HYDROGEOLOGICAL ASSESSMENT MOUNT LORNE WASTE DISPOSAL FACILITY

REPORT

APRIL 2011 ISSUED FOR USE EBA FILE: W23101317.007

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the Government of Yukon and their agents. EBA, A Tetra Tech Company, does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the Government of Yukon, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in EBA's General Conditions which are provided in Appendix A of this report.

EXECUTIVE SUMMARY

The Government of Yukon (Department of Community Services) engaged EBA, A Tetra Tech Company (EBA) to install a groundwater monitoring well network, undertake a groundwater monitoring event and prepare a hydrogeological assessment of the Mount Lorne Solid Waste Disposal Facility.

EBA directed and supervised the drilling and installation of three monitoring wells in October 2010 and undertook a groundwater monitoring event in November 2010. This report has been prepared in accordance with the agreed scope of work and presents conclusions and recommendations based on the hydrogeological conditions encountered during the fall 2010 fieldwork.

The following conclusions are made based on the findings of the hydrogeological assessment:

- Three monitoring wells ML-MW01, ML-MW02 and ML-MW03 were installed in October 2010 to
 establish a groundwater monitoring network at the Site. All monitoring wells were completed in a
 sand unit with a slotted section at the well bottom to allow groundwater entry;
- Based on groundwater elevation data, monitoring well ML-MW01 appears to be down-gradient and ML-MW02 and ML-MW03 appear to be up-gradient of the waste disposal area. Due to budget constraints, a fourth monitoring well was not installed to meet the requirement to have two down-gradient wells; however, additional groundwater elevation data are necessary to identify potential seasonal changes and confirm the conceptual hydrogeological model;
- No monitoring or sampling of groundwater is believed to have been conducted at the Site prior to the fall 2010 field program;
- Groundwater flow down-gradient of the Site was determined to be in a northerly direction towards Cowley Lakes;
- Analysis of the rising head hydraulic response test results show that the geometric mean of the hydraulic conductivity of the Quaternary Sediments Aquifer is approximately 2.3×10⁻⁵ m/s. The maximum hydraulic conductivity of 4.0×10⁻⁴ m/s was measured at ML-MW03;
- Groundwater from ML-MW01 can be characterized as calcium-bicarbonate type water, while ML-MW02 and ML-MW03 can be characterized as calcium-magnesium-bicarbonate groundwater;
- Concentrations of manganese at monitoring wells ML-MW02 and ML-MW03 exceed the Yukon CSR-DW (aesthetic) criteria;
- All other analytes were below the applicable guideline criteria;
- Organic analytes in all monitoring wells were below the laboratory MDL of 0.1 mg/L with the exception of the HEPH concentration detected in ML-MW02;
- Ammonia, an indicator of leachate contamination, was not detected in any of the three monitoring wells;
- A review of groundwater monitoring results indicates variable concentrations across all wells, with both up and down-gradient wells exhibiting different potential indicators of impacts from landfilling

activities. It is not considered possible to draw a definitive conclusion as to impact to groundwater from the Site on the data set currently available.

The following recommendations are made based on the findings of this 2010 Hydrogeological Assessment report:

- As required by the Site's Solid Waste Disposal Facility Permit, future monitoring programs should be completed once during the spring freshet when the most significant groundwater recharge occurs and once in late summer;
- ML-MW01, ML-MW02 and ML-MW03 should be surveyed by a professional surveyor for location and elevation prior to the next monitoring round. Elevations from the top of the PVC casing and from ground level immediately adjacent to the well should be reported;
- Following the completion of the two further rounds of groundwater monitoring scheduled to be undertaken this year and following interpretation of the results, the impact to groundwater from landfilling activities should be reassessed based on the increased data set.
- Following the next two rounds of groundwater monitoring and interpretation of the results, the need for further investigation into the source of the detectable HEPH concentration at ML-MW02 should be assessed;
- Following the survey of the monitoring wells and the completion of the 2011 groundwater sampling rounds, data should be reviewed by a qualified hydrogeologist and the need for additional up-gradient and down-gradient monitoring wells assessed.

TABLE OF CONTENTS

EXE	CUT	IVE SU	MMARY	i
1.0	INT	RODU	CTION	6
	1.1		GROUND	
	1.2		POSE AND OBJECTIVES	
	1.3		PE AND SEQUENCE OF WORK	
	1.4		IFICATIONS OF ASSESSORS	
	1.5		ORIZATION	
2.0	SIT	E DESC	CRIPTION AND HISTORY	8
	2.1	LOCA	TION OF STUDY AREA	8
	2.2		HISTORY	
3.0	ME	ГНОО	OLOGY	10
	3.1	PREL	IMINARY HYDROGEOLOGICAL ASSESSMENT	10
		3.1.1	Data Sources	
		3.1.2	Site Inspection	
		3.1.3	Background Geological Information	
		3.1.4	Contaminated Sites Registry	
		3.1.5	Interviews with Solid Waste Disposal Facility Personnel	
		3.1.6	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	
		3.1.7	Review of Environment Yukon Information	
		3.1.8	Review of EBA Internal Database	12
	3.2	FIELD) INVESTIGATIONS	12
		3.2.1	Scope of Field Investigations	12
		3.2.2	Groundwater Monitoring Well Network	
		3.2.3	Monitoring Well Surveying	15
		3.2.4	Groundwater Monitoring Event	15
		3.2.5	Rising Head Hydraulic Response Tests	16
	3.3	LABO	RATORY TESTING	16
	3.4	QUAL	ITY CONTROL/QUALITY ASSURANCE	17
	3.5	APPL	ICATION OF APPLICABLE WATER QUALITY STANDARDS	18
4.0	CO	NCEPT	UAL HYDROGEOLOGICAL MODEL	20
	4.1	SETT	ING	20
	4.2	CLIMA	ATE	20
	4.3	GEOL	OGY AND HYDROGEOLOGY	20
		4.3.1	Geological Framework	20
		4.3.2	Principal Aquifers	21
	4.4	GROU	JNDWATER FLOW SYSTEMS	21
		4.4.1	Regional and Intermediate Groundwater Flow	21
		4.4.2	Local Groundwater Flow	22

	4.5	RISING HEAD TEST RESULTS	. 22
	4.6	ESTIMATED AVERAGE LINEAR GROUNDWATER VELOCITY	. 23
	4.7	POTENTIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS.	. 23
5.0	GRO	UNDWATER IMPACT ASSESSMENT	. 24
	5.1	REVIEW OF GROUNDWATER CHEMISTRY	. 24
		Dissolved Solids	
		ved Organic Carbon	
		de	
		onia	
		ates.	
		nics	
	5.2	INTERPRETATION OF GROUNDWATER CHEMISTRY	
6.0	CON	CLUSIONS	. 27
7.0	REC	OMMENDATIONS	. 28
8.0	CLO	SURE	. 29
REFE	REN	CES	. 30
TAB	LES		
Table	1	Groundwater Analytical Results	
Table	2	Groundwater Duplicate RPD'S	
FIGU	JRES		
Figure	e 1	Site Location	
Figure	e 2	Site Plan and Cross Section Alignment A – A'	
Figure		Regional Geology	
Figure		Conceptual Hydrogeological Cross Section A – A'	
Figure Figure		Regional Drainage and Land Zoning Croundwater Floration Centeurs (Nevember 2010)	
Figure		Groundwater Elevation Contours (November 2010) Schoeller Plot	
Figure		Piper Diagram	
Figure		Stiff Diagrams	
APPI	ENDI	CES	
Apper	ndix A	EBA's General Conditions	
Apper	ndix B	Mount Lorne Solid Waste Disposal Facility Permit	
Apper	ndix C	Monitoring Well Logs	
Apper	ndix D	Groundwater Well Development and Sampling Logs	

Appendix E Laboratory Analytical Results

Appendix F Hydraulic Response Test Data and Analysis

1.0 INTRODUCTION

I.I BACKGROUND

EBA, A Tetra Tech Company (EBA) have been retained by the Government of Yukon (YTG), Department of Community Services, to design and install a groundwater monitoring network, undertake a groundwater monitoring event and prepare a Hydrogeological Assessment Report at the Mount Lorne Solid Waste Disposal Facility (SWDF), (the "Site").

These works have been performed in accordance with the approved scope of work detailed in EBA's proposal (Doc. Ref. PW23101317) dated February 2010, accepted by YTG on May 8, 2010 and additional works detailed in EBA's Technical Memo dated April 29, 2010 accepted by YTG on June 21, 2010.

1.2 PURPOSE AND OBJECTIVES

The purpose of this study is to assess the impact of waste disposal at the Site upon local groundwater quality.

The specific objectives of this study were to:

- Design and install a monitoring well network sufficient to provide an assessment of the Site's impact on groundwater quality;
- Assess groundwater quality against relevant Yukon water quality standards;
- Recommend further works to be completed to more comprehensively assess impact to groundwater quality.

1.3 SCOPE AND SEQUENCE OF WORK

The following scope of work was proposed to develop the hydrogeological conceptual model for the Site. This work was performed in accordance with the Site's Solid Waste Disposal Facility Permit (Permit No: 80-009, Effective January 1, 2010 to December 31, 2011), relevant Environment Yukon Protocols and in accordance with the Yukon Environmental & Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (YESAA File Number: 2008-0272). A copy of the current Solid Waste Disposal Facility Permit is provided in Appendix B.

In summary, the proposed scope of work included a preliminary 'desktop study', followed by a field investigation program consisting of the installation of a groundwater monitoring network, water level monitoring, aquifer testing, groundwater sampling and analysis from the monitoring well network, followed by interpretation of results to provide a comprehensive Hydrogeological Assessment Report detailing the impact to groundwater quality and risk to down-gradient receptors. This work was undertaken in general conformance with relevant Yukon Contaminated Sites Regulation (YCSR) protocols (Yukon Department of Environment, 2007a, 2007b, 2008a, 2008b).

To complete the scope of work, EBA completed the following tasks:

Background data collation and review;

- Installation of a monitoring well network;
- Development of monitoring wells;
- Sampling and testing of groundwater;
- Aguifer testing (hydraulic conductivity);
- Data review and interpretation of results;
- Reporting.

Table 1-1 summarizes the tasks and sequence of events to arrive at this report.

Table 1-1: Site Assessment and Task Sequence

Date	Activity
8 May 2010	EBA formally appointed by YTG to undertake the work.
4 July 2010	Site inspection by Adam Seeley of EBA
27 - 30 October 2010	Groundwater monitoring wells installed by Geotech Drilling under the supervision of EBA
22 November 2010	Groundwater monitoring event and slug testing of monitoring wells undertaken by EBA
24 March 2011	Report Issued For Use

1.4 QUALIFICATIONS OF ASSESSORS

Mr. Adam Seeley conducted the initial site inspection, coordinated drilling works, and prepared this assessment report. Mr. Seeley is a Hydrogeologist with EBA's Whitehorse Environment Group, with 9 years experience in the environmental and hydrogeological fields and has been involved in groundwater monitoring and reporting programs at over 50 sites in Australia and the Yukon.

Ms. Breanne Waggott supervised drilling works, undertook the groundwater monitoring and aquifer testing event and assisted in the preparation of this assessment report. Ms. Waggott is a Junior Hydrogeologist with EBA's Whitehorse Environment Group, with 1 year experience in the environmental hydrogeology field. Throughout her time at EBA she has assisted multiple field and desktop based hydrogeological assessments.

Ms. Tamra Reynolds reviewed this report. Ms. Reynolds is a Senior Contaminant Hydrogeologist with EBA's Whitehorse Environment Group, with 15 years of experience in the environmental and hydrogeological fields. She has conducted over 100 Environmental Site Assessments, hydrogeological evaluations, and remediations at sites across Canada including the Yukon Territory. Ms. Reynolds has been

registered as a Professional Geoscientist (hydrogeologist) with the Association of Professional Engineers and Geoscientists in British Columbia since 2001.

1.5 AUTHORIZATION

Written authorization and a signed contract to proceed with the works detailed in EBA's proposal (Doc. Ref. PW23101317) dated February 2010 were received from Bill Brown, YTG Program Manager via email on May 19, 2010.

EBA received verbal authorization from Government of Yukon, Department of Community Services on June 21, 2010 to proceed with the work outlined in EBA's Technical Memo dated April 29, 2010. A Change Order signed by both Mr. Marc Perreault, a Director at the Yukon Government, and an EBA representative authorizing additional tasks to complete water sampling and hydrogeological assessments at the project site was received by EBA on July 9, 2010.

2.0 SITE DESCRIPTION AND HISTORY

2.1 LOCATION OF STUDY AREA

The Mt. Lorne Solid Waste Disposal Facility (SWDF) is located at kilometer 143.2 of the South Klondike Highway, approximately 30 km southeast of Whitehorse at a latitude of 60° 28′ 42″ N and longitude of 134° 51′ 42″ W. The Site is approximately 15 km south of the Alaska Highway and 35 km north of the community of Carcross. The nearest residential development is the Robinson subdivision approximately 400 m east/southeast of the Site.

The Watson River, McConnell Lake and Cowley Lakes are the closest major water bodies to the Site, 4.5 km south, 3.6 km southwest, and 2 km northwest of the waste disposal facility, respectively. The site location and surrounding features are show in Figure 1.

The Site is located at approximately 765 meters above sea level (m asl) on a leveled bench. In general, natural terrain slopes gently to the southwest towards McConnell Lake. Photo 1 shows a view of the former waste deposition area, which has been covered and semi-rehabilitated with grasses and weeds growing on the capped surface. Timber waste is evident in the foreground and plastic bags and other general rubbish can be seen scattered across this area of the Site.

2.2 SITE HISTORY

Mt. Lorne SWDF (aka Mile 9 Dump or Robinson Dump) opened around the early 1980's, prior to a time when disposal permits were required. Given the operation of the Site prior to the issue of a permit, there is the potential that hazardous items such as batteries, waste oil, and other chemical waste may have been buried with general domestic waste. The facility is owned by the Government of Yukon and used by Robinson subdivision residents and residents along the South Klondike Highway (Bear Creek, Hamlet of Mt. Lorne) and Annie Lake Road.

Photo 1: Mount Lorne Solid Waste Disposal Facility - June 2010 (view west)

Over its operational life, the Site has received waste streams including domestic waste, recyclables and household hazardous wastes such as waste oil and batteries. Scrap metals, tires, wood wastes, construction debris have not been accepted at the facility since at least 2003. It could not be determined if these wastes had been historically deposited at the Site prior to 2003.

Prior to around 1993, domestic waste was typically segregated and incinerated with burned waste deposited in pits excavated into the natural land form on the eastern side of the Site. A "no burn" policy was implemented in approximately 1993, with domestic waste being placed in an enclosed concrete bunker with metal roof, periodically picked up and transferred to the domestic waste trench where it was compacted and covered.

Access (2003) noted the following points in regards to the deposition and storage of waste on site:

- Household hazardous waste (e.g. used oils, propane bottles) were not formally collected and often
 ended up in the domestic waste trench and buried with other domestic waste.
- Collected waste or used oil or lubricants are presently being stored in controlled manner at the facility (in drums and pails and secure from weather or vandalism) although there is evidence that some used oil has leaked to the environment.

The Site is now classed as a modified transfer station with waste segregated either for recycling or domestic waste temporarily stored prior to being transported to Whitehorse Landfill for burial. The Site is currently maintained by a site supervisor with access controlled by a lockable gate, an electrified 'Texas gate' livestock grate and an electric fence around the operational area perimeter. The potential exists that access to the Site was formally unrestricted, potentially resulting in the uncontrolled deposition of waste.

Copies of site plans dated July 2002 (Access Consulting) and May 2008 (YTG) were provided to EBA and show former and current domestic garbage storage locations, former domestic waste burial locations, locations of the recycling shelters and special waste storage areas. The completeness of the maps provided in regards to the locations and number of former waste burial areas could not be verified. These maps were compiled into the Figure 2 site plan which shows the locations of groundwater monitoring wells, the concrete waste storage bunker, former domestic garbage burial site and other key site features shown.

The Sites Solid Waste Management Plan (SWMP) details a procedure for the formally routine practice of storage, compaction and covering of domestic waste at the Site. Domestic waste was placed in a storage bunker, then periodically transferred to a domestic waste trench where it was compacted to reduce littering by wind and ravens, to reduce odor and limit infiltration of water. Compaction of the garbage was required to be undertaken either every 21 days or as soon as 0.5 m of solid waste had been deposited. After compaction of the waste, soil or another comparable cover material was placed on top of the waste to a minimum depth of 100 mm to cover the active work face. The preferred cover material were the natural glacial-fluvial sand and silty sands excavated from the burial trench. The SWMP states that this material was suitable as an intermediate cover and capping material.

The SWMP detailed that a final cover material was to be placed over all known or potential waste disposal grounds on the Site. The cover material was to have impermeable characteristics to reduce infiltration and subsequent leachate production. The Site was to be graded and ditched to provide run-off from waste disposal areas and prevent ponding and water infiltration. The completed surface was to be covered with a layer of topsoil and seeded with suitable natural vegetation characteristic to the area.

3.0 METHODOLOGY

3.1 PRELIMINARY HYDROGEOLOGICAL ASSESSMENT

The preliminary hydrogeological assessment methodology involved an assessment of existing information and an inspection of the waste disposal facility and surrounding area on July 4, 2010. The purpose of the preliminary hydrogeological assessment was to identify proper monitoring well locations that are likely covering up- and down-gradient areas of the Site.

This component included the following tasks:

- Collation of background information;
- Assessment of the available groundwater data, borehole logs and related hydrogeological information;
- Development of a preliminary conceptual hydrogeological model.

3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Site inspection;
- Topographic and geological maps;
- EBA internal database search and review of past EBA assessment reports and maps;

- Operational permits issued by Environment Yukon for the Mount Lorne SWDF site;
- Review of the Mount Lorne Solid Waste Management Plan (Access, 2003);
- Environment Canada Climate Normals (1971-2000)
 (http://www.climate.weatheroffice.gc.ca/climate_normals/index_e.html);
- Yukon Water Well Registry, Department of Environment, Government of Yukon (http://www.environmentyukon.gov.yk.ca/pdf/YukonWaterWellsSummary.pdf)
- Contaminated Site Registry records at Department of Environment, Government of Yukon; and,
- Interview with Government of Yukon Community Operator Supervisors.

3.1.2 Site Inspection

A site inspection was undertaken by EBA personnel on July 4, 2010. The purpose of this visit was to review the site location, layout and types of waste, confirm the expected geology and topography, to note aspects of geological and hydrogeological significance and to ascertain drill rig access to the proposed groundwater monitoring well locations.

3.1.3 Background Geological Information

Geological information was obtained through a site visit, review of topographic and geological maps (from the Canadian and Yukon Geological Surveys) and geotechnical reports and maps. Additional subsurface information was gathered through an internal database search of EBA records for boreholes, test pits, monitoring wells, and soil tests completed at or in the vicinity of the site.

3.1.4 Contaminated Sites Registry

Since 2002, when the Yukon Contaminated Sites Regulation came into effect, Environment Yukon has been maintaining records of documented spills and reported contaminated sites throughout the Yukon. This database is known as the Contaminated Site Registry. A request was made to Environment Yukon for a Contaminated Sites Registry search at the Mount Lorne SWDF. Environment Yukon reported to EBA that the registry does not contain a record of any documented spills or contaminated sites within the Site boundary or nearby vicinity. It is noted that there remains a possibility of unreported or un-assessed contamination sources within the vicinity of the Site. Spills documented prior to 2001 can be found through a request from Access to Information & Protection of Privacy Act (ATIP). Such a search was not within the scope of this project.

3.1.5 Interviews with Solid Waste Disposal Facility Personnel

EBA representatives met with Yukon Government, Community Operations Supervisors Mr. Peter Zurachenko and Mr. Jason Doucet on June 23, 2010 to discuss information pertaining to the Mount Lorne SWDF. Information obtained from this interview included:

- Brief site history;
- Historical waste deposition inventory and anecdotal information;

- Most up to date site plans; and,
- Special waste deposition/storage areas.

3.1.6 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

The Site's Solid Waste Disposal Facility Permit (Permit No: 80-009) and Solid Waste Management Plan were reviewed and used in conjunction with relevant background information to assess accepted and potential waste streams, to aid in the assessment of potential contaminant transport mechanisms, to confirm monitoring requirements and develop a monitoring network in compliance with the permit. A summary of the main requirements of the permit in regards to this hydrogeological assessment are outlined in Table 3-1.

Site	Solid Waste Disposal Facility Permit No.	Solid Waste Management Plan	Permit Requires Groundwater Monitoring	Permit Specifies Groundwater Analysis List	Monitoring Schedule
Mt Lorne Solid Waste Disposal Facility	80-009	Yes (Access, 2003)	Yes	Yes	Twice per year (spring and late summer)

3.1.7 Review of Environment Yukon Information

EBA representatives visited the Yukon Department of Environment on June 18th 2008 to conduct a preliminary review of information pertaining to the Mount Lorne SWDF. Information provided by Yukon Department of Environment (Matthew Nefstead, Contaminated Sites Analyst) for review included:

- Current solid waste disposal facility permits (which included accepted waste streams and acceptance of special waste);
- Historical site reports, site plans, site inspection reports;
- Recorded spills on sites or neighboring contaminated sites; and,
- Other miscellaneous information related to the site.

3.1.8 Review of EBA Internal Database

EBA retains a database of previous reports, which was reviewed for information pertaining to the Mount Lorne SWDF. Relevant information was used to assess geological and hydrogeological conditions and assist in the determination of potential drill sites.

3.2 FIELD INVESTIGATIONS

3.2.1 Scope of Field Investigations

The scope of the hydrogeological assessment field investigation was as follows:

- Adam Seeley (EBA) and Breanne Waggott (EBA) conducted an inspection of the Mount Lorne SWDF on 4 July 2010;
- Three onsite groundwater wells were drilled by Geotech Drilling under the supervision of EBA from October 27 to 30, 2010. Wells were developed immediately following the completion of the well installation.
- The three onsite groundwater wells were sampled by EBA on November 22, 2010. The water levels at each location were measured prior to purging and sampling and physicochemical parameters were tested at each monitoring well during sampling. Groundwater samples were sent to analytical laboratories accredited as conforming to ISO/IEC 17025 for analysis;
- Slug tests were conducted on the three monitoring wells on November 22, 2010 in order to estimate the hydraulic conductivity of the aguifer;
- Field and laboratory results were summarized interpreted and are presented in this report.

3.2.2 **Groundwater Monitoring Well Network**

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol 7 (YCSR, 2008).

Three (3) groundwater monitoring wells were proposed to be installed at the Site to assess potential groundwater contamination sourced from the waste disposal facility. ML-MW01 was targeted to characterize up-gradient groundwater conditions while ML-MW02 and ML-MW03 were aimed to assess any impact to the groundwater quality sourced from the landfill. The three monitoring wells were installed in October 2010 under the direction of EBA to establish a groundwater monitoring network.

Locations of the monitoring wells were selected based on aerial photography, review of geological and topographical information, review of site history and a site inspection. A site plan showing the approximate monitoring well locations and key site features is provided in Figure 2. Note that these wells have not been surveyed for location and are only approximate.

The drilling and monitoring well installation was completed by Geotech Drilling of Prince George, British Columbia under the direction of EBA on October 27 to 30, 2010. ML-MW02 and ML-MW03 were both advanced to approximately 21 m below grade (m bg) using an air rotary drilling technique. ML-MW01, located to the north and upgradient of the Site was advanced to 30.5 m bg also using an air rotary technique. Obvious permafrost was not encountered in any borehole during drilling.

Grab samples of the drill cuttings were collected on regular intervals to log the sediments. The borehole logs indicating observed lithology and monitoring well completion details are included in Appendix C, with a summary of well completion details presented in Table 3-2. Groundwater was encountered in ML-MW01 at 27.4 m bg and at ML-MW02 and ML-MW03 at approximately 18 m below grade in a sand aquifer. The lithology encountered was similar at all three locations and consistent with mapped lithological interpretations. Each borehole profile generally consisted of sand with layers of minor silt and gravel to the maximum depth investigated (30.5 m).

Monitoring wells were installed in all three drilled boreholes. Each groundwater monitoring well was completed with the screen installed across the interval where the moisture content of the formation appeared to be transitioning from moist to wet/saturated. Following the installation of the third well, it was deemed that groundwater flow was to the north and there was only one downgradient well installed. Due to budgetary constraints, YG halted the drilling works after the third well was completed.

There were no identified confining or low permeability layers noted on the drill logs, although the drilling method was not conducive to noting thin potential low permeability layers.

Installation details are included on the borehole logs in Appendix C. Typical completion details are:

- All wells were completed in primarily sand aquifers;
- All three wells were drilled and screens placed aiming to intersect the water table;
- Monitoring wells were completed with 50 mm PVC Schedule 40 PVC pipes;
- A 4.5 m long well screen (0.010-slot) was installed at ML-MW01 and ML-MW02 and a 3 m long well screen (0.010-slot) was installed at ML-MW03 with the intent that the observed groundwater table would be approximately 1 m below the top of the well screen;
- A solid un-slotted PVC pipe was installed above the well screen to about 0.9 m above grade;
- A silica sand pack was placed in the annulus between the well screen and the borehole wall. The sand pack was extended from the base of the borehole to about 0.6 m above the well screen;
- Approximately 0.9 m of bentonite was placed in the annulus directly above the sand pack. A second bentonite seal was placed approximately halfway up the borehole in all wells to act as a safeguard against infiltration of surface water to the water table. The remainder of the annulus was filled with native cuttings to around 1.0 m bg.
- A surface seal consisting of approximately 1 m of bentonite and concrete was then installed to bring the borehole to ground level and limit surface water infiltration.
- Each well was capped with a PVC end-cap and the well PVC-standpipe protected and secured with a lockable steel protective casing.
- Each well was developed by removing a minimum of 3 well volumes using a dedicated disposable bailer. Development logs are provided in Appendix D.

Table 3-2: Well Construction Details

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)
ML-MW01	30.5	SAND (with trace gravel)	50	25.6 – 30.2	25.0 – 30.2
		SAND (with grave)			
ML-MW02	21.3	SAND (with gravel and silt)	50	14.3 – 18.9	13.7 – 18.9
		SAND (with some			
ML-MW03	21.0	silt)	50	18.0 – 21.0	17.4 – 21.0

3.2.3 Monitoring Well Surveying

EBA surveyed the vertical elevation of the top of the well PVC standpipe at ML-MW02 and ML-MW03 on October 29, 2010 and ML-MW01 on November 22, 2010. Elevations were surveyed relative to a local benchmark assigned an arbitrary elevation of 100 m. The monitoring wells were not surveyed for location and it is recommended by EBA that this task undertaken at all wells prior to the next monitoring round. Table 3-3 presents survey data and water level measurements.

Table 3-3: Well Survey and Water Level Data

Well ID	GPS Location (UTM NAD83, Zone 8) ¹	Top of PVC Casing Elevation (m) ²	Standing Water Level (m b TOC) 11/22/2010	Groundwater Elevation (m) 11/22/2010	
ML-MW01	6704724N	108.491	28.375	80.116	
	507653E		20.0.0		
ML-MW02	6704644N	98.821	18.04	80.781	
IVIL-IVIVVOZ	507589E	90.021			
ML-MW-03	6704603N	100.68	19.674	81.006	
IVIL-IVIVV-03	507657E	100.00	19.074	01.000	
¹ GPS locations may include an error of up to 10 – 15 m. ² Elevation relative to arbitrary local benchmark of 100 m.					

3.2.4 Groundwater Monitoring Event

Groundwater monitoring wells ML-MW01, ML-MW02 and ML-MW03 were sampled by EBA on November 22, 2010 using methods in accordance with Contaminated Sites Regulation Protocol No. 7: Groundwater Monitoring Well Installation and Sampling. ML-MW03 was sampled approximately three weeks after the completion of drilling, installation and development. Due to difficulties during the installation process, monitoring wells ML-MW01 and ML-MW02 could not be developed immediately following installation. These two wells were purged thoroughly prior to sampling to allow for sampled groundwater to be representative of groundwater in the aquifer.

Prior to sampling, the standing water level (SWL) was measured in each well, using an electric measuring tape. Each well was purged by removing three well volumes using a dedicated disposal bailer prior to a sample being obtained. During purging, physicochemical parameters (pH, temperature, EC, DO) could only be recorded intermittently due to cold temperatures (-15°C) affecting the electronic instrumentation. Groundwater Purge and Sampling Field Sheets are presented in Appendix D.

Each sample bottle was labeled with the location ID, project number and date. Sample containers and appropriate preservatives for each suite of tests were provided by the primary laboratory. Samples for dissolved metals analysis were field filtered using new, clean $0.45~\mu m$ filters and preserved with nitric acid. All samples were stored in coolers containing ice-bricks and delivered to the analytical laboratories (Exova and Maxxam) under Chain of Custody and within appropriate holding times. Both laboratories are certified by the Canadian Association for Laboratory Accreditation and are accredited as conforming to ISO/IEC 17025 for analysis.

