February 22, 2013

HYDROGEOLOGICAL ASSESSMENT

Pelly Crossing Solid Waste Disposal Facility

Submitted to:

Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services, Infrastructure Development Branch PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

REPORT

Report Number: Distribution: 1114360073-513-R-Rev0-2400

2 Copies - Yukon Government Community Services 2 Copies - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services, Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Pelly Crossing Solid Waste Disposal Facility (the "Facility" or "Site") is one of the sites included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

In summary, the information obtained during the Hydrogeological Assessment indicated the following:

- Site Description: The Pelly Crossing Solid Waste Disposal Facility is located in the central portion of Yukon, within the Yukon Plateau (central) Ecological Region, and in the Selkirk First Nation's traditional territory, at latitude 63° 47' north, and longitude 136° 36' west. The Site is accessed by a gravel road off the east side of the Klondike Highway at kilometre 464, 282 km north of Whitehorse. The Facility serves as a domestic solid waste disposal facility for the community of Pelly Crossing and the nearby Selkirk First Nation residents. The facility accepts household waste, construction and demolition debris, and hazardous wastes such as waste oil and tires. Household waste and demolition debris are burned on-Site and buried. Tires, scrap metals, and oils are stored in segregated area on-Site and transported off-Site for disposal when volumes warrant. No evidence spill or discharges were observed during the Site reconnaissance.
- Site Topography: The Facility is at an elevation of approximately 565 m (1,850 feet) above sea level and lies within the Mica Creek and Pelly River watersheds. A cleared area of approximately 14,400 square meters, which slopes to the south, is present at the Facility. Local surficial geology is mapped as eolian deposits, consisting of well sorted massive sand, forming crescent shaped and linear dunes, and featureless or gently undulating inter-dune eolian plains.
- Stratigraphy and Hydrogeology:
 - The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes south towards Mica Creek;
 - Subsurface conditions were investigated with the installation of three monitoring wells, including PC-MW12-01, PC-MW12-02, and PC-MW12-03, which were completed from July 16 to July 17, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
 - The Site stratigraphy, to the maximum depth drilled (15.5 m), consists of layered sediments composed of silt and sand, with minor clay and gravel;

- A confined water bearing zone was encountered during the drilling and installation of three monitoring wells at a depth of between 5.5 m and 14.6 m below grade;
- A series of hydraulic response tests were performed on all three monitoring wells. The results of these
 tests indicate the hydraulic conductivity of the surficial water-bearing unit underlying the Site ranges
 from 4 x 10⁻⁶ to 1 x 10⁻⁵ m/s. These values are considered reasonable for the units encountered at their
 respective depths during drilling;
- The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.009 m/m, sloping to the southeast;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between approximately between 7×10^{-8} m/s and 3×10^{-7} m/s (approximately 0.006 to 0.09 metres per day); and
- Based on the groundwater flow direction determined from the initial groundwater monitoring event, PC-MW12-01 is up-gradient of the Site, PC-MW12-03 is located directly downgradient of the waste disposal areas, and PC-MW12-02 is located cross-gradient of the waste disposal areas. This conclusion should be re-evaluated in the spring, and if the requirement of a minimum two downgradient wells has not been met, an additional downgradient well is likely required.
- Groundwater Chemistry:
 - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life are applicable to the Site;
 - Groundwater samples were collected from monitoring wells PC-MW12-01, PC-MW12-02, and PC-MW12-03, and a surface water sample was collected from a small pond located approximately 340 m northeast of the Facility, during one sampling event on which occurred from September 9 through September 13, 2012; and
 - Results of groundwater sampling at the Site indicated high TDS and background concentration of analytes that may typically be associated with landfill leachate contamination. The sample results indicated acceptable levels of relevant chemical parameters as defined by the CSR criteria for freshwater aquatic life, with the exception of sulphate, which exceeded the standard of 1000 mg/L in all of the samples. This suggests that landfill leachate influence on shallow groundwater underlying the Site is not evident.

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Due to the absence of contaminants identified in the initial groundwater quality assessment, and the distance of the Site to the nearest populated area, this Facility should be considered to be low concern;

- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor, prior to the next monitoring event, to tie wellheads into the regional linkage;
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met.

Study Limitations

This report was prepared for the Government of Yukon Community Services, Infrastructure Development Branch.

The inferences concerning the Pelly Crossing Solid Waste Disposal Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, installation of monitoring wells, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Purpose and Objectives	1
	1.3	Scope and Sequence of Work	1
	1.4	Qualifications of Assessors	2
	1.5	Authorization	3
2.0	SITE D	ESCRIPTION AND HISTORY	3
	2.1	Site Location	3
	2.2	Site History	3
3.0	METHO	DDOLOGY	3
	3.1	Preliminary Hydrogeological Assessment	3
	3.1.1	Data Sources	4
	3.1.2	Site Inspections	5
	3.1.3	Background Geological Information Sources	5
	3.1.4	Contaminated Sites Registry	5
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	5
	3.1.6	Review of Environment Yukon Information	6
	3.2	Field Investigations	6
	3.2.1	Scope of Field Investigations	6
	3.2.2	Groundwater Monitoring Well Network	6
	3.2.3	Monitoring Well Surveying	8
	3.2.4	Groundwater Monitoring Event	8
	3.2.5	Rising Head Hydraulic Response Tests	8
	3.3	Laboratory Analysis	9
	3.4	Quality Assurance / Quality Control	9
	3.5	Application of Applicable Water Quality Standards	10
4.0	CONC	EPTUAL HYDROGEOLOGICAL MODEL	12
	4.1	Setting	12

PELLY CROSSING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

	4.2	Climate	. 12
	4.3	Geology and Hydrogeology	. 12
	4.3.1	Geological Framework	. 12
	4.3.2	Principal Aquifer	. 13
	4.4	Groundwater Flow Systems	. 13
	4.4.1	Regional Groundwater Flow	. 13
	4.4.2	Local Groundwater Flow	. 13
	4.5	Hydraulic Response Tests	. 13
	4.6	Estimated Linear Groundwater Velocity	. 14
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	. 14
5.0	GROU	NDWATER IMPACT ASSESSMENT	.15
	5.1	Review of Groundwater Chemistry	. 15
	5.2	Interpretation of Groundwater Chemistry	. 16
6.0	CONCL	USIONS	.17
7.0	RECOM	IMENDATIONS	. 19
8.0	CLOSU	IRE	.19

PELLY CROSSING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

TABLES

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements	6
Table 2: Well Construction Details	7
Table 3: Monitoring Well Locations and Groundwater Elevations September 9 – 10, 2012	8
Table 4: Parameters Analyzed in September 2012	9
Table 5: Review of QA/QC Procedures Taken	9
Table 6: Applicable Water Quality Standards	11
Table 7 Aquifer Units Encountered at the Site	13
Table 8: Estimated Hydraulic Conductivity	13
Table 9: Important Groundwater Chemistry Results	15

FIGURES

Figure 1: Key Plan
Figure 2: Site Plan and Cross-Section Location
Figure 3: Regional Surficial Geology
Figure 4: Cross Section A-A'
Figure 5: Regional Drainage and Land Zoning
Figure 6: Monitoring Well Location Map and Groundwater Elevation
Figure 7: Schoeller Plot
Figure 8: Piper Plot

Figure 9: Stiff Diagram

APPENDICES

APPENDIX A Site Photographs

APPENDIX B Well Construction Logs

APPENDIX C Well Development and Sampling Sheets

APPENDIX D Slug Test Data

APPENDIX E Analytical Reports and Chain of Custody Forms

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services, Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Pelly Crossing Solid Waste Disposal Facility (the "Facility" or the "Site") is one of the sites included in the program. This report presents the findings of our investigation.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7, 2011, and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways, and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions, and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope of work was proposed to develop the conceptual hydrogeological model for the Site and installation of a monitoring well network. This work was performed in accordance with the Waste Management Permit (Permit No. 80-009 effective February 29, 2012 to December 31, 2014), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (Document Number 2011-0278-029-1).

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised the preparation of a draft of this Hydrogeological Assessment Report, documenting the results of this investigation.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P.Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work, and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P.Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012). He has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Pelly Crossing Solid Waste Disposal Facility is in the central portion of Yukon, within the Yukon Plateau (central) Ecological Region, and in the mica Creek and Pelly River watersheds. The Site is located in the Selkirk First Nation's traditional territory at latitude 63° 47' north and longitude 136° 26' west. The Site is located on a 14.06 hectare Community Services Reserve (Disposition # 115115-030). It is accessed by a gravel road off the east side of the Klondike Highway at kilometre 464, approximately 282 km north of Whitehorse, and 6.5 km south of the community of Pelly Crossing (Figure 1).

2.2 Site History

The Facility was constructed in 1987. A sewage lagoon was constructed on the property sometime between 1987 and 1993. The Yukon Government Community Services Branch manages the Facility. The Facility serves as a domestic solid waste disposal facility for the community of Pelly Crossing and the nearby Selkirk First Nation residents. The facility accepts household waste, construction and demolition debris, and hazardous wastes such as waste oil and tires. Household waste and demolition debris are burned on-Site and buried. Tires, scrap metals, and oils are stored in segregated area on-Site and transported off-Site for disposal when volumes warrant. According to the Solid Waste Operating Plan for Felly Crossing (Government of Yukon, 2011) burning at the facility is to be phased out by an estimated date of June 2012 and domestic waste will be landfilled on the Site. No evidence spill or discharges were observed during the Site reconnaissance.

