	nate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona	ate (as CaCO3)		<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
	MB							
Alkalinity, Total (a			<1.0		mg/L		1	06-SEP-12
Alkalinity, Bicarbo			<1.0		mg/L		1	06-SEP-12
Alkalinity, Carbona			<1.0		mg/L		1	06-SEP-12
Alkalinity, Hydroxi	de (as CaCO3)		<1.0		mg/L		1	06-SEP-12
ALK-SCR-VA	Water							
Batch R242	26042							
WG1535785-2 Alkalinity, Total (a	CRM s CaCO3)	VA-ALKL-COI	NTROL 98.6		%		85-115	28-AUG-12
WG1535785-5 Alkalinity, Total (a	CRM s CaCO3)	VA-ALKM-CO	NTROL 104.7		%		85-115	28-AUG-12
WG1535785-11 I Alkalinity, Total (a		L1199825-19 175	178		mg/L	2.0	20	28-AUG-12
WG1535785-1 I Alkalinity, Total (a	MB s CaCO3)		<2.0		mg/L		2	28-AUG-12
WG1535785-4 I Alkalinity, Total (a	MB s CaCO3)		<2.0		mg/L		2	28-AUG-12
WG1535785-7 I	MB							

					-	-			
			Workorder:	L119982	25	Report Date: 1	3-SEP-12	Pa	age 3 of 22
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SCR-VA		Water							
Batch	R2426042								
WG1535785-7	7 МВ								
Alkalinity, Tot	al (as CaC	03)		<2.0		mg/L		2	28-AUG-12
ANIONS-CL-IC-V	VR	Water							
Batch	R2430124								
WG1534216-7	7 DUP		L1199825-2						
Chloride (Cl)			0.63	0.61		mg/L	1.8	20	24-AUG-12
WG1534216-2	2 LCS								
Chloride (Cl)	00			102.3		%		85-115	24-AUG-12
WG1534216-6	6 LCS			-					2
Chloride (Cl)	5 LCS			102.1		%		95 115	24 4110 42
				102.1		70		85-115	24-AUG-12
WG1534216-1	I MB			0.50					
Chloride (Cl)				<0.50		mg/L		0.5	24-AUG-12
WG1534216-	5 MB								
Chloride (Cl)				<0.50		mg/L		0.5	24-AUG-12
WG1534216-4	4 MS		L1199540-2						
Chloride (Cl)				102.9		%		75-125	24-AUG-12
WG1534216-8	B MS		L1199825-2						
Chloride (CI)				95.7		%		75-125	24-AUG-12
	_								
ANIONS-F-IC-WI		Water							
Batch	R2430124								
WG1534216-7	7 DUP		L1199825-2						
Fluoride (F)			0.035	0.035		mg/L	0.0	20	24-AUG-12
WG1534216-2	2 LCS								
Fluoride (F)				95.9		%		85-115	24-AUG-12
WG1534216-6	5 LCS								
Fluoride (F)	200			92.9		%		85-115	24-AUG-12
								00 110	21710012
WG1534216-1 Fluoride (F)	I MB			<0.020		mg/L		0.02	24 4110 42
				<0.020		ilig/L		0.02	24-AUG-12
WG1534216-5	5 MB								
Fluoride (F)				<0.020		mg/L		0.02	24-AUG-12
WG1534216-8	B MS		L1199825-2						
Fluoride (F)				87.3		%		75-125	24-AUG-12
ANIONS-NO2-IC	-WR	Water							
Batch	R2430124								
WG1534216-7			L1199825-2						
Nitrite (as N)	-		<0.0010	<0.0010	RPD	NA mg/L	N/A	20	24-AUG-12
WG1534216-2	2 LCS								
1101334210-2	L 100								

					•					
			Workorder:	L119982	5	Report Date: 13	-SEP-12	Pa	ige 4 of 22	
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
ANIONS-NO2-IC-V	VR	Water								
Batch R2	2430124									
WG1534216-2 Nitrite (as N)	LCS			96.3		%		85-115	24-AUG-12	
WG1534216-6 Nitrite (as N)	LCS			102.5		%		85-115	24-AUG-12	
WG1534216-1 Nitrite (as N)	MB			<0.0010		mg/L		0.001	24-AUG-12	
WG1534216-5 Nitrite (as N)	MB			<0.0010		mg/L		0.001	24-AUG-12	
WG1534216-8 Nitrite (as N)	MS		L1199825-2	99.6		%		75-125	24-AUG-12	
ANIONS-NO3-IC-V	V R	Water								
Batch R2	2430124									
WG1534216-7 Nitrate (as N)	DUP		L1199825-2 0.283	0.282		mg/L	0.4	20	24-AUG-12	
WG1534216-2 Nitrate (as N)	LCS			103.5		%		85-115	24-AUG-12	
WG1534216-6 Nitrate (as N)	LCS			103.6		%		85-115	24-AUG-12	
WG1534216-1 Nitrate (as N)	MB			<0.0050		mg/L		0.005	24-AUG-12	
WG1534216-5 Nitrate (as N)	MB			<0.0050		mg/L		0.005	24-AUG-12	
WG1534216-4 Nitrate (as N)	MS		L1199540-2	102.5		%		75-125	24-AUG-12	
WG1534216-8 Nitrate (as N)	MS		L1199825-2	97.2		%		75-125	24-AUG-12	
ANIONS-SO4-IC-W	/R	Water								
Batch R2	2430124									
WG1534216-7 Sulfate (SO4)	DUP		L1199825-2 39.9	39.9		mg/L	0.1	20	24-AUG-12	
WG1534216-2 Sulfate (SO4)	LCS			103.4		%		85-115	24-AUG-12	
WG1534216-6 Sulfate (SO4)	LCS			106.3		%		85-115	24-AUG-12	
WG1534216-1 Sulfate (SO4)	МВ			<0.50		mg/L		0.5	24-AUG-12	
WG1534216-5 Sulfate (SO4)	MB			<0.50		mg/L		0.5	24-AUG-12	

		Workorder:	L119982	5 Re	eport Date: 1	3-SEP-12	Pa	ge 5 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-SO4-IC-WR	Water							
Batch R2430124								
WG1534216-4 MS Sulfate (SO4)		L1199540-2	N/A	MS-B	%		-	24-AUG-12
WG1534216-8 MS Sulfate (SO4)		L1199825-2	92.7		%		75-125	24-AUG-12
CARBONS-DOC-VA	Water							
Batch R2427184								
WG1537210-15 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 99.2		%		80-120	29-AUG-12
WG1537210-2 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 99.4		%		80-120	29-AUG-12
WG1537210-4 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 99.9		%		80-120	29-AUG-12
WG1537210-6 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 100.6		%		80-120	29-AUG-12
WG1537210-9 DUP Dissolved Organic Carbo	on	L1199825-14 <0.50	<0.50	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1537210-1 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	29-AUG-12
WG1537210-14 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	29-AUG-12
WG1537210-3 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	29-AUG-12
WG1537210-5 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	29-AUG-12
WG1537210-10 MS Dissolved Organic Carbo	on	L1199896-3	N/A	MS-B	%		-	29-AUG-12
WG1537210-12 MS Dissolved Organic Carbo	on	L1199911-5	N/A	MS-B	%		-	29-AUG-12
Batch R2429154								
WG1539205-2 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 95.6		%		80-120	31-AUG-12
WG1539205-4 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 98.0		%		80-120	31-AUG-12
WG1539205-1 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	31-AUG-12
WG1539205-3 MB Dissolved Organic Carbo			<0.50		mg/L		0.5	31-AUG-12
WG1539205-6 MS		L1201634-5			J		0.0	0170012

		Workorder:	L119982	5 R	eport Date:	13-SEP-12	Pa	ige 6 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CARBONS-DOC-VA	Water							
Batch R2429154	Ļ							
WG1539205-6 MS Dissolved Organic Carl	bon	L1201634-5	N/A	MS-B	%		-	31-AUG-12
COD-COL-VA	Water							
Batch R2426372	2							
WG1536259-10 LCS COD			103.8		%		85-115	29-AUG-12
WG1536259-2 LCS COD			106.0		%		85-115	29-AUG-12
WG1536259-6 LCS COD			105.8		%		85-115	29-AUG-12
WG1536259-1 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-5 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-9 MB COD			<20		mg/L		20	29-AUG-12
WG1536259-12 MS COD		L1200185-1	94.0		%		75-125	29-AUG-12
WG1536259-4 MS COD		L1199717-9	104.3		%		75-125	29-AUG-12
WG1536259-8 MS COD		L1200103-9	104.6		%		75-125	29-AUG-12
EPH-SF-FID-VA	Water							
Batch R2426236	5							
WG1535548-1 MB								
EPH10-19			<0.25		mg/L		0.25	29-AUG-12
EPH19-32			<0.25		mg/L		0.25	29-AUG-12
Batch R2426306	5							
WG1535548-3 MB			0.07		r.			
EPH10-19			<0.25		mg/L		0.25	30-AUG-12
EPH19-32			<0.25		mg/L		0.25	30-AUG-12
IG-DIS-CVAFS-VA	Water							
Batch R2427021								
WG1535973-8 DUP Mercury (Hg)-Dissolved	Ł	L1199825-12 <0.00020	<0.00005	0 RPD-NA	mg/L	N/A	20	30-AUG-12
WG1537425-2 LCS Mercury (Hg)-Dissolved	Ŀ		97.4		%		80-120	30-AUG-12