3.2.5 Rising Head Hydraulic Response Tests

Rising head tests were undertaken at each monitoring well to estimate the hydraulic conductivity of the aquifer at the specific well location. The rising head test was performed by quickly removing 1 liter of water from the well using 50.8 mm diameter dedicated polyethylene bailers. The recovery response in the well was then monitored closely using the water level sounder until the water level had recovered to at least 80% of its static water level. In addition to the manual data, a Solinst Levelogger® was deployed in the well to automatically record the water level data at one second intervals.

The Levelogger installed in ML-MW01 was damaged and/or faulty and the data recorded during the test could not be downloaded for analysis. The recovery of the well was too quick for the manual data obtained to be meaningfully interpreted.

3.3 LABORATORY TESTING

The laboratory testing completed for the submitted groundwater samples collected on November 22, 2010 is summarized in Table 3-4. This analysis list is in compliance with the requirements of the Site's Solid Waste Disposal Facility Permit (Permit No. 80-009).

Sampling and analysis of groundwater samples were undertaken in general accordance with Yukon Contaminated Site Regulation Protocols 2 and 5 (YCSR, 2007, 2008).

Table 2 4.	l oborotomi	Tooting	Dreamon	- November 2010
i abie 5-4.	Laboratory	resuna	Program -	- Novellibel Zulu

Sample ID	Ca, Mg, Na, K, Cl, SO4, NO3, NO2, PO4	Dissolved Metals, Hg, Hardness	Alkalinity, CO3, HCO3, pH, TDS, NH3, DOC	VOCs, COD, TKN, EPHw10-19	VHw6-10, BTEX, PAHs
ML-MW01	✓	✓	✓	✓	✓
ML-MW02	✓	✓	√	✓	✓
ML-MW03	√	√	√	√	√

3.4 QUALITY CONTROL/QUALITY ASSURANCE

This section describes the Quality Assurance (QA) and Quality Control (QC) procedures undertaken to ensure sample integrity and representativeness, and the reliability and accuracy of analysis results.

A RPD data validation spreadsheet is provided in Table 2. Data validation is summarized in Table 3-5.

Table 3-5: Review of QA/QC

QA/QC Aspect	Evidence and Evaluation
Data Representativeness	
Sample integrity	All samples were received by the laboratory within appropriate holding times.
Background Samples	Groundwater elevation data from the November 2010 monitoring round indicates that ML-MW03 is hydraulically up gradient of the Site and the groundwater samples from this location can be considered to be representative of background conditions.
Field Procedures	Monitoring wells were developed and sampled using dedicated hand bailers. All equipment that was used in multiple wells was decontaminated using a three stage wash procedure (detergent, tap water, distilled water).
Calibration of Field Equipment	Calibration of field equipment was undertaken prior to each day of field work.
Data Precision and Accuracy	
Blind Duplicates	One blind duplicate sample was collected from ML-MW02 during the November 2010 groundwater monitoring event. Of the 40 analyte pairs tested, RPD values could not be calculated for 13 pairs as both values were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, 2 analytes (cadmium and iron) exceeded the RPD acceptance criteria of +/-30%. These exceedances are considered to be generally minor and related to the poor reproducibility of the analytical methods at low analyte concentrations. RPD calculations are presented in Table 2.
Split Duplicates	A split duplicate sample was not collected from any of the wells during the November 2010 groundwater monitoring event due to technician oversight.
Trip Blanks	A trip blank was not collected during the November 2010 groundwater monitoring event.
Laboratory Internal QA/QC	Laboratory internal QA/QC is detailed within the primary laboratory report (Appendix E). Overall, the primary lab showed acceptable testing frequency and results for method blanks, laboratory duplicates and matrix spikes.

Table 3-5: Review of QA/QC

QA/QC Aspect	Evidence and Evaluation
Holding Times	Holding times for samples were in conformance with applicable ASTM and laboratory requirements.
Laboratory Detection Limit	Laboratory reports indicate that the method detection limits were lower than the respective assessment criteria.
Completeness of test program	The scope of work undertaken was generally consistent with that required to characterize the Site and meet the study objective.
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. Whilst split duplicate and trip blank samples were not obtained during the November 2010 event, the primary laboratory displayed acceptable internal QA/QC and results of the blind duplicate were acceptable and therefore, the data set used as the basis for the groundwater assessment is considered to be valid and complete.

3.5 APPLICATION OF APPLICABLE WATER QUALITY STANDARDS

The Yukon Contaminated Sites Regulation (YCSR) (Environment Act) provides standards for the assessment and remediation of contaminated sites in the Yukon. The water quality standards applying to the assessment of groundwater contamination in the Yukon are those specified in Schedule 3 of the YCSR. Protocol 6 of the Yukon Contaminated Sites Regulation describes the appropriate application of these standards.

The four types of water uses outlined in the YCSR, the relevant water quality standards and their applicability to the assessment are presented in Table 3-6.

Table 3-6: Applicable Water Quality Standards

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment ¹
Aquatic Life	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1	Not Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

The following presents an assessment of the applicability of each water use detailed above to this assessment.

Aquatic Life

There are no identified potential Aquatic Life receptors (surface water discharge locations such as wetlands, lakes or rivers) down-gradient of the Site. Therefore, this water use is considered to be **not applicable**.

Drinking Water

A review of the Yukon Water Well Registry by EBA on January 4, 2011 shows there are potentially several wells within a 1.5 km radius of the Mt Lorne waste disposal facility that may be used for drinking water. It is noted that this database is not complete and it is likely that there are more wells than that recorded on the registry in the local vicinity. The nearest identified domestic water well is located at the Mt. Lorne Fire Hall, 200 m south of the Site. Domestic developments that may use groundwater wells as a drinking water source are located at the Robinson subdivision 300 m south of the Site.

As the well at the Mt. Lorne Fire Hall and the domestic developments in Robinson are located within the allotted distances for drinking water use (1.5 km), this water use is considered to be **applicable**.

Irrigation

The Yukon Water Well Registry compiled by the Department of the Environment was review by EBA on January 4, 2011. The registry does not list the use of the wells in the vicinity of the solid waste disposal facility as being for Irrigation use. It is noted that this database is not a complete record of all wells drilled and it is possible that there are irrigation wells in the local vicinity not captured on the registry.

A review of Google Earth images and an inspection of the Mount Lorne area on July 4, 2010 did not identify any crops or farmland that would potentially require irrigation with groundwater sourced from a well. Figure 5 shows that there are no areas within 1.5 km of the Site identified for agricultural land use. Therefore, it is considered that there is very little likelihood of this water use being realized down-gradient and the water use is considered **not applicable**.

Livestock

The Yukon Water Well Registry compiled by the Department of the Environment was review by EBA on January 4, 2011. The registry does not list any of the eight wells in the vicinity of the solid waste disposal facility as being for Livestock use. It is noted that this database is not a complete record of all wells drilled and it is possible that there are Livestock wells in the local vicinity not captured on the registry.

A review of Google Earth images and an inspection of the Mount Lorne area on July 4, 2010 did not identify farmland or livestock that would potentially require groundwater sourced from a well. Figure 5 shows that there are no areas within 1.5 km of the Site identified for agricultural land use. Therefore, it is considered that there is very little likelihood of this water use being realized downgradient and the water use is considered **not applicable**.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 **SETTING**

The Site is located approximately 30 km southeast of downtown Whitehorse, approximately 50 m east of the Klondike Highway. The nearest residential area to the Site is the Robinson subdivision 200 m to the east. The Site is roughly rectangular with a length of approximately 150 m and a width approximately 70 m. A site plan is presented in Figure 2.

On a regional scale, as shown on Figure 1, the land surrounding the Site generally slopes southwest towards McConnell Lake. In the immediate vicinity of the Site, the land slopes moderately to the south/southwest. There has been significant disturbance of the natural land surface within the Site boundary. The Site has been cut and filled to construct the level bench that the current waste transfer station is located on. There has also been excavation and leveling of the natural land surface between the transfer station and the former waste burial site. The topography of the former waste burial site resembles that of the local topography.

All large vegetation species have been removed from the Site and there are only shrubs, small trees, grasses and weeds remaining within the site boundaries. The area surrounding the Site has a medium to heavy cover of native vegetation.

4.2 CLIMATE

Climatic data is not recorded in the Mount Lorne area. Data from Whitehorse airport (the closest weather station, 30 km from Mount Lorne), indicates 267 mm of annual precipitation with the majority of precipitation falling as rain between May and October. The average annual temperature at the Whitehorse airport is -0.7°C with the warmest average monthly temperature being July (14.1°C), and the coldest month generally being January with an average temperature of -17.7 °C (Environment Canada, Whitehorse Airport 1971 to 2000). From this information it can be concluded that groundwater recharge through surface water infiltration will be highest from May to October.

4.3 GEOLOGY AND HYDROGEOLOGY

4.3.1 Geological Framework

Figure 3 illustrates the general regional geology (GSC, 2008).

The southern Yukon, including the Mt. Lorne area, has undergone several episodes of glaciation, the most recent being the Quaternary McConnell glaciation. During the period of glaciation, sediment such as glacial till and lacustrine silts were deposited, specifically in areas of low elevation such as the Mt. Lorne SWDF.

The Mt Lorne region is mapped as being underlain by Quaternary aged deposits, described as unconsolidated silt, sand and gravel of glacial, fluvial, aeolian and lacustrine origins; minor volcanic ash. These deposits are mapped as being regionally continuous to the north and south of the Site and generally limited in extent to the west and east by outcropping bedrock. The Whitehorse 1:250,000 Surficial Geology Mapsheet (1990) describes the Site as being underlain by glaciolacustrine deposits consisting of clay, silt

and sand; 5 to 10 m thick. This description of the surficial lithology is generally consistent with the lithology logged during the monitoring well installation works.

Underlying the glacial sediments at the Site is bedrock mapped as the Laberge Group, consisting of Jurassic aged shale, siltstone, sandstone, conglomerate, and dacite tuff (GSC, 2008). The Laberge Group outcrops directly west and east of the Site. Cretaceous aged volcanic batholiths also outcrop west and east of the Site. On a regional scale these batholiths outcrop sporadically (GSC, 2008).

Cross-section A-A', shown as Figure 4, illustrates the interpreted conceptual geological and hydrogeological model of the Mt Lorne Solid Waste Disposal Facility area.

4.3.2 Principal Aquifers

As shown in Figure 4, within the immediate site vicinity groundwater occurs within the glacial/surficial quaternary deposits. Groundwater would be expected to occur in the bedrock underlying the Site.

For the purpose of this report, these units have been named the Quaternary Sediments Aquifer and Bedrock Aquifer for ease of reference.

The principal aquifers in the local region between the Site and Mt Lorne and their type are summarized in Table 4-1.

Table 4-1: Principal Aquifers

Aquifer Name	Location	Aquifer Type	Comment
Quaternary Sand Aquifer	Mapped underlying and to the west of the Site	Intergranular, porous media	Unconfined, water table aquiferUnderlies the Site
Bedrock Aquifer	Underlying and to the east of the Site	Fractured rock	 Deep regional flow in this aquifer Recharged by infiltration of surface water in outcrop areas and through lateral and vertical inflow from the overlying sand aquifer

4.4 GROUNDWATER FLOW SYSTEMS

Groundwater occurrence and flow can generally be described by a series of interconnected flow systems on a regional, intermediate and local scale with flow from areas of recharge to areas of discharge.

4.4.1 Regional and Intermediate Groundwater Flow

Figure 5 shows the Site to be located on the edge of two regional catchment basins. To the north, the catchment drains towards the Yukon River and to the south towards Lake Bennett. The topographic location of the Site indicates surface water flow at this location would be to the south, and that groundwater flow would most likely also be in this direction on a regional scale.

Regional groundwater flow is expected to be in the deep bedrock aquifer towards major regional discharge locations, while on an intermediate scale, flow would be through both the bedrock aquifer and the

overlying glacial/surficial quaternary deposits, potentially discharging to smaller lakes and rivers in the region.

Groundwater recharge to the bedrock aquifer is expected to be primarily through infiltration of rainfall in high elevation outcrop areas surrounding the Site while recharge to the quaternary deposits is expected through vertical and horizontal leakage from the bedrock and direct infiltration of surface water.

4.4.2 Local Groundwater Flow

Groundwater elevations were measured in each monitoring well during the November 2010 sampling program. At each well, the groundwater elevation, post completion, was within the screened interval, indicating the water table aquifer was intersected.

EBA used the groundwater depth data from November 2010 and well survey elevation information collected in October and November 2010 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations as of November 15, 2010 are presented in Table 3-3. Figure 6 presents the groundwater elevations and inferred groundwater contours from November 15, 2010.

The groundwater elevation contours indicate flow to the north towards Cowley Lake. This flow direction differs from that considered by the conceptual hydrogeological model prior to drilling, however is consistent with the Site being located in the northern catchment basin. Using the data presented in Figure 6, the horizontal hydraulic gradient is approximately 0.0096 m/m towards the north.

4.5 RISING HEAD TEST RESULTS

EBA analyzed two rising head test results (one each for ML-MW02 and ML-MW03) using Hvorslev (1951) and Bouwer & Rice (1976) analysis methods implemented in the AquiferTest™ (ver. 3.0) software. As discussed in Section 3.2.5, there was no data available for interpretation from ML-MW01.

The hydraulic conductivity testing results and the plots are attached in Appendix F. The estimated hydraulic conductivities for each well using the two analysis methods are presented in Table 4-2.

Monitoring	Hvorslev Estimate (m/s)	Bouwer & Rice	Hydrogeological Unit	Geometric mean Hydraulic Conductivity (m/s)	
Well ID	Logger Data	Logger Data	Onit		
ML-MW01	Data logger faulty – r anal		Sand and gravel		
ML-MW02	1.6E-05	1.3E-05	Sand, some gravel, some silt	2.3E-05	
ML-MW03	4.0E-05	3.1E-05	Sand and silt		

Table 4-2: Estimated Hydraulic Conductivity

As shown in Table 4-2, the estimated hydraulic conductivity using the Hvorslev and Bouwer & Rice methods ranged from 1.3×10^{-5} to 4.0×10^{-5} m/s, with a geometric mean of 2.3×10^{-5} m/s.

4.6 ESTIMATED AVERAGE LINEAR GROUNDWATER VELOCITY

As described above, the geometric mean hydraulic conductivity of the aquifer at the two locations measured is 2.3×10^{-5} m/s and the maximum hydraulic conductivity was 4.0×10^{-5} m/s at ML-MW03. The observed hydraulic gradient across the property was 0.0096 m/m towards to the north. Average linear groundwater velocity is calculated using the following equation:

$$V = (K i) / n$$

Where: V: is groundwater velocity in metres per second (m/s);

K : is hydraulic conductivity in meters per second (m/s) determined from the site specific slug tests;

i: is horizontal hydraulic gradient in metres/metres (m/m); and,

n: is porosity estimated to be 40% (Freeze and Cherry, 1979) in the silt and sand.

This results in an estimated average groundwater velocity of approximately 17.4 m per year and a maximum velocity of 30.3 m per year in the sand unit. Groundwater downgradient of the Site may travel faster or slower than that calculated depending upon the permeability of the material and the degree of interconnectivity between permeable units.

4.7 POTENTIAL FOR CONTAMINATION OF GROUNDWATER AND TRANSPORT MECHANISMS

The following identified potential sources of groundwater contamination are based on site history and inspection, anecdotal information and processes governing the generation and transport of leachate in landfills. Potential sources identified include:

- Leachate sourced from the former domestic waste disposal trenches and other decomposable matter that may have been historically dumped at the Site (e.g. treated wood, plant matter). These contaminants include heavy metals, nutrients (NH₃, NO₃), organic hydrocarbons (fuels, PAHs, chlorinated hydrocarbons) and salts;
- Leakage and spillage of hydrocarbons from on-site special waste storage areas;
- There were no off-site sources of pollution identified which could be considered to have impacted upon the groundwater flowing beneath the Site.

The main pathways for the transport of contaminants from the sources identified above to groundwater and downgradient receptors are:

- Percolation of leachate from waste deposits and other identified contaminants through underlying soils to the Quaternary Sediments Aquifer. It is considered that the hydraulic conductivity of the Quaternary Sediments Aquifer (1.3×10⁻⁵ to 4.0×10⁻⁵ m/s) would not significantly limit contaminants from percolating through the subsurface.
- Transport of contaminants within the Quaternary Sediments Aquifer towards down-gradient discharge locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 REVIEW OF GROUNDWATER CHEMISTRY

One round of groundwater sampling was conducted as discussed in section 3.2.4. Copies of original laboratory reports and Chain of Custody documentation are included in Appendix E. Tabulated laboratory results are presented in Table 1. Table 5-1 summarizes some of the key water quality results from lab testing along with chemistry results from the Mt Lorne Firehall (EBA, 2006) approximately 180 m to the south. While this well is reported to be 35 m in total depth and deeper than the landfill monitoring wells, it is potentially representative of background conditions and chemistry results from this well have been used in the following discussion for comparative purposes.

Table 5-1: Key Groundwater Chemistry Results

Monitoring Well ID	TDS	Ammonia	Sulphate	HEPH	LEPHw	Benzene	Uranium	Manganese
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
ML-MW01	308	< 0.05	48.8	< 0.1	< 0.1	< 0.001	0.0054	0.038
ML-MW02	344	< 0.05	39.9	0.2	< 0.1	< 0.001	0.0053	0.239
ML-MW03	610	< 0.05	67.4	< 0.1	< 0.1	< 0.001	0.0111	0.321
Mt Lorne Firehall Well (Oct 2004)	220	NA	32	NA	NA	NA	0.0028	0.004
NA – not analyzed								

Table 5-2 details analytes which exceed the YCSR drinking water standards. Laboratory test results from groundwater samples collected during November 2010 have been used in assessing against criteria values. Table 1 presents all laboratory analytical results and compares all results against applicable standards. Copies of the laboratory reports are included in Appendix E.

Table 5-2: Groundwater Results Exceeding Most Stringent YCSR Schedule 3 Criteria

Parameter	Guideline	Water	Well ID				
	Value	Use	ML-MW01	ML-MW02	ML-MW03		
Manganese ¹	0.05	Drinking Water	NE	0.239	0.321		
¹ All results in mg/L NE – Guideline Value Not Exceeded							

A discussion of key groundwater parameters that potentially indicate impact of the aquifer from the waste disposal facility and exceedances of relevant water quality guideline criteria are presented below.

Total Dissolved Solids

Total Dissolved Solids (TDS) can indicate groundwater contamination from a waste disposal facility, with dissolved constituents of the degradation of organic waste (typically NO_3 , NH_3 , Na, K, Mg, Ca, SO_4 , Cl, HCO_3) contributing to an increase in TDS concentration. The TDS of the monitoring wells ranged from 308 mg/L (ML-MW01) to 610 mg/L (ML-MW03) across the Site.

ML-MW03, which is inferred to be an upgradient well and would be expected to be representative of background conditions, reported a concentration approximately double that of ML-MW01 and ML-MW02 and three time higher than the Mt Lorne Firehall well. The cause of the elevated concentration at ML-MW03 is unknown, given there is no identified sources of contamination upgradient. While not identified during the site history or inspection, there is a possibility of unrecorded dumping of waste to the south of the landfill which has impacted upgradient groundwater quality at this location. Alternatively, there may be mounding of leachate beneath the landfill area or lateral movement of high TDS leachate in the unsaturated zone, along lower permeability layers of the quaternary deposits that has impacted ML-MW03. While lower permeability layers were not logged during drilling works, this drilling method is not conducive to observing thin layers in a formation. There is also the potential that preferential recharge of low TDS surface water through the disturbed areas of the landfill may have diluted the background TDS reported at ML-MW03, subsequently resulting in the lower concentrations.

Dissolved Organic Carbon

Dissolved Organic Carbon (DOC) concentrations can indicate organic matter sourced from a landfill impacting on groundwater. If a monitoring well is impacted by landfill leachate, DOC concentrations would be expected to show an increase to concentrations potentially in the hundreds or thousands of mg/L.

The DOC concentrations in all wells were relatively low when compared to that typically reported in landfill leachate, although ML-MW02 reported a DOC concentration noticeably higher than the other two onsite wells.

Chloride

Chloride concentrations at ML-MW02 and ML-MW03 were over 30 times higher than that reported at inferred downgradient well ML-MW01. The cause of this inconsistency is not clear, although it is potentially the result of increased infiltration of surface water with low chloride concentrations through higher permeability excavation and/or waste deposition areas.

Ammonia

Ammonia is a typical constituent of landfill leachate and an indicator of contamination sourced from a landfill.

The concentrations of ammonia reported at all three wells were below the laboratory MDL and below applicable guideline criteria.

Sulphate

The sulphate concentration at inferred background well ML-MW03 appears slightly elevated when compared to the concentrations reported at ML-MW01 and ML-MW02 and inferred natural background concentration in the Mt Lorne Firehall well. Sulphate concentrations are typically elevated in landfill leachate, which may indicate impact from landfill operations at this.

Metals

Heavy metals concentrations are generally consistent across all wells on site.

Uranium was detected in all monitoring wells on site although concentrations were below the applicable Drinking Water guideline criteria. The reported concentrations are considered to be naturally occurring, with uranium detected in groundwater in the Mt Lorne Firehall well, as well as being typically detected at similar concentrations in other areas across the Yukon such as Deep Creek, Haines Junction, Champagne, Tagish and Copper Ridge. Concentrations of uranium may be attributed to the element occurring naturally in intrusive granodiorite, which is mapped as being present in the region or it may be sourced from ground granodiorite in glacial deposits underlying the Site.

Manganese has been reported in municipal solid waste leachate at concentrations up to 31 mg/L (Fetter, 1999). Manganese was detected in all monitoring wells and exceeded the applicable guideline criteria for aesthetic Drinking Water at ML-MW02 and ML-MW03. The concentrations reported at on-site wells were 1 to 2 orders of magnitude higher than that reported in the Mt Lorne Firehall well. ML-MW02 and ML-MW03, inferred to be upgradient wells, reported concentrations an order of magnitude higher than down-gradient well ML-MW01.

Organics

All organics results were reported at concentrations below the laboratory method detection limits (MDLs) with the exception of the Heavy Extractable Petroleum Hydrocarbons (HEPH) result at ML-MW02, which was detected at a concentration slightly above the MDL. While the detection of HEPH may indicate impact from landfilling operations, given it is not typically considered to be found naturally in groundwater and that the well is considered to be up-gradient of the landfill, further investigation into the source of the detectable HEPH should be undertaken following the confirmation of detectable HEPH concentrations in subsequent rounds of groundwater monitoring to be conducted in 2011, and interpretation of the results.

5.2 INTERPRETATION OF GROUNDWATER CHEMISTRY

A comparison of groundwater chemistry for major ions for each well is displayed in the Schoeller Plot (Figure 7) and Piper Diagram (Figure 8). Stiff Diagrams provide a plot of major ions that can be easily interpreted in terms of relative percentages of cations and anions. Stiff Diagrams for each of the sample locations are presented in plan format as Figure 9, as an aid to interpretation of the spatial distribution of groundwater chemistry.

Groundwater from ML-MW01 can be characterized as calcium-bicarbonate type water, while ML-MW02 and ML-MW03 can be characterized as calcium-magnesium-bicarbonate groundwater. The Piper Plot, Schoeller diagram and Stiff diagrams indicate that the three wells have similar chemistry with relative proportions of major ions in each well almost matching each other, other than the chloride concentration at ML-MW01.

Overall, groundwater chemistry at ML-MW01, ML-MW02 and ML-MW03 are quite similar and there is no significantly elevated analytes indicating impact from landfill leachate at any one monitoring well. While TDS and sulphate concentrations at ML-MW01 are noticeably higher than the other two on-site wells, the ammonia concentration reported in all wells is below the laboratory MDL. Manganese in the up-gradient

wells reported higher concentrations than the downgradient well which may indicate dilution of background concentrations. It is considered possible that there may be a degree of preferential recharge to groundwater through more permeable areas of the Site such as the former waste deposit burial location, and general increased infiltration due to the Site being cleared of vegetation.

It is not considered possible to draw a definitive conclusion of the impact to groundwater from the Site based on the data set currently available. Following the completion of the two additional rounds of groundwater monitoring scheduled to be undertaken this year and following interpretation of the results, the impact to groundwater from landfilling activities should be reassessed based on the increased data set.

6.0 CONCLUSIONS

The fieldwork for the 2010 Monitoring Well Program at the Mount Lorne Solid Waste Disposal Facility was completed between July 4, 2010 and November 22, 2010. The current water sampling network includes three groundwater monitoring wells.

The following conclusions are made based on the findings of the 2010 hydrogeological assessment:

- Three monitoring wells ML-MW01, ML-MW02 and ML-MW03 were installed in October 2010 to
 establish a groundwater monitoring network at the Site. All monitoring wells were completed in a
 sand unit with a slotted section at the well bottom to allow groundwater entry;
- Based on groundwater elevation data, monitoring well ML-MW01 appears to be down-gradient and ML-MW02 and ML-MW03 appear to be up-gradient of the waste disposal area. Due to budget constraints, a fourth monitoring well was not installed to meet the requirement to have two down-gradient wells; however, additional groundwater elevation data are necessary to identify potential seasonal changes and to confirm the conceptual hydrogeological model;
- No monitoring or sampling of groundwater is believed to have been conducted at the Site prior to the fall 2010 field program;
- Groundwater flow down-gradient of the Site was determined to be in a northerly direction towards Cowley Lakes;
- Analysis of the rising head hydraulic response test results show that the geometric mean of the hydraulic conductivity of the Quaternary Sediments Aquifer is approximately 2.3×10⁻⁵ m/s. The maximum hydraulic conductivity of 4.0×10⁻⁴ m/s was reported at ML-MW03;
- Groundwater from ML-MW01 can be characterized as calcium-bicarbonate type water, while ML-MW02 and ML-MW03 can be characterized as calcium-magnesium-bicarbonate groundwater;
- Concentrations of manganese at monitoring wells ML-MW02 and ML-MW03 exceed the YCSR-DW (aesthetic) criteria;
- All other analytes were below the applicable guideline criteria;
- Organic analytes in all monitoring wells were below the laboratory MDL of 0.1 mg/L with the exception of the HEPH concentration detected in ML-MW02;

- Ammonia, an indicator of leachate contamination, was not detected in any of the three monitoring wells;
- A review of groundwater monitoring results indicates variable concentrations across all wells, with both up and down-gradient wells exhibiting different potential indicators of impacts from landfilling activities. It is not considered possible to draw a definitive conclusion as to the impact to groundwater from the Site based on the data set currently available.

7.0 RECOMMENDATIONS

The following recommendations are made based on the findings of the 2011 hydrogeological assessment:

- As required by the Site's Solid Waste Disposal Facility Permit, future monitoring programs should be completed once during the spring freshet when the most significant groundwater recharge occurs and once in late summer;
- ML-MW01, ML-MW02 and ML-MW03 should be surveyed by a professional surveyor for location and elevation prior to the next monitoring round. Elevations from the top of the PVC casing and from ground level immediately adjacent to the well should be reported;
- Following the completion of the two further rounds of groundwater monitoring scheduled to be undertaken this year and following interpretation of the results, the impact to groundwater from landfilling activities should be reassessed based on the increased data set.
- Following the next two rounds of groundwater monitoring and interpretation of the results, the need for further investigation into the source of the detectable HEPH concentration at ML-MW02 should be assessed;
- Following the survey of the monitoring wells and the completion of the 2011 groundwater sampling rounds, data should be reviewed by a qualified hydrogeologist and the need for additional up-gradient and downgradient monitoring wells assessed.

8.0 CLOSURE

We trust this report meets your present requirements. Should you have any questions or comments, please contact the undersigned at your convenience.

EBA, A Tetra Tech Company

Adam Seeley, M.Sc.