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review and interpretation of existing information, and an inspection of the Facility. The initial inspection of the Facility was conducted on October 19, 2011, and a follow up inspection was conducted on July 16, 2012. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods and equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Access Consulting Group and G. J. Bull and Associates Inc., *Solid Waste Management Plan: Pelly Crossing*, Prepared for Yukon Community Services, Community Development Branch. 2003.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2012-05-29, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., *Applied Hydrogeology*, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171, Schedule 3 - Generic Numerical Water Standards.
- Government of Yukon, Yukon Community Services, Community Services, Infrastructure Branch, *Solid Waste Operation Plan: Pelly Crossing*, 2011.
- Government of Yukon, Yukon Environment, *Protocol for the Contaminated Sites Regulation Under the Environment Act.* 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aquifermap.html
- Jackson, L.E., 1988 1992. Surficial Geology, Granite Canyon, Yukon Territory, Geological Survey of Canada, Map 1878A, scale 1:100,000.
- Site inspections of October 23, 2011 and June 26, 2012.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: *http://atlas.nrcan.gc.ca/site/english/maps/topo/map* Map 115 K/2, scale 1:50,000.

3.1.2 Site Inspections

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the field work. The health and safety plan included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 19, 2011 and July 16, 2012. The initial Site visit was conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data. Proposed monitoring well locations were also reviewed for access constraints. During the second Site visit, the monitoring wells were drilled and installed. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Department of Energy Mines and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Data Catalogue did not identify water testing results within the vicinity of the Facility.

3.1.4 Contaminated Sites Registry

A Site Registry search was conducted by Yukon Environment on October 17, 2012. The search identified no contaminated site files or spill reports for the Pelly Crossing Solid Waste Disposal Facility; however, it was noted that the Facility does not have any analytical results in the file to compare against Yukon CSR standards to determine if any contamination exists. It was also noted that the Facility was largely unmonitored, and that there may have been opportunity for improper disposal and potentially unreported spillage of contaminants during its operation.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Waste Management Permit No. 80-009 was issued on February 29, 2012 for the Facility. It states that the Facility is to be closed in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Waste Management Permit 80-009 include:

- Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sampling of downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outlined in Section 3.3;
- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011 standards; and
- Submitting monitoring results to Environment Yukon by January 31 each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

Site	Site Disposal Facility Permit Number	Permit Type	Solid Waste Management Plan	Required Groundwater Monitoring
Pelly Crossing Solid Waste Disposal Facility	80-009	Modified transfer station	Community Services Operations and Programs (2011)	Twice Per Year

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Pelly Crossing Facility on the Yukon Environment and Socioeconomic Board (YESAB) online registry on October 3, 2012. Documents reviewed included: the most current waste facility permit issued for the Facility, the most current Solid Waste Operation Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

3.2 Field Investigations

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Three on-Site monitoring wells were completed by Midnight Sun under the supervision of Golder Associates from July 16 to July 18, 2012;
- Monitoring wells were developed and sampled by Golder on September 9 and 10, 2012. The water level at each well was measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent to ALS Environmental Laboratory in Whitehorse, YT;
- Slug tests were carried out on all three newly installed monitoring wells to assess horizontal hydraulic conductivity and linear groundwater velocity at the Site; and
- Results of field and laboratory data are summarized and interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon Contaminated Site Regulation Protocol (Yukon Environment, 2011).

Three (3) groundwater monitoring wells were proposed for installation at the Site to characterize groundwater conditions underlying the waste disposal Facility. A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. PC-MW12-01 was intended to characterize upgradient groundwater conditions, while PC-MW12-02 and PC-MW12-03 were intended to assess groundwater conditions downgradient of the landfill. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, Site topography, suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- PC-MW12-01 was installed on the north edge of the Site, and advanced to a depth of 11.3 m below grade (bg);
- PC-MW12-02 was installed near the south corner of the Site, and advanced to a depth of 14.3 m bg; and
- PC-MW12-03 was installed on the east side of the Site, and advanced to a depth of 15.5 m bg.

Wells were installed using a Driltech Marlin 5 truck-mounted air rotary drill rig.

Grab samples of drill cuttings were taken at regular intervals to log the stratigraphy encountered in each borehole. Borehole logs, documenting observed stratigraphy, along with well construction details, are provided in Appendix B. A summary of the stratigraphy and well construction details is provided in Table 2.

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm, flush threaded Schedule 40 PVC casing;
- A 3 m long PVC, factory-slotted well screen (10-slot) was installed in all three monitoring wells;
- PVC casing was installed above the well screen to about 0.75 m above grade;
- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1 m above the top of the screened interval;
- A bentonite chip seal, approximately 1 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;
- Each well was covered with a PVC end-cap and a lockable steel protective casing was installed to protect the wellhead; and
- All wells were developed by removing a minimum of three well volumes using dedicated Waterra[™] tubing and a Hydrolift[™] pump or hand bailer. Development logs are provided in Appendix C.

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)	
PC-MW12-01	11.3	Gravely CLAY	50	8.2 – 11.3	7.6 – 11.3	
PC-MW12-02	14.3	Silty SAND	50	11.3 – 14.3	9.8 – 14.3	
PC-MW12-03	15.5	SILT	50	12.5 – 15.5	11.6 – 15.5	

Table 2: Well Construction Details

3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the vertical elevation to the top of the PVC wellhead (measuring point) for each well on July 18, 2012. Initial absolute elevation was estimated for PC-MW12-01 using topographic data. A level survey was conducted to obtain the relative elevation of each of the wells. Relative elevation between wells, as determined from the level survey, has a precision of ± 1 cm. Table 3 presents a summary of survey data and water level measurements (recorded September 9 - 10, 2012).

Well ID	UTM Coordinates (Zone 8 North)	Top of PVC Casing Elevation (masl)	Standing Water Level (mbtoc)	Groundwater Elevation (~masl)
PC-MW12-01	6961202 m N 418394 m E	567.98	2.80	565.18
PC-MW12-02	6961087 m N 418406 m E	567.47	2.74	564.73
PC-MW12-03	6961150 m N 418449 m E	566.08	1.43	564.65

Table 3: Monitoring Well Locations and Groundwater Elevations September 9 – 10, 2012.

3.2.4 Groundwater Monitoring Event

Golder purged and sampled monitoring wells PC-MW12-01, PC-MW12-02, and OC-MW12-03 on September 9 and 10, 2012. The procedure used for sampling followed Contaminated Sites Regulation Protocol No. 7. Prior to purging each well, the water level was first measured with an electronic measuring tape. Approximately three well volumes were then purged from each well, using 5/8 in. high density polyethylene (HDPE) Waterra[™] tubing, a foot valve, and a Hydrolift[™] pump. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging continued until field parameters were stable before sampling. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the three groundwater monitoring wells that were sampled, a surface water sample was collected from a small pond located approximately 320 m northeast of the Site.

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. Samples were kept in coolers with ice packs prior to their delivery, and were delivered within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025.

3.2.5 Rising Head Hydraulic Response Tests

Hydraulic response (slug) tests were performed on September 13, 2012, to assess the hydraulic conductivity of the surficial aquifer underlying the Site. Tests were performed using a 1.5 m long, solid 38 mm diameter PVC slug and a Solinst Levelogger pressure transducer set to measure head fluctuations at one-second intervals. Manual water level measurements were also recorded throughout the tests.

A summary of the analysis of these tests is provided in Section 4.5.

3.3 Laboratory Analysis

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Waste Management Permit (Permit No. 80-009).

Sampling and analysis were undertaken in general accordance with Yukon CSR Protocols 2 and 5 (Government of Yukon, 2011).

Table 4: Parameters Analyzed in September 2012

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	VOCs
PC-MW12-01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PC-MW12-02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PC-MW12-03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pelly Crossing Surface Water					

3.4 Quality Assurance / Quality Control

Table 5 provides a detailed description of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

QA/QC Aspect	Evidence and Evaluation
Data Representativeness	
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.
Background Samples	PC-MW12-01 was shown to be upgradient of the Facility and is used to provide background levels of physiochemical parameters.
Field Procedures	Monitoring wells were purged/developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox [™]) and distilled water. Surface water samples were collected using one-time-use syringes.
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.
Data Precision and Accuracy	
	One blind duplicate was collected from Stewart Crossing monitoring well SX-MW12-02.
Blind Duplicate	Of the 81 analyte pairs tested, RPD values could not be calculated for 65 of the pairs, as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, only one (nitrate) exceeded the RPD ¹ acceptance criteria of $\pm 30\%$. See Report: 1114360073-2700
Trip Blanks	A trip blank was not collected during the August 2012 groundwater monitoring event.