		Workorder:	L1199825	i	Report Date: 13	-SEP-12	Pa	ge 7 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IG-DIS-CVAFS-VA	Water							
Batch R2427021								
WG1537425-1 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	30-AUG-12
WG1535973-4 MS Mercury (Hg)-Dissolved		L1199751-1	83.0		%		70-130	30-AUG-12
WG1535973-5 MS Mercury (Hg)-Dissolved		L1200298-2	81.9		%		70-130	30-AUG-12
Batch R2427960 WG1538442-2 LCS Mercury (Hg)-Dissolved			94.0		%		80-120	31-AUG-12
WG1538442-1 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	31-AUG-12
Batch R2429147 WG1535973-6 MS Mercury (Hg)-Dissolved		L1198788-2	122.8		%		70-130	04-SEP-12
Batch R2426332 WG1535973-2 CRM	1	VA-HIGH-WA			97		00.400	
Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved	1		98.1 100.0		%		80-120	29-AUG-12
			96.1		%		80-120	29-AUG-12
Cobalt (Co)-Dissolved Iron (Fe)-Dissolved			90.1 101.8		%		80-120	29-AUG-12
Lithium (Li)-Dissolved			101.7		%		80-120 80-120	29-AUG-12 29-AUG-12
Molybdenum (Mo)-Disso	lved		99.6		%		80-120	29-AUG-12 29-AUG-12
Nickel (Ni)-Dissolved	ived		98.9		%		80-120	29-AUG-12 29-AUG-12
Phosphorus (P)-Dissolve	ed		100.5		%		80-120	29-AUG-12 29-AUG-12
Silicon (Si)-Dissolved			101.5		%		80-120	29-AUG-12 29-AUG-12
			100.6		%		80-120	29-AUG-12
Silver (Ag)-Dissolved					/0			
Silver (Ag)-Dissolved Sodium (Na)-Dissolved			99.8		%		80-120	29-AUG-12
	I		99.8 100.7					
Sodium (Na)-Dissolved	I				%		80-120 80-120 80-120	29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved	I		100.7		% %		80-120	29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved	I		100.7 98.0		% % %		80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved			100.7 98.0 100.5		% % %		80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved			100.7 98.0 100.5 104.2		% % % %		80-120 80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12
Sodium (Na)-Dissolved Strontium (Sr)-Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved Vanadium (V)-Dissolved			100.7 98.0 100.5 104.2		% % % %		80-120 80-120 80-120 80-120	29-AUG-12 29-AUG-12 29-AUG-12 29-AUG-12

		Workorder:	L119982	5 Re	eport Date: 1	13-SEP-12	Pa	age 8 of 22
lest I	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2426332								
WG1535973-1 MB								
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Molybdenum (Mo)-Dissolv	ed		<0.030		mg/L		0.03	29-AUG-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	29-AUG-12
Phosphorus (P)-Dissolved			<0.30		mg/L		0.3	29-AUG-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	29-AUG-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	29-AUG-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	29-AUG-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	29-AUG-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	29-AUG-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	29-AUG-12
Batch R2427019								
WG1535973-4 MS		L1199751-1						
Iron (Fe)-Dissolved			105.9		%		70-130	29-AUG-12
Sodium (Na)-Dissolved			114.3		%		70-130	29-AUG-12
Titanium (Ti)-Dissolved			115.7		%		70-130	29-AUG-12
Batch R2427206								
WG1535973-5 MS		L1200298-2	404 7		0/			
Iron (Fe)-Dissolved			101.7		%		70-130	30-AUG-12
Sodium (Na)-Dissolved			108.5		%		70-130	30-AUG-12
Titanium (Ti)-Dissolved			119.6		%		70-130	30-AUG-12
Batch R2427313								
WG1535973-11 DUP Beryllium (Be)-Dissolved		L1199825-1 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Bismuth (Bi)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Cobalt (Co)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Iron (Fe)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Lithium (Li)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Molybdenum (Mo)-Dissolv	ed	<0.030	<0.030	RPD-NA	mg/L	N/A	20	
Nickel (Ni)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A		29-AUG-12
							20	29-AUG-12
Phosphorus (P)-Dissolved		<0.30	<0.30	RPD-NA	mg/L	N/A	20	29-AUG-12
Silicon (Si)-Dissolved		6.33	6.30		mg/L	0.5	20	29-AUG-12

	Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	age 9 of 22
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA Water							
Batch R2427313							
WG1535973-11 DUP	L1199825-1	0.040					
Silver (Ag)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Sodium (Na)-Dissolved	3.6	3.5		mg/L	1.0	20	29-AUG-12
Strontium (Sr)-Dissolved	0.167	0.166		mg/L	0.7	20	29-AUG-12
Thallium (TI)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Tin (Sn)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Titanium (Ti)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Vanadium (V)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-8 DUP Beryllium (Be)-Dissolved	L1199825-12 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	29-AUG-12
Bismuth (Bi)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Cobalt (Co)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Iron (Fe)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Lithium (Li)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Molybdenum (Mo)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Nickel (Ni)-Dissolved	<0.050	<0.050	RPD-NA	mg/L	N/A	20	29-AUG-12
Phosphorus (P)-Dissolved	<0.30	<0.30	RPD-NA	mg/L	N/A	20	29-AUG-12
Silicon (Si)-Dissolved	4.59	4.59		mg/L	0.1	20	29-AUG-12
Silver (Ag)-Dissolved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	29-AUG-12
Sodium (Na)-Dissolved	8.2	8.2		mg/L	0.2	20	29-AUG-12
Strontium (Sr)-Dissolved	0.298	0.300		mg/L	0.7	20	29-AUG-12
Thallium (TI)-Dissolved	<0.20	<0.20	RPD-NA	mg/L	N/A	20	29-AUG-12
Tin (Sn)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
Titanium (Ti)-Dissolved	0.011	0.011		mg/L	2.0	20	29-AUG-12
Vanadium (V)-Dissolved	<0.030	<0.030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-3 MS	L1199825-13			-			
Iron (Fe)-Dissolved		96.2		%		70-130	29-AUG-12
Sodium (Na)-Dissolved		103.8		%		70-130	29-AUG-12
Titanium (Ti)-Dissolved		107.0		%		70-130	29-AUG-12
MET-DIS-LOW-MS-VA Water							
Batch R2427074							
WG1535973-4 MS Aluminum (Al)-Dissolved	L1199751-1	95.9		%		70-130	29-AUG-12
Antimony (Sb)-Dissolved		97.0		%		70-130	29-AUG-12
Arsenic (As)-Dissolved		107.2		%		70-130	29-AUG-12
Barium (Ba)-Dissolved		N/A	MS-B	%		-	29-AUG-12

	Workord	er: L119982	5 R	eport Date: 1	3-SEP-12	Pa	ge 10 of 2
Fest Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA W	later						
Batch R2427074							
WG1535973-4 MS	L1199751			0/			
Boron (B)-Dissolved		94.2		%		70-130	29-AUG-12
Cadmium (Cd)-Dissolved		102.8		%		70-130	29-AUG-12
Calcium (Ca)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Chromium (Cr)-Dissolved		99.1		%		70-130	29-AUG-12
Copper (Cu)-Dissolved		99.98		%		70-130	29-AUG-12
Lead (Pb)-Dissolved		96.9		%		70-130	29-AUG-12
Magnesium (Mg)-Dissolved		87.2		%		70-130	29-AUG-12
Manganese (Mn)-Dissolved		110.5		%		70-130	29-AUG-12
Potassium (K)-Dissolved		99.5		%		70-130	29-AUG-12
Selenium (Se)-Dissolved		106.4		%		70-130	29-AUG-12
Uranium (U)-Dissolved		97.2		%		70-130	29-AUG-12
Zinc (Zn)-Dissolved		100.1		%		70-130	29-AUG-12
Batch R2427075							
WG1535973-1 MB		<0.0030		~~~/l		0.000	00 4110 40
Aluminum (Al)-Dissolved				mg/L		0.003	29-AUG-12
Antimony (Sb)-Dissolved		<0.00010		mg/L		0.0001	29-AUG-12
Arsenic (As)-Dissolved		<0.00010	-	mg/L		0.0001	29-AUG-12
Barium (Ba)-Dissolved		<0.00005	J	mg/L		0.00005	29-AUG-12
Boron (B)-Dissolved		<0.010		mg/L		0.01	29-AUG-12
Cadmium (Cd)-Dissolved		<0.000050	0	mg/L		0.00005	29-AUG-12
Calcium (Ca)-Dissolved		<0.020		mg/L		0.02	29-AUG-12
Chromium (Cr)-Dissolved		<0.00050		mg/L		0.0005	29-AUG-12
Copper (Cu)-Dissolved		<0.00050		mg/L		0.0005	29-AUG-12
Lead (Pb)-Dissolved		<0.00005	C	mg/L		0.00005	29-AUG-12
Magnesium (Mg)-Dissolved		<0.0050		mg/L		0.005	29-AUG-12
Manganese (Mn)-Dissolved		<0.00005	C	mg/L		0.00005	29-AUG-12
Potassium (K)-Dissolved		<0.050		mg/L		0.05	29-AUG-12
Selenium (Se)-Dissolved		<0.0010		mg/L		0.001	29-AUG-12
Uranium (U)-Dissolved		<0.00001	C	mg/L		0.00001	29-AUG-12
Zinc (Zn)-Dissolved		<0.0030		mg/L		0.003	29-AUG-12
Batch R2427170							
WG1535973-2 CRM	VA-HIGH-						
Aluminum (Al)-Dissolved		100.1		%		80-120	29-AUG-12
Antimony (Sb)-Dissolved		100.6		%		80-120	29-AUG-12