Hydrogeologist, Pacific Region Direct Line: 867.668.2071 x243

aseeley@eba.ca

Tamra Reynolds, M.Sc., P. Geo. (BC)

Hydrogeologist, Pacific Region Direct Line: 867.668.2071 x241

tareynolds@eba.ca

REFERENCES

- 1. Contaminated Sites Regulation (2002) Yukon. O.I.C. 2002/171. September 2002.
- 2. Yukon Department of Environment (2002). O.I.C. 2002/171. Schedule 3 Generic Numerical Water Standards for Protection of Freshwater Aquatic Life, Drinking Water, Irrigation Water and Livestock Water. September 2002.
- 3. Yukon Department of Environment (2010). Solid Waste Disposal Facility Permit No: 80-009. 2010.
- 4. Yukon Department of Environment (2007). Protocol No. 2: Analysis of Samples Taken in Relation to the *Contaminated Sites Regulation*. December 2007.
- 5. Yukon Department of Environment (2008). Protocol No. 5: Petroleum Hydrocarbon Analytical Methods and Standards. March 2008.
- 6. Yukon Department of Environment (2007). Protocol No. 6: Water Quality Standards .November 2007.
- 7. Yukon Department of Environment (2008). Protocol No. 7: Groundwater Monitoring Well Installation and Sampling. March 2008.
- 8. Yukon Government (2009). Yukon Environmental & Socioeconomic Assessment Act Decision Document Mt Lorne Solid Waste Facility (File Number: 2008-0272). February 2009.
- 9. Environment Canada Climate Normal Data website.
- 10. Access, et al. (2003). Solid Waste Management Plan Mt. Lorne. June 2003.
- 11. Geological Survey of Canada. Department of Energy Mines and Resources. 1991. Surficial Geology, Whitehorse, Yukon Territory.
- 12. Canada Department of Mines and Technical Surveys. Geological Survey of Canada. 1957. Geological Map of Yukon Territory.
- 13. Natural Resources Canada. Geological Survey of Canada. 2008. Bedrock Geology Whitehorse (105D) Yukon.
- 14. EBA (2006), Small Public Water System Assessment Yukon Government Maintained Buildings, Whitehorse Region, March 2006
- 15. Freeze, R. Allan and Cherry, A. John, (1979). 'Groundwater', Prentice Hall, 1979
- 16. Fetter (1979), 'Contaminant Hydrogeology', Prentice Hall, 1999
- 17. Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, bul. no. 26, Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, Mississippi

18. Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.

TABLES

Table I Groundwater Analytical Results

Table 2 Groundwater Duplicate RPD'S

LocCode	ML-MW01	ML-MW02	ML-MW02	ML-MW03
Field_ID	ML-MW01	ML-MW02	иL-MW02 Duplicate	ML-MW03
Sampled_Date-Time	11/22/2010	11/22/2010	11/22/2010	11/22/2010
Lab_Report_Number	1399567	1399567	1399567	1399567

ChemName	Units	EQL	CSR Schedule 3 - Drinking Water				
Dissolved Organic Carbon	mg/L	0.5		1	9.1	-	0.9
tellurium	μg/L	0.1		<0.1	<0.1	<0.1	<0.1
BTEX	I				<u> </u>		
Benzene	μg/L	1	5	<1	<1	-	<1
Ethylbenzene	μg/L	1	2.4 ^{#2}	<1	<1	-	<1
Toluene	μg/L	1	24 ^{#2}	<1	<1	-	<1
Xylene (m & p)	μg/L	1		<1	<1	-	<1
Xylene (o)	μg/L	1		<1	<1	-	<1
Xylene Total	μg/L	1	300 ^{#2}	<1 ^{#6}	<1 ^{#6}	-	<1 ^{#6}
Chlorinated Hydrocarbons	<u> </u>						
1,1,1-trichloroethane	μg/L	1		<1	<1	-	<1
1,1,2,2-tetrachloroethane	μg/L	1		<1	<1	-	<1
1,1-dichloroethane	μg/L	1		<1	<1	-	<1
1,1-dichloroethene	μg/L	1	14	<1	<1	-	<1
1,2-dichloroethane	μg/L	1	5	<1	<1	-	<1
1,2-dichloropropane	μg/L	1		<1	<1	-	<1
Bromodichloromethane	μg/L	1		<1	<1	-	<1
Bromoform	μg/L	1		<1	<1	-	<1
Carbon tetrachloride	μg/L	1	5	<1	<1	-	<1
Chlorodibromomethane	μg/L	1		<1	<1	-	<1
Chloroethane	μg/L	10		<10	<10	-	<10
Chloroform	μg/L	1	100	<1	<1	-	<1
Chloromethane	μg/L	10		<10	<10	-	<10
cis-1,2-dichloroethene	μg/L	1		<1	<1	-	<1
cis-1,3-dichloropropene	μg/L	1		<1	<1	-	<1
Dichloromethane	μg/L	5	50	<5	<5	-	<5
Trichloroethene	μg/L	1	50	<1	<1	-	<1
Tetrachloroethene	μg/L	1	30	<1	<1	-	<1
trans-1,2-dichloroethene	μg/L	1		<1	<1	-	<1
trans-1,3-dichloropropene	μg/L	1		<1	<1	-	<1
Vinyl chloride	μg/L	2	2	<2	<2	-	<2
Halogenated Benzenes							
1,2-dichlorobenzene	μg/L	1	3 ^{#2}	<1	<1	-	<1
1,3-dichlorobenzene	μg/L	1		<1	<1	-	<1
1,4-dichlorobenzene	μg/L	1	1 ^{#2}	<1	<1	-	<1
Chlorobenzene	μg/L	1	30 ^{#2}	<1	<1	-	<1
Halogenated Hydrocarbons	1.0						
Bromomethane	μg/L	10		<10	<10	-	<10
Trichlorofluoromethane	μg/L	1		<1	<1	-	<1
Inorganics	1.0						
ORTHOPHOSPHATE (PO4-	mg/L	0.01		0.08	0.06		0.08
Alkalinity (Bicarbonate)	mg/L	5		310	290		540
Alkalinity (Hydroxide) as CaC	_	5000		<5,000	<5,000	-	<5,000
Alkalinity (total) as CaCO3	mg/L	5		255	238	-	446
Ammonia as N	μg/L	10		<50	<50	<10	<50
Chloride	mg/L	0.02	250 ^{#2}	0.85	31.8	-	30.4
Kjeldahl Nitrogen Total	mg/L	0.06	200	0.66	0.3	-	0.73
Nitrate (as N)	mg/L	0.01	10 ^{#1}	0.07	1.3	1.1	1.9
Nitrite (as N)	mg/L	0.005	3.2	<0.005	0.128	-	<0.005
Nitrogen (Total Oxidised)	mg/L	0.003	10 ^{#1}	0.07	1.43	_	1.9
Ortho phosphate (as P)	mg/L	0.01	10	0.07	0.06	<u> </u>	0.08
Sodium	mg/L	0.01	200 ^{#2}	4.6	6	6.1	7.6
Sulphate	mg/L	0.05	500 ^{#2}	48.8	39.9	-	67.4
Sulphur as S	mg/L	0.03	500	16.8	13.6	14	24.9
Thorium	μg/L	0.2		<0.4	<0.4	<0.4	<0.4
Hardness as CaCO3	mg/L	5		268	296	288	577
Total Solids	μg/L	5000		308,000	344,000	-	610,000
Lead	µ9/∟	3000		300,000	J-7,000	-	010,000
Lead	ma/l	0.0001	0.01	<0.0001	~0 0001	-0 0001	<0.0001
MAH	mg/L	0.0001	0.01	<u.uuu i<="" td=""><td><0.0001</td><td><0.0001</td><td><0.0001</td></u.uuu>	<0.0001	<0.0001	<0.0001
	11.~ /1	4		-4	.4	_	-4
Styrene	μg/L	1		<1	<1	-	<1

LocCode	ML-MW01	ML-MW02	ML-MW02	ML-MW03
Field_ID	ML-MW01	ML-MW02	ИL-MW02 Duplicate	ML-MW03
Sampled_Date-Time	11/22/2010	11/22/2010	11/22/2010	11/22/2010
Lab_Report_Number	1399567	1399567	1399567	1399567

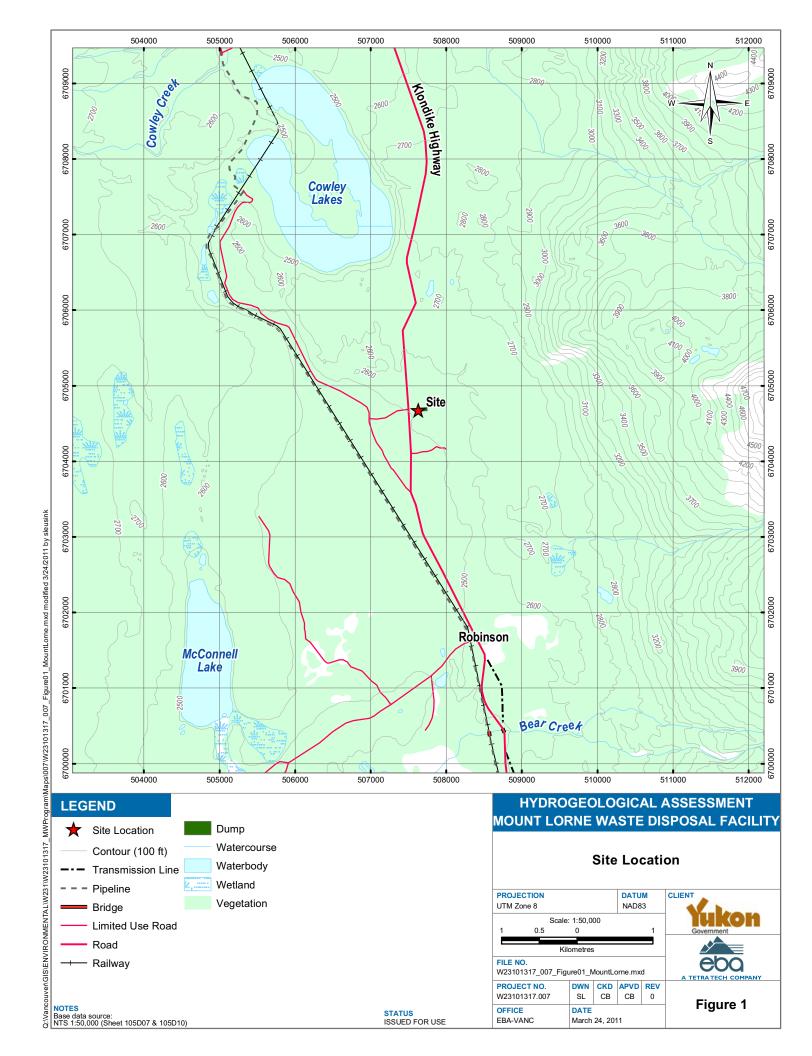
ChemName	Units	EQL	CSR Schedule 3 - Drinking Water				
Metals	I						
Aluminium	mg/L	0.005	0.2	<0.005	<0.005	< 0.005	<0.005
Antimony	mg/L	0.0002	0.006	<0.0002	0.0002	0.0002	<0.0002
Arsenic	mg/L	0.0002	0.025	0.0003	0.0009	0.0009	0.0006
Barium	mg/L	0.001	1	0.042	0.064	0.062	0.094
Beryllium	mg/L	0.00004		<0.00004	<0.00004	<0.00004	<0.00004
Bismuth	mg/L	0.001		<0.001	<0.001	<0.001	<0.001
Boron	mg/L	0.004	5	<0.004	0.013	0.014	0.005
Cadmium	mg/L	0.00001	0.005	0.00002	0.00004	0.00006	0.00006
Calcium	mg/L	0.1		84.1	90	87.5	176
Chromium (III+VI)		0.0004		0.0008	0.001	0.0009	0.0013
Cobalt		0.00002		0.00031	0.00084	0.0009	0.00188
Copper	mg/L	0.001	1 ^{#2}	0.002	0.002	0.002	0.003
Iron	mg/L	0.01	0.3 ^{#2}	<0.005	<0.005	0.013	<0.005
Lithium	mg/L	0.001	#2	0.003	0.003	0.003	0.006
Magnesium	mg/L	0.1	100 ^{#2}	0.038	17.3 0.209	16.9 0.239	33.1 0.321
Manganese	mg/L		0.05 ^{#2}		1 11	1 11	1.1
Mercury Molybdenum		0.00001 0.0001		<0.00001	<0.00001 0.0114	<0.00001 0.0132	<0.00001
Nickel	mg/L mg/L	0.0001	0.20	0.0014	0.0114	0.0132	0.004
Phosphorus	mg/L	0.001		<0.003	<0.003	<0.01	<0.01 - 5.14
Potassium	mg/L	0.01		1.9	2.7	2.7	3.9
Selenium		0.0006	0.01	0.0008	<0.0006	0.0008	0.0011
Silicon	µg/L	50		4,510	4,150	4,160	5,880
Silver		0.00001		<0.00001	<0.00001	<0.00001	<0.00001
Strontium	mg/L	0.001		0.431	0.479	0.472	0.926
Thallium		0.00001		0.00001	<0.00001	<0.00001	0.00002
Tin	mg/L	0.0001		0.0001	0.0002	0.0002	0.0006
Titanium	mg/L	0.0004		0.0004	<0.0004	0.0005	0.0009
Uranium	μg/L	0.4	100	5.4	5.3	5.3	11.1
Vanadium	mg/L	0.0001		0.0002	0.0002	0.0002	0.0004
Zinc	mg/L	0.001	5 ^{#2}	0.003	0.002	0.002	0.005
Zirconium	μg/L	0.1		<0.1	<0.1	<0.1	0.1
Organic					I.		•
Alkalinity (Carbonate)	mg/L	6		<6	<6	-	<6
PAH							
Acridine	mg/L	0.00005		<0.00005	<0.00005	-	<0.00005
Quinoline	μg/L	3.4		<3.4	<3.4	-	<3.4
PAH/PhenoIs							
Acenaphthene	μg/L	0.1		<0.1	<0.1	-	<0.1
Acenaphthylene	μg/L	0.1		<0.1	<0.1	-	<0.1
Anthracene	μg/L	0.1		<0.1	<0.1	-	<0.1
Benz(a)anthracene	μg/L	0.01		<0.01	<0.01	-	<0.01
Benzo(a) pyrene	μg/L	0.01	0.01	<0.01	<0.01	-	<0.01
Benzo(b)fluoranthene	μg/L	0.01		<0.01	<0.01	-	<0.01
Benzo(g,h,i)perylene	μg/L	0.1		<0.1	<0.1	-	<0.1
Benzo(k)fluoranthene	μg/L	0.02		<0.02	<0.02	-	<0.02
Chrysene Dibenz(a,h)anthracene	μg/L	0.1		<0.1	<0.1	-	<0.1
Fluoranthene	μg/L μg/L	0.01		<0.01	<0.01	-	<0.01
Fluorene	μg/L	0.1		<0.1	<0.1	-	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	0.1		<0.1	<0.1	-	<0.1
Naphthalene	μg/L	0.1		<0.1	<0.1	-	<0.1
Phenanthrene	µg/L	0.1		<0.1	<0.1	-	<0.1
Pyrene	µg/L	0.02		<0.02	<0.02	-	<0.02
ТРН	1.0				<u> </u>		
HEPH	μg/L	100		<100	200	-	<100
LEPHw	µg/L	100		<100	<100	-	<100
	µg/L	1			<50		<50
VPH C6-C10	μg/L	50	15000#4	<50	<50	<50	~00
VPH C6-C10 VPHw		50 50	15000#4	<50 <50	<50 <50	<50 <50	<50
	μg/L		15000#4				
VPHw	μg/L		15000#4				
VPHw VOCs	μg/L μg/L	50	15000#4	<50	<50	<50	<50

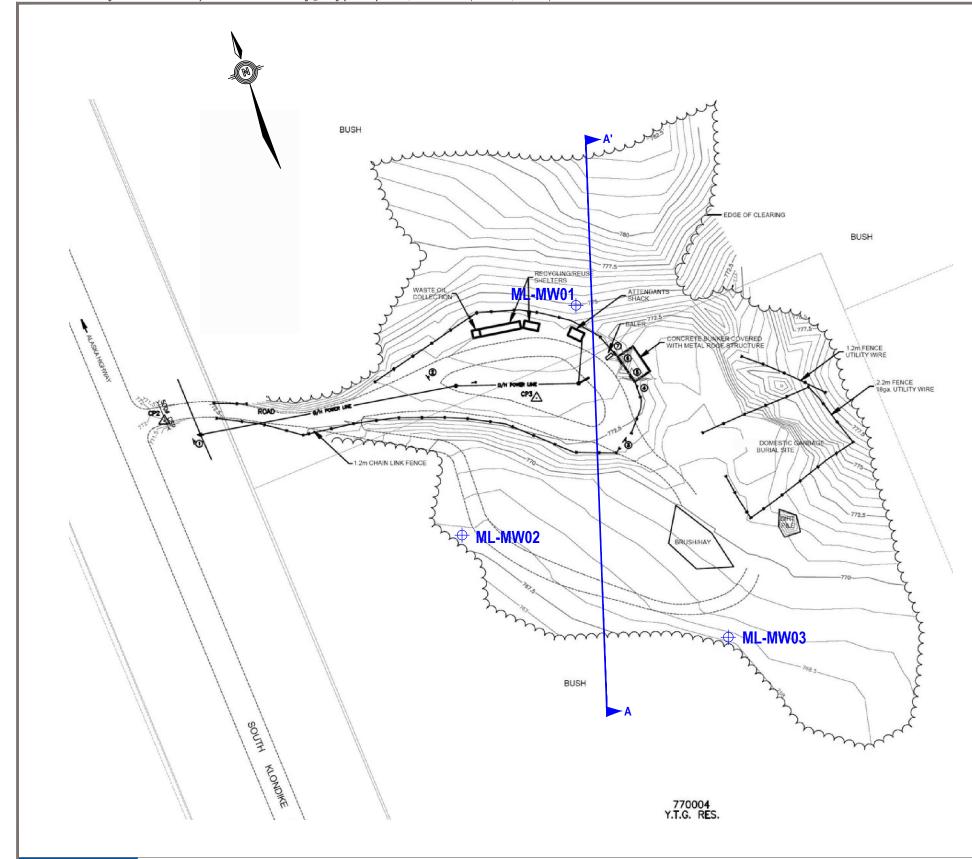
- Comments
 #1 Where nitrate and nitrite are present, ttal nitrate plus nitrite-nitrogen should not exceed this value
 #2 Standard to protect against taste and odour concerns.
 #3 Standard is specific for total chloramines.
 #4 Includes volatile petroleum hydrocarbons, standards applicable at all sites regardless of water use
 #5 Includes light extractable petroleum hydrocarbons, standards applicable at all sites regardless of water use
 #6 ESDAT Combined.

SDG	11/22/2010	11/22/2010
Field_ID	ML-MW 02	ML-MW02 Duplicate RPD
Sampled_Date-Time	11/22/2010	11/22/2010

ChemName	Units	EQL			
tellurium µg/L 0.1		<0.1	<0.1	0	
Inorganics					
Sodium	mg/l	0.1	6.0	6.1	2
Sulphur as S	mg/l	0.2	13.6	14.0	3
Thorium µg/L 0.4		0.4	<0.4	<0.4	0
Hardness as CaCO3	mg/l	5	296.0	288.0	3
Lead					
Lead	mg/l	0.0001	< 0.0001	<0.0001	0
Metals					
Aluminium	mg/l	0.005	<0.005	< 0.005	0
Antimony	mg/l	0.0002	0.0002	0.0002	0
Arsenic	mg/l	0.0002	0.0009	0.0009	0
Barium	mg/l	0.001	0.064	0.062	3
Beryllium	mg/l	0.00004	<0.0	<0.0	0
Bismuth	mg/l	0.001	<0.001	<0.001	0
Boron	mg/l	0.004	0.013	0.014	7
Cadmium	mg/l	0.00001	0.0	0.0001	40
Calcium	mg/l	0.1	90.0	87.5	3
Chromium (III+VI)	mg/l	0.0004	0.001	0.0009	11
Cobalt m		0.00002	0.0008	0.0009	7
Copper	mg/l	0.001	0.002	0.002	0
Iron	mg/l	0.01	<0.005	0.013	89
Lithium	mg/l	0.001	0.003	0.003	0
Magnesium	mg/l	0.1	17.3	16.9	2
Manganese	mg/l	0.005	0.209	0.239	13
Mercury	mg/l	0.00001	<0.0	<0.0	0
Molybdenum	mg/l	0.0001	0.0114	0.0132	15
Nickel	mg/l	0.001	0.003	0.004	29
Phosphorus	mg/l	0.01	<0.01	<0.01	0
Potassium	mg/l	0.1	2.7	2.7	0
Selenium	mg/l	0.0006	<0.0006	0.0008	29
Silicon	μg/l	50	4150.0	4160.0	0
Silver	mg/l	0.00001	<0.0	<0.0	0
Strontium	mg/l	0.001	0.479	0.472	1
Thallium	mg/l	0.00001	<0.0	<0.0	0
Tin	mg/l	0.0001	0.0002	0.0002	0
Titanium	mg/l	0.0004	< 0.0004	0.0005	22
Uranium	μg/L	0.4	5.3	5.3	0
Vanadium	mg/l	0.0001	0.0002	0.0002	0
Zinc	mg/l	0.001	0.002	0.002	0
Zirconium	μg/L	0.1	<0.1	<0.1	0
TPH	1.				
VPH C6-C10	μg/L	50	<50.0	<50.0	0
VPHw	μg/L	50	<50.0	<50.0	0

^{*}RPDs have only been considered where a concentration is greater than 5 times the EQL.


**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (5-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL))


^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

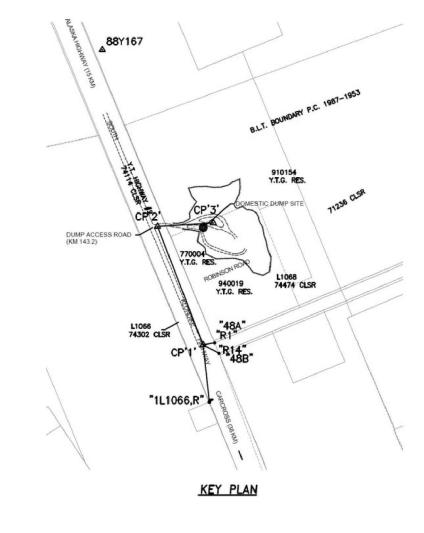

FIGURES

Figure I	Site Location
Figure 2	Site Plan and Cross Section Alignment A – A'
Figure 3	Regional Geology
Figure 4	Conceptual Hydrogeological Cross Section A – A'
Figure 5	Regional Drainage and Land Zoning
Figure 6	Groundwater Elevation Contours (November 2010)
Figure 7	Schoeller Plot
Figure 8	Piper Diagram
Figure 9	Stiff Diagrams

LEGEND

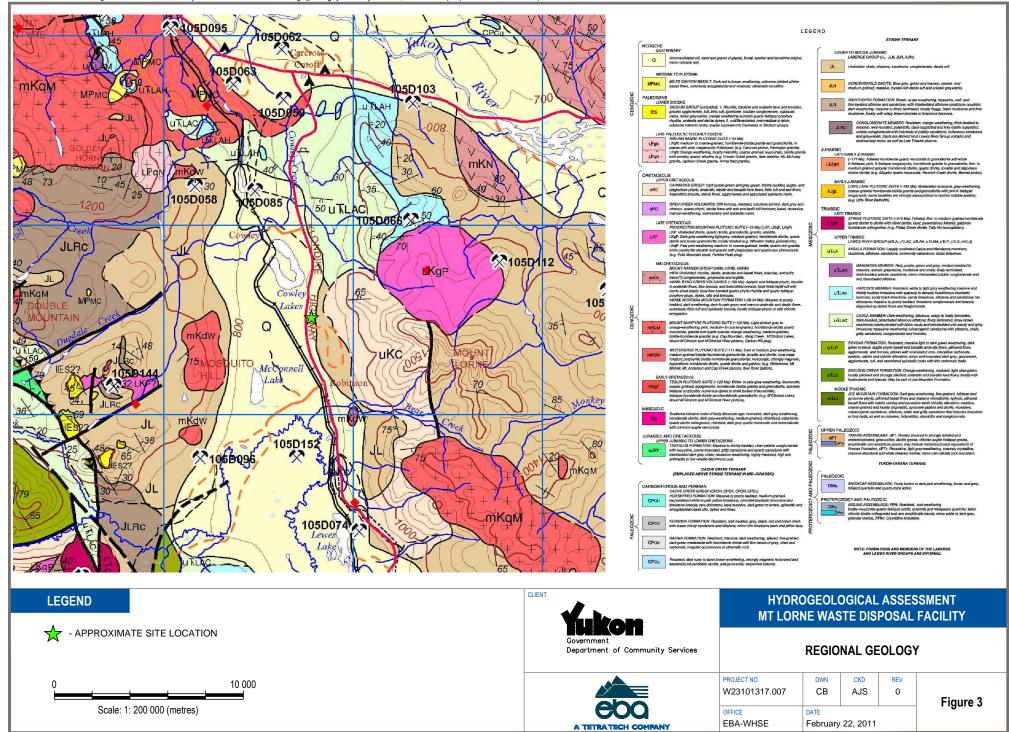
+ - GROUNDWATER MONITORING WELL LOCATION (SHOWN BLUE)

- CROSS SECTION ALIGNMENT A - A' (SHOWN BLUE)

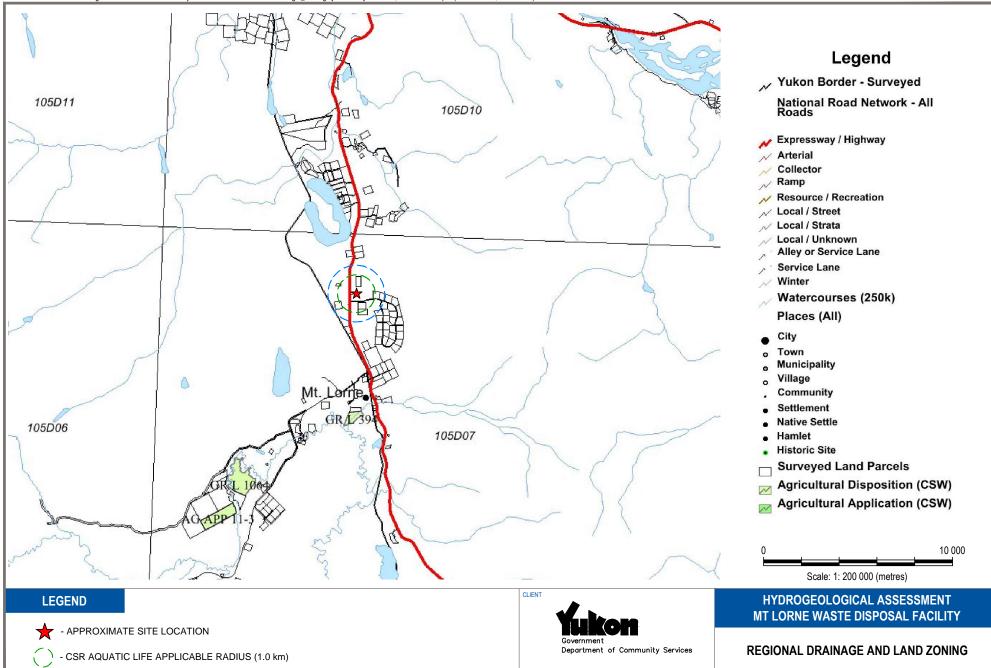
—770 — - GROUND ELEVATION CONTOUR

NOTES:

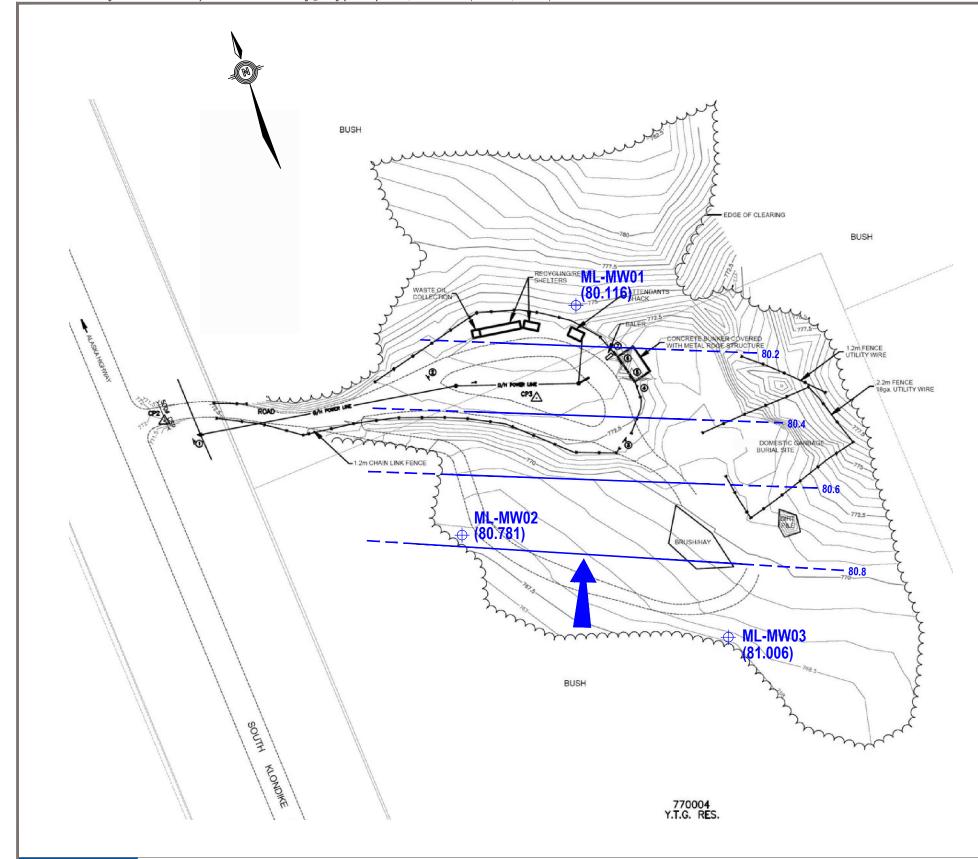
- 1. THIS PLAN IS NOT TO SCALE
- 2. THE INFORMATION CONTAINED ON THIS PLAN WAS TAKEN FROM MT. LORNE SOLID WASTE MANAGEMENT PLAN PROVIDED BY ACCESS CONSULTING GROUP IN JULY 2002 AND PRESENTED FOR INFORMATION PURPOSES ONLY. ALL ADDITIONAL INFORMATION WAS ADDED BY EBA AND IS SHOWN IN COLOR.