Table 5: Review of QA/QC Procedures Taken

QA/QC Aspect	Evidence and Evaluation		
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the lab report showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.		
Holding Times	Samples were delivered outside the acceptable (24 hour) hold time for physical parameters, however field parameters were taken during sample collection to compensate. Sampling for VOC's took place 2-3 days outside the 14-day recommended hold time, and sampling for TDS and Nitrate took place 1 day outside the recommended hold time.		
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.		
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.		
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.		

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and a downgradient surface water receptor were sampled and tested for the following parameters:

- Major ions (Ca, Mg, Na, K, Cl, SO₄, N, NO₂, NO₃ and P)
- Bicarbonate
- pH
- Dissolved Metals
- Mercury
- Hardness
- Alkalinity
- Carbonate

- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- VOCs

- Chemical oxygen demand
- Total Kjeldahl Nitrogen
- EPH_{w10-32} & VH_{w6-10}
- BTEX
- PAHs

Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards or to the Canadian Environmental Quality Guidelines for constituents where no Yukon standards were available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment
Aquatic Life Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)		1.0	Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

Table 6: Applicable Water Quality Standards

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

A search of the Yukon Lands viewer website, conducted by Golder November 28, 2012, showed several small ponds and a small creek falling within a 1 km radius of the Site, as specified in the CSR, under which aquatic life standards are applied. A review of Google Earth images from 2012, conducted by Golder on the same day, also identified several visible ponds and wetlands within 1 km of the Site. It was determined therefore, that aquatic life standards were **applicable** for the Pelly Crossing Facility.

Drinking Water

A search of drinking water wells on the Groundwater Information Network website and the Yukon Water Data Catalogue (accessed September 4, 2012) showed no drinking water wells located along the predicted downgradient direction between the Site and Mica Creek, nor in any other area within a 1.5 km radius of the Site. It was therefore deemed that CSR drinking water standards were **not applicable** for the Pelly Crossing Facility.

Irrigation and Livestock

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on November 26, 2012, showed no irrigation wells or wells for livestock on record for the Pelly Crossing area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells or wells for livestock in the area. A review of Google Earth Images from 2012, conducted by Golder on November 26, 2012, as well as several visits to the Facility conducted in July and September 2012 showed no agricultural land within 1.5 km of the Facility. It was therefore considered that CSR water quality standards for irrigation and livestock are **not applicable** to the Pelly Crossing Facility.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL4.1 Setting

The Facility is at an elevation of approximately 552 m (1,811 feet) above sea level, and lies within the Mica Creek and Pelly River watersheds. A cleared area of approximately 14,400 square meters, which slopes to the south, is present at the Facility. Local surficial geology is mapped as eolian deposits, forming crescent shaped and linear dunes, and featureless or gently undulating inter-dune eolian plains.

4.2 Climate

Climate data at the Site is likely similar to that at the Mayo Airport climate station (Climate ID 2100700), located approximately 100 kilometres northeast of the Facility at an elevation of approximately 503 m above sea level. Average monthly precipitation reported at the Mayo Airport station ranges from a low average of 9.2 mm in April to a high average of 54.4 mm in July. The average annual precipitation is approximately 312 mm, including 147 cm as snowfall. Temperature ranges from a low average of -31° C in January to a high average of 22.7° C in July (Environment Canada, 2012).

Annual precipitation is relatively low (approximately 300 mm per year). This suggests that the amount of infiltration of water through buried waste at the Site and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during the spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The southern Yukon, including the Pelly Crossing area, has undergone several episodes of glaciation, the most recent being the Quaternary McConnell Glaciation. During that period, sediments such as glacial till and glaciofluvial and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Pelly River Valley where the Facility is located (Figure 3).

The Pelly Crossing area is mapped as being underlain primarily by glaciofluvial deposits, alluvium, and eolian deposits of Quaternary origin. Rock outcrops, colluvial glacial debris, morainal deposits, and bedrock exposures are found in the higher elevation areas.

Surficial geology maps published by the Yukon Geological Survey indicate natural surficial materials at the Facility are gently sloping eolian deposits. In general, deposits consist of well compacted to non-compacted sediments that are primarily well sorted massive sand. This is inconsistent with the layered silt and sand, with minor clay and gravel, deposits encountered during drilling at the Site.

4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a shallow, confined aquifer composed of a variety of unconsolidated silt, clay, sand, and gravel sediments. For the purpose of this report, this aquifer has been named the Surficial Aquifer (Table 7).

Table 7 Aquifer Units Encountered at the Site

Aquifer Name	Location	Aquifer Type	Comments
Surficial Aquifer	PC-MW12-01 PC-MW12-02 PC-MW12-03	Confined; unconsolidated porous media	ShallowLow hydraulic conductivityMatrix of silt and clay

4.4 Groundwater Flow Systems

4.4.1 Regional Groundwater Flow

Topography in the area surrounding the Facility slopes from a drainage divide, located to just south of the Site (elevation approximately 590 m amsl), to the north towards the Pelly River (elevation 475 m amsl). Regional groundwater flow is inferred to be to the north following regional topography, discharge primarily to the Pelly River.

4.4.2 Local Groundwater Flow

Golder used the groundwater depth data from August 23, 2012 and well survey elevation information collected in June 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations are presented in Table 3.

Local groundwater flow direction at the Site is inferred, from groundwater elevations in the newly installed monitoring well network, to be to the southeast (Figure 6), towards an unnamed creek, which flows into Mica Creek, and eventually into the Pelly River. The horizontal hydraulic gradient at the Site was estimated to be approximately 0.0075 m/m.

4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on the three newly installed monitoring wells at the Facility. The slug tests were analyzed using AQTESOLV version 4.5, and the results are included in Appendix D. Table 8 provides a summary of the findings.

Monitoring Well ID	Primary Hydrogeological Unit	Solution Used	Calculated Hydraulic Conductivity (m/s)					
PC-MW12-01	Gravely CLAY	Bouwer-Rice (1976)	4 x 10 ⁻⁶					
PC-MW12-02	Silty SAND	Bouwer-Rice (1976)	1 x 10⁻⁵					
PC-MW12-03	SILT	Bouwer-Rice (1976)	1 x 10⁻⁵					

Table 8: Estimated Hydraulic Conductivity

4.6 Estimated Linear Groundwater Velocity

As determined from the slug tests summarized in Table 8, the hydraulic conductivity of the shallow aquifer underlying the Site is ranges between 4×10^{-6} m/s and 1×10^{-5} m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network, to be approximately 0.009 m/m to the southeast. A range of reasonable linear groundwater velocities is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s);
K: is the hydraulic conductivity in m/s as determined by slug testing;
i: is the horizontal hydraulic gradient (m/m); and
n: is the porosity which is estimated to be between 0.35 and 0.50 (Fetter, 1994) in units encountered.

The resulting groundwater velocity is estimated to be between 7 x 10^{-8} m/s and 3 x 10^{-7} m/s and (approximately 0.006 to 0.09 metres per day). Groundwater at the Site may travel faster or slower than these estimates due to inaccuracies or seasonal variations in these parameters.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation, and contaminant transport principals. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, metals, wood, construction debris, and any other potential waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO₃, NH₃), organic hydrocarbons (Fuels, PAH's, chlorinated hydrocarbons), and salts; and
- Leakage and spillage from on-Site hydrocarbon storage areas.

Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone.
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in Section 3.2.4, one round of groundwater monitoring was conducted on the three newly installed monitoring wells at the Pelly Crossing Solid Waste Disposal Facility and one surface water sampling location downgradient from the Site on September 9 and 10, 2012. Chain of custody forms for the groundwater samples collected, the complete groundwater chemistry results, and QA/QC data can be found in Appendix E. Table 9 summarizes parameters from the groundwater chemistry results, which are used to identify potential leachate contamination.

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)	Sodium (mg/L)
PC-MW12-01	8890	109	1.84	5840	33.8	231.0
PC-MW12-02	3970	90	1.54	2520	17.2	113
PC-MW12-03	4690	105	1.80	2900	18.1	125.0
Surface Water	3870	76	0.342	2140	68.6	103.0

Table 9: Important Groundwater Chemistry Results

Total Dissolved Solids

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃. Values of TDS in the monitoring well samples ranged from 3970 mg/L to 8890 mg/L, which is considered to be higher than the normal range for naturally occurring groundwater. The TDS concentration in the surface water sample was slighter lower (3870 mg/L). Elevated TDS concentration in all of the water samples indicate higher than normal TDS in background than is normally found in naturally occurring groundwater, likely due to the presence of evaporate (Gypsum, anhydrite, epsomite, halite, and/or decahydrate) deposits in the area. This already elevated concentration makes distinguishing between naturally occurring TDS and TDS derived from landfill leachate more difficult.

Dissolved Organic Carbon

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. DOC levels from all monitoring wells at the Pelly Crossing Site ranged from 17.2 mg/L to 33.8 mg/L. The level of DOC detected in the surface water sample was 68.6 mg/L. DOC concentrations in both groundwater and surface water samples showed no evidence of influence from landfill leachate.

Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride might be expected due to degradation of waste with a high chloride concentration. Chloride levels from the monitoring well network ranged between 90 mg/L and 109 mg/L. The chloride concentration measured in the surface water sample was 76 mg/L. These levels are considered to be low and well within the range expected in naturally occurring waters. Chloride levels in all of the samples did not show evidence of influence from landfill leachate.

Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater samples ranged between 1.54 mg/L and 1.84 mg/L and the ammonia concentration in the surface water sample was 0.342 mg/L, indicating no evidence of influence from landfill leachate.

Sulphate

Sulphate exceeded the CSR standard of 1000 mg/L in all of the samples. Elevated sulphate found in all of the water samples, along with elevated calcium, sodium, and magnesium levels suggest that naturally occurring evaporate deposits upgradient of the Site are the cause of elevated sulphate and TDS in water taken from the Site.

Metals

Metals concentrations in surface water and groundwater samples were within the range expected in naturally occurring waters. No metals concentrations exceeded any standards set by the Yukon CSR for freshwater aquatic life.

Organics

Detectable levels of organic constituents are often a sign of leachate contamination. Of the hydrocarbons analyzed (BTEX, PAH, EPH_{w10-32} & VH_{w6-10} , and chlorinated hydrocarbons), none were detected in the groundwater samples. EPH_{w10-19} , EPH_{w19-32} , LEPH, and HEPH were detected in the surface water sample.

5.2 Interpretation of Groundwater Chemistry

Factors that may affect natural groundwater quality include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;

- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in groundwater. The ionic composition of water can be used to classify the water into ionic types based on the dominant dissolved cation and anion, expressed in milliequivalents per litre (meq/L). These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to identify differences in water chemistry by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions, and may be used to identify different water types. Here, the Schoeller plot indicates that the chemistry in the water samples is similar, in that the plots generally follow similar trends, with the concentrations in PC-MW12-01 being the highest. Magnesium and sulphate are seen to be the dominant ions.
- Piper: The Piper diagram (Figure 8) is used to compare the ratios of major ions and can be used to identify different water types. The Piper diagram illustrates that the groundwater and surface water samples have nearly identical chemistry. Groundwater samples are classified as calcium-sulphate water type water, while the surface water sample is classified as magnesium/calcium-sulphate type water.
- Stiff: The stiff diagram allows for differences in groundwater chemistry to be presented and viewed spatially. Here, the stiff diagram shows that all of the samples have similar chemical composition.

None of the samples indicate that landfill leachate from the Facility is influencing groundwater or surface water chemistry.

6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

- Stratigraphy and Hydrogeology:
 - The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes south towards Mica Creek.
 - Subsurface conditions were investigated with the installation of three monitoring wells, including PC-MW12-01, PC-MW12-02, and PC-MW12-03, which were completed from July 16 to July 17, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;

- The Site stratigraphy, to the maximum depth drilled (15.5 m), consists of layered sediments composed of silt and sand, with minor clay and gravel;
- A confined water bearing zone was encountered during the drilling and installation of three monitoring wells at a depth of between 5.5 m and 14.6 m below grade;
- A series of hydraulic response tests were performed on all three monitoring wells. The results of these tests indicate the hydraulic conductivity of the surficial water-bearing unit underlying the Site ranges from 4 x 10⁻⁶ to 1 x 10⁻⁵ m/s. These values are considered reasonable for the units encountered at their respective depths during drilling;
- The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.009 m/m, sloping to the southeast;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between approximately between 7×10^{-8} m/s and 3×10^{-7} m/s (approximately 0.006 to 0.09 metres per day); and
- Based on the groundwater flow direction determined from the initial groundwater monitoring event, PC-MW12-01 is up-gradient of the Site, PC-MW12-03 is located directly downgradient of the waste disposal areas, and PC-MW12-02 is located cross-gradient of the waste disposal areas. This conclusion should be re-evaluated in the spring, and if the requirement of a minimum two downgradient wells has not been met, an additional downgradient well is likely required.
- Groundwater Chemistry:
 - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life are applicable to the Site;
 - Groundwater samples were collected from monitoring wells PC-MW12-01, PC-MW12-02, and PC-MW12-03, and a surface water sample was collected from a small pond located approximately 340 m northeast of the Facility, during one sampling event on which occurred from September 9 through September 13, 2012; and
 - Results of groundwater sampling at the Site indicated high TDS and background concentration of analytes that may typically be associated with landfill leachate contamination. The sample results indicated acceptable levels of relevant chemical parameters as defined by the CSR criteria for freshwater aquatic life, with the exception of sulphate, which exceeded the standard of 1000 mg/L in all of the samples. This suggests that landfill leachate influence on shallow groundwater underlying the Site is not evident.

7.0 RECOMMENDATIONS

The following recommendations are made based on the results of the hydrogeological assessment presented in this report:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Due to the absence of contaminants identified in the initial groundwater quality assessment, and the distance of the Site to the nearest populated area, this Facility should be considered to be low concern;
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor, prior to the next monitoring event, to tie wellheads into the regional linkage;
- Groundwater quality at the Facility should be revaluated following an additional round of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Since the groundwater flow direction may change seasonally, flow direction should be re-evaluated next spring to affirm whether or not the conditions for one upgradient and two downgradient monitoring wells have been met.

8.0 CLOSURE

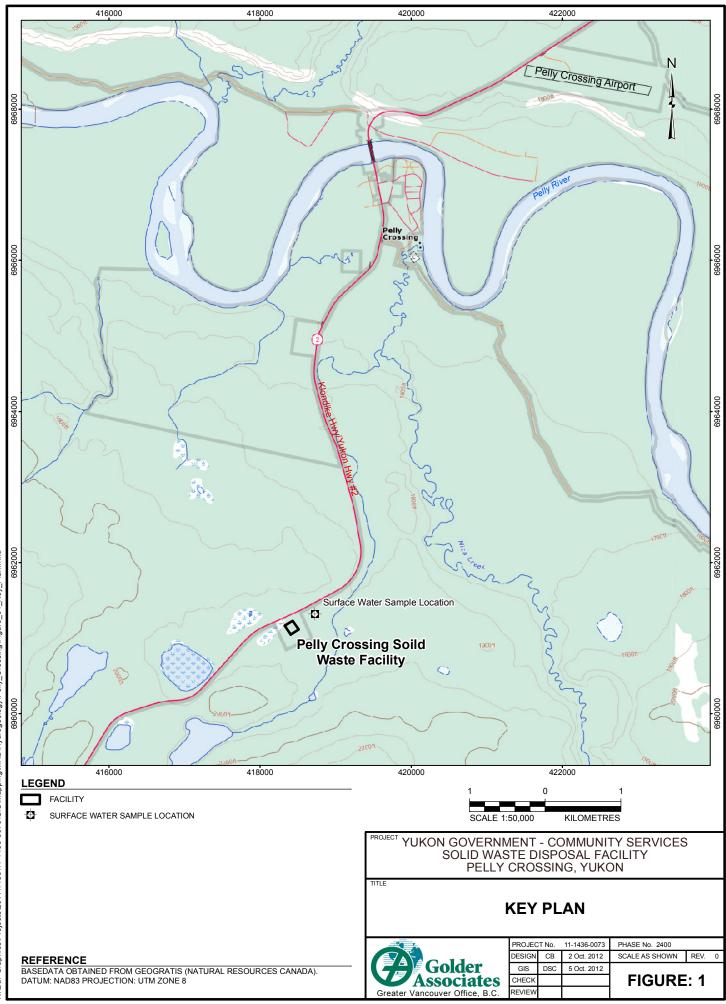
We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