		Workorder:	L1199825	5 F	Report Date: 1	3-SEP-12	Pa	age 11 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2427170								
WG1535973-2 CRM		VA-HIGH-WA						
Arsenic (As)-Dissolved			103.3		%		80-120	29-AUG-12
Barium (Ba)-Dissolved			99.1		%		80-120	29-AUG-12
Boron (B)-Dissolved			96.8		%		80-120	29-AUG-12
Cadmium (Cd)-Dissolve	d		102.5		%		80-120	29-AUG-12
Calcium (Ca)-Dissolved			98.8		%		80-120	29-AUG-12
Chromium (Cr)-Dissolve	d		103.9		%		80-120	29-AUG-12
Copper (Cu)-Dissolved			97.7		%		80-120	29-AUG-12
Lead (Pb)-Dissolved			101.4		%		80-120	29-AUG-12
Magnesium (Mg)-Dissol	ved		103.4		%		80-120	29-AUG-12
Manganese (Mn)-Dissol	ved		101.1		%		80-120	29-AUG-12
Potassium (K)-Dissolved	ł		102.3		%		80-120	29-AUG-12
Selenium (Se)-Dissolved	b		100.2		%		80-120	29-AUG-12
Uranium (U)-Dissolved			101.2		%		80-120	29-AUG-12
Zinc (Zn)-Dissolved			99.9		%		80-120	29-AUG-12
Batch R2427183								
WG1535973-11 DUP Aluminum (Al)-Dissolved	ł	L1199825-1 <0.010	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
Antimony (Sb)-Dissolved		<0.00050	<0.00010	RPD-NA		N/A	20	29-AUG-12
Arsenic (As)-Dissolved		0.00083	0.00080		mg/L	4.0	20	29-AUG-12
Barium (Ba)-Dissolved		0.025	0.0251		mg/L	1.0	20	29-AUG-12
Boron (B)-Dissolved		<0.10	0.020		mg/L	1.3	20	29-AUG-12
Cadmium (Cd)-Dissolve	d	<0.00020	< 0.000050	RPD-NA		N/A	20	29-AUG-12
Calcium (Ca)-Dissolved		52.2	51.4		mg/L	1.5	20	29-AUG-12
Chromium (Cr)-Dissolve	d	<0.0020	0.00054		mg/L	7.8	20	29-AUG-12
Copper (Cu)-Dissolved	-	<0.0010	<0.00050	RPD-NA		N/A	20	29-AUG-12
Lead (Pb)-Dissolved		<0.00050	<0.000050			N/A	20	29-AUG-12
Magnesium (Mg)-Dissol	ved	7.13	7.11		mg/L	0.3	20	29-AUG-12 29-AUG-12
Manganese (Mn)-Dissol		<0.0020	0.000225		mg/L	6.0	20	29-AUG-12 29-AUG-12
Potassium (K)-Dissolved		1.28	1.27		mg/L	0.0	20	29-AUG-12 29-AUG-12
Selenium (Se)-Dissolved		<0.0010	<0.0010					
Uranium (U)-Dissolved	<i>.</i>	0.00034	0.000327	RPD-NA	mg/L	N/A 3.8	20 20	29-AUG-12 29-AUG-12
Zinc (Zn)-Dissolved		<0.00034	<0.000327		-			
			<u><u></u>0.0030</u>	RPD-NA	, mg/L	N/A	20	29-AUG-12
WG1535973-8 DUP Aluminum (Al)-Dissolved	ł	L1199825-12 <0.010	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
Antimony (Sb)-Dissolved		<0.00050	<0.00010	RPD-NA		N/A	20	29-AUG-12
					. 3	1 1/7 1		20700-12

	Workorder	: L1199825	Re	port Date: 1	3-SEP-12	Pa	age 12 of 2
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA W	ater						
Batch R2427183							
WG1535973-8 DUP	L1199825-12						
Arsenic (As)-Dissolved	0.00020	0.00018		mg/L	13	20	29-AUG-12
Barium (Ba)-Dissolved	0.028	0.0276		mg/L	1.0	20	29-AUG-12
Boron (B)-Dissolved	<0.10	0.091		mg/L	0.8	20	29-AUG-12
Cadmium (Cd)-Dissolved	<0.00020	<0.000050	RPD-NA	mg/L	N/A	20	29-AUG-12
Calcium (Ca)-Dissolved	82.5	82.4		mg/L	0.1	20	29-AUG-12
Chromium (Cr)-Dissolved	0.0031	0.00304		mg/L	3.5	20	29-AUG-12
Copper (Cu)-Dissolved	<0.0010	<0.00050	RPD-NA	mg/L	N/A	20	29-AUG-12
Lead (Pb)-Dissolved	<0.00050	<0.000050	RPD-NA	mg/L	N/A	20	29-AUG-12
Magnesium (Mg)-Dissolved	27.7	28.4		mg/L	2.3	20	29-AUG-12
Manganese (Mn)-Dissolved	<0.0020	0.00109		mg/L	1.0	20	29-AUG-12
Potassium (K)-Dissolved	1.40	1.39		mg/L	0.4	20	29-AUG-12
Selenium (Se)-Dissolved	0.0075	0.0075		mg/L	0.4	20	29-AUG-12
Uranium (U)-Dissolved	0.00053	0.000519		mg/L	2.3	20	29-AUG-12
Zinc (Zn)-Dissolved	<0.050	<0.0030	RPD-NA	mg/L	N/A	20	29-AUG-12
WG1535973-3 MS Aluminum (Al)-Dissolved	L1199825-13	i 119.8		%		70-130	29-AUG-12
Antimony (Sb)-Dissolved		105.6		%		70-130	29-AUG-12
Arsenic (As)-Dissolved		124.0		%		70-130	29-AUG-12
Barium (Ba)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Boron (B)-Dissolved		94.7		%		70-130	29-AUG-12
Cadmium (Cd)-Dissolved		122.1		%		70-130	29-AUG-12
Calcium (Ca)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Chromium (Cr)-Dissolved		118.0	-	%		70-130	29-AUG-12
Copper (Cu)-Dissolved		119.7		%		70-130	29-AUG-12 29-AUG-12
Lead (Pb)-Dissolved		102.7		%		70-130	29-AUG-12 29-AUG-12
Magnesium (Mg)-Dissolved		N/A	MS-B	%		-	29-AUG-12
Magnese (Mn)-Dissolved		117.0		%		- 70-130	29-AUG-12 29-AUG-12
Selenium (Se)-Dissolved		97.2		%		70-130	29-AUG-12 29-AUG-12
Uranium (U)-Dissolved		84.3		%		70-130	29-AUG-12 29-AUG-12
Zinc (Zn)-Dissolved		117.3		%		70-130	29-AUG-12 29-AUG-12
	ater	117.5		70		10-130	29-AUG-12
Batch R2427382							
WG1537645-10 CRM Ammonia, Total (as N)	VA-NH3-F	99.6		%		85-115	30-AUG-12
WG1537645-2 CRM	VA-NH3-F						

		Workorder:	L1199825	i Re	eport Date: 1	3-SEP-12	Pa	ge 13 of 22
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-VA	Water							
Batch R2427382								
WG1537645-2 CRM Ammonia, Total (as N)		VA-NH3-F	102.9		%		85-115	30-AUG-12
WG1537645-4 CRM Ammonia, Total (as N)		VA-NH3-F	95.4		%		85-115	30-AUG-12
WG1537645-6 CRM Ammonia, Total (as N)		VA-NH3-F	99.5		%		85-115	30-AUG-12
WG1537645-8 CRM Ammonia, Total (as N)		VA-NH3-F	100.2		%		85-115	30-AUG-12
WG1537645-11 DUP Ammonia, Total (as N)		L1199825-21 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	30-AUG-12
WG1537645-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	30-AUG-12
WG1537645-12 MS Ammonia, Total (as N)		L1199825-21	95.6		%		75-125	30-AUG-12
WG1537645-14 MS Ammonia, Total (as N)		L1200094-1	99.5		%		75-125	30-AUG-12
PAH-SF-MS-VA	Water							
Batch R2427369								
WG1535548-2 LCS								
Acenaphthene			91.5		%		60-130	30-AUG-12
Acenaphthylene			91.6		%		60-130	30-AUG-12
Acridine			88.2		%		60-130	30-AUG-12
Anthracene			93.3		%		60-130	30-AUG-12
Benz(a)anthracene			88.5		%		60-130	30-AUG-12
Benzo(a)pyrene			82.1		%		60-130	30-AUG-12
Benzo(b)fluoranthene			79.7		%		60-130	30-AUG-12
Benzo(g,h,i)perylene			96.6		%		60-130	30-AUG-12
Benzo(k)fluoranthene			102.4		%		60-130	30-AUG-12
Chrysene			101.6		%		60-130	30-AUG-12