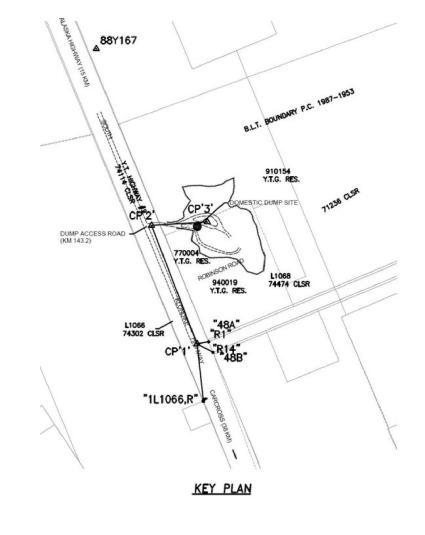

HYDROGEOLOGICAL ASSESSMENT MT LORNE WASTE DISPOSAL FACILITY

SITE PLAN AND CROSS SECTION ALIGNMENT A - A'


Figure 2

OJECT NO. 23101317.007	DWN CB	CKD AJS	REV 0	
FICE	DATE			
RA-WHSE	February 2	3 2011		


- CSR DRINKING, IRRIGATION AND LIVESTOCK WATER USE APPLICABLE RADIUS (1.5 km)



EOO A TETRA TECH COMPANY

PROJECT NO.	DWN	CKD	REV	
W23101317.007	СВ	AJS	0	
OFFICE	DATE			
EBA-WHSE	February	22, 2011		

Figure 5

LEGEND

 $\ensuremath{\ensuremath}\amb}\amb}\amb}}}}}}}}}}}}}}$

(86.301) - GROUNDWATER ELEVATION - NOVEMBER 2010

─86.25 — - INFERRED GROUNDWATER ELEVATION CONTOUR

- INFERRED GROUNDWATER FLOW DIRECTION

NOTES:

- 1. THIS PLAN IS NOT TO SCALE
- 2. THE INFORMATION CONTAINED ON THIS PLAN WAS TAKEN FROM MT. LORNE SOLID WASTE MANAGEMENT PLAN PROVIDED BY ACCESS CONSULTING GROUP IN JULY 2002 AND PRESENTED FOR INFORMATION PURPOSES ONLY. ALL ADDITIONAL INFORMATION WAS ADDED BY EBA AND IS SHOWN IN COLOR.

HYDROGEOLOGICAL ASSESSMENT MT LORNE WASTE DISPOSAL FACILITY

GROUNDWATER ELEVATION CONTOURS (NOVEMBER 2010)

Figure 6

PROJECT NO. W23101317.007	DWN CB	CKD AJS	REV 0	
OFFICE	DATE			
FRA-WHSF	February 1	7 2011		

- ML-MW03 PROJECT NO. DWN CKD REV W23101317.007 Figure 7 EBA-WHSE February 23, 2011 A TETRATECH COMPANY

EBA-WHSE

A TETRATECH COMPANY

February 23, 2011

Figure 9 February 23, 2011 EBA-WHSE A TETRA TECH COMPANY

APPENDIX A

APPENDIX A EBA'S GENERAL CONDITIONS

GENERAL CONDITIONS

GEO-ENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

APPENDIX B

APPENDIX B MOUNT LORNE SOLID WASTE DISPOSAL FACILITY PERMIT

Director, Environmental Programs Branch

Environment Yukon

Permit No: 80-009

WASTE DISPOSAL FACILITY PERMIT

Issued for the Operation of Waste Disposal Facilities Pursuant to
Part 6 of the Environment Act, s. 8 of the Solid Waste Regulations, s. 12 of the
Air Emissions Regulations, and s. 8 of the Special Waste Regulations

Permittee:	Department	of Community Services, Government of Yukon			
Mailing Address:	P.O. Box 270	03 (C-9), Whitehorse, YT, Y1A 2C6			
Site Locations:	Waste dispo	sal facilities listed in Schedule A			
Phone/Fax:	(867) 667-86	684 / (867) 393-6216			
Authorized Repre	esentative:	Paul Moore			
Email:		paul.moore@gov.yk.ca			
Effective Date:	January 1, 2	010			
Expiry Date:	December 3	1, 2011			
Scope of Authoria	a. b. c. at the	cordance with your application, you are authorized to operate a waste disposal facility; operate a special waste management facility for the acceptance, storage, and transportation of special waste generated by households, waste oil, waste batteries, waste paints, waste solvents, and waste fuels; and open burn solid waste in an amount greater than 5 kilograms per day above site locations (the "site" or "sites"), as set out in erms and conditions of this permit.			
Dated this da	av of	2010			

PART 1. GENERAL PROVISIONS

1.1 DEFINITIONS

1. In this permit,

"Act" means the Environment Act, R.S.Y. 2002, c. 76;

"approved plan" means a plan that is submitted by the permittee and approved by an environmental protection officer under this permit and includes any terms and conditions specified by the environmental protection officer in the approval;

"associated personnel" means all employees, contractors and volunteers involved in the permitted activities;

"Branch" means the Environmental Programs Branch, Environment Yukon;

"burning vessel" means a container or structure used for burning solid waste where air intake and combustion temperature are not controlled;

"cell" means a discrete area of a facility into which solid waste is deposited for permanent disposal and includes such areas that are no longer used for that purpose;

"dangerous wildlife" means wildlife so defined in the Wildlife Act, R.S.Y. 2002, c. 229;

"landfill" means a facility authorized to accept waste for final disposal, and does not include transfer stations or modified transfer stations:

"facility" means a special waste management facility and any of the following waste disposal facilities: a landfill, a modified transfer station, and a transfer station;

"groundwater receptor" means a well or receiving water body into which groundwater flows;

"head office" means the office of the permittee located in Yukon;

"listed special waste" means special waste generated by a household, waste oil, waste batteries, waste paints, waste solvents, and waste fuels;

"modified transfer station" means a waste disposal facility where construction and demolition waste and/or animal carcasses are permanently disposed on site and all other material is removed from the site for recycling or disposal at another location;

"Regulations" means the Air Emissions Regulations, O.I.C. 1998/207, the Solid Waste Regulations, O.I.C. 2000/11, and the Special Waste Regulations, O.I.C. 1995/047;

"service area" means the population that is anticipated to be served by a facility;

"texas gate" means an electrified metal grid on the ground that can be passed over by vehicles but will prevent entry by animals;

"transfer station" means a waste disposal facility where no solid waste is permanently disposed on site, and where all solid waste is removed from the site for recycling or disposal at another location;

"vehicle" has the same meaning as in the Motor Vehicles Act, R.S.Y. 2002, c. 153; and

"waste manifest" means the shipping document required to be completed by the permittee as set out in this permit in the form approved by an environmental protection officer.

- 2. Any term not defined in this permit that is defined in the Act or the Regulations has the same meaning as in the Act or the Regulations.
- 3. Schedule A forms part of this permit and may be amended in writing by an environmental protection officer from the Branch.

1.2 PLANS

- 1. The permittee shall develop and maintain a fire safety/emergency plan for each facility which includes notification procedures and a list of emergency phone numbers relevant to each site. All associated personnel involved with the handling or management of any wastes covered by this permit shall be familiar with this plan.
- 2. The permittee shall submit the following plans for approval no later than March 31, 2010:
 - a) an open burning transition plan for each facility where open burning is authorized as set out in Schedule A, which plan shall detail how the permittee will phase out open burning at each site as soon as possible or by January 1, 2012 at the latest;
 and
 - b) a plan for conducting hydrogeological assessments at each facility listed in Schedule A, which plan shall include timelines by which the hydrogeological assessment at each site will be completed.
- 3. The permittee shall submit the following plans for approval no later than June 30, 2010:
 - a) a site inspection and maintenance plan for each facility; and
 - b) a spill response plan for each facility.
- 4. For each facility constructed on permafrost, the permittee shall submit for approval a ground temperature monitoring plan for that facility with the hydrogeological assessment report. For those facilities not constructed on permafrost, the permittee shall submit a statement to that effect with the hydrogeological assessment report.
- 5. Prior to constructing a new cell at any facility, the permittee shall submit a new cell plan for approval.
- 6. No later than six months prior to the planned closure of a facility the permittee shall submit a facility closure plan for approval.
- 7. Prior to undertaking any work toward the partial or full closure of a cell, including progressive capping and reclamation of active cells, the permittee shall submit a cell closure plan for approval.

- 8. When the permittee is required to submit a plan under this permit, the permittee shall:
 - a) ensure the plan meets the requirements for that type of plan as directed by an environmental protection officer from the Branch in writing;
 - b) submit the plan in writing to an environmental protection officer from the Branch;
 - c) not undertake any of the activities described in the plan until the plan is approved in writing by an environmental protection officer from the Branch; and
 - d) implement the plan as of the date it is approved in writing by an environmental protection officer from the Branch.
- 9. If the permittee wants to amend an approved plan, the permittee shall submit the proposed amendment to an environmental protection officer from the Branch as if the amendment were a plan under paragraph 1.2.8 of this permit.
- 10. If an environmental protection officer from the Branch directs in writing and with reasons that an approved plan be amended, the permittee must prepare the required amendment and submit it as if it were a plan referred to in paragraph 1.2.8 of this permit.

1.3 RECORDS

- The permittee shall keep all records required under this permit in a format acceptable
 to an environmental protection officer for a minimum of three years and make them
 available for inspection by an environmental protection officer upon request.
- 2. The permittee shall keep the following records at the head office:
 - a) a copy of each plan submitted under this permit, and any amendments to and approvals of each plan;
 - all inspections carried out for each facility under this permit (including the name of the person conducting the inspection, the date of each inspection, any observations recorded during the inspection, actions taken as a result of those observations, and the date each action was taken);
 - c) results of surface water and groundwater testing conducted at each facility, where applicable (including interpretations of monitoring results to determine trends in contaminant levels over time);
 - (d)/results of hydrogeological assessments undertaken at each facility;
 - any spills or leaks occurring at any facility, including substance involved, estimated quantity, date of observation of the spill or leak, and clean-up procedures implemented;
 - (f) the types of special wastes segregated at each facility, their estimated volumes, and their storage location(s) at each facility;
 - g) any and all deficiencies remedied in accordance with paragraph 1.4.4, and how and when they were remedied; and
 - h) a copy of any waste manifests used to transport special wastes to or from the facilities.
- 3. The permittee shall permanently retain at the head office an updated, detailed site plan for each facility showing the locations of all active and closed cells and segregation

areas at the facility and shall produce this site plan upon request for inspection by an environmental protection officer.

1.4 OTHER

- The permittee shall ensure that all associated personnel at each facility:
 - a) have access to a copy of this permit;
 - b) are knowledgeable of the terms and conditions of this permit; and
 - c) receive the appropriate training for the purposes of carrying out the requirements of this permit.
- 2. The permittee shall provide notice in writing to an environmental protection officer from the Branch prior to any significant change of circumstances at the sites, including without limitation:
 - a) closure of a facility;
 - b) change of ownership of the site;
 - c) the opening of a new cell;
 - d) changing from a burn to a no-burn or from a no-burn to a burn operation; and
 - e) change to the mailing address or phone number of the permittee.
- 3. Where conflicts exist between this permit, the permit application or any plans, this permit shall prevail.
- 4. If an inspection reveals that a facility is in any way not in compliance with this permit or approved plans, or that surface water run-off is negatively affecting the structure or physical integrity of a facility, the permittee shall repair the damage or take other actions as required to bring the facility into compliance.

PART 2. SOLID WASTE

2.1 OPERATIONS

- 1. The permittee shall not operate a landfill for a service area greater than 13,000 people.
- 2. The permittee shall ensure that all solid waste left at a facility that is not separated for recycling or transfer off-site is deposited into a cell.
- 3. The permittee shall ensure that all domestic waste left at a transfer station or modified transfer station is deposited into a transfer bin.
- 4. No solid waste shall be burned or buried at a transfer station.
- 5. The permittee shall ensure that the bottoms and sides of all transfer bins at transfer stations and modified transfer stations are sealed and maintained to prevent the release of solid waste into the natural environment.

- 6. The permittee shall divert surface water run-off away from any area of a facility where waste is stored or deposited.
- 7. The permittee shall ensure that animal carcasses and animal parts are buried at a landfill or modified transfer station at least 2 metres below the surface of the land. If animal carcasses or parts are discovered at a transfer station, the permittee shall ensure that they are immediately removed and transported to a landfill or modified transfer station.

2.2 SIGNAGE AND SEGREGATION

- 1. The permittee shall install and maintain signs at each facility containing the following information:
 - a) entrance and exit location(s) for the facility; and
 - b) telephone contact numbers for the facility manager, the local fire protection services, and the district conservation officer.
- 2. The permittee shall:
 - a) establish and maintain separate areas for the deposit of each type of solid waste accepted at each facility;
 - b) install and maintain appropriate signs identifying each of these areas; and
 - c) ensure that each facility is maintained to enable vehicles to access each of these areas.

2.3 FENCING AND SECURITY

- The permittee shall install and maintain, in accordance with the manufacturer's
 operating and maintenance instructions and recommendations, an electric exclusion
 fence(s) and gates that encompass the putrescibile waste disposal areas at each
 facility and any other areas of the facilities that become or may become an attractant to
 animals. The fence and gates shall be adequate to prevent dangerous wildlife from
 entering the encompassed areas of the facility.
- 2. The fences and gates referenced in paragraph 2.3.1 above must be:
 - a) activated continuously from May 1 to October 31 of each year;
 - b) activated between November 1 and April 30 of each year if there are tracks or other signs of dangerous wildlife attempting to access the facility; and
 - c) activated upon the written request of an environmental protection officer.
- 3. For those facilities that are open to the public when staff are not on site, the permittee shall install and maintain a texas gate at each entrance and exit of each facility.
- 4. For those facilities that are closed to the public when staff are not on site, the permittee shall install and maintain either a texas gate or an electrified rigid swinging gate at each entrance and exit of each facility. Any rigid swinging gates are to be closed and secured every time staff leave the facility.

- The permittee shall install and maintain fencing or other comparable measures at each facility to prevent the release of solid waste from the facility.
- The permittee shall install and maintain signs marking the areas, if any, of each facility that are not to be accessed by the public and erect or construct fencing, gates or other similar structures to prevent public access to these areas.

2.4 WASTE COVER

- At any facility where solid waste is burned or incinerated outside of a burning vessel or incinerator, the permittee shall cover burned solid waste:
 - a) every month for facilities with service areas of 100 or more people; or
 - b) every two months for facilities which with service areas of less than 100 people, with soil or other comparable material to a depth of 0.1 metres, or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds.
- 2. At any facility where solid waste is burned in a burning vessel or incinerated, when the permittee removes unburned solid waste and ash from the burning vessel or incinerator after burning, it shall be placed in a cell at the facility and immediately covered with soil or other comparable material to a depth of 0.1 metres, or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds.
- 3. At any facility where solid waste will not be burned or transferred off-site, the permittee shall cover any exposed solid waste with soil or other comparable material to a depth of 0.1 metres or any other depth that an environmental protection officer considers necessary to prevent windblown solid waste and attraction of birds:
 - every day the facility is used if the facility has a service area of more than 5,000 people;
 - b) every seven days if the facility has a service area of 500 to 5,000 people;
 - c) every 21 days if the facility has a service area of less than 500 people; or
 - d) after every 0.5 metres of solid waste is deposited, whichever occurs first.
- 4. Paragraphs 2.4.1, 2.4.3 and 2.4.3 do not apply between November 15 and April 15 of each year if soil or other comparable cover material cannot reasonably be obtained.

2.5 OPEN BURNING OF SOLID WASTE

- The permittee shall ensure that solid wastes are only burned at those facilities where open burning is specifically authorized as set out in Schedule A.
- 2. At those facilities where open burning is permitted as set out in Schedule A, the permittee shall:

- a) ensure, to the extent practicable, that solid waste to be open burned is dry and shall
 only burn wet solid waste when to delay such burning may result in attraction of
 animals or creation of a fire hazard;
- b) prior to open burning the solid waste, separate combustible solid waste from any underlying grass or peat layer;
- c) not allow solid waste to smoulder (burn and smoke without flame) during an open burn:
- d) not use waste oil, tires or aviation gasoline to assist with the incineration of solid waste during an open burn;
- e) not use any waste petroleum products to assist with the open burning of solid waste without prior approval to do so in writing by an environmental protection officer from the Branch;
- f) prevent runoff water from entering the active open burning area; and
- g) not open burn tires or treated wood products, including wood products that have been treated with creosote, chromium copper arsenate (CCA), pentachlorophenol (PCP), or any type of paint.

2.6 MONITORING

- 1. The permittee shall ensure that samples are taken from all active groundwater monitoring wells at each facility in accordance with protocols for groundwater sampling approved by the Branch. The water level in all monitoring wells shall be recorded at each sampling event. Samples shall be taken twice each year the permit is in effect, once in the spring and once in the late summer, or as otherwise directed in writing by an environmental protection officer.
- 2. The permittee shall ensure that samples are taken, using generally-accepted sampling practice, from all downgradient surface water bodies within 1 km of each facility that are identified in the hydrogeological assessment as being potentially impacted by the facility. Samples shall be taken concurrently with each groundwater sampling event or as otherwise directed in writing by an environmental protection officer.
- 3. All groundwater samples shall be analyzed for the following parameters:
 - Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
 - Dissolved metals
 - Mercury
 - Hardness
 - Alkalinity
 - Carbonate
 - Bicarbonate
 - pH
 - Total dissolved solids
 - Ammonia
 - Dissolved organic carbon
 - Volatile organic compounds

- Chemical oxygen demand
- Total Kjeldahl nitrogen
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)
- Faecal coliforms (for those sites at which biosolids or liquids are deposited)

All surface water samples shall be analyzed for the following parameters:

- Major ions (Calcium, Magnesium, Sodium, Potassium, Chloride, Sulphate, Nitrate Nitrogen, Nitrite Nitrogen, Phosphate)
- Total metals
- Mercury
- Hardness
- Alkalinity
- Carbonate
- Bicarbonate
- pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- Chemical oxygen demand
- Biochemical oxygen demand
- Total Kjeldahl nitrogen
- EPH_{W10-19} (Extractable Petroleum Hydrocarbons in Water, C10-C19)
- VH_{W6-10} (Volatile Petroleum Hydrocarbons in Water, C6-C10)
- BTEX (Benzene, Toluene, Ethylbenzene, and Total Xylenes)
- PAHs (Polycyclic Aromatic Hydrocarbons)
- Faecal coliforms (for those sites at which biosolids or liquids are deposited)
- All water samples required by this permit shall be analyzed at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011.
- The results of the analyses required under sections 2.6.3 and 2.6.4 shall be submitted to the Branch by January 31st of the year following that in which the samples were taken.
- 7. If water quality monitoring reveals that surface or groundwater downgradient of the facility contains contaminants in excess of the standards in the *Contaminated Sites Regulation*, the permittee shall conduct additional monitoring or develop and implement an adaptive management plan to address the contamination, as directed in writing by an environmental protection officer.

PART 3. SPECIAL WASTE

3.1 STORAGE AND HANDLING

- 1. The permittee shall not handle special wastes other than listed special wastes.
- 2. The permittee shall not discard, destroy, treat, process, incinerate, or recycle special wastes, except for mixing or dilution authorized by an environmental protection officer pursuant to section 3.1.3(k) below.
- 3. At facilities where special wastes are accepted, the permittee shall:
 - a) cover or store out of inclement weather all drums and other portable containers containing special wastes;
 - b) store all drums and other portable containers containing special wastes off the ground;
 - c) immediately remove all special wastes stored in leaking containers or transfer them to intact containers:
 - d) to the extent practicable, handle and store special wastes separately from solid waste;
 - e) store special wastes in a manner that will prevent incompatible substances from reacting adversely with each other;
 - f) post signs identifying examples of common special wastes and phone number(s) and/or website(s) with information on appropriate disposal options for those materials, whether or not those materials are collected onsite;
 - g) ensure that all containers used for the storage of special waste are clearly marked to identify what special waste the container is intended to hold;
 - h) ensure that containers used for the storage of special waste are made of materials that will not adversely react with the special waste;
 - i) not allow any residue at the bottom of a container used for the storage of special wastes to be released to the environment. Such residue shall be collected by the permittee, separated from other waste and treated as a special waste until proven by testing to not be special waste;
 - i) not mix waste oil from piston engine aircraft with other waste oil;
 - k) only mix or dilute a special waste with any other material where such mixing or dilution is authorized by an environmental protection officer from the Branch as an acceptable treatment/disposal option for the special waste;
 - keep all containers used to store special waste closed at all times during storage and shall not open, handle or store the container in a manner which may cause it to leak or rupture; and
 - m) shall have every closed container that
 - (i) has a capacity of more than 230 litres;
 - (ii) is designed to be installed in a fixed location; and
 - iii) will contain special waste

certified by a testing agency recognized by the Standards Council of Canada prior to putting special waste in the container.

3.2 TRANSPORT AND TRANSFER

- 1. The permittee shall complete a waste manifest documenting each shipment of special wastes from each site. The permittee shall distribute copies of the waste manifest in the manner described thereon.
- 2. The permittee shall ensure that special wastes are transported to a permitted special waste management facility in the Yukon or another jurisdiction by a carrier permitted in the Yukon to receive and transport the special wastes.
- 3. The permittee shall ensure that all vehicles operated by the permittee and carrying any special wastes are secured to prevent access by unauthorized persons.

I, <u>Paul Moore</u> , certify that I am an authorized representative of <u>Community Services</u> , and that I have read and understood the this permit.	
Paul Moore, Authorized Representative Department of Community Services	Date

Schedule A: List of Permitted Waste Disposal Facilities

Table 1. Landfills

Site name	Location	Permitted to open burn solid waste			
Beaver Creek	Reservation 115K07-038 140°50'17"W, 62°25'18"N	Yes, in burning vessel			
Braeburn	Reservation 105E05-015 Lot 1063 Quad 105E/05, 86969 CLSR YT 135°45'34"W, 61°26'7"N	Yes, in burning vessel			
Burwash Landing	Reservation 13462 138°53'4"W, 61°18'25"N	Yes, in burning vessel			
Canyon	Lot 1042 Quad 115A/14, 85493 CLSR YT 137°9'21"W, 60°50'58"N	Yes, in burning vessel			
Champagne	Reservation 115A16-007 Lot 1039 Quad 115A/16, 87076 CLSR YT 136°27'32"W, 60°47'25"N	Yes, in burning vessel			
Johnson's Crossing	Lot 1040 Quad 105C/06, 86853 CLSR YT 133°17'9"W, 60°29'34"N	Yes, in burning vessel			
Horsecamp Hill	Reservation 115K02-010 140°37'32"W, 62°2'50"N	Yes, in burning vessel			
Keno City	135°19'18"W, 63°54'33"N	Yes, in burning vessel			
Old Crow	Reservation 116O12-024 139°52'14"W, 67°34'9"N	Yes, in burning vessel			
Pelly Crossing	Reservation 115l15-030 136°35'56"W, 62°46'18"N	Yes, in burning vessel			
Ross River	Reservation 105F16-008 132°26'40"W, 61°57'44"N	Yes, in burning vessel			
Silver City	Reservation 2007-0498 138°20'1"W, 61°1'25"N	Yes, in burning vessel			
Stewart Crossing	Reservation 115P07-020 Lot 1026 Quad 115P/07, 86830 CLSR YT 136°39'33"W, 63°20'23"N	Yes, in burning vessel			
Upper Liard	Reservation 105A02-120 Lot 1109 Quad 105A/02, 86882 CLSR YT 128°56'56"W 60°3'14"N	Yes, in burning vessel			

Table 2. Modified Transfer Stations

Site name	Location	Permitted to open burn solid waste
Carcross	Kilometre 50.7 Tagish Road 134°40'25"W, 60°11'37"N	No
Deep Creek	Reservation 105E03-031 135°13'48"W, 61°4'56"N	No
Destruction Bay	Reservation 115G07-012 138°51'33"W, 61°17'25"N	No
Marsh Lake	Reservation 105D09-030 Lot 1061 Quad 105D/09, 86854 CLSR YT 134°25'46"W, 60°33'53"N	Yes, C&D waste without burning vessel
Mount Lorne	Reservation 770004 134°51'38"W, 60°28'41"N	No
Tagish	Lot 1100 Quad 105D/08 134°17'29"W, 60°16'28"N	No

Table 3. Transfer Stations

Site name	Location	Permitted to open burn solid
		waste
(N/A)		

APPENDIX C

APPENDIX C MONITORING WELL LOGS

2010 Monitoring Well Program				CLIENT: YG - Department of Community Services			PROJECT NO BOREHOLE NO.				
Mount Lorne Landfill			DRILL: Geotech MST-Odex			W23101317-ML-MW01					
Whitel	norse, YT			6704724	N; 5076	53E; 2	Zone	8			
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀	SPT		E	A-CASING	∭ SHEL	BY TUBE CORE	
	FILL TYPE	BENTONITE	PEA GRAVE		SLOUGH					L CUTTINGS SAND	
7, 10.1				- Ш		Ω			<u> </u>	- oo : : : : : : : : : : : : : : : : : :	
(m) r		SC	OIL			E TYPE NI IMBER				NOTES &	Monitoring well Depth (ft)
Depth (m)		DESCR	RIPTION			SAMPLE SAMPI F N	 			COMMENTS	Dept
						S	5				
0 1 1 2 3 4 5 6 7 8	medium	gravel, some to trace grained sand, gravel ange brown	silt, uniformly grader is 20 mm, subround	d, very fine ed, damp, v	to ery	G	1			- cement seal from 0 to 0.3 m	
- ' -	no gravel,some silt	light brown				G	2				5_
_ 2	Some out										
3	- sand is ve	ry fine to fine grained	t								10_
4						G	3				
5	- moist										15_
											-
											-
<u> </u>											25.
8	and in vo	ry fine to medium gra	ning d								
9	- Saliu is ve	ry line to medium gra	airieu			G	4				30_
10	SAND - trace s	silt, trace gravel, well	graded sand, gravel	is 5-10 mm			- ···				
: L	SAND AND SI	LT - very fine to med	ium grained sand, m	oist, light br	own	G:					35_
<u> </u>	SAND - some (gravel, well graded s	and, gravel is 5-15 n	nm, moist, n	nedium	G					
12	- no gravel, light brov		graded, very fine to f	ine grained	sand,						-
_ 13 . - - - - -	SAND and SIL sand, gra	T- trace gravel, poor avel is 5-10 mm, sub	ly graded, very fine to rounded, moist, med	o fine graine ium brown	ed — —	G	8				45.
12 13 14 15	- CAND										
15	5-15 mm	, subrounded, moist,	y fine to coarse grair , medium brown ry fine to coarse grai								50_
16	is 5-15 m	nm, subrounded, moi	ist, medium brown		. 3. 0.	G	9				
				-, 							55.
<u> </u>		ne sand, well graded ar, damp, medium bro	sand, gravel is 5-20 own	mm, subrou	unded	G1	0				
18						Щ,		OED DV DV		OOMBLETION BED	
	≣ FRΛ	Enginos	rina Cons	sultar	nto I	ta		GED BY: BW (IEWED BY: RN	4N /	COMPLETION DEP	
ebo	LDA	Liigiileel	ring Cons	ouilai	no L	u.		VIEWED BY: RIV AWING NO:	/IIVI	COMPLETE: 10/29/2	2010