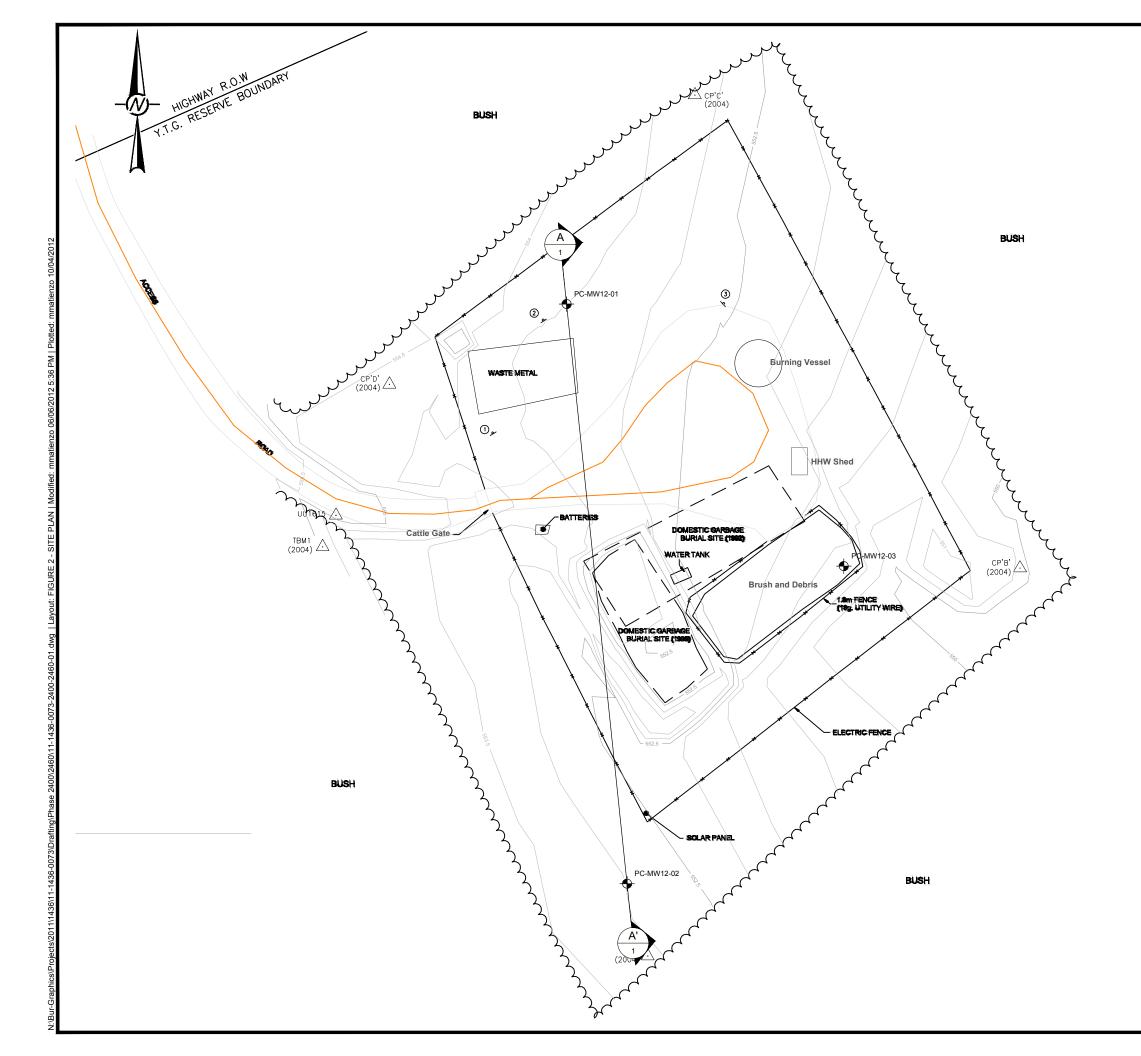
ORIGINAL SIGNED

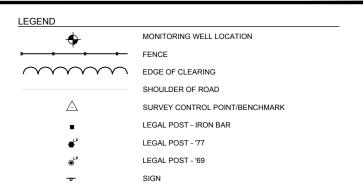
ORIGINAL SIGNED

Calvin Beebe, M.Sc. Hydrogeologist Gary Hamilton, P.Geo. Principal Hydrogeologist


Reviewed By:

ORIGINAL SIGNED


Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist


CB\GJH\GCP\syd

o:\final\2011\1436\11-1436-0073\1114360073-513-r-rev0-2400\1114360073-513-r-rev0-2400-hydrogeo assess 22feb_13.docx

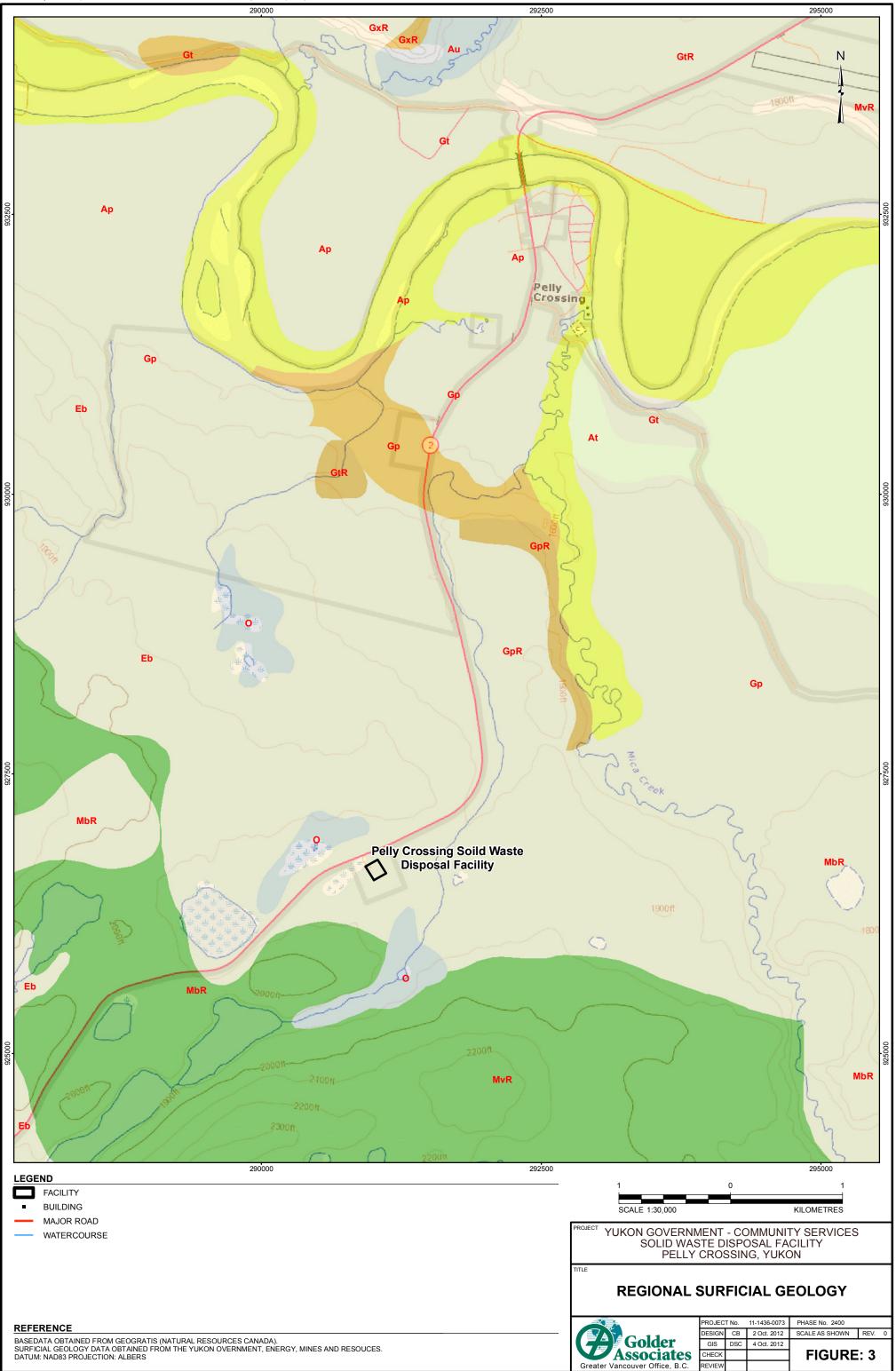
N:\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Pelly_Crossing\Figure_01_Key_Plan.mxd