		Workorder	: L119982	5	Report Date: 13	-SEP-12	Pa	ge 14 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2427369)							
WG1535548-2 LCS					0/			
Dibenz(a,h)anthracene			93.0		%		60-130	30-AUG-12
Fluoranthene			94.7		%		60-130	30-AUG-12
Fluorene			90.1		%		60-130	30-AUG-12
Indeno(1,2,3-c,d)pyren	e		87.9		%		60-130	30-AUG-12
Naphthalene			86.8		%		50-130	30-AUG-12
Phenanthrene			94.4		%		60-130	30-AUG-12
Pyrene			93.6		%		60-130	30-AUG-12
Quinoline			91.2		%		60-130	30-AUG-12
WG1535548-1 MB Acenaphthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acenaphthylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acridine			<0.00005	0	mg/L		0.00005	30-AUG-12
Anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benz(a)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(a)pyrene			<0.00001	0	mg/L		0.00001	30-AUG-1
Benzo(b)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-1
Benzo(g,h,i)perylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(k)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Chrysene			<0.00005	0	mg/L		0.00005	30-AUG-12
Dibenz(a,h)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Fluorene			<0.00005	0	mg/L		0.00005	30-AUG-12
Indeno(1,2,3-c,d)pyren	е		<0.00005	0	mg/L		0.00005	30-AUG-12
Naphthalene			<0.00005	0	mg/L		0.00005	30-AUG-12
Phenanthrene			<0.00005	0	mg/L		0.00005	30-AUG-12
Pyrene			<0.00005	0	mg/L		0.00005	30-AUG-12
Quinoline			<0.00005	0	mg/L		0.00005	30-AUG-12
WG1535548-3 MB								
Acenaphthene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acenaphthylene			<0.00005	0	mg/L		0.00005	30-AUG-12
Acridine			<0.00005	0	mg/L		0.00005	30-AUG-12
Anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benz(a)anthracene			<0.00005	0	mg/L		0.00005	30-AUG-12
Benzo(a)pyrene			<0.00001	0	mg/L		0.00001	30-AUG-12
Benzo(b)fluoranthene			<0.00005	0	mg/L		0.00005	30-AUG-12

		Workorder:	L1199825		Report Date: 13-	SEP-12	Ра	ge 15 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2427369								
WG1535548-3 MB Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	30-AUG-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	30-AUG-12
Chrysene			<0.000050		mg/L		0.00005	30-AUG-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	30-AUG-12
Fluoranthene			<0.000050		mg/L		0.00005	30-AUG-12
Fluorene			<0.000050		mg/L		0.00005	30-AUG-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	30-AUG-12
Naphthalene			<0.000050		mg/L		0.00005	30-AUG-12
Phenanthrene			<0.000050		mg/L		0.00005	30-AUG-12
Pyrene			<0.000050		mg/L		0.00005	30-AUG-12
Quinoline			<0.000050		mg/L		0.00005	30-AUG-12
PH-MAN-WR	Water							
Batch R2430231 WG1534970-4 DUP		L1199825-1						
рН		8.01	8.02		рН	0.1	25	27-AUG-12
WG1534970-1 LCS рН			99.9		%		70-130	27-AUG-12
WG1534970-3 LCS рН			99.9		%		70-130	27-AUG-12
TDS-VA	Water							
Batch R2427807								
WG1536565-6 DUP Total Dissolved Solids		L1199825-15 498	510		mg/L	2.5	20	29-AUG-12
WG1536565-2 LCS Total Dissolved Solids			104.4		%		85-115	29-AUG-12
WG1536565-5 LCS Total Dissolved Solids			101.3		%		85-115	29-AUG-12
WG1536565-1 MB Total Dissolved Solids			<10		mg/L		10	29-AUG-12
WG1536565-4 MB Total Dissolved Solids			<10		mg/L		10	29-AUG-12
TKN-F-VA	Water				-			
Batch R2427212								
WG1536242-3 DUP Total Kjeldahl Nitrogen		L1199825-10 0.052	0.074	J	mg/L	0.022	0.1	30-AUG-12
WG1536242-2 LCS								

WG1536242-2 LCS

	Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	ige 16 of 22
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-VA Water							
Batch R2427212							
WG1536242-2 LCS Total Kjeldahl Nitrogen		98.7		%		75-125	30-AUG-12
WG1536242-5 LCS Total Kjeldahl Nitrogen		93.2		%		75-125	30-AUG-12
WG1536242-1 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	30-AUG-12
WG1536242-4 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	30-AUG-12
VH-HSFID-VA Water							
Batch R2426189							
WG1537421-3 DUP Volatile Hydrocarbons (VH6-10)	L1199825-21 <0.10	<0.10	RPD-NA	mg/L	N/A	50	31-AUG-12
WG1537421-2 LCS Volatile Hydrocarbons (VH6-10)		105.7		%		70-130	31-AUG-12
WG1537421-1 MB Volatile Hydrocarbons (VH6-10)		<0.10		mg/L		0.1	31-AUG-12
VOC-HSMS-VA Water							
Batch R2428608							
WG1544270-3 DUP Bromodichloromethane	L1199825-21 <0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Bromoform	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Carbon Tetrachloride	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	12-SEP-12
Chlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Dibromochloromethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Chloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
Chloroform	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Chloromethane	<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	12-SEP-12
1,2-Dichlorobenzene	<0.00070	<0.00070	RPD-NA	mg/L	N/A	30	12-SEP-12
1,3-Dichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,4-Dichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1-Dichloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,2-Dichloroethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
cis-1,2-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
trans-1,2-Dichloroethylene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12

		Workorder:	L119982	5 Re	port Date: 1	3-SEP-12	Pa	age 17 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608								
WG1544270-3 DUP		L1199825-21	0.0040					
1,2-Dichloropropane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
cis-1,3-Dichloropropylen		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
trans-1,3-Dichloropropyl		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,1,2-Tetrachloroethar		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,2,2-Tetrachloroethar	ne	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Tetrachloroethylene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,1-Trichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
1,1,2-Trichloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Trichloroethylene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	12-SEP-12
Trichlorofluoromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
Vinyl Chloride		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-SEP-12
WG1544270-2 LCS Bromodichloromethane			87.1		%		70-130	12-SEP-12
Bromoform			100.4		%		70-130	12-SEP-12
Carbon Tetrachloride			100.8		%		70-130	12-SEP-12
Chlorobenzene			96.4		%		70-130	12-SEP-12
Dibromochloromethane			100.0		%		70-130	12-SEP-12
Chloroethane			84.5		%		60-140	12-SEP-12
Chloroform			89.2		%		70-130	12-SEP-12
Chloromethane			74.1		%		60-140	12-SEP-12
1,2-Dichlorobenzene			96.9		%		70-130	12-SEP-12
1,3-Dichlorobenzene			98.3		%		70-130	12-SEP-12
1,4-Dichlorobenzene			96.6		%		70-130	12-SEP-12
1,1-Dichloroethane			82.0		%		70-130	12-SEP-12
1,2-Dichloroethane			78.2		%		70-130	12-SEP-12
1,1-Dichloroethylene			71.2		%		70-130	12-SEP-12
cis-1,2-Dichloroethylene	1		94.3		%		70-130	12-SEP-12
trans-1,2-Dichloroethyle			80.1		%		70-130	12-SEP-12
Dichloromethane			83.3		%		60-140	12-SEP-12
1,2-Dichloropropane			84.5		%		70-130	12-SEP-12
cis-1,3-Dichloropropylen	ie		87.3		%		70-130	12-SEP-12
trans-1,3-Dichloropropyl			80.5		%		70-130	12-SEP-12
1,1,1,2-Tetrachloroethar			104.2		%		70-130	12-SEP-12
1,1,2,2-Tetrachloroethar			81.6		%		70-130	12-SEP-12

		Workorder	: L119982	25	Report Date: 1	3-SEP-12	Pa	age 18 of 2
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608								
WG1544270-2 LCS			105.0		0/		70.400	
Tetrachloroethylene			105.0 94.1		%		70-130	12-SEP-12
1,1,1-Trichloroethane							70-130	12-SEP-12
1,1,2-Trichloroethane			89.1		%		70-130	12-SEP-12
Trichloroethylene			105.6		%		70-130	12-SEP-12
Trichlorofluoromethane			100.7		%		60-140	12-SEP-12
Vinyl Chloride			83.1		%		60-140	12-SEP-12
WG1544270-1 MB Bromodichloromethane			<0.0010		mg/L		0.001	12-SEP-12
Bromoform			<0.0010		mg/L		0.001	12-SEP-12
Carbon Tetrachloride			<0.00050	1	mg/L		0.0005	12-SEP-12
Chlorobenzene			<0.0010	,	mg/L		0.0003	12-SEP-12
Dibromochloromethane			<0.0010		mg/L		0.001	12-SEP-12
Chloroethane			<0.0010		mg/L		0.001	12-SEP-12
Chloroform			<0.0010		mg/L		0.001	12-SEP-12
Chloromethane			< 0.0050		mg/L		0.001	12-SEP-12
1,2-Dichlorobenzene			<0.00070	J	mg/L		0.0007	12-SEF-12
1,3-Dichlorobenzene			<0.0010	,	mg/L		0.0007	12-SEP-12
1,4-Dichlorobenzene			<0.0010		mg/L		0.001	12-SEP-12
1,1-Dichloroethane			<0.0010		mg/L		0.001	12-SEP-12
1,2-Dichloroethane			<0.0010		mg/L		0.001	12-SEP-12
1,1-Dichloroethylene			<0.0010		mg/L		0.001	12-SEP-12
cis-1,2-Dichloroethylene	2		<0.0010		mg/L		0.001	12-SEP-12
trans-1,2-Dichloroethyle			<0.0010		mg/L		0.001	12-SEP-12
Dichloromethane			<0.0010		mg/L		0.001	12-SEP-12
1,2-Dichloropropane			<0.0010		mg/L		0.003	12-SEP-12
cis-1,3-Dichloropropyler	he		<0.0010		mg/L		0.001	12-SEP-12
trans-1,3-Dichloropropy			<0.0010		mg/L		0.001	12-SEP-12
1,1,1,2-Tetrachloroetha			<0.0010		mg/L		0.001	12-SEP-12
1,1,2,2-Tetrachloroetha			<0.0010		mg/L		0.001	12-SEP-12
Tetrachloroethylene	-		<0.0010		mg/L		0.001	12-SEP-12
1,1,1-Trichloroethane			<0.0010		mg/L		0.001	12-SEP-12
1,1,2-Trichloroethane			<0.0010		mg/L		0.001	12-SEP-12
Trichloroethylene			<0.0010		mg/L		0.001	12-SEP-12
Trichlorofluoromethane			<0.0010		mg/L		0.001	12-SEP-12