2010 Monitoring Well Program	CLIENT: YG - De	partm	ent	of Community Serv	rices	PROJECT NO BOREHOLE NO.			
Mount Lorne Landfill	DRILL: Geotech I	MST-	Ode	(W23101317-ML-MW01			
Whitehorse, YT	6704724N; 50765	53E; Z	one	8					
SAMPLE TYPE DISTURBED NO RECOVE	ERY X SPT			A-CASING	SHELBY				
BACKFILL TYPE BENTONITE PEA GRAVE	L SLOUGH		•	GROUT	DRILL C	CUTTINGS 👯 SAND			
© SOIL DESCRIPTION		SAMPLE TYPE SAMPI F NI IMBFR				NOTES & COMMENTS	Monitoring well	Depth (ft)	
EAND come group! fine to coorse grained cond. group	olio F 10 mm						NN	60_	
SAND - some gravel, fine to coarse grained sand, gravely subrounded, moist-wet, medium brown	ei is 5-10 mm,	G1	1					1	
- very fine to coarse grained sand, light brown			<u> </u>					1	
		G1	2					65_	
E_ 20 E_								-	
SAND and GRAVEL - well graded sand, gravel is 5-20	mm wet medium							1	
brown		G1	3					70	
SAND - gravelly, well graded sand, gravel is 5-20 mm, brown	wet, medium							1	
22 SAND and GRAVEL - well graded, very fine to coarse of	rained sand							1	
gravel is 5-20 mm, wet, medium brown	, amou sana,							75	
E_ 23 F								73_	
E_ F								-	
E 24									
SAND - poorly graded, very fine to medium grained sar	d, moist, medium		<u>,</u>					80_=	
E 25 brown		G1	4				• •	-	
- some gravel, poorly graded, very fine to coarse gra is 5-20 mm, subrounded to angular, moist to wet	ined sand, gravei	G1	5					1	
SAND and GRAVEL - well graded, very fine to very coa	rse grained sand,							65	
gravel is 5-20 mm, subrounded to angular, moist		G1	6					1	
27								1	
SAND - some gravel, fine to coarse grained sand, gravel subrounded, moist-wet, medium brown - very fine to coarse grained sand, light brown SAND and GRAVEL - well graded sand, gravel is 5-20 brown SAND - gravelly, well graded sand, gravel is 5-20 mm, brown SAND and GRAVEL - well graded, very fine to coarse gravel is 5-20 mm, wet, medium brown SAND - poorly graded, very fine to medium grained sand brown - some gravel, poorly graded, very fine to coarse gravel is 5-20 mm, subrounded to angular, moist to wet SAND and GRAVEL - well graded, very fine to very coargravel is 5-20 mm, subrounded to angular, moist SAND and GRAVEL - well graded, very fine to very coargravel is 5-20 mm, subrounded to angular, moist SAND - trace gravel, poorly graded, very fine to coarse gravel is 5-20 mm, subrounded to angular, moist SAND - trace gravel, poorly graded, very fine to coarse gravel is 5-20 mm, saturated, dark brown - saturated	grained sand,		ļ					90_	
gravel is 5-20 mm, saturated, dark brown		G1	7					1	
- saturated		G1	ន					1	
E_ 29			Ĭ 					95_	
					<u> </u>			1	
<u></u>								-	
END OF BOREHOLE @ 30.4 m (Hole collapsed to 30.2	2 m)							100_	
NOTE: These logs reflect disturbed material recovered								1	
NOTE:These logs reflect disturbed material recovered Particle sizes and shapes (particularly gravel) are	affected by drilling				; .			-	
process. Cobbles and boulders if present are not this drilling method. Moisture content is effected in	indicated through by the use of air to				; <u>.</u>			105_	
recover drill material.					; <u>.</u>			-	
E 33					: : :			1	
END OF BOREHOLE @ 30.4 m (Hole collapsed to 30.3 NOTE: These logs reflect disturbed material recovered Particle sizes and shapes (particularly gravel) are process. Cobbles and boulders if present are not this drilling method. Moisture content is effected in recover drill material. 33 34 35 36 36			 					110	
E 34			 		;			-	
								1	
<u> </u>								115_	
					<u> </u>				
36								1 <u>18</u>	
EDA Engineering Con	oultanta I	t~	LOG	GED BY: BW		COMPLETE: 10/20/		.4m	
EBA Engineering Cons	REVIEWED BY: RMM COMPLETE: 10/29/2010 DRAWING NO: Page 2 of 2								

2010 N	Monitoring Well Program (CLIENT: YG - Department of Community Services							PROJECT NO BOREHOLE NO.		
Mount	Lorne Landfill	DRILL: Geotech MST-Odex							W23101317-ML-MW02		
Whiteh	norse, YT	6704644N; 507589E; Zone 8									
SAMP	LE TYPE DISTURBED NO RECOVER	RY 🔀	SPT		A-CASING SHELBY TUBE C						
BACK	FILL TYPE BENTONITE PEA GRAVEL	$\overline{\mathbb{m}}$	SLOUGH			GROUT	DRILL	. CUTTINGS	SAND		
				ш	H						
Depth (m)	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER				TES & MENTS	Monitoring	Depth (ft)	
				S	SA						
0	SAND - uniformly graded, very fine to medium grained sa loose, orange brown	ind, damp	, very		G1 .		.;	- cement sea	al from 0 to 0.3 m		0_
1	- well graded, damp to moist, light brown			П							-
2					1.						5_
	- trace to some silt, moist				.						1
3					-		4				10
4	- some silt				1.						1
					G2						15_
5	 some silt to silty, trace gravel, gravel is 2-10 mm, loos brown 	se, orang	е		G3						1
6	- SAND and SILT				l.		.;				20
	SAND and SILT - trace gravel, poorly graded, very fine to sand, moist, loose, orange brown	medium	grained	1	.		.;;			88	<u> </u>
7	Sand, moist, loose, orange brown				-						
8	- some silt, trace gravel, well graded sand, gravel 5-15	5 mm			l.						25_
_					G4 .						1
9	- silty, no gravel, very fine to medium grained sand										30_
10	- some silt, some gravel, well graded sand, gravel is 5-	30 mm			:						1
=		-30 111111			G5 .						10 20 330 340 445
11	- light brown				-						1
12					[,						40
=	SAND and SILT - uniformly graded, very fine to fine grain light brown	ed sand,	moist,		G6 .						1
13	iight brown			П							45
14	SAND - some silt, some gravel, well graded sand, gravel	is 5-20 m	<u>m</u> , — — —		G7 .						45_
15	rounded to subangular, wet, orange brown										
<u>15</u>					C0						50_
16	SAND - some gravel, some to trace silt, well graded sand	L gravel is			G8						1
17	5-20 mm, rounded to angular, wet, orange brown	, graverit	•		G9						55_
	- light brown				.						1
18					-						55
19	- saturated				G10						
<u> </u>	SAND and GRAVEL - some silt, well graded sand, gravel	l is 2-20 m			G11						=
20	rounded to subangular, saturated SAND - some silt, trace gravel, poorly graded, very fine to	o medium			G12 .						00_
21	grained sand, gravel is 5-20 mm, rounded to suban				G13						1
	- silty, trace to no gravel END OF BOREHOLE @ 21.3 m (Hole collapsed to 18.9 r	m)								ШШ	70_
22	NOTE:These logs reflect disturbed material recovered from	•	turn		-						1
23	Particle sizes and shapes (particularly gravel) are a	affected b	y drilling		:						75_
	process. Cobbles and boulders if present are not in this drilling method. Moisture content is effected by				.						1
<u>24</u>	recover drill material.				-						70 75 80 82 82
25											
***	ERA Engineering Cons	ulta	nto I	+ ~	LO	GGED BY: BW			PLETION DEP		.3m
ebo	EBA Engineering Cons	uildi	no L	ιU	· HE DR	VIEWED BY: RIMIM AWING NO:		Page	PLETE: 10/28/2 1 of 1	2010	

2010 N	010 Monitoring Well Program					CLIENT: YG - Department of Community Services							PROJECT NO BOREHOLE NO.		
Mount	ount Lorne Landfill				DRILL: Geotech MST-Odex							W23101317-ML-MW03		3	
Whitehorse, YT				67046	6704603N; 507657E; Zone 8										
SAMP	LE TYPE	DISTURBED	\square	NO RECOVE	RY >	<u> </u>	SPT		A-CASING SHELBY TUBE CORE						
	FILL TYPE	BENTONITE		PEA GRAVE		Ħ	SLOUGH		Ī	7	GROUT	DRILL	CUTTINGS SAND		
			لفا		- Ц	Ш				<u> </u>	5.1001	3 2		\top	
Depth (m)	SOIL DESCRIPTION							SAMPLE NUMBER				NOTES & COMMENTS	Monitoring	Depth (ft)	
0		ilt, poorly graded, me		n to very coars	e graine	d sa	and,		G1				SEASONALLY FROZEN	44 44	0.
1		damp, yellow brown oorly graded, very fir		medium graine	d sand	firm			G2				- cement seal from 0 to 0.3 m		1
1 2	η moist, ora	inge-brown to dark b	rown	_			/-		G2						0
_ 2	SAND - poorly of wet, yellow	graded, very fine to n	nediu	m grained san	d, loose,	, mo	oist to								1
3		l, gravel is 5-20 mm,	, subr	ounded to ang	ular										10
3 4										;		;]]
4	- becomes w	ret								:					
5	- some silt														15
= 1									G3]
6		-1													20
	- some grave	el .							G4	•					1 1
7									•						25
8	- no gravel, t	race silt, uniformly g	raded	i											'
8	- some grave	el to gravelly, well gra	aded	very fine to v	erv coars	se o	rained								30 🖥
10		dium brown	uuou,	1017 11110 10 1	ory occur	00 5	granio a		G5]
															35
11]
12									G6	• • •					
11 12 13 14	SAND and GRA	NVEL - trace silt, well	grad	ed, very fine to	very co		<u> </u>								40_
_ 13	grained sa medium b	and, subrounded to a	angula	ar, gravel is 5-	15 mm, v	wet	,]]
	mediam	ilowii								• :					45
14															1
15		ravel, very fine to me subrounded to angu					 n								
15	brown	subrounded to angu	iiai, w	ret illedidili bit	JWII, IIIG	uiui	11] "]
<u> </u>		very coarse grained													1 1
17		VEL - well graded, v 5-25 mm, subrounde													55_
-	yory fine to	modium grained as	nd						G7			;		• •]
18		medium grained sa								:					60_
19	SAND - well gra	ided sand, wet to sa	turate	ed, medium bro	own										
		-poorly graded, ver	y fine	to medium gra	ained sai	nd,	wet,								│
20	medium b	rown							G8						65_
<u> </u>															1
- 41	END OF BORE	HOLE 21.0 m												<u> </u>	70
22															1
_		gs reflect disturbed													75
23	process. (izes and shapes (pa Cobbles and boulder	rucula rs if p	any gravel) are resent are not	arrected indicate	u Dy d th	y arıllıng nrough								'`-
24	this drillin	g method. Moisture (rill material.													
	recover a	ıııı IIIal e IIdi.													50
25									11)C(GED BY: BW	:l_	COMPLETION DEP	<u> </u> TH・ ヴ	
Obe	FRA F	Engineer	ina	g Cons	sulta	ər	nts I	td	낢		EWED BY: RMM		COMPLETE: 10/29/		1111
900	, — <i>—</i> ,		٠. ٠	,		<i></i>			וסו		WING NO:		Page 1 of 1		

APPENDIX D

APPENDIX D GROUNDWATER WELL DEVELOPMENT AND SAMPLING LOGS

Attachment /.2 - vvw4219

Groundwater Development and Purging/Sampling Sheet

								Development Purge/Sample
	0.: ML-MA					W231013	511.004	
	DN: Mount					Breanno Oct 29		
	RE: 2°C					9:30 0	<u> </u>	
MONITORING WELL IN	IFORMATION			One well	volume:			
Depth to Water Below Te			21-63 (metres)		$(B-A)^*$ 2 .0 = <u>10</u>		-for a 51mm (2.0 inch) di	
Depth to Bottom of Well	Below Top of Casin		<u>8.74</u> (metres)		(B-A)*1.1 =		-for a 38mm (1.5 inch) di	ameter well
Diameter Standpipe:		C <u>2</u>	(mm)	Product	t Thickness:		(by probe or paste?)	
EQUIPMENT LIST	·				-			
pH and Temp. Mete	er: Model _	I EBA	Serial No		Calibration I	Buffers: 4	☐ 7	
Conductivity Mete	er: Model _	-	Serial No	~	Calibration Sc	olutions:	and <u>~</u>	
Dissolved Oxygen Mete	er: Model _	1 EBA	Serial No.					
Turbidity Mete	er: Model _	.—	Serial No.					
Pump:	none		□ Water	та	□ Pe	ristaltic	☐ Submersible	
Bailer:	none		Stainl	ess Steel	☐ Te	flon	₽VC	
Filter:	none		☐ Wate	rra in-line	☐ Va	cuum (disposal)	☐ Vacuum (re-	usable)
						` , ,	•	,
WELL DEVELOPMENT								
Purge volume: Well vol	x <u>10</u>	volumes =	30	_ litres		and bail		
Flow Rate			Volume:		Start:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Finish:	
my Himeter VOLUME				COND.	\TURBIDITY	I DIC 03 I	REMARK	<u> </u>
TIME REMOVED		(oC)	pH (UNITS)	(uS/cm)	(NTU)	DIS.02 (mg/L) or %	(colour, odour, sheen,	
12:00 14	- 1 mg.	3.8	7-63	1082	1-	157/4	1 slight brice	un
12:15 (OL	15. 15.	3-2	7.85	194	 \ 	19/8.7	very pri	un
12 40 30		3	7.77	757	 	2 19/23	7 11	
						12:27 3 0		
					+			
				III.				
	 			l	 			
	^	NO.		I	1			
	Comments (Rec	(US) HEAT						
	Odour: no	yes (des	scribe)	100	Sheen		yes (describe)	
Turbidity: NT or 1 – 10 relative scale		Clear:	1	2 3	4 5 6	7 8	9 10 Very Silty	
OF 1 - TO TEIGHTVE SCALE	Other							
NAPL Information (odou						J. 1	- Arthur	
BOTTLE		Size: 40	ml 100mL	250mL 500)mL 1L	2L 4L	Filtered P	reservatives
	astic GI	ass					Yes 🗆 No	
	-	ass _					Yes 🗆 No	
_	_	ass					Yes 🗆 No	
_		ass					_	
_	_	ass			V.	_ 7	Yes 🗆 No	
_		ass					Yes No	
		ass			5		Yes No	
	_	acc	_				Voc	· · · · · · · · · · · · · · · · · · ·

Attachment 1.2 - VVIVI4219

Groundwater Development and Purging/Sampling Sheet

Development

1.0	MELL NO.		01			100.11	A . 142 A la .X	17 10 11	- 1	Purge/Sample
		ML-MN Hount 1					0: W231013			
		MONIA O					BY: Breanno			
		15					ГЕ: <u>NOV22</u> ЛЕ: <u>2:45</u> рт			
12.00						1 114	<u> 2. (4) p (</u>	r		
MONITORING W	/FILINFORI	MATION		*** ***	One well	volume: 11.5				
MONITORING W Depth to Water E Depth to Bottom Diameter Standp	Below Top of	Casino:	A 28	-375 (metres	31	.,	11 litres	-for a 51mm /	2 O inch	i) diameter well
Depth to Bottom	of Well Belov	v Top of Casing		.QA (metres	s)	(B-A)*1.1 =				n) diameter well
Diameter Standp	ipe:		χ// C 3	2 '' (mm)	Produc	, ,		(by probe or p		· I
<u> </u>				多 2.5	7	= 10		(a) b. a.a.a. b		
EQUIPMENT LIS	ST _							les.		
pH and Tem	p. Meter:	Model ER	I A	Serial No.		Calibrati	ion Buffers: 4	7		10
Conductivi	itv Meter:	Model	·				Solutions:		and -	1.00
Dissolved Oxyge	•	Model	- wont				. Coldiono.		_	
		Madel	- EV10			-				18:
	ity Meter:		71.0			-				
Pump:		none		□ Wat	erra		Peristaltic	□ s	ubmersi	
Bailer:		none		☐ Stai	nless Steel		Teflon	□ P	VC	Delastic
Filter:		none		□ Wat	erra in-line		Vacuum (disposal)	□ v	acuum /	(re-usable)
							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			`
WELL DEVELOR	PMENT/PUR	GING								
Purge volume: V	Vell vol x	3	volumes =	3BL	litres	Method:	Hand be	101		
Flow Rate					_	100			: ::=::	-21
	OLUME	QRG. VAP.	TEMP	рН	COND.	TURBIDI			REMA	
KEM	IOVED (L)	\(PPM)	(oC)	(UNITS)	(uS/cm)	(NTU)) (mg/L) or %	(colour, odd	our, she	en, brittle film, etc.)
3/15			NIC	8 9	110	1-	 \ 	nnon		
3:39 11	24		1.7	8 17	366	+ \		11		
	رق		1.9	8.11	1/13		 \ 			
								ÿ		
					-	 		- 7		
						1	+			
						+ \	\			
					-					=,
							\ \			HS, multimet.
	Co	mments (Reco	very rate, etc.):					Co	5 10	
SAMPLING	Water Odou			امطاند		Chan		(
		1; 🗀 110		e)		Shee	7 3	/es (describe)		
Turbidity: or 1 – 10 relative	NTU scale (circle	as annronriate	Clear:	1	2 3	4 5	6 7 (8)	9 10	Very S	Silty
or i foreidare	oudic (on oic	Other:	•					102/22/		
NAPL Information	n (odour, colo									
BOTTLE			Size: 40n		250mL 50	0mL 1L	2L 4L	Filtered		Preservatives
1 [Plastic	☐ Glas	s <u>3</u>					Yes 🗌	No	-
2 [Plastic	☐ Glas						Yes 🗆	No	
	Plastic	☐ Glas	•			1		Yes 🗆	No	
_	Plastic	☐ Glas			1 -			Yes □	No	110
l' .'	/			• —						1103
_1	_							Yes	No	HQ
140	Plastic	Glas						Yes	No	
	Plastic	☐ Glas	s					Yes 🗌	No	1+, SO,
上(S)8 □	Plastic	☐ Glas	s					Yes \square	No	42504

Attachment 1.2 - VVIVI4219

Groundwater Development and Purging/Sampling Sheet

□ Development

WELL NO.:	ML-MW02		JOBNO: WD 311)	1317.007					
	yount Lorne	COI	WPLETED BY: NOV 23	2,2010					
WEATHER: C	old, Clear			Ireisten					
TEMPERATURE: _	- 5		TIME: 1:00						
MONITORING WELL INFOR		One well v							
Depth to Water Below Top of			(B-A)*20 = <u>~b</u> litres	-for a 51mm (2.0 inch) diameter well					
Depth to Bottom of Well Below Diameter Standpipe:	· ·		(8-A)*1.1 = litres Thickness:	-for a 38mm (1.5 inch) diameter well					
Diameter Standpipe.		(min) Product	mickness.	(by probe or paste?)					
EQUIPMENT LIST		• (
pH and Temp. Meter:	Model EBA \	Serial No.	Calibration Buffers: 2 4	7 0 10					
Conductivity Meter:	Model		Calibration Solutions:						
Dissolved Oxygen Meter:	Model EBA (
Turbidity Meter:	Model Error								
Pump:		☐ Waterra	Peristaltic	☐ Submersible,					
Bailer:	none	Stainless Steel	☐ Teflon	- PVC plastic					
Filter:	none	☐ Waterra in-line	☐ Vacuum (disposal)						
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
WELL DEVELOPMENT/PUR	GING								
Purge volume: Well vol x	volumes =	/ 8 litres	Method: Bailing						
Flow Rate	L/min V	olume:		Finish:					
1/01/11/15			LITHER DISTRICT						
TIME VOLUME REMOVED (L)	ORG. VAP. TEMP (PPM) (oC)	pH COND. (UNITS) (uS/cm)	\TURBIDITY \ DIS.02 \ (NTU) \ (mg/L) or %	REMARKS (colour, odour, sheen, brittle film, etc.)					
11391 14	1.4	8.80 pot works;	\	Turbid, benun					
1:454 74	1.5	8.70 *							
1-58 181	1.4 8,50	/ 8.66 U							
	1	/							
	9.61		-27 no work	9					
			<u> </u>						
	omments (Recovery rate, etc.):								
SAMPLING Water Odou	r: 🗹 no 🗌 yes (desc	ribe)	73	yes (describe)					
Turbidity:NTU	Clear:	1 2 3	4 5 6 7 (8)	9 10 Very Silty					
or 1 – 10 relative scale (circle	other:								
NAPL Information (odour, colour, etc.)									
BOTTLE	Size: 40m	nl 100mL 250mL 500	mL 1L 2L 4L	Filtered Preservatives					
1 🗹 Plastic	Glass	· · · · · · · · · · · · · · · · ·	<u>\</u>	Yes □ No					
↑ 2 Plastic	Glass								
N 3 Plastic	☐ Glass			Yes No H: 804					
COO 4 Plastic	Glass			Yes 🖸 No					
N 5 Plastic	☐ Glass			□ T. =					
- IN 6 ☐ Plastic	☐ Glass		□	Yes □ No					
7 🗆 Plastic	Glass 3			Yes □ No BEX					
8 🗆 Plastic	Glass			Yes 🗆 No					
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·					

Blind dup.

Attachment 1.2 - VVIVI4219

Groundwater Development and Purging/Sampling Sheet

□ Development

								☐ Purge/S.	ample
	-	ML - 03				JOB N	0.: <u>W23/0/3</u>	17	
	LOCATION:	Mount L	orne	.1./	co			e Keistea	
		Silving, C	114x 1	(1d		DAT	E: <u> </u>	2018	
	TEMPERATURE: _	-15.6				THV	1E:		
					One well	· indicana i	···		
ı	RING WELL INFOR			19 /2-1/1	One well		8,5	f #4 (0.0 ((-) -1)(
l '	Water Below Top of	-	-	/ 9. 67 4 (metres)			3.84.7 litres	-for a 51mm (2.0 inch) diameter wel	
l '	Bottom of Well Below Standpipe:	w rop or casing:	_	11.40 (metres)			litres	-for a 38mm (1.5 inch) diameter well	li
Diameter	Startupipe.		C 2	<u>7''</u> (mm)	Floauc	t mickness:		(by probe or paste?)	
EQUIPM	ENT LIST							/	
pH a	nd Temp. Meter:	Model EB	A I	Serial No.		Calibrati	on Buffers: 4	🗹 7 🔲 10	
Co	nductivity Meter:	Model -		Serial No.		Calibration	Solutions:	and ~	
Dissolve	d Oxygen Meter:	Model E B	341		_				
	Turbidity Meter:	Model err			_				
				_		7.44	Peristaltic	Cultura antibila	
		1,0.10						Submersible	. Λ
	Bailer:				less Steel	-	Teflon	PVC Plastic	<u>~</u>
	Filter: \Box	none		☐ Wate	rra in-line	Ц	Vacuum (disposal)	Vacuum (re-usable)	
WELLD	EVELOPMENT/PUR	CING		00					
	0 =			~2H	***		5 \		
-		3	_				8011		
Flow Rate		L/min		Volume:		Start: _		Finish:	
	VOLUME	ORG. VAP.	TEMP	рН	COND.	TURBIDI	TY DIS.02	REMARKS	
TIME	REMOVED (L)	\ (PPM)	(oC)	(UNITS)	(uS/cm)	(NTU)	I	(colour, odour, sheen, brittle film,	etc.)
11:15	2.		1.1	7-76	14	Enor		brain, murky	,
11:24	1101-		l. te	7.87	53	- "	WORL SITON		
11.32	24 6	+	5./	7.81	267	11	13	- A	
		 					_		
		<u> </u>							
		 \				-			
		 			<u> </u>				
	Ce	omments (Recov	erv rate. etc.)	:		,			
CA MADIL III								/ 1	
SAMPLIN		ır: ☐ no [☐ yes (de	scribe)		Shee		yes (describe)	—
Turbidity:	NTU relative scale (circle	as annronriate).	Clear:	1	2 3	4 5	6 7 (8)	9 10 Very Silty	
011 10	Totalivo socio (onoic	Other:					10.00	100	
NAPL Info	ormation (odour, cole								
				-					
BOTTL			Size: 40	ml 100mL	250mL 500	mL 1L	2L 4L	Filtered Preservative	s:S
N 1	☑ Plastic	☐ Glass	_				5	11 - 11	
M 2	✓ Plastic	☐ Glass	_				(□	Yes 🗆 No NO3)
N 3	☑ Plastic	☐ Glass	_					Yes No H.S.C.	
COYO 4	Plastic	☐ Glass	_		4 -		[
5	Plastic	☐ Glass	_		1	_ 4	[Yes □ No —	
. 6	☐ Plastic	☑ Glass	; <u> </u>			<u> </u>	[Yes 🗆 No 🖳	
7	☐ Plastic	☐ Glass	. 3	\		_			
09 € 8	Plastic	☐ Glass			<u></u>				·

APPENDIX E

APPENDIX E LABORATORY ANALYTICAL RESULTS

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To: EBA Engineering Consultants Project:

Report To: EBA Engineering Consultants

ID: Name: Location:

LSD:

P.O.:

Acct code:

W23101317

Mt. Lorne

Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011

Report Number: 1399567

Whitehorse, YT, Canada Y1A 2V3

Unit 6, 151 Industrial Road

Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Contact & Affiliation Address

Adam Seeley Unit 6, 151 Industrial Road EBA Engineering Consultants Ltd -

Whitehorse, Yukon Territory Y1A 2V3

Phone: (867) 668-3068 Fax: (867) 668-4349 Email: aseeley@eba.ca **Delivery Commitments** On [Lot Verification] send

(COA) by Email - Merge Reports

On [Report Approval] send

(Test Report) by Email - Multiple Reports

On [Report Approval] send

(COC, Test Report) by Email - Merge Reports

On [Report Approval] send

(Test Report) by Email - Single Report

On [Report Approval] send

(Test Report) by Email - Multiple Reports

On [Report Approval] send

(Test Report) by Email - Multiple Reports

On [Report Approval] send

(COC, Test Report) by Email - Merge Reports

On [Report Approval] send

(Test Report) by Email - Single Report

On [Report Approval] send

(Test Report) by Email - Multiple Reports

On [Lot Approval and Final Test Report Approval] send

(Invoice) by Email - Merge Reports

Notes To Clients:

- Report was issued to include QA/QC data and to report nitrate and nitrite analysis separately as requested by Adam Seeley on Jan. 5/11. Report 1399567 is an addendum to report 1391265.
- pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Sample Custody

Bill To: EBA Engineering Consultants

ID:

Name:

LSD:

P.O.:

Location:

Acct code:

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Project: Lot ID: 776095 W23101317

Control Number:

Nov 24, 2010 Date Received: Date Reported: Jan 6, 2011 Report Number: 1399567

Sample	Disposal Date: March 02, 2011		
	es will be stored until this date unless other instructi n this form to the address or fax number on the top		quirements below
	Extend Sample Storage Until	(MM/DD/YY)	
	The following charges apply to extended sample Storage for an additional 30 days Storage for an additional 60 days Storage for an additional 90 days	storage: \$ 2.50 per sample \$ 5.00 per sample \$ 7.50 per sample	
	Return Sample, collect, to the address below via:		
	Greyhound		
	DHL		
	Purolator		
	Other (specify)		

Name

Mt. Lorne

Company	
Address	
Phone	
Fax	
Signature	

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants Project:

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road Name:

ID:

Whitehorse, YT, Canada

Location: Y1A 2V3 LSD:

Attn: Adam Seeley P.O.: Sampled By: S. Sternbergh Acct code:

Company: EBA

Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

776095-1 776095-2 **Reference Number** Sample Date Nov 22, 2010 Nov 22, 2010 Sample Time NA

W23101317

Mt. Lorne

NA

Nov 22, 2010 NA

776095-3

	Sai	mple Location				
	Samp	le Description	ML-MW01	ML-MW02	ML-MW03	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection
Aggregate Organic Const	ituents					
Chemical Oxygen Demand	d	mg O2/L	80	200	310	10
Inorganic Nonmetallic Pa	rameters					
Ammonium - N		mg/L	< 0.05	< 0.05	< 0.05	0.05
Kjeldahl Nitrogen	Total	mg/L	0.66	0.30	0.73	0.06
Phosphorus	Total	mg/L	4.23	5.50	5.14	0.05
Orthophosphate-P	Dissolved	mg/L	0.08	0.06	0.08	0.01
Organic Carbon	Dissolved Nonpurgeable	mg/L	1.0	9.1	0.9	0.5
Metals Dissolved						
Sulfur	Dissolved	mg/L	16.8	13.6	24.9	0.2
Physical and Aggregate F	Properties					
Solids	Total Dissolved	mg/L	308	344	610	5
Routine Water						
Nitrate - N		mg/L	0.07	1.30	1.90	0.01
Nitrite - N		mg/L	< 0.005	0.128	< 0.005	0.005
Nitrate and Nitrite - N		mg/L	0.07	1.43	1.90	0.01
pН	@ 25 °C		7.58	7.87	7.43	
Calcium	Dissolved	mg/L	84.1	90.0	176	0.1
Magnesium	Dissolved	mg/L	14.2	17.3	33.1	0.1
Phosphorus	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Potassium	Dissolved	mg/L	1.9	2.7	3.9	0.1
Silicon	Dissolved	mg/L	4.51	4.15	5.88	0.05
Sodium	Dissolved	mg/L	4.6	6.0	7.6	0.1
Bicarbonate		mg/L	310	290	540	5
Carbonate		mg/L	<6	<6	<6	6
Hydroxide		mg/L	<5	<5	<5	5
T-Alkalinity	as CaCO3	mg/L	255	238	446	5
Chloride	Dissolved	mg/L	0.85	31.8	30.4	0.02
Sulfate (SO4)	Dissolved	mg/L	48.8	39.9	67.4	0.05
Hardness	as CaCO3	mg/L	268	296	577	5
Salinity	Dissolved	g/L	0.011	0.015	0.019	0.0001
Volatile Petroleum Hydro	carbons - Water					
VHw6-10		ug/L	<50	<50	<50	50
VPHw (VHw6-10 minus BTEX)		ug/L	<50	<50	<50	50
Extractable Petroleum Hy	drocarbons - Water					
LEPHw		ug/L	<100	<100	<100	100
HEPHw		ug/L	<100	200	<100	100