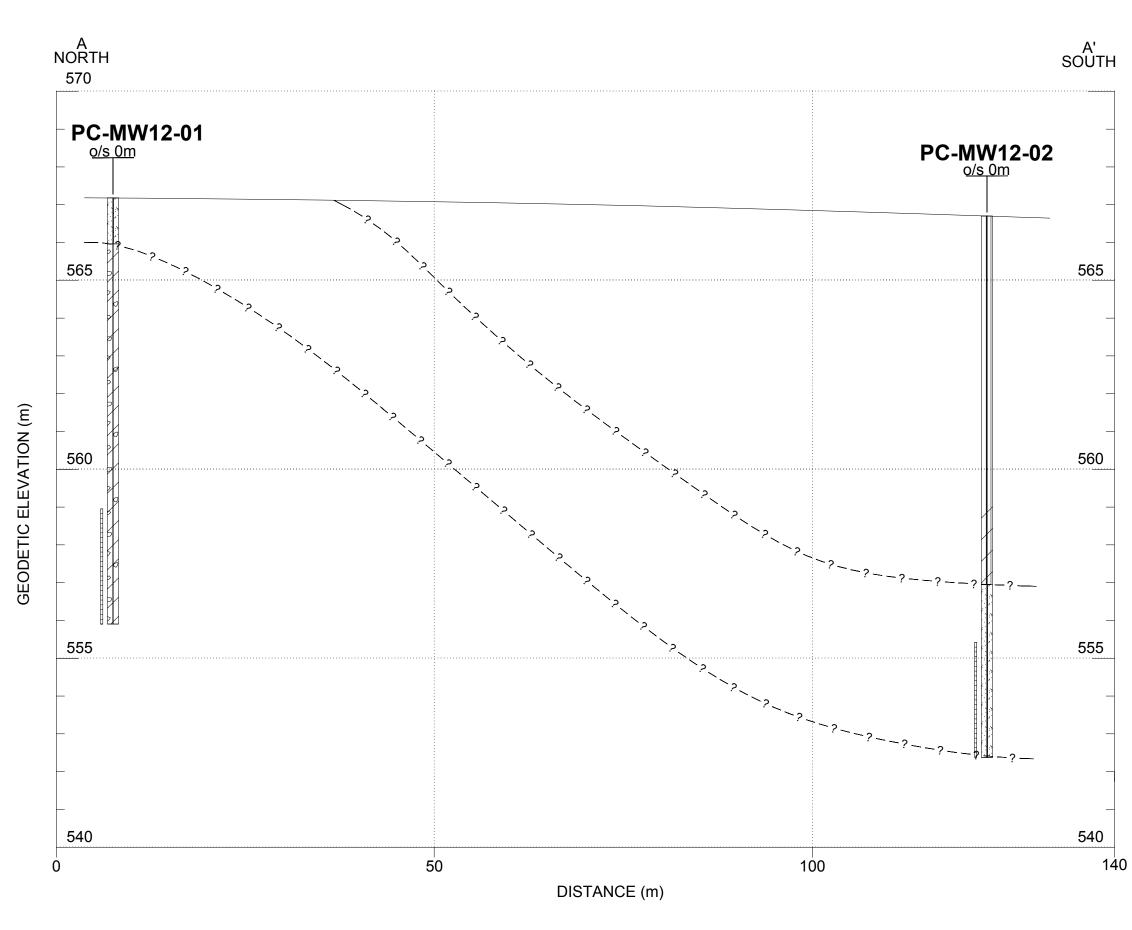
NOTES

 BASE PLAN PROVIDED BY QUEST ENGINEERING GROUP CAD FILE: PELLY2004.DWG DATED: 2004.09.15

REFERENCES

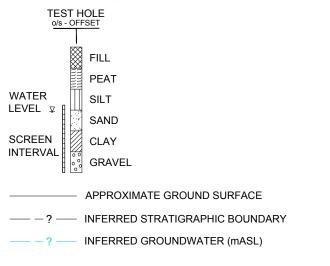
TITLE

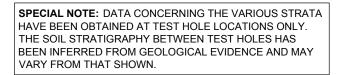

 SITE PLAN IS NOT CONSISTENT WITH OBSERVED CONDITION DURING DRILLING, BUT IS INTENDED TO SHOW LOCATIONS OF NEWLY INSTALLED MONITORING WELLS IN RELATION TO BURIED STRUCTURES.



ROJECT YUKON GOVERNMENT-COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY PELLY CROSSING, YUKON

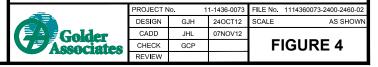
SITE PLAN AND CROSS-SECTION LOCATION


Golder	PROJECT No. 1		1-1436-0073	FILE No. 11-1436-0073-2400-2460-01	
	DESIGN	CB	04OCT12	SCALE	AS SHOWN
	CADD	MM	040CT12	FIGURE 2	
	CHECK				
	REVIEW				

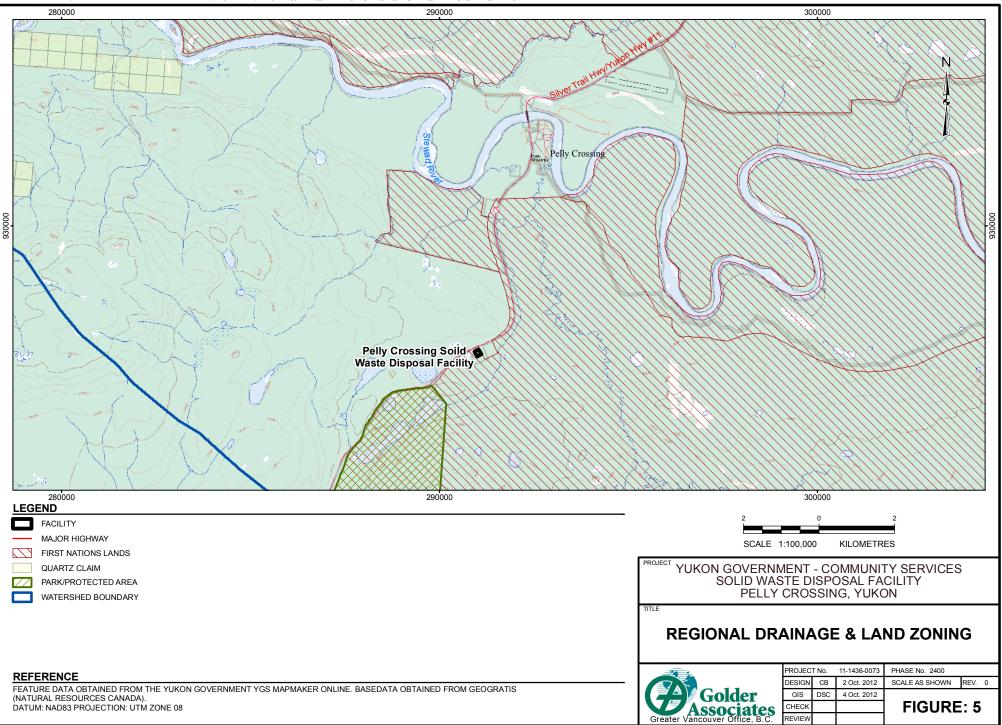


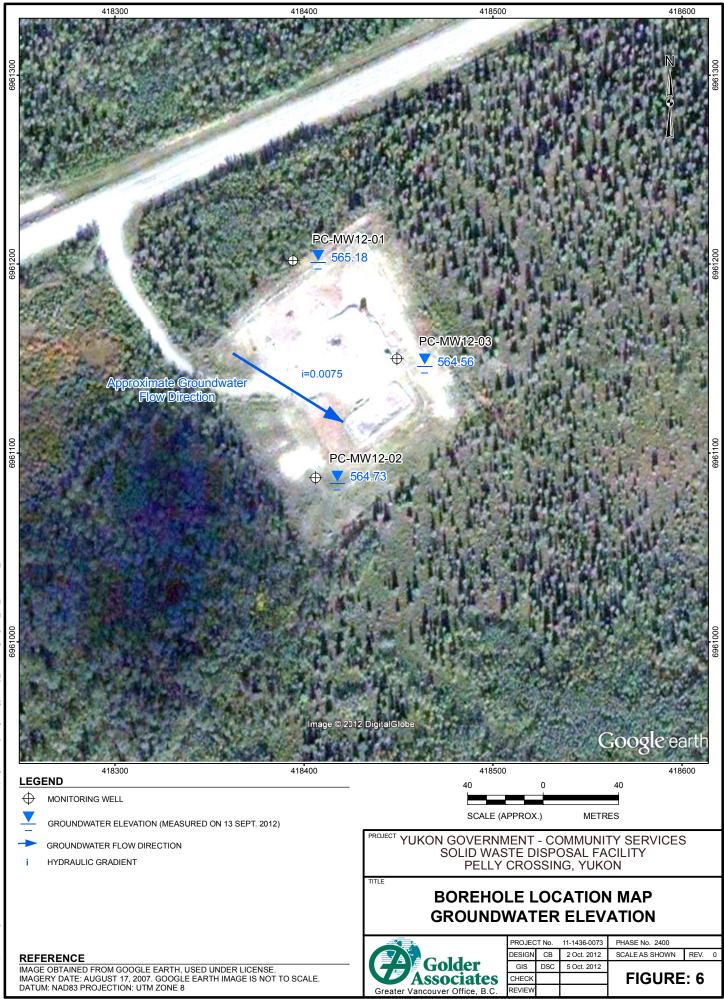
LEGEND

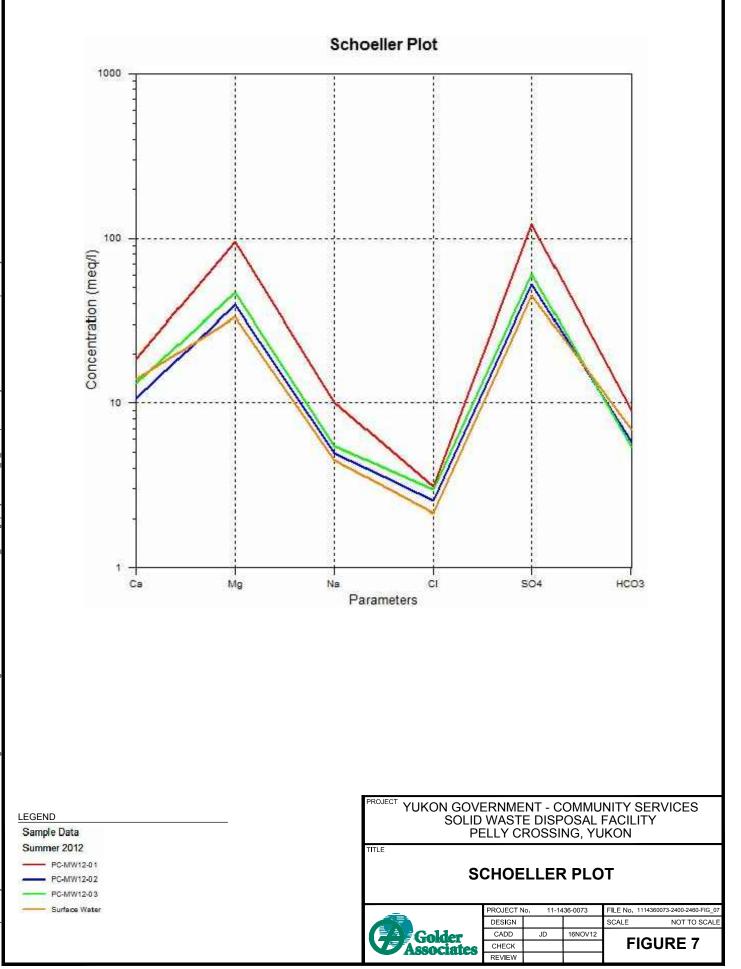
TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).