		Workorder:	L1199825	6 Re	port Date: 1	3-SEP-12	Pa	ge 19 of 22
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2428608 WG1544270-1 MB Vinyl Chloride			<0.0010		mg/L		0.001	12-SEP-12
VOC7-HSMS-VA	Water							
Batch R2425830								
WG1537421-3 DUP Benzene		L1199825-21 <0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Methyl t-butyl ether (MT	BE)	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
meta- & para-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
ortho-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	30-AUG-12
WG1537421-2 LCS Benzene			103.5		%		70-130	30-AUG-12
Ethylbenzene			102.1		%		70-130	30-AUG-12
Methyl t-butyl ether (MT	BE)		102.8		%		70-130	30-AUG-12
Styrene	,		103.3		%		70-130	30-AUG-12
Toluene			101.8		%		70-130	30-AUG-12
meta- & para-Xylene			101.1		%		70-130	30-AUG-12
ortho-Xylene			103.3		%		70-130	30-AUG-12
WG1537421-1 MB								
Benzene			<0.00050		mg/L		0.0005	30-AUG-12
Ethylbenzene			<0.00050		mg/L		0.0005	30-AUG-12
Methyl t-butyl ether (MT	BE)		<0.00050		mg/L		0.0005	30-AUG-12
Styrene			<0.00050		mg/L		0.0005	30-AUG-12
Toluene			<0.00050		mg/L		0.0005	30-AUG-12
meta- & para-Xylene			<0.00050		mg/L		0.0005	30-AUG-12
ortho-Xylene			<0.00050		mg/L		0.0005	30-AUG-12

Workorder: L1199825

Report Date: 13-SEP-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1199825

Report Date: 13-SEP-12

Page 21 of 22

Hold Time Exceedances:

	Sample				_		_
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie
Physical Tests							
pH by Meter							
p	1	22-AUG-12 11:35	27-AUG-12 15:48	24	124	hours	EHTR
	2	22-AUG-12 13:00	27-AUG-12 15:48	24	123	hours	EHTR
	3	22-AUG-12 14:10	27-AUG-12 15:48	24	122	hours	EHTR
	4	22-AUG-12 09:30	27-AUG-12 15:48	24	126	hours	EHTR
	5	22-AUG-12 09:30	27-AUG-12 15:48	24	120	hours	EHTR
	6	22-AUG-12 09:30 22-AUG-12 15:20	27-AUG-12 15:48	24 24	120	hours	EHTR
	7	22-AUG-12 15:20 22-AUG-12 17:00	27-AUG-12 15:48 27-AUG-12 15:48	24 24	120	hours	EHTR
				24 24	118		EHTR
	8	22-AUG-12 18:15	27-AUG-12 15:48			hours	
	9	22-AUG-12 19:30	27-AUG-12 15:48	24	116	hours	EHTR
	10	23-AUG-12 14:10	27-AUG-12 15:48	24	98	hours	EHTR
	11	23-AUG-12 11:30	27-AUG-12 15:48	24	100	hours	EHTR
	12	23-AUG-12 12:30	27-AUG-12 15:48	24	99	hours	EHTR
	13	24-AUG-12 09:30	27-AUG-12 15:48	24	78	hours	EHTL
	14	23-AUG-12 15:45	27-AUG-12 15:48	24	96	hours	EHTR
	15	23-AUG-12 17:20	27-AUG-12 15:48	24	95	hours	EHTR
	16	23-AUG-12 16:40	27-AUG-12 15:48	24	95	hours	EHTR
	17	23-AUG-12 18:30	27-AUG-12 15:48	24	93	hours	EHTR
	18	24-AUG-12 14:00	27-AUG-12 15:48	24	74	hours	EHTL
	19	24-AUG-12 13:00	27-AUG-12 15:48	24	75	hours	EHTL
	20	24-AUG-12 11:50	27-AUG-12 15:48	24	76	hours	EHTL
	21	24-AUG-12 14:40	27-AUG-12 15:48	24	73	hours	EHTL
/olatile Organic Compound							
VOCs in water by Headspa	ce GCMS						
	1	22-AUG-12 11:35	11-SEP-12 16:49	14	20	days	EHT
	2	22-AUG-12 13:00	11-SEP-12 16:49	14	20	days	EHT
	3	22-AUG-12 14:10	11-SEP-12 16:49	14	20	days	EHT
	4	22-AUG-12 09:30	11-SEP-12 16:49	14	20	days	EHT
	5	22-AUG-12 09:30	11-SEP-12 16:49	14	20	days	EHT
	6	22-AUG-12 15:20	11-SEP-12 16:49	14	20	days	EHT
	7	22-AUG-12 17:00	11-SEP-12 16:49	14	20	days	EHT
	8	22-AUG-12 18:15	11-SEP-12 16:49	14	20	days	EHT
	9	22-AUG-12 19:30	11-SEP-12 16:49	14	20	days	EHT
	10	23-AUG-12 14:10	11-SEP-12 16:49	14	19	days	EHT
	11	23-AUG-12 11:30	11-SEP-12 16:49	14	19	days	EHT
	12	23-AUG-12 12:30	11-SEP-12 16:49	14	19	days	EHT
	13	24-AUG-12 09:30	11-SEP-12 16:49	14	18		EHT
	14	23-AUG-12 15:45	11-SEP-12 16:49	14	19	days days	EHT
	14	23-AUG-12 15:45 23-AUG-12 17:20	11-SEP-12 16:49	14	19		EHT
	15	23-AUG-12 17.20 23-AUG-12 16:40	11-SEP-12 16:49	14		days days	EHT
					19 10	days	
	17	23-AUG-12 18:30	11-SEP-12 16:49	14	19	days	EHT
	18	24-AUG-12 14:00	11-SEP-12 16:49	14	18	days	EHT
	19	24-AUG-12 13:00	11-SEP-12 16:49	14	18	days	EHT
	20	24-AUG-12 11:50	11-SEP-12 16:49	14	18	days	EHT
	21	24-AUG-12 14:40	11-SEP-12 16:49	14	18	days	EHT

Legend & Qualifier Definitions:

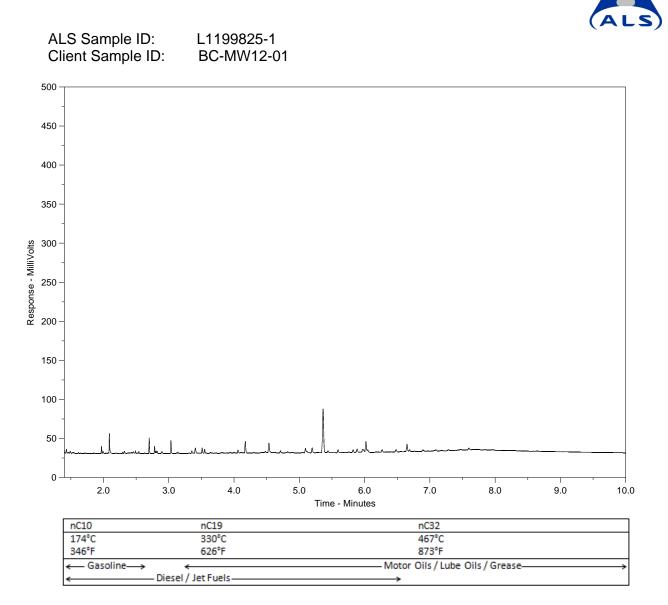
EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

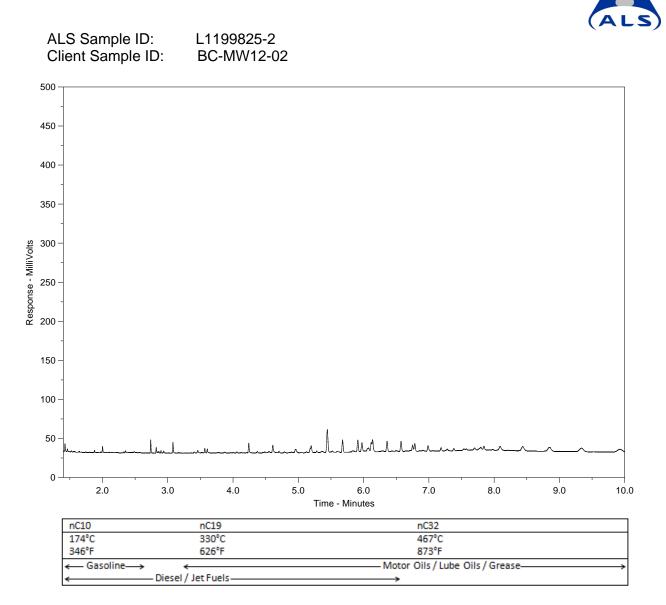
Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1199825 were received on 24-AUG-12 19:50. Workorder: L1199825


Report Date: 13-SEP-12

Page 22 of 22

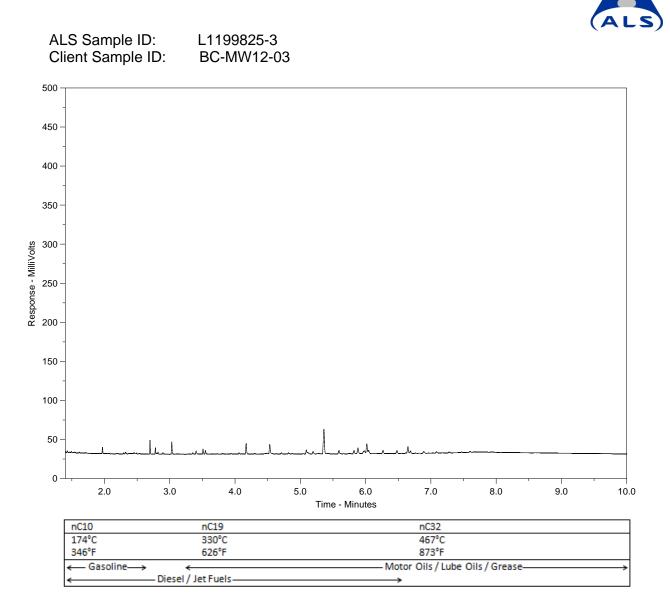
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