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com
W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road Name:

ID:

Location:

Acct code:

LSD:

P.O.:

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

Project: Lot ID: 776095

W23101317

Mt. Lorne

Control Number:

Nov 24, 2010 Date Received: Date Reported: Jan 6, 2011

Report Number: 1399567

		Reference Number Sample Date Sample Time	776095-1 Nov 22, 2010 NA	776095-2 Nov 22, 2010 NA	776095-3 Nov 22, 2010 NA	
		Sample Location Sample Description Matrix	ML-MW01 Water	ML-MW02 Water	ML-MW03 Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hy	drocarbons - Water					
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acridine		ug/L	< 0.05	< 0.05	< 0.05	0.05
Anthracene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(a)pyrene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(b)fluoranthene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(g,h,i)perylene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	< 0.02	<0.02	< 0.02	0.02
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Indeno(1,2,3-c,d)pyrene		ug/L	<0.1	<0.1	<0.1	0.1
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Pyrene		ug/L	< 0.02	<0.02	< 0.02	0.02
Quinoline		ug/L	<3.4	<3.4	<3.4	3.4
PAH - Water - Surrogate	Recovery	•				
2-Fluorobiphenyl	PAH - Surrogate	%	82	94	94	30-130
Nitrobenzene-d5	PAH - Surrogate	%	75	87	88	23-130
p-Terphenyl-d14	PAH - Surrogate	%	85	93	95	18-137
VOC Screen - Water	· ·					
Benzene		ug/L	<1	<1	<1	1
Bromodichloromethane		ug/L	<1	<1	<1	1
Bromoform		ug/L	<1	<1	<1	1
Bromomethane		ug/L	<10	<10	<10	10
Carbon Tetrachloride		ug/L	<1	<1	<1	1
Chlorobenzene		ug/L	<1	<1	<1	1
Chloroethane		ug/L	<10	<10	<10	10
2-Chloroethyl Vinyl Ethe	r	ug/L	<1	<1	<1	1
Chloroform		ug/L	<1	<1	<1	1
Chloromethane		ug/L	<10	<10	<10	10
Dibromochloromethane		ug/L	<1	<1	<1	1
1,2-Dichlorobenzene		ug/L	<1	<1	<1	1
1,3-Dichlorobenzene		ug/L	<1	<1	<1	1

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com
W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

Project:

ID: W23101317

Name: Location:

LSD: P.O.: Acct code:

Mt. Lorne

Lot ID: 776095 Control Number:

Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Date Received:

		Reference Number Sample Date Sample Time Sample Location	776095-1 Nov 22, 2010 NA	776095-2 Nov 22, 2010 NA	776095-3 Nov 22, 2010 NA	
		Sample Description Matrix	ML-MW01 Water	ML-MW02 Water	ML-MW03 Water	
Analyte		Units	Results	Results	Results	Nominal Detection
VOC Screen - Water - Cor	ntinued					LIIIII
1,4-Dichlorobenzene		ug/L	<1	<1	<1	1
1,1-Dichloroethane		ug/L	<1	<1	<1	1
1,2-Dichloroethane		ug/L	<1	<1	<1	1
1,1-Dichloroethene		ug/L	<1	<1	<1	1
1,2-Dichloroethene(cis)		ug/L	<1	<1	<1	1
1,2-Dichloroethene(trans)		ug/L	<1	<1	<1	1
1,2-Dichloropropane		ug/L	<1	<1	<1	1
1,3-Dichloropropene(cis)		ug/L	<1	<1	<1	1
1,3-Dichloropropene(trans	:)	ug/L	<1	<1	<1	1
Ethylbenzene	,	ug/L	<1	<1	<1	1
Methylene Chloride		ug/L	<5	<5	<5	5
Styrene		ug/L	<1	<1	<1	1
1,1,2,2-Tetrachloroethane		ug/L	<1	<1	<1	1
Tetrachloroethene		ug/L	<1	<1	<1	1
Toluene		ug/L	<1	<1	<1	1
1,1,1-Trichloroethane		ug/L	<1	<1	<1	1
1,1,2-Trichloroethane		ug/L	<1	<1	<1	1
Trichloroethene		ug/L	<1	<1	<1	1
Trichlorofluoromethane		ug/L	<1	<1	<1	1
Vinyl Chloride		ug/L	<2	<2	<2	2
Xylene-m&p		ug/L	<1	<1	<1	1
Xylene-o		ug/L	<1	<1	<1	1
Total Xylenes (m,p,o)		ug/L	<1	<1	<1	1
VOC - Water - Surrogate	Recovery	· ·				
Dibromofluoromethane	EPA Surrogate	%	111	112	106	86-118
Toluene-d8	EPA Surrogate	%	100	100	102	85-115
Bromofluorobenzene	EPA Surrogate	%	111	109	105	86-115
Trace Metals Dissolved	-					
Aluminum	Dissolved	μg/L	<5	<5	<5	5
Antimony	Dissolved	μg/L	<0.2	0.2	<0.2	0.2
Arsenic	Dissolved	μg/L	0.3	0.9	0.6	0.2
Barium	Dissolved	μg/L	42	64	94	1
Beryllium	Dissolved	μg/L	<0.04	<0.04	<0.04	0.04
Bismuth	Dissolved	μg/L	<1	<1	<1	1
Boron	Dissolved	μg/L	<4	13	5	4
Cadmium	Dissolved	μg/L	0.02	0.04	0.06	0.01

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com
W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

ID: Name: W23101317

Lot ID: 776095 Control Number:

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Location: Mt. Lorne Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011

Y1A 2V3 Attn: Adam Seeley LSD: P.O.:

Sampled By: S. Sternbergh

Acct code:

Project:

Report Number: 1399567

Company: EBA

		Reference Number Sample Date Sample Time Sample Location Sample Description Matrix	776095-1 Nov 22, 2010 NA	776095-2 Nov 22, 2010 NA ML-MW02 Water	776095-3 Nov 22, 2010 NA ML-MW03 Water	
			ML-MW01 Water			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Trace Metals Dissolv	red - Continued					
Chromium	Dissolved	μg/L	0.8	1	1.3	0.4
Cobalt	Dissolved	μg/L	0.31	0.84	1.88	0.02
Copper	Dissolved	μg/L	2	2	3	1
Iron	Dissolved	ug/L	<5	<5	<5	10
Lead	Dissolved	μg/L	<0.1	<0.1	<0.1	0.1
Lithium	Dissolved	μg/L	3	3	6	1
Manganese	Dissolved	ug/L	38	209	321	5
Mercury	Total Dissolved	ug/L	<0.01	<0.01	<0.01	0.01
Molybdenum	Dissolved	μg/L	1.4	11.4	4.0	0.1
Nickel	Dissolved	μg/L	3	3	8	1
Selenium	Dissolved	μg/L	0.8	<0.6	1.1	0.6
Silver	Dissolved	μg/L	<0.01	<0.01	<0.01	0.01
Strontium	Dissolved	μg/L	431	479	926	1.0
Tellurium	Dissolved	μg/L	<0.1	<0.1	<0.1	0.1
Thallium	Dissolved	μg/L	0.01	<0.01	0.02	0.01
Thorium	Dissolved	μg/L	<0.4	<0.4	<0.4	0.4
Tin	Dissolved	μg/L	0.1	0.2	0.6	0.1
Titanium	Dissolved	μg/L	0.4	<0.4	0.9	0.4
Uranium	Dissolved	μg/L	5.4	5.3	11.1	0.4
Vanadium	Dissolved	μg/L	0.2	0.2	0.4	0.1
Zinc	Dissolved	μg/L	3	2	5	1
Zirconium	Dissolved	μg/L	<0.1	<0.1	0.1	0.1

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants

Project:

Lot ID: 776095

Report To: EBA Engineering Consultants

ID: Name:

Control Number:

Unit 6, 151 Industrial Road Whitehorse, YT, Canada

Location:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011

Y1A 2V3

LSD:

Attn: Adam Seeley Sampled By: S. Sternbergh P.O.: Acct code:

W23101317

Mt. Lorne

Report Number: 1399567

Company: EBA

Reference Number

776095-4

Sample Date Sample Time Nov 22, 2010 NA

Sample Location

Sample Description ML-MW02 Duplicate

Matrix

Water

		Matrix	Water			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Inorganic Nonmetallic F	Parameters					
Ammonia - N		mg/L	<0.01			
Nitrate - N		mg/L	1.10			0.01
Metals Dissolved						
Sulfur	Dissolved	mg/L	14.0			0.2
Routine Water						
рН	@ 25 °C		7.84			
Calcium	Dissolved	mg/L	87.5			0.1
Magnesium	Dissolved	mg/L	16.9			0.1
Phosphorus	Dissolved	mg/L	<0.01			0.01
Potassium	Dissolved	mg/L	2.7			0.1
Silicon	Dissolved	mg/L	4.16			0.05
Sodium	Dissolved	mg/L	6.1			0.1
Hardness	as CaCO3	mg/L	288			5
Salinity	Dissolved	g/L	0.015			0.0001
Volatile Petroleum Hydr	ocarbons - Water					
VHw6-10		ug/L	<50			50
VPHw (VHw6-10 minus BTEX)		ug/L	<50			50
Trace Metals Dissolved						
Aluminum	Dissolved	μg/L	<5			5
Antimony	Dissolved	μg/L	0.2			0.2
Arsenic	Dissolved	μg/L	0.9			0.2
Barium	Dissolved	μg/L	62			1
Beryllium	Dissolved	μg/L	<0.04			0.04
Bismuth	Dissolved	μg/L	<1			1
Boron	Dissolved	μg/L	14			4
Cadmium	Dissolved	μg/L	0.06			0.01
Chromium	Dissolved	μg/L	0.9			0.4
Cobalt	Dissolved	μg/L	0.90			0.02
Copper	Dissolved	μg/L	2			1
Iron	Dissolved	ug/L	13			10
Lead	Dissolved	μg/L	<0.1			0.1
Lithium	Dissolved	μg/L	3			1
Manganese	Dissolved	ug/L	239			5
Mercury	Total Dissolved	ug/L	<0.01			0.01
Molybdenum	Dissolved	μg/L	13.2			0.1
Nickel	Dissolved	μg/L	4			1

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Project:

ID:

W23101317

Lot ID: 776095 Control Number:

Unit 6, 151 Industrial Road Whitehorse, YT, Canada

Name: Location:

Mt. Lorne

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011

Y1A 2V3 LSD: Attn: Adam Seeley P.O.:

Sampled By: S. Sternbergh

Acct code:

Report Number: 1399567

Company: EBA

Reference Number

776095-4

Sample Date Sample Time Nov 22, 2010 NA

Sample Location

Sample Description ML-MW02 Duplicate

Matrix

Water

Analyte		Units	Results	Results	Results	Nominal Detection
Trace Metals Disso	lved - Continued					Eiriit
Selenium	Dissolved	μg/L	0.8			0.6
Silver	Dissolved	μg/L	<0.01			0.01
Strontium	Dissolved	μg/L	472			1.0
Tellurium	Dissolved	μg/L	<0.1			0.1
Thallium	Dissolved	μg/L	<0.01			0.01
Thorium	Dissolved	μg/L	<0.4			0.4
Tin	Dissolved	μg/L	0.2			0.1
Titanium	Dissolved	μg/L	0.5			0.4
Uranium	Dissolved	μg/L	5.3			0.4
Vanadium	Dissolved	μg/L	0.2			0.1
Zinc	Dissolved	μg/L	2			1
Zirconium	Dissolved	μg/L	<0.1			0.1

Approved by:

Marie England Consulting Scientist

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Aggregate Organic Constituents

Sampled By: S. Sternbergh

Company: EBA

Project: ID:

W23101317

Name:

Location:

LSD: P.O.:

Acct code:

Mt. Lorne

Date Received: Date Reported:

Control Number:

Jan 6, 2011

Nov 24, 2010

Lot ID: 776095

Report Number: 1399567

Aggregate Organic C						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chemical Oxygen Dema	-	0	-5	6		yes
Date Acquired: Nove	ember 25, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Chemical Oxygen Dema	and mg/L	98.56	95	107		yes
Date Acquired: Nove	ember 25, 2010					
Chemical Oxygen Dema	and mg/L	100.08	70	130		yes
Date Acquired: Nove	ember 25, 2010					
Certified Reference Mate	erial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Chemical Oxygen Dema	and mg O2/L	40	36	27	45	yes
Date Acquired: Nove	ember 25, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chemical Oxygen Dema	and mg O2/L	3400	3400	30	50	yes
Date Acquired: Nove	ember 25, 2010					
Inorganic Nonmetalli	c Parameters					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Ammonium - N	ug/L	-72.287	-110.00	10.00		yes
Date Acquired: Nove	ember 25, 2010					,
Ammonium - N	mg/L	0	-0.05	0.05		yes
Nitrogen	mg/L	0	-0.06	0.06		yes
Phosphorus	mg/L	-0.002	-0.05	0.05		yes
Orthophosphate-P	mg/L	0.012	-0.05	0.05		yes
Organic Carbon	mg/L	0	-0.5	0.5		yes
Date Acquired: Nove	ember 28, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Ammonium - N	ug/L	93.40	85	115		yes
Date Acquired: Nove	ember 25, 2010					
Ammonium - N	ug/L	82.27	70	130		yes
Date Acquired: Nove	ember 25, 2010					
Nitrite - N	mg/L	111.33	90	110		yes
Nitrate and Nitrite - N	mg/L	91.95	90	110		yes
Date Acquired: Nove	ember 25, 2010					
Certified Reference Mate	erial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Ammonia - N	mg/L	0.6		0.00	0.00	yes
Ammonium - N	mg/L	0.63	0.62	0.52	0.72	yes
Nitrate - N	mg/L	0.67	0.65	0.55	0.75	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Project:

ID: W23101317

Name:

Location: Mt. Lorne

LSD:

P.O.:

Acct code:

Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010
Date Reported: Jan 6, 2011
Report Number: 1399567

Inorganic Nonmetallic Continued	Parameters -					
Certified Reference Materi	ial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Nitrate and Nitrite - N	mg/L	0.67	0.65	0.55	0.75	yes
	mber 25, 2010	0.0.	0.00	0.00	00	, 00
Nitrate - N	mg/L	0.11	0.00	-0.15	0.15	yes
Nitrite - N	mg/L	1.25	1.192	1.040	1.340	yes
Nitrate and Nitrite - N	mg/L	1.36	1.19	0.89	1.49	yes
Date Acquired: Noven	mber 25, 2010					·
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Ammonium - N	mg/L	<0.05	<0.05	10	0.10	yes
Nitrogen	mg/L	2.70	2.85	10	0.06	yes
Phosphorus	mg/L	4.23	4.19	10	0.20	yes
Orthophosphate-P	mg/L	0.84	0.84	10	0.05	yes
Organic Carbon	mg/L	1.0	0.9	10	1.0	yes
Date Acquired: Noven	mber 28, 2010					
Ammonia - N	mg/L	<0.01	<0.01	20	0.50	yes
Nitrate - N	mg/L	1.10	1.10	15	0.05	yes
Nitrite - N	mg/L	0.144	0.144	10	0.030	yes
Nitrate and Nitrite - N	mg/L	1.25	1.24	10	0.05	yes
Date Acquired: Noven	nber 25, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Nitrate - N	mg/L	0.04	-0.01	0.02		yes
Nitrite - N	mg/L	0.006	-0.004	0.006		yes
Nitrate and Nitrite - N	mg/L	0.04	0.00	0.01		yes
Date Acquired: Noven	mber 25, 2010					
Ammonium - N	mg/L	3.08	2.77	3.19		yes
Nitrogen	mg/L	120	103.98	137.82		yes
Phosphorus	mg/L	8.15	7.64	8.36		yes
Organic Carbon	mg/L	120	102.8	128.8		yes
Date Acquired: Noven	mber 28, 2010					
Ammonium - N	mg/L	0.81	0.73	0.85		yes
Nitrogen	mg/L	15.0	12.99	16.41		yes
Phosphorus	mg/L	2.05	1.92	2.16		yes
Orthophosphate-P	mg/L	0.40	0.37	0.42		yes
Organic Carbon	mg/L	15.6	13.3	16.7		yes
Date Acquired: Noven	mber 28, 2010					
Nitrogen	mg/L	1.12	0.81	1.23		yes
Orthophosphate-P	mg/L	0.08	0.07	0.09		yes
Organic Carbon	mg/L	2.8	2.5	3.8		yes
Date Acquired: Noven	mber 28, 2010					

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

ID:

Name:

LSD:

P.O.:

Location:

Acct code:

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

Project: Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Inorganic Nonmetallic Parameters -Continued

Metals Dissolved

Certified Reference Mater	rial Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Aluminum	mg/L	0.055	0.060	0.052	0.068	yes
Antimony	mg/L	0.0157	0.0150	0.0110	0.0190	yes
Arsenic	mg/L	0.0104	0.0109	0.0089	0.0131	yes
Barium	mg/L	0.066	0.070	0.063	0.077	yes
Beryllium	mg/L	0.0119	0.01200	0.01029	0.01371	yes
Boron	mg/L	0.077	0.075	0.050	0.110	yes
Cadmium	mg/L	0.01660	0.01790	0.01533	0.02067	yes
Chromium	mg/L	0.0643	0.0677	0.0563	0.0797	yes
Cobalt	mg/L	0.0768	0.07980	0.07010	0.08990	yes
Copper	mg/L	0.062	0.065	0.060	0.070	yes
Lead	mg/L	0.0514	0.0531	0.0451	0.0610	yes
Molybdenum	mg/L	0.0720	0.07390	0.06161	0.08639	yes
Nickel	mg/L	0.061	0.063	0.057	0.069	yes
Selenium	mg/L	0.0207	0.0190	0.0147	0.0234	yes
Silver	mg/L	0.01180	0.01250	0.01041	0.01359	yes
Strontium	mg/L	0.040	0.043	0.037	0.049	yes
Thallium	mg/L	0.00958	0.00996	-0.01370	0.03370	yes
Vanadium	mg/L	0.0517	0.05390	0.04740	0.06060	yes
Zinc	mg/L	0.066	0.067	0.059	0.075	yes
Date Acquired: Nove	mber 25, 2010					

W23101317

Mt. Lorne

Replicates Units Replicate 1 Replicate 2 % RSD Criteria **Absolute Criteria** Passed QC 22.4 22.8 30 Sulfur mg/L 3.0 yes

Date Acquired: November 25, 2010

Physical and Aggregate Properties

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Solids	mg/L	58	58	30	25	yes
Date Acquired:	November 26, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Solids	mg/L	566	471	619		yes
Date Acquired:	November 26, 2010					
Solids	mg/L	26	19	34		yes
Date Acquired:	November 26, 2010					
Solids	mg/L	<5	-5	5		yes
Date Acquired:	November 26, 2010					

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

Project:

ID: W23101317

Name:

Location: Mt. Lorne

LSD: P.O.:

Acct code:

Date Received: Date Reported:

Control Number:

Jan 6, 2011

Nov 24, 2010

Lot ID: 776095

Report Number: 1399567

Routine Water					
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Calcium	mg/L	-0.0106	-0.05	0.05	yes
Iron	mg/L	0.0021	-0.031	0.029	yes
Magnesium	mg/L	-0.0105	-0.05	0.07	yes
Manganese	mg/L	-0.0018	-0.008	-0.000	yes
Phosphorus	mg/L	-0.0082	-0.04	0.04	yes
Potassium	mg/L	0.0156	-0.4	0.4	yes
Silicon	mg/L	0.0028	-0.20	0.25	yes
Sodium	mg/L	-0.0058	-0.2	0.2	yes
Date Acquired:	November 25, 2010				
Calcium	mg/L	-0.0053	-0.13	0.16	yes
Iron	mg/L	0	-0.024	0.025	yes
Magnesium	mg/L	0.0111	-0.07	0.08	yes
Manganese	mg/L	-0.0021	-0.009	0.002	yes
Phosphorus	mg/L	-0.0057	-0.14	0.16	yes
Potassium	mg/L	0.0157	-0.8	0.8	yes
Silicon	mg/L	-0.0033	-1.76	2.02	yes
Sodium	mg/L	-0.0079	-0.3	0.4	yes
Date Acquired:	November 25, 2010				
Nitrate - N	mg/L	0.00279863	-0.01	0.01	yes
Nitrite - N	mg/L	0.00202568	-0.005	0.005	yes
Date Acquired:	November 29, 2010				
Chloride	mg/L	0	-0.20	0.20	yes
Sulfate (SO4)	mg/L	1.21557	-0.99	0.99	yes
Date Acquired:	November 25, 2010				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
рН	рН	99.89	98	101	yes
Date Acquired:	November 24, 2010				•
Calcium	mg/L	99.20	91	109	yes
Iron	mg/L	89.70	0	0	yes
Magnesium	mg/L	95.05	91	109	yes
Manganese	mg/L	97.60	90	110	yes
Phosphorus	mg/L	97.60	90	110	yes
Potassium	mg/L	95.44	85	115	yes
Silicon	mg/L	93.92	80	120	yes
Sodium	mg/L	98.21	90	110	yes
Date Acquired:	November 25, 2010				
Chloride	mg/L	112.48	85	115	yes
Sulfate (SO4)	mg/L	99.82	85	115	yes
Date Acquired:	November 25, 2010				
Chloride	mg/L	96.99	90	110	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Company: EBA

Sampled By: S. Sternbergh

Project: ID:

W23101317

Name:

Location:

LSD:

P.O.: Acct code:

Mt. Lorne

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Control Number:

Lot ID: 776095

libration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Sulfate (SO4)	mg/L	96.59	90	110		yes
Date Acquired: Novemb	er 25, 2010					
rtified Reference Material	Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
T-Alkalinity	mg/L	10	10	8	11	yes
Date Acquired: Novemb	er 24, 2010					
Calcium	mg/L	14.9	14.85	11.55	18.25	yes
Magnesium	mg/L	8.8	9.07	6.88	11.26	yes
Manganese	mg/L	0.076	0.078	0.072	0.084	yes
Potassium	mg/L	8.3	8.6	6.4	10.8	yes
Sodium	mg/L	13.1	14.2	11.7	16.7	yes
Date Acquired: Novemb	er 25, 2010					
plicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q0
Nitrate - N	mg/L	2.38	2.34	10	0.01	yes
Nitrite - N	mg/L	0.178	0.176	10	0.010	yes
Date Acquired: Novemb	er 29, 2010					
Calcium	mg/L	165	166	30	1.00	yes
ron	mg/L	< 0.005	< 0.005	30	0.060	yes
Magnesium	mg/L	44.1	44.1	30	1.00	yes
Manganese	mg/L	0.534	0.535	30	0.015	yes
Phosphorus	mg/L	<0.01	<0.01	30	0.10	yes
Potassium	mg/L	3.8	3.8	30	1.0	yes
Silicon	mg/L	8.56	8.61	30	0.15	yes
Sodium	mg/L	10.0	10.1	30	1.0	yes
Date Acquired: Novemb	er 25, 2010					
ЭΗ		7.87	7.87	2		yes
Electrical Conductivity	dS/m at 25 C	0.597	0.600	10	0.005	yes
Bicarbonate	mg/L	290	290	10	10	yes
Carbonate	mg/L	<6	<6	10	10	yes
Hydroxide	mg/L	<5	<5	10	10	yes
P-Alkalinity	mg/L	<5	<5	10	5	yes
T-Alkalinity	mg/L	238	238	10	5	yes
Chloride	mg/L	0.79	0.88	15	0.25	yes
Sulfate (SO4)	mg/L	102	103	15	0.50	yes
Date Acquired: Novemb	er 25, 2010					
plicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chloride	mg/L	0.79	0.77	6	0.01	yes
Sulfate (SO4)	mg/L	4.27	4.15	6	0.01	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants Project:

Report To: EBA Engineering Consultants

s ID:

Lot ID: **776095**

Unit 6, 151 Industrial Road

Name:

Control Number:
Date Received: Nov 24, 2010

Whitehorse, YT, Canada

Location: Mt. Lorne

W23101317

Date Reported: Jan 6, 2011

Y1A 2V3 Attn: Adam Seeley LSD: P.O.:

Report Number: 1399567

Sampled By: S. Sternbergh

Acct code:

Company: EBA

Routine Water -	Continued					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
рН		10.2	9.08	10.92		yes
Electrical Conduc	tivity µS/cm at 25 C	210	165	243		yes
P-Alkalinity	mg/L	39	9	53		yes
T-Alkalinity	mg/L	97	90	101		yes
Date Acquired:	November 24, 2010					
Electrical Conduc	tivity µS/cm at 25 C	1420	1330	1510		yes
Date Acquired:	November 24, 2010					
Electrical Conduc	tivity µS/cm at 25 C	<1	-2	2		yes
Date Acquired:	November 24, 2010					
Nitrate - N	mg/L	10.1	9.51	10.49		yes
Nitrite - N	mg/L	10.1	9.510	10.530		yes
Nitrate and Nitrite	· ·	20.2	18.09	22.11		yes
Date Acquired:	November 29, 2010					-
Nitrate - N	mg/L	0.52	0.45	0.55		yes
Nitrite - N	mg/L	0.516	0.452	0.548		yes
Nitrate and Nitrite		1.03	0.79	1.19		yes
Date Acquired:	November 29, 2010					•
Water Blanks	oleum Hydrocarbons - Units	Measured	Lower Limit	Upper Limit		Passed QC
EPHw10-19	ug/mL	55.64	-100	100		yes
EPHw19-32	ug/mL	42.96	-100	100		yes
Date Acquired:	November 29, 2010	42.30	-100	100		yes
Date Acquired.	November 29, 2010					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
EPHw10-19	ug/mL	106.90	85	115		yes
EPHw19-32	ug/mL	106.90	85	115		yes
Date Acquired:	November 29, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
EPHw10-19	ug/L	500	400	60	500	yes
EPHw19-32	ug/L	500	400	60	500	yes
Date Acquired:	November 29, 2010					·
Matrix Spike				Haman Limit		
	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
EPHw10-19		% Recovery 90	Lower Limit 79	Upper Limit 128		
EPHw10-19 EPHw19-32	Units ug/L ug/L	•		• •		Passed QC yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Project: ID:

W23101317

Name:

Location:

LSD: P.O.:

Acct code:

Mt. Lorne

Date Received: Date Reported:

Control Number:

Jan 6, 2011

Nov 24, 2010

Lot ID: 776095

Report Number: 1399567

Water	drocarbons -				
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Acenaphthene	ng/mL	0	-0.1	0.1	yes
Acenaphthylene	ng/mL	0	-0.1	0.1	yes
Acridine	ng/mL	0	-0.05	0.05	yes
Anthracene	ng/mL	0	-0.1	0.1	yes
Benzo(a)anthracene	ng/mL	0.00043	-0.01	0.01	yes
Benzo(a)pyrene	ng/mL	0.00056	-0.01	0.01	yes
Benzo(b)fluoranthene	ng/mL	0.0005	-0.01	0.01	yes
Benzo(g,h,i)perylene	ng/mL	0.00063	-0.1	0.1	yes
Benzo(k)fluoranthene	ng/mL	0	-0.01	0.01	yes
Chrysene	ng/mL	0.00065	-0.1	0.1	yes
Dibenzo(a,h)anthracene	ng/mL	0	-0.01	0.01	yes
Fluoranthene	ng/mL	0.00171	-0.1	0.1	yes
Fluorene	ng/mL	0.00069	-0.1	0.1	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0.00066	-0.1	0.1	yes
Naphthalene	ng/mL	0.00747	-0.1	0.1	yes
Phenanthrene	ng/mL	0.00751	-0.1	0.1	yes
Pyrene	ng/mL	0.00818	-0.02	0.02	yes
Quinoline	ng/mL	0.00061	-3.4	3.4	yes
Date Acquired: Novem	ber 29, 2010				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Acenaphthene	ng/mL	98.79	80	120	yes
Acenaphthylene	ng/mL	97.71	80	120	yes
Acridine	ng/mL	98.08	80	120	yes
Acridine Anthracene	ng/mL ng/mL	98.08 98.39	80 80	120 120	yes yes
	ŭ				•
Anthracene	ng/mL	98.39	80	120	yes
Anthracene Benzo(a)anthracene	ng/mL ng/mL	98.39 97.68	80 80	120 120	yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene	ng/mL ng/mL ng/mL	98.39 97.68 97.88	80 80 80	120 120 120	yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ng/mL ng/mL ng/mL ng/mL	98.39 97.68 97.88 97.62	80 80 80 80	120 120 120 120	yes yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ng/mL ng/mL ng/mL ng/mL ng/mL	98.39 97.68 97.88 97.62 97.11	80 80 80 80	120 120 120 120 120	yes yes yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	98.39 97.68 97.88 97.62 97.11 96.10	80 80 80 80 80	120 120 120 120 120 120	yes yes yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41	80 80 80 80 80 80	120 120 120 120 120 120 120	yes yes yes yes yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	yes yes yes yes yes yes yes yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120	yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74 97.71	80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74 97.71 96.30 95.92	80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74 97.71 96.30 95.92 98.21	80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene Pyrene Quinoline	ng/mL	98.39 97.68 97.88 97.62 97.11 96.10 98.41 96.00 97.74 97.71 96.30 95.92 98.21 97.68	80 80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada Y1A 2V3