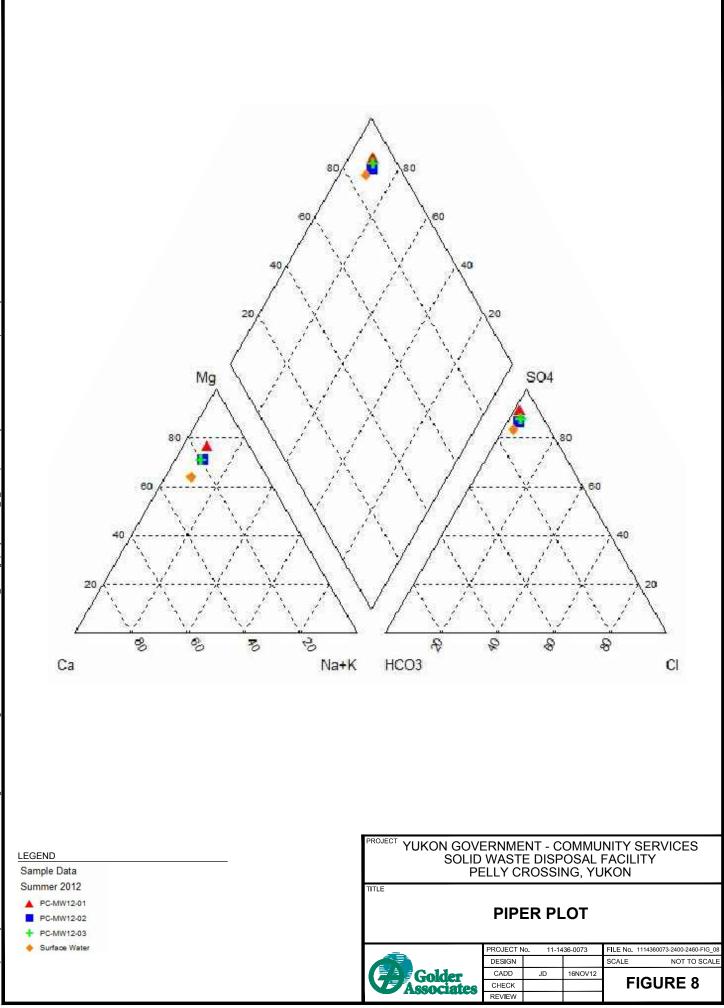

VERTICAL SCALE EXAGGERATION 5X

PROJECT

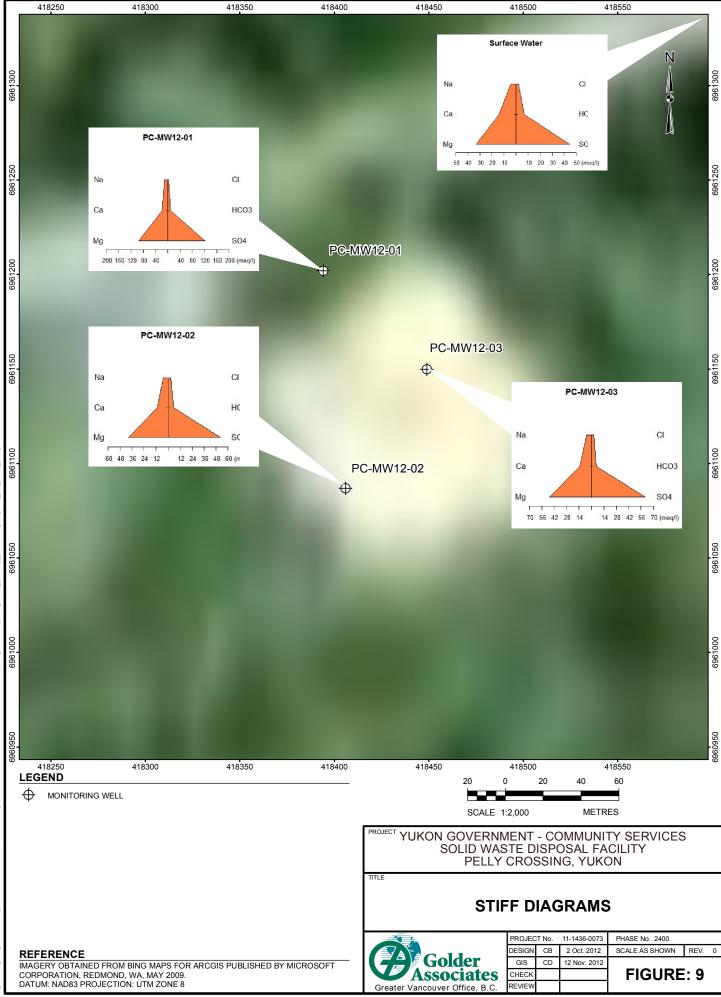

GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES PELLY CROSSING, Y.T.


TIT


CONCEPTUAL HYDROGEOLOGICAL CROSS - SECTION A-A'



N:\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Pelly_Crossing\Figure_05_Regional_Drainage_Land_Zoning.mxd



Layout: ANSI_A_FIG 8 | Modified: jdeol 11/16/2012 3:15 PM | Plotted: jdeol 11/16/2012 tts/2011/1436/11-1436-0073/Drafting/Phase 2400/2460/Figures/1114360073-2400-2460-FIG_08.dwg | N:\Bu

lgolder.gds/ga/Burnaby/CAD-GIS/Bur-Graphics/Projeds/2011/1436/11-1436-0073/GIS/Mapping/MXD/Hydrogeology/Pelly_Crossing/Figure_09_Stiff_Diagrams.mxd

Site Photographs

Photograph 1: A view looking down the southwest side of the Site from near the entrance.

Photograph 2: The east corner of the Site near the brush and debris disposal area.

Photograph 3: Looking north across the Site at the brush and debris segregation area and the burn vessel.

Photograph 4: A view from behind the burn vessel looking south.

 $o:\label{eq:linear} o:\label{eq:linear} o:\l$

APPENDIX B

Well Construction Logs

PROJECT No .:	11-1436-0073 (2400)
---------------	---------------------

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Pelly Crossing Solid Waste Facility

DRILLING DATE: July 16, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 1 OF 2

DATUM:

PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION PID ppm SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING \oplus L RECOVERY & STRATA PLOT BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp H – wi (m) 100 150 200 10 20 30 40 50 Stickup = 0.8m Ground Surface 0 (ML) sandy SILT, some gravel, trace 0.00 clay, light brown, moist. (CL) gravelly CLAY, trace sand, some silt, dark grey, wet 1.22 2 1436-0073/DRAFTING/GINT/1-1436-0073 (2400 PC)/GPJ_OUptd Form BC_BOREHOLE (ENVIRO) Template BC REGION TEMPLATE BETA 1 GDT_UIFary-BC REGION LIBRARY GLB_bt/accatak 0913/12 3 Bentonite Seal 4 M5 Driltech Truck Mounted Auger Drill Rig - light grey at 4.57m depth. Air Rotary 5 - wet at 5.49m depth. 6 7 10/20 Silica Sand 8 9 51mm Slotted PVC Pipe JECTS\2011\1436\11-10 Ca CONTINUED NEXT PAGE LOGGED: CB/AB DEPTH SCALE Golder CHECKED: DRAFT 1 : 50 sociates 1

LOC	CATIO	F: Yukon Landfill Assessment N: Pelly Crossing Solid Waste Facility									16, 20 For: M		nt Sun [Drilling				DATU	
MEIKES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	CORE RECOVERY %	PID ppm PID ppm 5	I	10 100	15	20		Wpł		/	CENT - WI	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
10 -	Air Rotary	(CL) gravelly CLAY, trace sand, some silt, dark grey, wet (continued)																	51mm Slotted PVC Pipe
12		End of Monitoring Well.	ø	11.28															
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			

PROJECT No .:	11-1436-0073 (2400)
---------------	---------------------

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Pelly Crossing Solid Waste Facility

DRILLING DATE: July 17, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 1 OF 2

-			SOIL PROFILE			SAM	PLE	s	PIE	<u> </u>										PIEZOMETER.	
	DEPTH SCALE METRES	BORING METHOD		LOT	Ω.		-		ppr	m 5	10	15	2	⊕ o					ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
	METH	RING	DESCRIPTION	LOTA PLOT ELEV. (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No. CORE	IIQ VER) m									ADDITI AB. TE	INSTALLATION	
_		BO		(m)	z			Ŭ	REC	50	100	15	0 20	00				0		Stickup = 0.77m	
-	- 0	\vdash	Ground Surface (ML) CLAYEY SILT, some sand, trace	0.00		_		_		+											.
	- 0 - 1 - 2 - 3 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10	M5 Dritlech Truck Mounted Auger Dñil Rig	(ML) CLAYEY SILT, some sand, trace gravel, dark grey, moist.	0.00																Bentonite Seal	
· •>->>	DE	EPTH	H SCALE				1	Â		Cel	do-					LOG		CB/AE			
10.11.10	1	: 50)					Z	7 A	Gol	der ciate	es					CHE	CKED	D	RAFT	