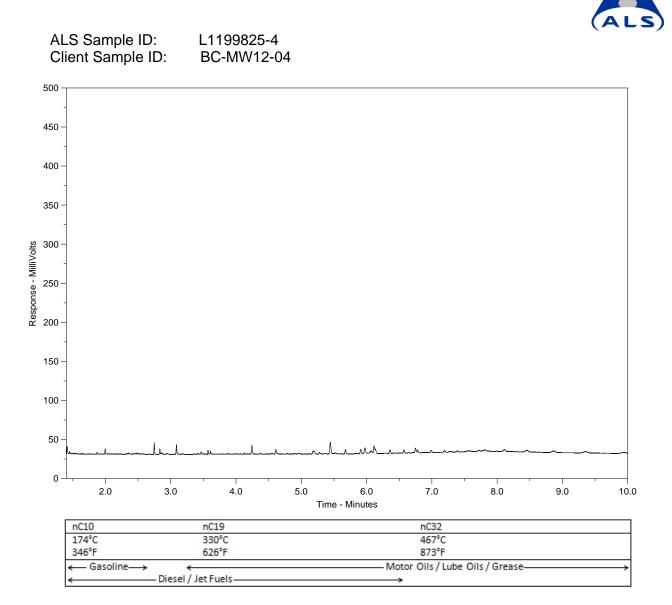
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

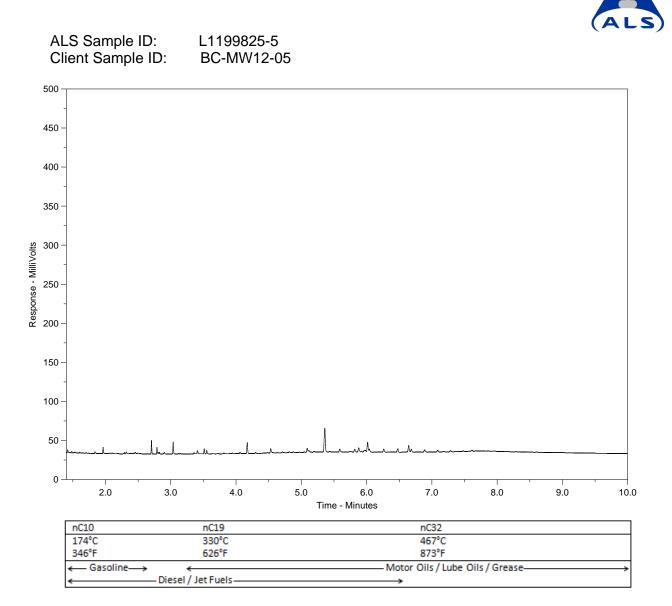
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

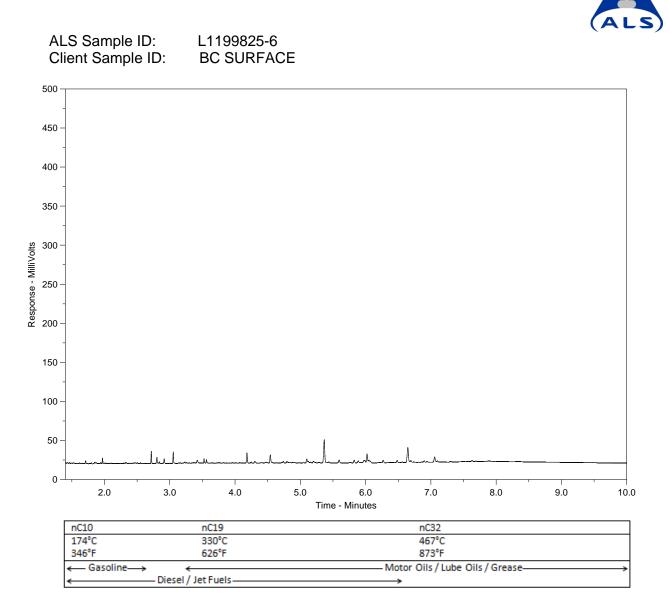
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

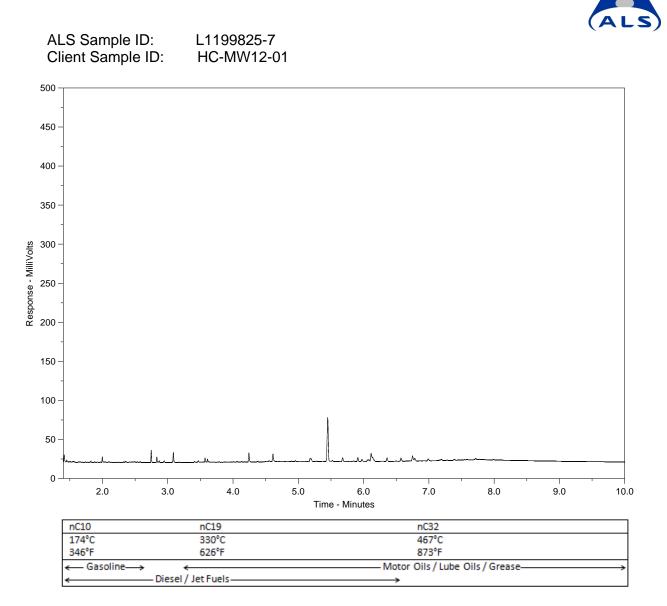
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

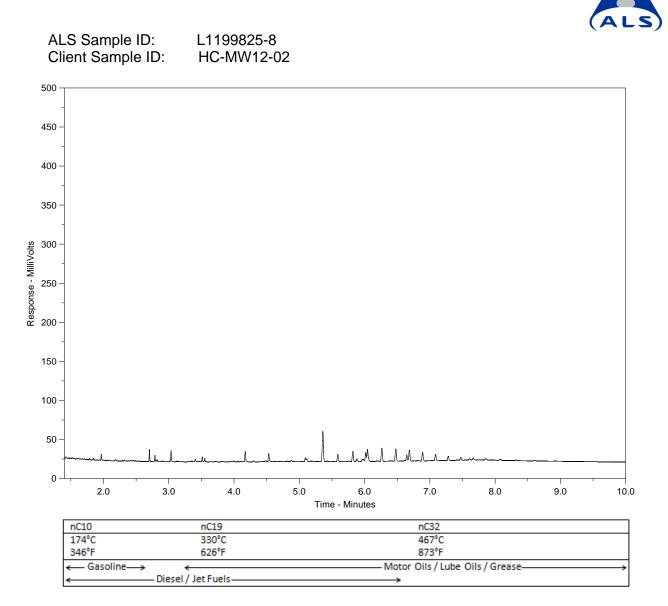
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

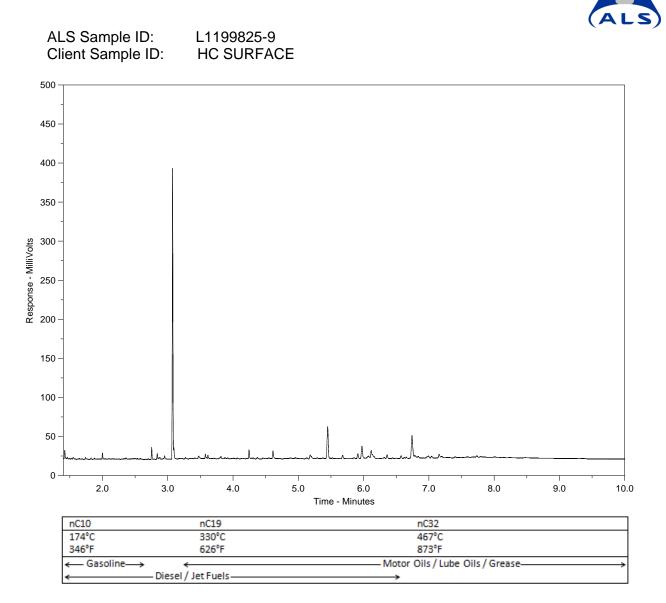
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

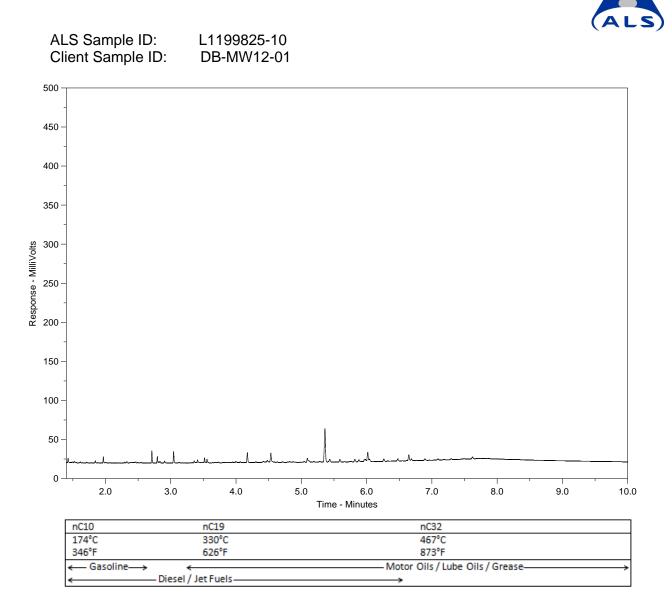
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