Attn: Adam Seeley
Sampled By: S. Sternbergh

Company: EBA

Project:

ID: W23101317

Name:

Location: Mt. Lorne

LSD:

P.O.:

Acct code:

Lot ID: **776095**

Control Number:

Date Received: Nov 24, 2010
Date Reported: Jan 6, 2011
Report Number: 1399567

Polycyclic Aromatic Hydrocarbons - Water - Continued

Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Acenaphthene	ug/L	97.6	92.9	60	0.5	yes
Acenaphthylene	ug/L	90.2	86.2	60	0.5	yes
Acridine	ug/L	92.8	88.5	60	0.25	yes
Anthracene	ug/L	86.2	82.9	60	0.5	yes
Benzo(a)anthracene	ug/L	91.5	87.2	60	0.05	yes
Benzo(a)pyrene	ug/L	86.9	82.8	60	0.05	yes
Benzo(b)fluoranthene	ug/L	92.6	86.7	60	0.05	yes
Benzo(g,h,i)perylene	ug/L	87.7	83.2	60	0.5	yes
Benzo(k)fluoranthene	ug/L	81.9	79.2	60	0.05	yes
Chrysene	ug/L	95.5	91.2	60	0.5	yes
Dibenzo(a,h)anthracene	ug/L	77.1	72.3	60	0.05	yes
Fluoranthene	ug/L	93.8	87.3	60	0.5	yes
Fluorene	ug/L	91.5	85.8	60	0.5	yes
Indeno(1,2,3-c,d)pyrene	ug/L	81.2	74.7	60	0.5	yes
Naphthalene	ug/L	97.0	94.2	60	0.5	yes
Phenanthrene	ug/L	96.2	92.6	60	0.5	yes
Pyrene	ug/L	101	98.3	60	0.10	yes
Quinoline	ug/L	91.0	86.0	60	17.0	yes

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Acenaphthene	ug/L	97.6	50.0	130.0	yes
Acenaphthylene	ug/L	90.2	50.0	130.0	yes
Acridine	ug/L	92.8	50.01	129.99	yes
Anthracene	ug/L	86.2	50.0	130.0	yes
Benzo(a)anthracene	ug/L	91.5	50.01	129.99	yes
Benzo(a)pyrene	ug/L	86.9	50.01	129.99	yes
Benzo(b)fluoranthene	ug/L	92.6	50.01	129.99	yes
Benzo(g,h,i)perylene	ug/L	87.7	50.0	130.0	yes
Benzo(k)fluoranthene	ug/L	81.9	50.01	129.99	yes
Chrysene	ug/L	95.5	50.0	130.0	yes
Dibenzo(a,h)anthracene	ug/L	77.1	50.01	129.99	yes
Fluoranthene	ug/L	93.8	50.0	130.0	yes
Fluorene	ug/L	91.5	50.0	130.0	yes
Indeno(1,2,3-c,d)pyrene	ug/L	81.2	50.0	130.0	yes
Naphthalene	ug/L	97.0	50.0	130.0	yes
Phenanthrene	ug/L	96.2	50.0	130.0	yes
Pyrene	ug/L	101	50.01	129.99	yes
Quinoline	ug/L	91.0	50.0	130.0	yes
Date Acquired: Novem	ber 29, 2010				

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Passed QC

yes

yes

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road Name:

ID:

Location:

Whitehorse, YT, Canada

LSD: Y1A 2V3 Attn: Adam

Units

%

%

Company: EBA

Calibration Check

2-Fluorobiphenyl

Nitrobenzene-d5

PAH - Water - Surrogate Recovery

Project: Lot ID: 776095

Lower Limit

80

80

Control Number:

Upper Limit

120

120

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 ort Number: 1399567

	1111210	200.	Report Number:
Attn:	Adam Seeley	P.O.:	·
Sampled By:	S. Sternbergh	Acct code:	

% Recovery

99.11

96.46

W23101317

Mt. Lorne

						,
p-Terphenyl-d14	%	96.05	80	120		yes
Date Acquired: Novemb	er 29, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
2-Fluorobiphenyl	%	91	91	60	0	yes
Nitrobenzene-d5	%	78	88	60	0	yes
p-Terphenyl-d14	%	91	90	60	0	yes
Date Acquired: Novemb	er 29, 2010					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
2-Fluorobiphenyl	%	91	40	130		yes
Nitrobenzene-d5	%	78	40	130		yes
p-Terphenyl-d14	%	91	40	130		yes
Date Acquired: Novemb	er 29, 2010					
VOC Screen - Water						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-2	2		yes
Bromodichloromethane	ng	0	-2	2		yes
Bromoform	ng	0	-2	2		yes
Bromomethane	ng	0	-15	15		yes
Carbon Tetrachloride	ng	0	-2	2		yes
Chlorobenzene	ng	0	-2	2		yes
Chloroethane	ng	0	-15	15		yes
2-Chloroethyl Vinyl Ether	ng	0	-2	2		yes
Chloroform	ng	0	-2	2		yes
Chloromethane	ng	0	-15	15		yes
Dibromochloromethane	ng	0	-2	2		yes
1,2-Dichlorobenzene	ng	0	-2	2		yes
1,3-Dichlorobenzene	ng	0	-2	2		yes
1,4-Dichlorobenzene	ng	0	-2	2		yes
1,1-Dichloroethane	ng	0	-2	2		yes
1,2-Dichloroethane	ng	0	-2	2		yes
1,1-Dichloroethene	ng	0	-2	2		yes
1,2-Dichloroethene(cis)	ng	0	-2	2		yes
1,2-Dichloroethene(trans)	ng	0	-2	2		yes
1,2-Dichloropropane	ng	0	-2	2		yes
1,3-Dichloropropene(cis)	ng	0	-2	2		yes
1,3-Dichloropropene(trans)	ng	0	-2	2		yes
Ethylbenzene	ng	0	-2	2		yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Date Acquired: November 26, 2010

Company: EBA

Project:

ID: W23101317

Name:

Location: Mt. Lorne

LSD:

).

P.O.:

Acct code:

Lot ID: **776095**

Control Number:

Date Received: Nov 24, 2010
Date Reported: Jan 6, 2011
Report Number: 1399567

VOC Screen - Water - Co	ontinued				
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Methylene Chloride	ng	0	-15	15	yes
Styrene	ng	0	-2	2	yes
1,1,2,2-Tetrachloroethane	ng	0	-2	2	yes
Tetrachloroethene	ng	0	-2	2	yes
Toluene	ng	0	-2	2	yes
1,1,1-Trichloroethane	ng	0	-2	2	yes
1,1,2-Trichloroethane	ng	0	-2	2	yes
Trichloroethene	ng	0	-2	2	yes
Trichlorofluoromethane	ng	0	-2	2	yes
Vinyl Chloride	ng	0	-15	15	yes
Xylene-m&p	ng	0	0	0	yes
Xylene-o	ng	0	0	0	yes
Total Xylenes (m,p,o)	ng	0	-2	2	yes

Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Benzene	ng	96.18	78	122	yes
Bromodichloromethane	ng	107.58	78	122	yes
Bromoform	ng	102.30	78	122	yes
Bromomethane	ng	103.24	78	122	yes
Carbon Tetrachloride	ng		78	122	yes
Chlorobenzene	ng	106.58	78	122	yes
Chloroethane	ng		78	122	yes
2-Chloroethyl Vinyl Ether	ng		78	122	yes
Chloroform	ng	96.76	78	122	yes
Chloromethane	ng		78	122	yes
Dibromochloromethane	ng	111.68	78	122	yes
1,2-Dichlorobenzene	ng	104.22	78	122	yes
1,3-Dichlorobenzene	ng	107.12	78	122	yes
1,4-Dichlorobenzene	ng	110.08	78	122	yes
1,1-Dichloroethane	ng	99.84	78	122	yes
1,2-Dichloroethane	ng		78	122	yes
1,1-Dichloroethene	ng	94.22	78	122	yes
1,2-Dichloroethene(cis)	ng		78	122	yes
1,2-Dichloroethene(trans)	ng		78	122	yes
1,2-Dichloropropane	ng		78	122	yes
1,3-Dichloropropene(cis)	ng		78	122	yes
1,3-Dichloropropene(trans)	ng	155.38	78	122	yes
Ethylbenzene	ng	105.30	78	122	yes
Methylene Chloride	ng		78	122	yes
Styrene	ng	106.32	78	122	yes
1,1,2,2-Tetrachloroethane	ng	113.80	78	122	yes
Tetrachloroethene	ng	90.46	78	122	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

ID: Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

Project:

W23101317

Name:

Location: Mt. Lorne

LSD:

P.O.: Acct code: Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

VOC Screen - Water - C	ontinued					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Toluene	ng	99.40	78	122		yes
1,1,1-Trichloroethane	ng	104.16	78	122		yes
1,1,2-Trichloroethane	ng	101.40	78	122		yes
Trichloroethene	ng	107.46	78	122		yes
Trichlorofluoromethane	ng	110.24	78	122		yes
Vinyl Chloride	ng	98.44	78	122		yes
Xylene-m&p	ng	102.87	78	122		yes
Xylene-o	ng	103.14	78	122		yes
Total Xylenes (m,p,o)	ng	102.96	78	122		yes
Date Acquired: Novem	ber 26, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	ug/L	<1	<1	15	2	yes
Bromodichloromethane	ug/L	<1	<1	15	2	yes
Bromoform	ug/L	<1	<1	15	2	yes
Carbon Tetrachloride	ug/L	<1	<1	15	2	yes
Chloroform	ug/L	26	26	15	2	yes
Dibromochloromethane	ug/L	<1	<1	15	2	yes
1.2-Dichloroethane	ua/l	-1	~1	15	2	VAS

Bromodichloromethane	ug/L	<1	<1	15	2	yes
Bromoform	ug/L	<1	<1	15	2	yes
Carbon Tetrachloride	ug/L	<1	<1	15	2	yes
Chloroform	ug/L	26	26	15	2	yes
Dibromochloromethane	ug/L	<1	<1	15	2	yes
1,2-Dichloroethane	ug/L	<1	<1	15	2	yes
1,1-Dichloroethene	ug/L	<1	<1	15	2	yes
1,2-Dichloropropane	ug/L	<1	<1	15	2	yes
Ethylbenzene	ug/L	<1	<1	15	2	yes
Styrene	ug/L	<1	<1	15	2	yes
Tetrachloroethene	ug/L	<1	<1	15	2	yes
Toluene	ug/L	<1	<1	15	2	yes
1,1,1-Trichloroethane	ug/L	<1	<1	15	2	yes
1,1,2-Trichloroethane	ug/L	<1	<1	15	2	yes
Trichloroethene	ug/L	<1	<1	15	2	yes
Vinyl Chloride	ug/L	<2	<2	15	20	yes
Xylene-m&p	ug/L	<1	<1	15	2	yes
Xylene-o	ug/L	<1	<1	15	2	yes
Total Xylenes (m,p,o)	ug/L	<1	<1	15	2	yes

Date Acquired: November 26, 2010

VOC - Water - Surrogate Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Dibromofluoromethane	%	107.46	85	115	yes
Toluene-d8	%	97.26	85	115	yes
Bromofluorobenzene	%	109.75	85	115	yes
Date Acquired: Novem	ber 26, 2010				

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Project: ID:

W23101317

Name:

Location: Mt. Lorne

LSD: P.O.:

Acct code:

Lot ID: **776095**

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Trace Metals Disso	olved				
Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	μg/L	-4.244	-10	10	yes
Antimony	μg/L	0	-0.4	0.2	yes
Arsenic	μg/L	0.029	-0.5	0.5	yes
Barium	μg/L	-0.018	-0	0	yes
Beryllium	μg/L	0.003	-0.10	0.10	yes
Bismuth	μg/L	0.004	-1.0	1.0	yes
Boron	μg/L	-2.558	-6	5	yes
Cadmium	μg/L	-0.001	-0.03	0.03	yes
Chromium	μg/L	-0.026	-0.1	0.2	yes
Cobalt	μg/L	-0.001	-0.07	0.07	yes
Copper	μg/L	-0.074	-1	1	yes
Lead	μg/L	-0.015	-0.1	0.1	yes
Lithium	μg/L	-0.006	-1	1	yes
Molybdenum	μg/L	-0.023	-0.31	0.29	yes
Nickel	μg/L	0.007	-1	1	yes
Selenium	μg/L	0.485	-1.7	1.3	yes
Silver	μg/L	-0.001	-0.05	0.05	yes
Strontium	μg/L	-0.024	-0	0	yes
Tellurium	μg/L	0.016	-0.7	0.7	yes
Thallium	μg/L	-0.002	-0.03	0.03	yes
Thorium	μg/L	0.006	-1.5	1.5	yes
Tin	μg/L	-0.006	-3.0	3.0	yes
Titanium	μg/L	-0.248	-0.2	0.2	yes
Uranium	μg/L	0.001	-0.03	0.03	yes
Vanadium	μg/L	-0.006	-0.35	0.35	yes
Zinc	μg/L	-0.018	-2	4	yes
Zirconium	μg/L	0.01	-0.0	0.0	yes
Date Acquired: N	lovember 25, 2010				
Aluminum	μg/L	-3.953	-6	6	yes
Antimony	μg/L	-0.005	-0.4	0.3	yes
Arsenic	μg/L	0.007	-0.4	0.3	yes
Barium	μg/L	0.085	-0	1	yes
Beryllium	μg/L	0.003	-0.10	0.10	yes
Bismuth	μg/L	-0.029	0.0	0.0	yes
Boron	μg/L	-2.431	-18	19	yes
Cadmium	μg/L	-0.001	-0.03	0.03	yes
Chromium	μg/L	0.002	-0.1	0.2	yes
Cobalt	μg/L	0	-0.30	0.30	yes
Copper	μg/L	-0.089	-1	1	yes
Lead	μg/L	-0.011	-0.3	0.4	yes
Lithium	μg/L	-0.002	-0	0	yes
Molybdenum	μg/L	0.005	-0.95	0.85	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Trace Metals Dissolved - Continued

Company: EBA

Project: ID:

W23101317

Name:

Location:

LSD:

P.O.: Acct code:

Mt. Lorne

Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Control Number:

Date Received:

Lot ID: 776095

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Nickel	μg/L	0.016	-1	1	yes
Selenium	μg/L	0.386	-1.7	1.7	yes
Silver	μg/L	-0.003	-0.67	0.47	yes
Strontium	μg/L	0.66	-2	4	yes
Tellurium	μg/L	-0.042	-0.7	0.7	yes
Thallium	μg/L	0.001	-0.06	0.06	yes
Thorium	μg/L	-0.107	-0.7	0.5	yes
Tin	μg/L	-0.025	-3.8	4.0	yes
Titanium	μg/L	0.213	-0.3	0.2	yes
Uranium	μg/L	0.013	-0.04	0.02	yes
Vanadium	μg/L	-0.003	-0.30	0.30	yes
Zinc	μg/L	0.058	-11	19	yes
Zirconium	μg/L	-0.016	-0.0	0.0	yes
Date Acquired:	November 25, 2010				
Mercury	ug/L	<0.01	-9.99	9.99	yes
Date Acquired:	November 26, 2010				•
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Mercury	ng/L	108.40	85	115	yes
Date Acquired:	November 26, 2010				
Aluminum	μg/L	99.64	70	130	yes
Antimony	μg/L	96.12	85	115	yes
Arsenic	μg/L	100.20	90	110	yes
Barium	μg/L	94.52	90	110	yes
Beryllium	μg/L	100.20	90	110	yes
Bismuth	μg/L	100.40	90	110	yes
Boron	μg/L	103.92	70	130	yes
Cadmium	μg/L	99.88	90	110	yes
Chromium	μg/L	91.54	90	110	yes
Cobalt	μg/L	92.94	90	110	yes
Copper	μg/L	93.30	90	110	yes
Lead	μg/L	100.76	90	110	yes
Lithium	μg/L	94.32	90	110	yes
Molybdenum	μg/L	91.52	90	110	yes
Nickel	μg/L	93.20	90	110	yes
Selenium	μg/L	107.52	90	110	yes
Silver	μg/L	0.12	0	0	yes
Strontium	μg/L	94.52	90	110	yes
Thallium	μg/L	99.00	90	110	yes
mamam		95.80	90	110	yes
Tin	μg/L	33.00			,
	μg/L	92.88	90	110	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3 LSD: Attn: Adam Seeley P.O.:

Company: EBA

Sampled By: S. Sternbergh

Project:

ID:

W23101317

Name:

Location: Mt. Lorne

LSD:

Acct code:

Lot ID: 776095

Control Number:

Date Received: Nov 24, 2010
Date Reported: Jan 6, 2011
Report Number: 1399567

Trace Metals Dis	solved - Continued					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Vanadium	μg/L	90.80	90	110		yes
Zinc	μg/L	100.74	90	110		yes
Zirconium	μg/L	101.12	90	110		yes
Date Acquired:	November 25, 2010					
Certified Reference	Material Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Mercury	ug/L	0.09	0.09	0.08	0.10	yes
Date Acquired:	November 26, 2010					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Aluminum	μg/L	<5	<5	20	20	yes
Antimony	μg/L	<0.2	0.2	20	1.0	yes
Arsenic	μg/L	0.4	0.4	20	1.0	yes
Barium	μg/L	105	105	20	5	yes
Beryllium	μg/L	<0.04	< 0.04	20	1.00	yes
Boron	μg/L	35	36	20	5	yes
Cadmium	μg/L	0.14	0.13	20	0.50	yes
Chromium	μg/L	0.6	0.6	20	5.0	yes
Cobalt	μg/L	0.35	0.35	20	0.50	yes
Copper	μg/L	3	3	20	5	yes
Lead	μg/L	<0.1	<0.1	20	0.5	yes
Lithium	μg/L	12	12	20	5	yes
Molybdenum	μg/L	2.0	2.0	20	0.50	yes
Nickel	μg/L	8	8	20	5	yes
Selenium	μg/L	<0.6	<0.6	20	0.5	yes
Silver	μg/L	<0.01	<0.01	20	0.50	yes
Strontium	μg/L	1154	1176	20	0	yes
Tellurium	μg/L	<0.1	<0.1	20	0.5	yes
Thallium	μg/L	0.03	0.03	20	0.10	yes
Thorium	μg/L	<0.4	<0.4	10	0.1	yes
Tin	μg/L	0.1	0.2	20	0.5	yes
Titanium	μg/L	0.7	0.6	20	0.5	yes
Uranium	μg/L	2.9	3.0	20	0.10	yes
Vanadium	μg/L	0.8	0.8	20	0.50	yes
Zinc	μg/L	2	3	20	5	yes
Zirconium	μg/L	0.2	0.2	20	0.5	yes

Date Acquired: November 25, 2010

Methodology and Notes

Bill To: EBA Engineering Consultants

Report To: EBA Engineering Consultants

Unit 6, 151 Industrial Road

Whitehorse, YT, Canada

Y1A 2V3

Attn: Adam Seeley Sampled By: S. Sternbergh

Company: EBA

Project:

ID:

Name:

Location: LSD:

Acct code:

P.O.:

Mt. Lorne

W23101317

Lot ID: **776095**

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011 Report Number: 1399567

Method Name	Reference	Method	Date Analysis Started	Location
Alk, pH, EC, Turb in water	APHA	* Alkalinity - Titration Method, 2320 B	24-Nov-10	Exova Surrey
Alk, pH, EC, Turb in water	APHA	* pH - Electrometric Method, 4500-H+ B	24-Nov-10	Exova Surrey
Ammonia-N in Water	APHA	* Titrametric, 4500-NH3 C	25-Nov-10	Exova Surrey
Ammonium-N in Water	APHA	 * Automated Phenate Method, 4500- NH3 G 	29-Nov-10	Exova Edmonton
Anions (Routine) by Ion Chromatography	APHA	 * Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B 	29-Nov-10	Exova Edmonton
Anions by IEC in water (Surrey)	APHA	 * Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B 	25-Nov-10	Exova Surrey
BTEX-VPH - Water	BCELM	 Volatile Hydrocarbons in Water by GC/FID, VH Water 	26-Nov-10	Exova Surrey
Carbon Organic (Dissolved) in water DOC)	APHA	High-Temperature Combustion Method, 5310 B	28-Nov-10	Exova Edmonton
Chemical Oxygen Demand (water- Surrey)	APHA	 Closed Reflux, Colorimetric Method, 5220 D 	25-Nov-10	Exova Surrey
PH - Water	BCELM	 Extractable Petroleum Hydrocarbons (EPH) in Water by GC/FID, EPH Wate 	29-Nov-10	Exova Surrey
fercury Low Level (Total) in water	EPA	 Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, 245.7 	26-Nov-10	Exova Surrey
Metals SemiTrace (Dissolved) in water	US EPA	 Metals & Trace Elements by ICP-AES, 6010C 	25-Nov-10	Exova Surrey
litrogen - nitrite+nitrate-N	APHA	 * Automated Cadmium Reduction Method, 4500-NO3- F 	25-Nov-10	Exova Surrey
Orthophosphate-P in Water	APHA	 * Automated Ascorbic Acid Reduction Method, 4500-P F 	26-Nov-10	Exova Edmonton
AH - Water (Surrey)	BCELM	 Polycyclic Aromatic Hydrocarbons in Water by GC/MS - PBM, PAH Water 	29-Nov-10	Exova Surrey
Phosphorus - Total in Water	APHA	 * Automated Ascorbic Acid Reduction Method, 4500-P F 	29-Nov-10	Exova Edmonton
Solids Dissolved (Total, Fixed and /olatile)2	APHA	 * Total Dissolved Solids Dried at 180 C, 2540 C 	26-Nov-10	Exova Surrey
otal and Kjeldahl Nitrogen (Total) in Vater	ISO	 Water Quality - Determination of nitrogen, ISO/TR 11905-2 	28-Nov-10	Exova Edmonton
/OC - Water	US EPA	* US EPA method, 8260B/5030B	26-Nov-10	Exova Calgary

References

US EPA US Environmental Protection Agency Test Methods

B.C.M.O.E B.C. Ministry of Environment

APHA Standard Methods for the Examination of Water and Wastewater

EPA Environmental Protection Agency Test Methods - US

BCELM B.C. Environmental Laboratory Manual

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

Bill To: EBA Engineering Consultants Project:

Report To: EBA Engineering Consultants

ID: Name:

Acct code:

W23101317

Mt. Lorne

Lot ID: **776095**

Control Number:

Date Received: Nov 24, 2010 Date Reported: Jan 6, 2011

Report Number: 1399567

Unit 6, 151 Industrial Road Whitehorse, YT, Canada

Whitehorse, YT, Canada Location: Y1A 2V3 LSD: Adam Seeley P.O.:

Attn: Adam Seeley

Sampled By: S. Sternbergh

Company: EBA

ISO

International Organization for Standardization

Comments:

- Report was issued to include QA/QC data and to report nitrate and nitrite analysis separately as requested by Adam Seeley on Jan. 5/11. Report 1399567 is an addendum to report 1391265.
- pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Exova #104, 19575 - 55A Avenue Surrey, B.C.

V3S-8P8, Canada

T: +1 (604) 514-3322 enue F: +1 (604) 514-3323 E: NWL-Surrey@exova.com W: www.exova.com

Hydrocarbon Chromatogram

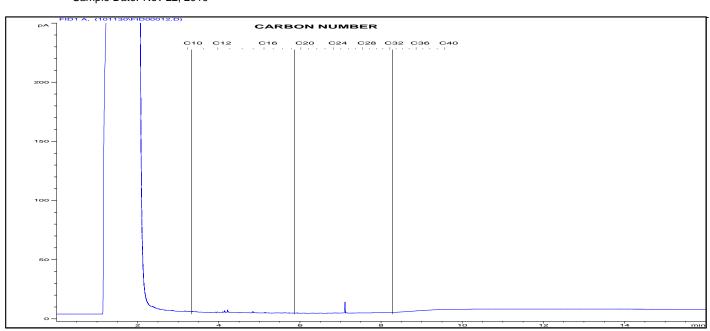
Bill To: EBA Engineering Consultants Lt Report To: EBA Engineering Consultants Lt

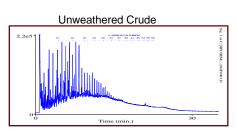
Unit 6, 151 Industrial Road Whitehorse, YT, Canada

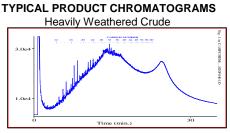
Y1A 2V3
Attn: Adam Seeley
Sampled by: S. Sternbergh
Company: EBA

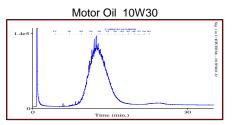
Project ID: W23101317

Name:


Location: Mt. Lorne


LSD: P.O.: Lot ID: **776095**


Control Number:


Date Received: Nov 24, 2010
Date Reported: Dec 2, 2010
Report Number: 1391265

Exova Number: 776095-1 Sample Description: ML-MW01 Sample Date: Nov 22, 2010

C4-C12
C8-C12

Kerosene C7-C16 Diesel C8-C22

Product Carbon Number Ranges

Lubricating Oils C2 Crude Oils C3

C20-C40 C3-C60+ Exova #104, 19575 - 55A Avenue Surrey, B.C.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: NWL-Surrey@exova.com V3S-8P8, Canada W: www.exova.com

Hydrocarbon Chromatogram

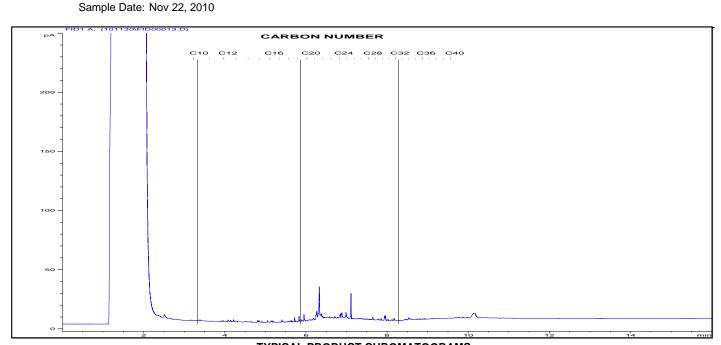
Bill To: EBA Engineering Consultants Lt Report To: EBA Engineering Consultants Lt

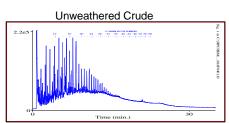
> Unit 6, 151 Industrial Road Whitehorse, YT, Canada

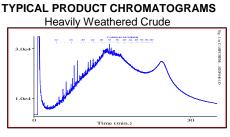
Y1A 2V3 Attn: Adam Seeley Sampled by: S. Sternbergh Company: EBA

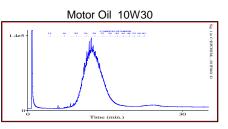
Project ID: W23101317

Name:


Location: Mt. Lorne


LSD: P.O.: Lot ID: 776095


Control Number:


Date Received: Nov 24, 2010 Date Reported: Dec 2, 2010 Report Number: 1391265

Exova Number: 776095-2 Sample Description: ML-MW02

C4-C12
C8-C12

Kerosene C7-C16 Diesel C8-C22

Product Carbon Number Ranges

Lubricating Oils Crude Oils

C20-C40 C3-C60+ Exova #104, 19575 - 55A Avenue Surrey, B.C.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: NWL-Surrey@exova.com V3S-8P8, Canada W: www.exova.com

Hydrocarbon Chromatogram

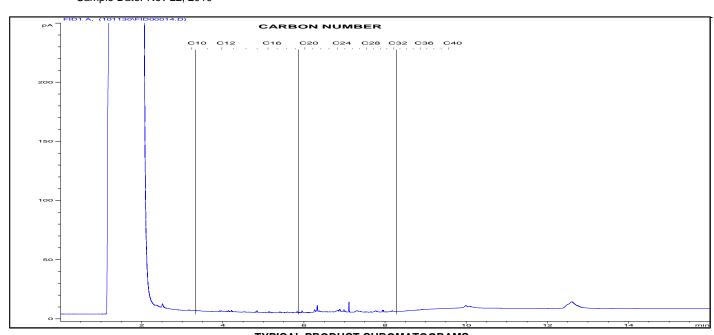
Bill To: EBA Engineering Consultants Lt Report To: EBA Engineering Consultants Lt