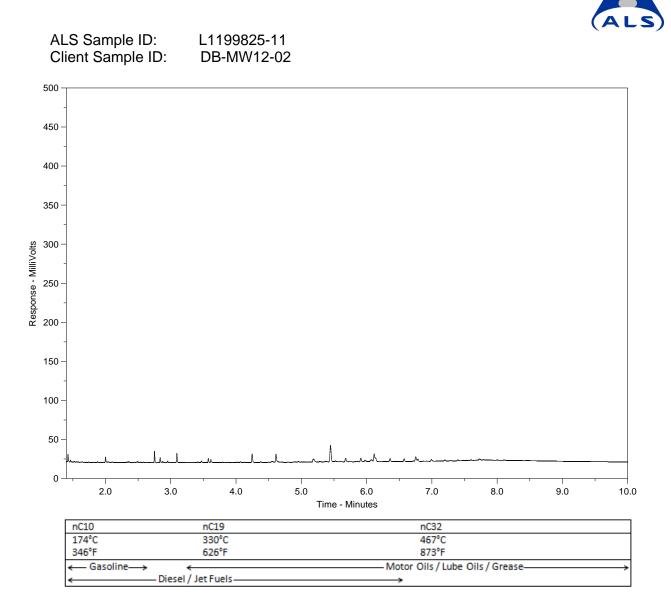
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

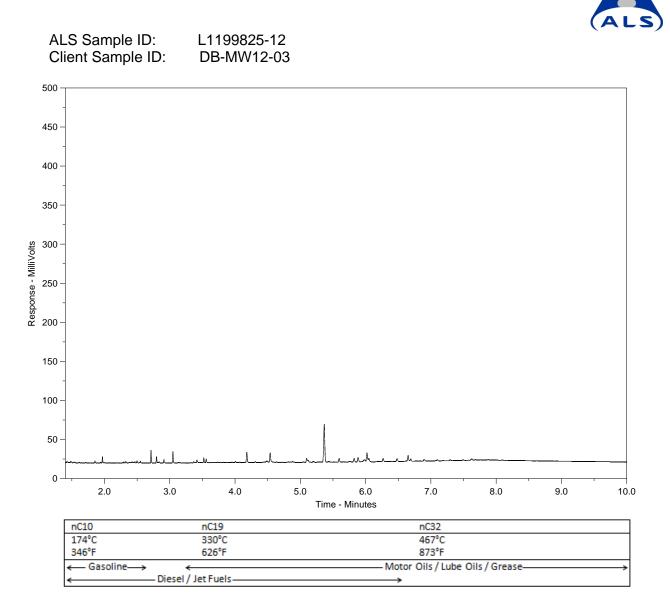
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

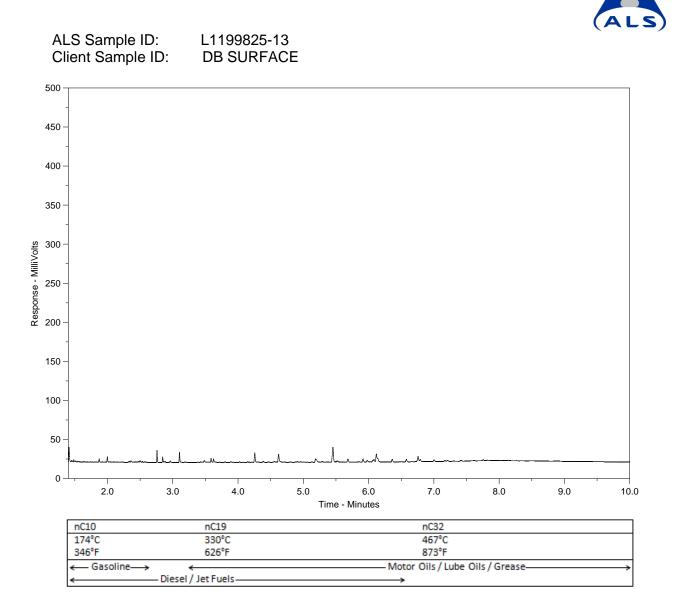
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

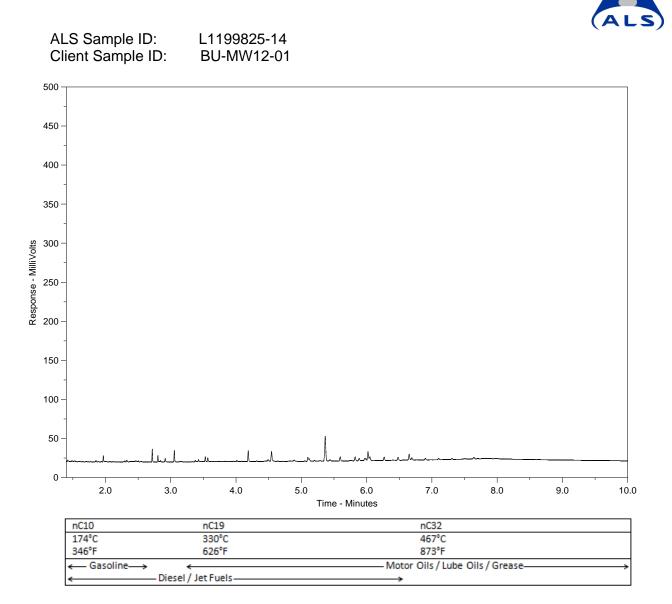
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

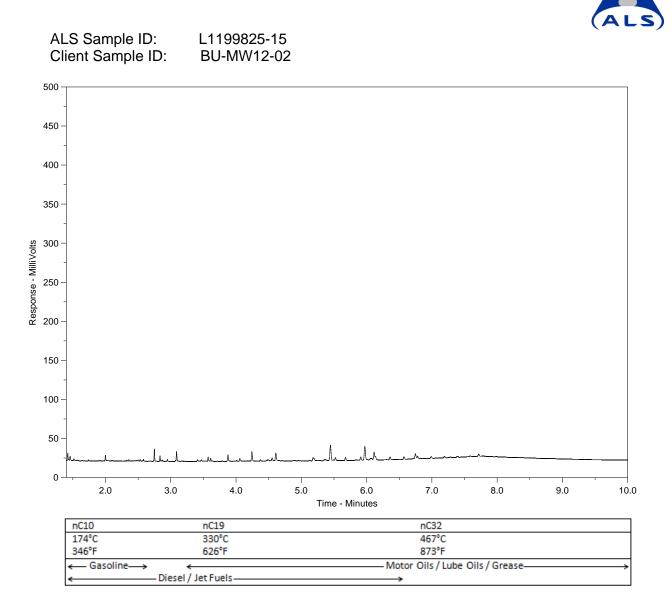
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

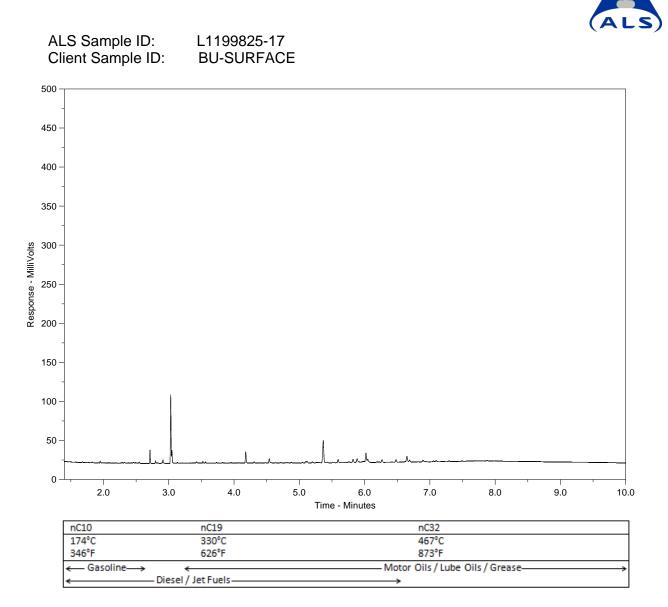
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

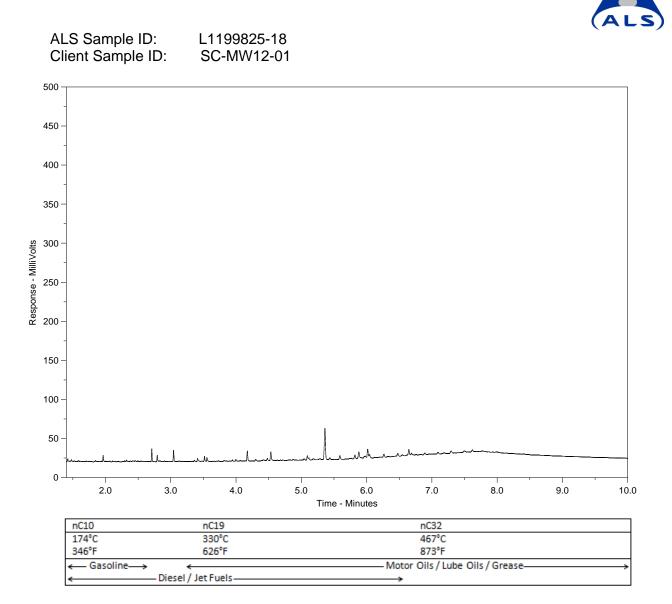
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