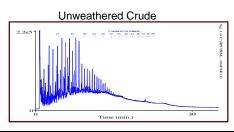
> Unit 6, 151 Industrial Road Whitehorse, YT, Canada

Y1A 2V3 Attn: Adam Seeley Sampled by: S. Sternbergh Company: EBA

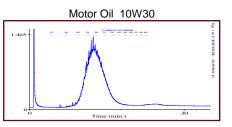
Project ID: W23101317

Name:


Location: Mt. Lorne


LSD: P.O.: Lot ID: 776095

Control Number:


Date Received: Nov 24, 2010 Date Reported: Dec 2, 2010 Report Number: 1391265

Exova Number: 776095-3 Sample Description: ML-MW03 Sample Date: Nov 22, 2010

Gasoline	C4-C12
Varsol	C8-C12

Kerosene C7-C16 Diesel C8-C22

Lubricating Oils Crude Oils

C20-C40 C3-C60+

776095

Bodycote TESTING GROUP

LOT:	Control Number	

Environmental Sample Information Sheet

Note: Proper completion of this form is required in order to proceed with analysis

See reverse for your pearest Bodycote location and proper sampling protocol

									r nearest Bodyo	cote location and proper sampling protoc	col
	ling Addr					Copy of R				Copy of invoice:	ĺ
	mpany: dress:	EBA Engineering Consulti Unit 6, 151 Industrial Rd Whitehorse, YT Y1A 2V3		/QC Repor	t 🗶	Company: Address:		1 Industrial	Consulting Lt Rd	td. Mail invoice to this address for approval	
ı	l:	Adam Seeley 867-668-3068 867-668-4349 aseeley@eba.ca		Report Fax Mai Courie e-mai e-Service	X	Attention: Phone: Fax: Cell: e-mail:	Adam Se 867-668-3 867-668-4 aseeley@	3068 1349		Report Resul Fax Mail x Courier e-mail x e-Service	t:
Inf	ormation	n to be included on		RUSH	Dlea	se contact l	ha lahar	stan/			
	port and			10311	to co	onfirm rush re submittir	dates an	d times	1	stody (Please Print) S. Sternbergh EBA Signature	
Pro	ject ID: ject Name:			surch	arges w	this section, o	I to this an	alysis	1	dycote to proceed with the work	
	ject Location Jal Location #			RUSH required on	1:	All Analysis gular TAT	As indi or	cated]	Date: 20 Received by:	3-Nov Initial: Sample	
Pro	j. Acct. Co reement II			Bignature: Bodycote Au					Waybill #:	Temp. NINV 2 Date 10 Time	***************************************
		ructions / Comments ded by Tracy Buehler to	o S. Klump.			Condiftion	AB USE O of container n arrival at l	s/coolers	Check h	nere if Bodycote is required	
D	dooo indica	to ubido voculations according		0045					mber of tainers	POR THE PORT OF TH	
	1	te which regulations you are re	Location	1	pth	Date/Time	Matrix	Sampling	 	Enter tests above	
1	ML-MW01		AAL AANACOS	IN C	M M		ļ	Method	3788998	(✓ relevant samples below)	_
	ML-MW02		ML-MW01 ML-MW02			22-Nov-10	Water				
	ML-MW03		ML-MW03			22-Nov-10 22-Nov-10	Water Water		6986		
4											
5											
6				_							
7		***************************************			···						
8		The state of the s									_
10						b					
11											
12											
13											
14 15											
NO	ΓE: All ha	azardous samples mus	t be labelled	accordin	g to Wi	HIMIS guide	lines.			Page <u>1</u> of <u>1</u>	

Heather Dyck

From: Seeley, Adam [aseeley@eba.ca]

Sent: November 24, 2010 3:00 PM

To: Heather Dyck

Subject: W23101317.007 - Duplicate Analysis List, Mt Lorne

Hi Heather,

As discussed, could you please analyse the duplicate sample not listed on the COC for Mt Lorne for the following:

- W38BC
- CUPH3
- N3
- NH3

Thanks,

Adam

Adam Seeley, B.Sc., M.Hyd. | Intermediate Hydrogeologist p. 867.668.2071 x243 | f. 867.668.4349 aseeley@eba.ca

EBA, A Tetra Tech Company | Environment Practice Calcite Business Centre, Unit 6, 151 Industrial Road | Whitehorse, YT Y1A 2V3 | www.eba.ca

To please consider the environment before printing this email

APPENDIX F

APPENDIX F HYDRAULIC RESPONSE TEST DATA AND ANALYSIS

2010 Monitoring Well Program

Serial Number 1023050 Project ID W23101317

Location Mount Lorne ML-MW02

Channel 1 Identification

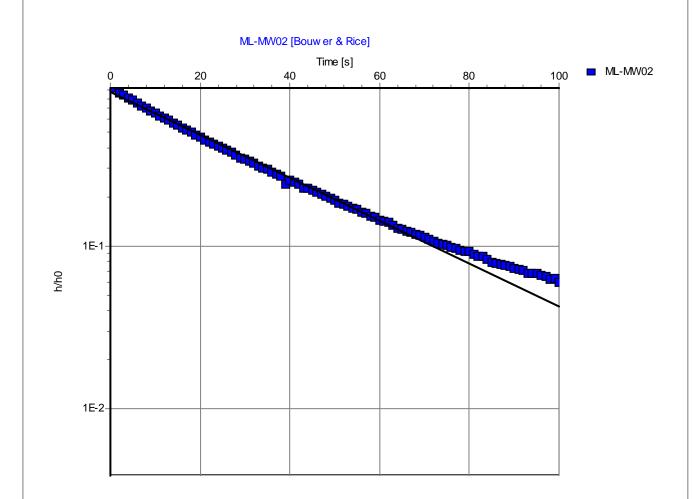
1.23 Static (level)

Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
13:33:46	0.87857	0	0.35143	13:34:41	1.1714	55	0.0586	13:35:36	1.21171	110	0.01829
13:33:47	0.90382	1	0.32618	13:34:42	1.17371	56	0.05629	13:35:37	1.21228	111	0.01772
13:33:48	0.92479	2	0.30521	13:34:43	1.17465	57	0.05535	13:35:38	1.21186	112	0.01814
13:33:49	0.93361	3	0.29639	13:34:44	1.1763	58	0.0537	13:35:39	1.21282	113	0.01718
13:33:50	0.94545	4	0.28455	13:34:45	1.17709	59	0.05291	13:35:40	1.21239	114	0.01761
13:33:51	0.95584	5	0.27416	13:34:46	1.17925	60	0.05075	13:35:41	1.21329	115	0.01671
13:33:52	0.966	6	0.264	13:34:47	1.18011	61	0.04989	13:35:42	1.21329	116	0.01671
13:33:53	0.97647	7	0.25353	13:34:48	1.18112	62	0.04888	13:35:43	1.21342	117	0.01658
13:33:54	0.98443	8	0.24557	13:34:49	1.18323	63	0.04677	13:35:44	1.21361	118	0.01639
13:33:55	0.99359	9	0.23641	13:34:50	1.18498	64	0.04502	13:35:45	1.21366	119	0.01634
13:33:56	1.00161	10	0.22839	13:34:51	1.1854	65	0.0446	13:35:46	1.21403	120	0.01597
13:33:57	1.00936	11	0.22064	13:34:52	1.1871	66	0.0429	13:35:47	1.21352	121	0.01648
13:33:58	1.01631	12	0.21369	13:34:53	1.18762	67	0.04238	13:35:48	1.21466	122	0.01534
13:33:59	1.02344	13	0.20656	13:34:54	1.18876	68	0.04124	13:35:49	1.21447	123	0.01553
13:34:00	1.03081	14	0.19919	13:34:55	1.18905	69	0.04095	13:35:50	1.21456	124	0.01544
13:34:01	1.03729	15	0.19271	13:34:56	1.19051	70	0.03949	13:35:51	1.21505	125	0.01495
13:34:02	1.04354	16	0.18646	13:34:57	1.19154	71	0.03846	13:35:52	1.21491	126	0.01509
13:34:03	1.05011	17	0.17989	13:34:58	1.19235	72	0.03765	13:35:53	1.21536	127	0.01464
13:34:04	1.05612	18	0.17388	13:34:59	1.19348	73	0.03652	13:35:54	1.2156	128	0.0144
13:34:05	1.06225	19	0.16775	13:35:00	1.19389	74	0.03611	13:35:55	1.21579	129	0.01421
13:34:06	1.06736	20	0.16264	13:35:01	1.19437	75	0.03563	13:35:56	1.21572	130	0.01428
13:34:07	1.07289	21	0.15711	13:35:02	1.19537	76	0.03463	13:35:57	1.21572	131	0.01428
13:34:08	1.07732	22	0.15268	13:35:03	1.19605	77	0.03395	13:35:58	1.21586	132	0.01414
13:34:09	1.08222	23	0.14778	13:35:04	1.19692	78	0.03308	13:35:59	1.21641	133	0.01359
13:34:10	1.08717	24	0.14283	13:35:05	1.19739	79	0.03261	13:36:00	1.21592	134	0.01408
13:34:11	1.09071	25	0.13929	13:35:06	1.19763	80	0.03237	13:36:01	1.21625	135	0.01375
13:34:12	1.09507	26	0.13493	13:35:07	1.19899	81	0.03101	13:36:02	1.21651	136	0.01349
13:34:13	1.09885	27	0.13115	13:35:08	1.1997	82	0.0303	13:36:03	1.21703	137	0.01297
13:34:14	1.10325	28	0.12675	13:35:09	1.19957	83	0.03043	13:36:04	1.21698	138	0.01302
13:34:15	1.10822	29	0.12178	13:35:10	1.20109	84	0.02891	13:36:05	1.21714	139	0.01286
13:34:16	1.11007	30	0.11993	13:35:11	1.2021	85	0.0279	13:36:06	1.21709	140	0.01291
13:34:17	1.11413	31	0.11587	13:35:12	1.20252	86	0.02748	13:36:07	1.21715	141	0.01285
13:34:18	1.11776	32	0.11224	13:35:13	1.20297	87	0.02703	13:36:08	1.21686	142	0.01314
13:34:19	1.12127	33	0.10873	13:35:14	1.20334	88	0.02666	13:36:09	1.21695	143	0.01305
13:34:20	1.12499	34	0.10501	13:35:15	1.20366	89	0.02634	13:36:10	1.21741	144	0.01259
13:34:21	1.12689	35	0.10311	13:35:16	1.20445	90	0.02555	13:36:11	1.2176	145	0.0124
13:34:22	1.13061	36	0.09939	13:35:17	1.20482	91	0.02518	13:36:12	1.21734	146	0.01266
13:34:23	1.13325	37	0.09675	13:35:18	1.20514	92	0.02486	13:36:13	1.21763	147	0.01237
13:34:24	1.13563	38	0.09437	13:35:19	1.20602	93	0.02398	13:36:14	1.21777	148	0.01223
13:34:25	1.14613	39	0.08387	13:35:20	1.20605	94	0.02395	13:36:15	1.21782	149	0.01218
13:34:26	1.14133	40	0.08867	13:35:21	1.20623	95	0.02377	13:36:16	1.21806	150	0.01194
13:34:27	1.14309	41	0.08691	13:35:22	1.20688	96	0.02312	13:36:17	1.21809	151	0.01191
13:34:28	1.14642	42	0.08358		1.20725	97	0.02275		1.21842	152	0.01158
13:34:29	1.15063	43			1.20825	98		13:36:19	1.21848	153	0.01152
13:34:30	1.15044	44			1.20783	99		13:36:20	1.21844	154	0.01156
13:34:31	1.15342	45			1.20896	100		13:36:21	1.219	155	0.011
13:34:32	1.15487	46			1.20873	101	0.02127	13:36:22	1.21852	156	0.01148
13:34:33	1.15727	47			1.20913	102		13:36:23	1.21893	157	0.01107
13:34:34	1.1591	48		13:35:29	1.20899	103		13:36:24	1.21851	158	0.01149
13:34:35	1.16117	49		13:35:30	1.21006	104		13:36:25	1.22048	159	0.00952
13:34:36	1.16316	50		13:35:31	1.20967	105	0.02033	13:36:26	1.21838	160	0.01162
13:34:37	1.1656	51			1.21051	106		13:36:27	1.21883	161	0.01117
13:34:38	1.16645	52		13:35:33	1.21091	107		13:36:28	1.21839	162	0.01161
13:34:39	1.16834	53			1.21109	108	0.01891	J.	1.21905	163	0.01095
13:34:40	1.17034	54	0.05966	13:35:35	1.2113	109	0.0187	13:36:30	1.21912	164	0.01088

13:36:31 1.21893 165 0.01107 13:37:34 1.22165 228 0.00835 13:38:37 1.2225 13:36:32 1.21922 166 0.01078 13:37:35 1.22213 229 0.00787 13:38:38 1.22207 13:36:33 1.21938 167 0.01062 13:37:36 1.22184 230 0.00816 13:38:39 1.22278 13:36:34 1.21912 168 0.01088 13:37:37 1.22205 231 0.00795 13:38:40 1.22213 13:36:35 1.21889 169 0.01111 13:37:38 1.22158 232 0.00842 13:38:41 1.22255	291 292 293 294	0.0075 0.00793
13:36:33 1.21938 167 0.01062 13:37:36 1.22184 230 0.00816 13:38:39 1.22278 13:36:34 1.21912 168 0.01088 13:37:37 1.22205 231 0.00795 13:38:40 1.22213	293	
13:36:34 1.21912 168 0.01088 13:37:37 1.22205 231 0.00795 13:38:40 1.22213		0.00722
	294	0.00722
13:36:35		0.00787
	295	0.00745
13:36:36 1.21922 170 0.01078 13:37:39 1.22181 233 0.00819 13:38:42 1.22266	296	0.00734
13:36:37 1.21976 171 0.01024 13:37:40 1.22181 234 0.00819 13:38:43 1.22279	297	0.00721
13:36:38 1.21993 172 0.01007 13:37:41 1.22161 235 0.00839 13:38:44 1.22266	298	0.00734
13:36:39 1.22001 173 0.00999 13:37:42 1.2223 236 0.0077 13:38:45 1.22261	299	0.00739
13:36:40 1.21958 174 0.01042 13:37:43 1.22175 237 0.00825 13:38:46 1.22274	300	0.00726
13:36:41 1.21938 175 0.01062 13:37:44 1.22226 238 0.00774 13:38:47 1.22255	301	0.00745
13:36:42 1.2197 176 0.0103 13:37:45 1.22178 239 0.00822 13:38:48 1.22304	302	0.00696
13:36:43 1.22004 177 0.00996 13:37:46 1.22213 240 0.00787 13:38:49 1.22256	303	0.00744
13:36:44 1.21991 178 0.01009 13:37:47 1.22207 241 0.00793 13:38:50 1.22287	304	0.00713
13:36:45 1.21974 179 0.01026 13:37:48 1.22133 242 0.00867 13:38:51 1.22226	305	0.00774
13:36:46 1.21989 180 0.01011 13:37:49 1.22167 243 0.00833 13:38:52 1.22245	306	0.00755
13:36:47	307	0.0075
13:36:48	308	0.00761
13:36:49	309	0.00732
13:36:50	310	0.00776
13:36:51 1.21963 185 0.01037 13:37:54 1.22234 248 0.00766 13:38:57 1.22261	311	0.00739
13:36:52	312	0.008
13:36:53	313	0.0078
13:36:54	314	0.00721
13:36:55	315	0.00706
13:36:56	316	-0.00137
13:36:57	317	0.01543
13:36:58	318	0.00878
13:36:59	319	0.00977
13:37:00 1.22084 194 0.00916 13:38:03 1.22246 257 0.00754 13:39:06 1.22036 13:37:01 1.22014 195 0.00986 13:38:04 1.22229 258 0.00771 13:39:07 1.22032	320	0.00964 0.00968
13:37:01 1.22014 195 0.00986 13:38:04 1.22229 258 0.00771 13:39:07 1.22032 13:37:02 1.22014 196 0.00986 13:38:05 1.22249 259 0.00751 13:39:08 1.2212	321 322	0.00968
13:37:03	323	0.00891
13:37:04 1.22075 198 0.00925 13:38:07 1.22236 261 0.00764 13:39:10 1.22176	324	0.00824
13:37:05 1.22055 199 0.00945 13:38:08 1.22192 262 0.00808 13:39:11 1.22138	325	0.00862
13:37:06	326	0.00888
13:37:07 1.22051 201 0.00949 13:38:10 1.22229 264 0.00771 13:39:13 1.22141	327	0.00859
13:37:08	328	0.00825
13:37:09	329	0.00809
13:37:10 1.22133 204 0.00867 13:38:13 1.22239 267 0.00761 13:39:16 1.22154	330	0.00846
13:37:11 1.22107 205 0.00893 13:38:14 1.22303 268 0.00697 13:39:17 1.2217	331	0.0083
13:37:12 1.22051 206 0.00949 13:38:15 1.22256 269 0.00744 13:39:18 1.22191	332	0.00809
13:37:13	333	0.00825
13:37:14 1.22077 208 0.00923 13:38:17 1.2225 271 0.0075 13:39:20 1.22119	334	0.00881
13:37:15	335	0.00821
13:37:16 1.22141 210 0.00859 13:38:19 1.22304 273 0.00696 13:39:22 1.22138	336	0.00862
13:37:17	337	0.00774
13:37:18 1.22126 212 0.00874 13:38:21 1.22223 275 0.00777 13:39:24 1.2217	338	0.0083
13:37:19	339	0.00868
13:37:20 1.22119 214 0.00881 13:38:23 1.2217 277 0.0083 13:39:26 1.22194	340	0.00806
13:37:21 1.22142 215 0.00858 13:38:24 1.22185 278 0.00815 13:39:27 1.22217	341	0.00783
13:37:22 1.22161 216 0.00839 13:38:25 1.22255 279 0.00745 13:39:28 1.22192	342	0.00808
13:37:23 1.22148 217 0.00852 13:38:26 1.22226 280 0.00774 13:39:29 1.22249	343	0.00751
13:37:24 1.22151 218 0.00849 13:38:27 1.22316 281 0.00684 13:39:30 1.22195	344	0.00805
13:37:25	345	0.00792
13:37:26	346	0.00815
13:37:27	347	0.00751
13:37:28	348	0.0076
13:37:29	349	0.00789
13:37:30	350	0.0083
13:37:31	351	0.00805
13:37:32	352	0.00819
<u>13:37:33</u> <u>1.22184</u> <u>227</u> <u>0.00816</u> <u>13:38:36</u> <u>1.223</u> <u>290</u> <u>0.007</u> <u>13:39:39</u> <u>1.22236</u>	353	0.00764

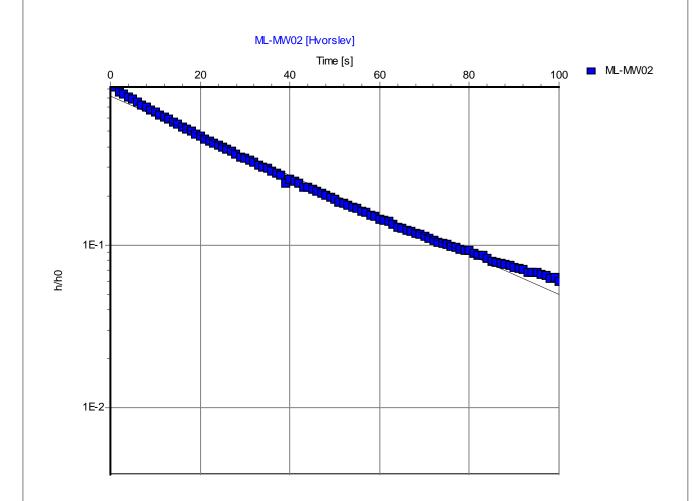
13:39:40	1.22188	354	0.00812
13:39:41	1.22246	355	0.00754
13:39:42	1.22201	356	0.00799
13:39:43	1.22234	357	0.00766
13:39:44	1.22258	358	0.00742
13:39:45	1.22207	359	0.00793
13:39:46	1.22226	360	0.00774
13:39:47	1.22232	361	0.00768
13:39:48	1.22214	362	0.00786
13:39:49	1.22227	363	0.00773
13:39:50	1.22249	364	0.00751
13:39:51	1.22236	365	0.00764
13:39:52	1.22179	366	0.00821
13:39:53	1.22223	367	0.00777
13:39:54	1.22261	368	0.00739
13:39:55	1.22239	369	0.00761
13:39:56	1.22191	370	0.00809
13:39:57	1.22272	371	0.00728
13:39:58	1.22252	372	0.00748

Serial Number 1023050 Project ID W23101317

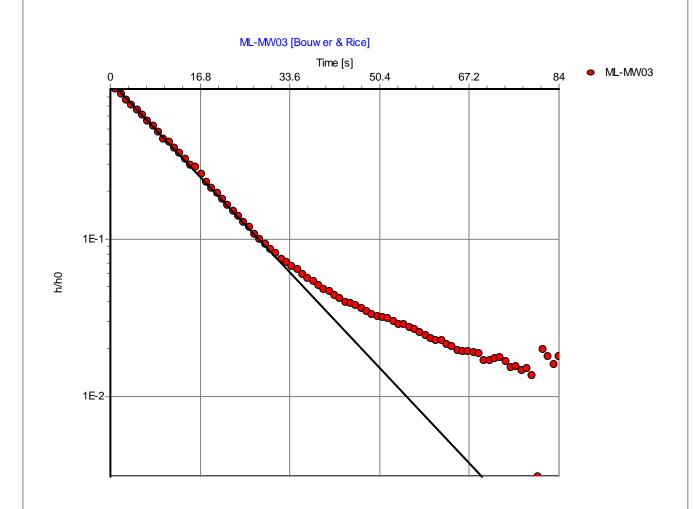

Location Mount Lorne ML-MW03

Channel 1 Identification

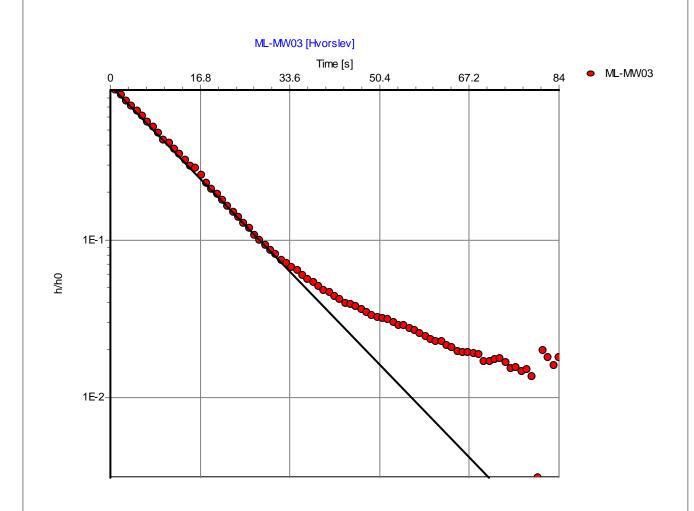
Static (level) 1.78


Time	LEVEL	Seconds	Drawdown	Time	LEVEL	Seconds	Drawdown
11:04:43	1.25485	0	0.52515	11:05:26	1.75798	43	0.02202
11:04:44	1.31071	1	0.46929	11:05:27	1.75913	44	0.02087
11:04:45	1.34652	2	0.43348	11:05:28	1.7597	45	0.0203
11:04:46	1.38065	3	0.39935	11:05:29	1.76013	46	0.01987
11:04:47	1.40741	4	0.37259	11:05:30	1.761	47	0.019
11:04:48	1.43585	5	0.34415	11:05:31	1.76197	48	0.01803
11:04:49	1.45903	6	0.32097	11:05:32	1.76255	49	0.01745
11:04:50	1.48704	7	0.29296	11:05:33	1.7631	50	0.0169
11:04:51	1.50811	8	0.27189	11:05:34	1.76326	51	0.01674
11:04:52	1.52828	9	0.25172	11:05:35	1.76371	52	0.01629
11:04:53	1.5546	10	0.2254	11:05:36	1.76428	53	0.01572
11:04:54	1.56556	11	0.21444	11:05:37	1.76492	54	0.01508
11:04:55	1.58194	12	0.19806	11:05:38	1.76494	55	0.01506
11:04:56	1.59726	13	0.18274	11:05:39	1.76559	56	0.01441
11:04:57	1.61221	14	0.16779	11:05:40	1.76602	57	0.01398
11:04:58	1.62493	15	0.15507	11:05:41	1.76664	58	0.01336
11:04:59	1.63054	16	0.14946	11:05:42	1.76724	59	0.01276
11:05:00	1.64527	17	0.13473	11:05:43	1.76771	60	0.01229
11:05:01	1.65986	18		11:05:44	1.76806	61	0.01194
11:05:02	1.6692	19	0.1108	11:05:45	1.76806	62	0.01194
11:05:03	1.67828	20	0.10172	11:05:46	1.76886	63	0.01114
11:05:04	1.68658	21	0.09342	11:05:47	1.76905	64	0.01095
11:05:05	1.69374	22	0.08626	11:05:48	1.76975	65	0.01025
11:05:06	1.70085	23	0.07915	11:05:49	1.76994	66	0.01006
11:05:07	1.70732	24	0.07268	11:05:50	1.76994	67	0.01006
11:05:08	1.71347	25	0.06653	11:05:51	1.77009	68	0.00991
11:05:09	1.71788	26	0.06212	11:05:52	1.77022	69	0.00978
11:05:10	1.72372	27		11:05:53	1.77113	70	0.00887
11:05:11	1.72769	28		11:05:54	1.7711	71	0.0089
11:05:12	1.73164	29	0.04836	11:05:55	1.77087	72	0.00913
11:05:13	1.73497	30	0.04503	11:05:56	1.77077	73	0.00923
11:05:14	1.73782	31	0.04218	11:05:57	1.77123	74	0.00877
11:05:15	1.74089	32		11:05:58	1.77198	75	0.00802
11:05:16	1.74271	33	0.03729	11:05:59	1.77189	76	0.00811
11:05:17	1.74491	34	0.03509	11:06:00	1.7723	77	0.0077
11:05:18	1.74656	35	0.03344	11:06:01	1.77214	78	0.00786
11:05:19	1.74873	36		11:06:02	1.77292	79	0.00708
11:05:20	1.75041	37		11:06:03	1.78162	80	-0.00162
11:05:21	1.7519	38		11:06:04	1.76962	81	0.01038
11:05:22	1.75345	39	0.02655	11:06:05	1.77065	82	0.00935
11:05:23	1.75491	40	0.02509	11:06:06	1.77165	83	0.00835
11:05:24	1.75557	41	0.02443	11:06:07	1.77054	84	0.00946
11:05:25	1.75706	42	0.02294				

Slug Test Analysis Report EBA Engineering Consultants Number: W23101317 Calcite Buisness Centre Unit 6, 151 Industrail Road Project: 2010 Monitoring Program- Mount Lorne Yukon Government Whitehorse, Yukon Y1A 2V3 Client: Location: Mount Lorne **BCW** Test performed by: Evaluated by: 12/17/2010 SK Test date: Reviewed by: Bouwer & Rice Analysis Method:


Conductivity: 1.32E-5 [m/s]

Slug Test Analysis Report EBA Engineering Consultants Number: W23101317 Calcite Buisness Centre Unit 6, 151 Industrail Road Project: 2010 Monitoring Program- Mount Lorne Whitehorse, Yukon Y1A 2V3 Client: Yukon Government Location: Mount Lorne **BCW** Test performed by: Evaluated by: 12/17/2010 SK Test date: Reviewed by: Hvorslev Analysis Method:


Conductivity: 1.63E-5 [m/s]

Slug Test Analysis Report EBA Engineering Consultants Number: W23101317 Calcite Buisness Centre Unit 6, 151 Industrail Road Project: 2010 Monitoring Program- Mount Lorne Whitehorse, Yukon Y1A 2V3 Client: Yukon Government Location: Mount Lorne Test performed by: Evaluated by: **BCW** 12/17/2010 SK Test date: Reviewed by: Analysis Method: Bouwer & Rice

Conductivity: 3.11E-5 [m/s]

Slug Test Analysis Report EBA Engineering Consultants Number: W23101317 Calcite Buisness Centre Unit 6, 151 Industrail Road Project: 2010 Monitoring Program- Mount Lorne Whitehorse, Yukon Y1A 2V3 Client: Yukon Government Location: Mount Lorne **BCW** Test performed by: Evaluated by: 12/17/2010 SK Test date: Reviewed by: Analysis Method: Hvorslev

Conductivity: 3.99E-5 [m/s]