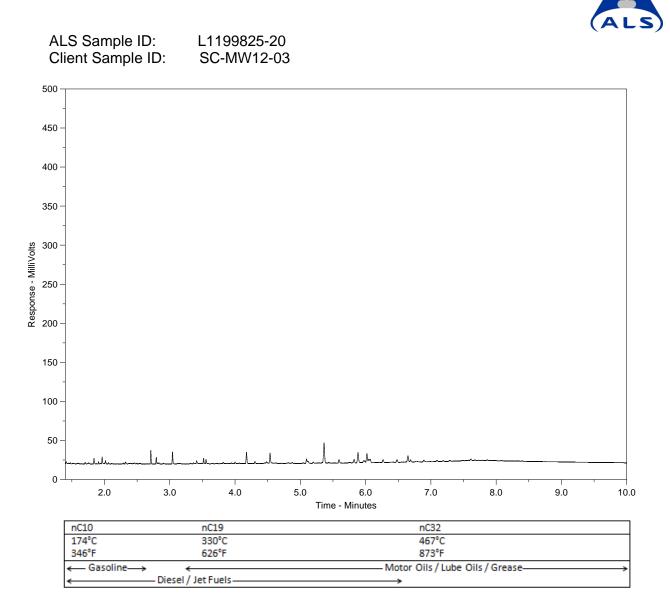
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

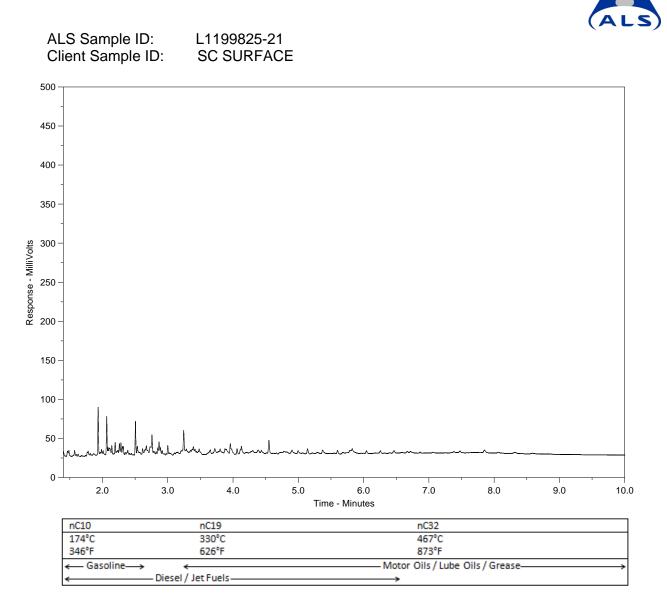
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

www.alsqlobal.com	Canada Toll Free: 1 800 668 9878	Chain of Custody / Analytical Request Form
-------------------	----------------------------------	--

COC #

Н

\sim
~
1.1
IN I
J
-
Π
- He
С.
Ξ,
•
=
Э.
Ξ,
-
m
19
-
6

ALS Environmental	1111111111111							
					tool (D. och for south		≏t to availabilitν)	
	Report Format / Distribution			Service Requested (Nustriation Times - Business Days)	4 Turnaround Times	- Business Davs)		
Company: Golder Associates	Other	2		Priority (2-4 Busin	less Days) - 50% St	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT	LS to Confirm TAT	
Andrea Badger				C) Emergency (1-2 f	3us. Days) - 100% S	O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT	NLS to Confirm TAT	
	andrea paddei@quidei.com			Same Day or Wee	ekend Emergency - (O same Day or Weekend Emergency - Contact ALS to Confirm TAT	rm TAT	
Whitehorse, YT Y1A 0G1 Email 2:	gary namilton/wyuuei.com	uluer.com			Analys	Analysis Request		
Phone: 867-633-6076 Fax: Email 3: c	calvin beeverwyyonei.com			Please indicate	below Filtered,	Please indicate below Filtered, Preserved or both (F,	oth (F, P, F/P)	
e To Same as Report ? Yes No Client / Pro	Client / Project Information	3						
of Invoice with Report? J Yes No Job #:	1-1-1-0-001-01-0000							
Company: PO / AFE:	Ē			000				
Contact:				2/x				iers
Address:				-007				ntaiı
Phone: Fax: Quote #:				436				Coi
Lab Work Order # 2000 ALS Contact:		Sampler:		r 11-1				ber of
이고 이	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	As pe				» Nun
	24-Aug-12	9:30	Surface Water	×				ρiα
BU-MW12-01	23-Aug-12	15:45	Groundwater					» c
BU-MW12-02	23-Aug-12	17:20	Groundwater	×				β
1014 0 30 30 30 BU-MW12-03	23-Aug-12	16:40	Groundwater	×	·			α (
BU Surface	23-Aug-12	18:30	Surface Water	×				» (
SC-MW12-01	24-Aug-12	14:00	Groundwater	×				» [«
10日本語 (SC-MW12-02)	24-Aug-12	13:00	Groundwater	×				
SC-MW12-03	24-Aug-12	11:50	Groundwater					n 1
SC Surface	24-Aug-12	14:40	Surface Water	×				
							- 1	- †
		hunatic Life/RC	CSR - Commer	CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous	Natural, etc) / I	Hazardous Details	sils	
Special Instructions / Regulations with water or land use (CCME-Freshwater Aquauc Lingue	nE-Freshwater F	Nuano Encodo						

Andrea Badger

Released by:

SHIPMENT RELEASE (client use)

Date (dd-mmm-yy) Time (hh-mm)

Received by:

Date:

Time:

Temperature:

Verified by:

Date:

Time:

Observations: Yes / No ?

If Yes add SIF

GENF 18.01 Front

SHIPMENT VERIFICATION (lab use only)

റ്

24-Aug-12

19:00

Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.

SHIPMENT RECEPTION (lab use only)

By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab.

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878	
--	--

Page	
<u> </u> _	
်ရှိ	

lv.

COC#

\sim
٣В
N
\sim
(T)
3
C
APPEND S
14 C
<u> </u>
3
-
107
Ð,
٦
eT
0

										ł
Report To		Report Format / Distribution	/ Distributior	3	6	Service Reque	sted (Rush for rou	Service Requested (Rush for routine analysis subject to availability)	ct to availability)	
·	Golder Associates	Standard	Other			Regular (Standa	Regular (Standard Turnaround Times - Business Days)	s - Business Days)))) ;	
	Andrea Badger	√ PDF	✓ Excel	Digital	Fax	Priority (2-4 Bus	iness Days) - 50% s	Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Continini AL	LS to Confint IAI	
Address: 2	201B 170 Titanium Way		andrea badger@golder.com	iolder.com			BUS, Daysy - Juuro	C Same Day or Weekend Emergency - Contact ALS to Confirm TAT	Im TAT	
	1 YTA UGT		<u>gary nannionwgouer.com</u> calvin heehe@golder.com	Mer.com			Analys	Analysis Request		
						Diesee indicate	- helow Filtered	Please indicate below Filtered. Preserved or both (F.	oth (F, P, F/P)	
Invoice To	Same as Report? / Yes / No	Pre	Information	>					1:	
Hardcopy of In	Hardcopy of Invoice with Report? Yes No		11-1436-00/3/1600	C						
Company:		PO / AFE:				××				
Contact:		LSD:				2/xx				rs
Address:						072				aine
Phone:	Fax:	Quote #:				36-0				onta
	Lab Work Order # 121999825	ALS Contact:	Ś	Sampler:		11-143				er of C
Sample #	(This description will appear on the report)	(dd	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	As pe				Num
	BC-MW12-01	22	22-Aug-12	11:35	Groundwater	×				8
	BC-MW12-02	22	22-Aug-12	13:00	Groundwater	×				00
	BC-MW12-03	22	22-Aug-12	14:10	Groundwater	×				00
	BC-MW12-04	22	22-Aug-12	9:30	Groundwater	×				0
	BC-MW12-05	22	22-Aug-12	9:30	Groundwater	×				8
	BC Surface	22	22-Aug-12	15:20	Surface Water	×				00
	HC-MW12-01	22	22-Aug-12	17:00	Groundwater	×				0
	HC-MW12-02	22	22-Aug-12	18:15	Groundwater	×				8
	HC Surface	21	22-Aug-12	19:30	Surface Water	×				8
	DB-MW12-01	22	23-Aug-12	14:10	Groundwater	×				8
	DB-MW12-02	2:	23-Aug-12	11:30	Groundwater	×				00
	DB-MW12-03	2	23-Aug-12	12:30	Groundwater	×				00
	Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC C	d use (CCME-Fr	eshwater Aq	uatic Life/BC (SSR - Commercial/AB Tier 1 -	ial/AB Tier 1 -	Natural, etc) / H	Natural, etc) / Hazardous Details	, is	
	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab.	portions of this owledges and a	form may de grees with th	elay analysis. ne Terms and C	Please fill in this form LEGIBLY. Conditions as provided on a sepa	s form LEGIBI rovided on a s	LY. eparate Excel t	ab.		
	Also provided on another Excel tab are the ALS location addresses, phone numbers and sample c	n addresses, ph	one number	s and sample o	ontainer / preservation / holding time table for common analyses	ervation / hold	Ing time table t	Olding time table for common analyses.	ilyses. Jse only)	Ar.
	SHIPMENT RELEASE (client use)				Tomporatura:	Varified by:		Time:	Observations	S

Andrea Badger

Released by:

Date (dd-mmm-yy) Time (hh-mm)

Received by: Ger.

Date:

Time:

Temperature: 4

Verified by:

Date:

Time:

Observations: Yes / No ? If Yes add SIF

GENF 18.01 Front

ဂိ

24-Aug-12 (19:50

24-Aug-12

19:00

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada T: +1 (604) 296 4200