PROJECT No .:	11-1436-0073 (2400)
---------------	---------------------

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Pelly Crossing Solid Waste Facility

DRILLING DATE: July 17, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 2 OF 2

USM DESCRIPTION IO	щ	ДQ	SOIL PROFILE				SAI	MPL	ES		PID ppm					Đ					0	PIEZOMETE	R, E
Image: state of Monitoring Weil. Image: state of Monitor	EPTH SCA METRES	ING METH	DESCRIPTION	TA PLOT	ELEV.	IMBER	гүре	WS/0.3m	RE No.	CORE OVERY %		5	10	15	; ;						DDITIONA B. TESTIN	PIEZOMETE STANDPIPI OR THERMISTO INSTALLATIO)r Dn
Loss St. 1 - Social intergrade, cark 1	B	BOR		STR/	(m)	ž		BLO	S	REO		50	100	15	0 2		Wp				LA		
1 1 <td></td> <td></td> <td>(SM) SILTY SAND, trace gravel, dark grey, moist. <i>(continued)</i></td> <td></td> <td>10/20 Silica Sand</td> <td></td>			(SM) SILTY SAND, trace gravel, dark grey, moist. <i>(continued)</i>																			10/20 Silica Sand	
	та простоти у Ромпи од И то та 4 то оперси да И 12 12 13 13 13 14	M5 Dritech Truck Mounted Auger Drill Kig Air Rotary			ታ እና ታ ለቀም ሰራ ታ ለቀም ለቀም ለቀም ለቀም ለቀም ለቀም ሰራ ታ ለቀም ለቀም																	51mm Slotted PVC Pipe	
	- 15		End of Monitoring Well.		14.33	3																	
	- 16																						
	- 18																						
	- 19																						
DEPTH SCALE 1 : 50 LOGGED: CB/AB CHECKED: DRAFT		оты а																	GED	CB/AF	3		

PROJECT No .:	11-1436-0073 (2400)
---------------	---------------------

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Pelly Crossing Solid Waste Facility

DRILLING DATE: July 18, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 1 OF 2

		Q	SOIL PROFILE				SAM	NPLE	ES		PID ppm												PIEZOMETER,	
DEPTH SCALE	Ļ	BORING METHOD		LOT		~		- 1		/ %		i 1	ò	15	20	Ð						ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION	
EPTH		RING N	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm									T PER		AB. TE	INSTALLATION	
Ö		BOF		STR/	(m)	ž		BLC	8	REC	50	0 1	00	150	200		Wp I 1	0 2				< 7	0.11	
	0	_	Ground Surface (SM) SILTY SAND some gravel dark		0.00																		Stickup = 0.75m	
	1 2 3	I M5 Drittech Truck Mounted Auger Drit R/g Ar Rotary Arr Rotary	(SM-GM) SILTY SAND and GRAVEL, dark grey, moist.		9.14																		Bentonite Seal	
; [DEF	PTH S	SCALE							Ź		ملطم							LOG	GED:	CB/AE	3		
1	1:	50							V	P	G Ass	ocia	r tes							CHE	CKED		RAFT	

PROJECT No .:	11-1436-0073	(2400)
---------------	--------------	--------

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Pelly Crossing Solid Waste Facility

DRILLING DATE: July 18, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 2 OF 2

	ш	B	SOIL PROFILE		Τ	SAM	PLES		PID ppm					Ð						0	PIEZOMETEI	 R,
	DEPTH SCALE METRES	BORING METHOD		PLOT	R		0.3m No.	۲ %		5 1 I	0	15	20	•		I	1	1	1	ADDITIONAL LAB. TESTING	PIEZOMETEI STANDPIPE OR THERMISTO INSTALLATIC	= R
İ	DEPTH	DRING	DESCRIPTION	STRATA PLOT (m) (m)		TYPE	BLOWS/0.3m CORE No.	CORE RECOVERY %	PID ppm						WAT Wp H			IT PER		ADDI LAB. T	INSTALLATIC	
L	_	B		С (m)	+	i		2	5	0 1	<u> </u>	150	200						40			
_	- 10		(SM-GM) SILTY SAND and GRAVEL, dark grey, moist. (continued)		+																	
E																						-
E				0,0																	Bentonite Seal	-
_	- 11																					
F																						
-			(ML) SILT, some sand, dark brown,	0 10 11	58																	3 8 '
_			moist.																		10/20 Silion	
-	- 12	Drill Riç																			10/20 Silica Sand	
E		d Auger																				
		ck Mounted	C																			
	- 13	M5 Driltech Truck Mounted Auger Drill Rig																				目-
		Driltect																				
		M5																				
	- 14																				51mm Slotted	
																					PVC Pipe	
			(SM) SILTY SAND, dark brown, wet.	14.	53																	
	- 15																					
																					-	
			End of Monitoring Well.	15.	54																	-
	- 16																					
																						-
																						-
	- 17																					-
																						-
																						-
	40																					-
	- 18																					-
																						-
																						-
	- 19																					-
																						-
																						-
	- 20																					_
-								-74	- -													
0-100-1			SCALE				(Ź	G	olde ocia	r						LOC	GED:	CB/AE		DAET	
	1	50						Ð	Ass	ocia	tes							CHE	CKED		RAFT	

APPENDIX C

Well Development and Sampling Sheets

ion: P		nurz cr	2055	Tempera	ture:	5"2	1	Project No. Date: Completed	09	-SEI	F00-12 3 ADO	Tir	2400 me: <u>14:45</u>
NITORING e of Measurer th to product: th to water Be th to Bottom of meter Standpi	nent: alow Top of Well B	<u> </u>	5 lict thicknes	A 2.8	36 me 11 me mn	Or tres (B tres (B	dally influ ne well vo -A)*2.0 = -A)*1.1 = ample inta	biume: 2.9.31		tres -			inch) diameter we inch) diameter we
UIPMENT and Temp. Me ductivity Mete solved Oxygen np: Details: ELL DEVEl ge Volume:	eter: ar: n Meter e 121 	Waterra I			Si Si ubmersi	erial No. erial Ño. erial No.		C	alibration E alibration S D.O. Che Bailer Ty	Solution met An pe: _	n:	-(13	
. Flow Rate:	Volume	Tamp	pH		ond.	L/mi	Diss. O2	Start:	15 : Water	01	Fini		15:28
Time	Remove (L)	(°C)	(Units	i) (uS	i/cm)	(mV)	(mg/L) or %		Level (m)	-		Remar	ks
15:02	1	3.5	6.		09				1	-			
15:06	9	2.00			76				4.90	1-			
15:00		1.33	and the second second second		72				5.55				
5:13	28	1.37			122				6.10				
5:17	36	1.50			186	NY-4		-	6.97	-			4
5:20	45	1 20			232	us L			7.64	-			
15:28	60	1.58	the same of the local division in the local division of the local	6 10	248		1		17.58	5	AME	LE	COLLECTE
	00												
	14	-								-			
1									-				
Odour: Odour: Sheen: Turbidity:	Yes Yes Clear			Hydrocan				lic-like □ II Very	Silty				
Analysis	1	Тур	e	40 mL	100 mL	250 mL	500 m		2 L	4 L	Filte	red	Preservatives
		Plastic	D Glass			AC	R		manie .		D Yes	D No	
		D Plastic	Glass	-	1	1.1		1	1335		□ Yes	D No	Suca
1 interest		Piastic	D Glass	12.		- Lawrence	-		1	14	I Yes	D No	and the second
		D Plastic	Glass				-		11/23	12	D Yes	D No	1
		Plastic	D Glass		-	-					□ Yes	□ No	1 2 8
		D Plastic	D Glass			_		-		1.	T Yes	D No	1
			press and a								1 Yes		
		Plastic Plastic	Glass Glass			-		-			I Yes		

-

.

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development Purging/Sampling

and the second s	uw12-				- 10-	P	roject No.						00
	LY CI				1-1-1		ate:				ADGER 51 mm (2.0 inch) di 38 mm (1.5 inch) di さん ロイロ・ 1 1 1 3		145
her: OVE	ZCAST		Tempera	ture: _	Fried	1ºC 0	ompleted	by:	A	3 #	ADGE	R	_
e of Measurement to be product:	Pro	duct thickne	ess: A <u>2.7</u>	<u>18</u> me m	Or etres (B etres (B n Sa	dally influe ne well vol -A)*2.0 = 1 -A)*1.1 = ample inta	iume: 12.74.2						
UIPMENT LIS and Temp. Meter: nductivity Meter: solved Oxygen Me np:	Mode Mode	el	SS &	Si	PS erial No. erial No. erial No. ble		Ca	alibration alibration D.O. Ch Bailer T	Solution emet Ar	n:		0 10	
ELL DEVELOF rge Volume: N g. Flow Rate:	MENT/PU		= 7	6.5	litres		Chert	2	50	SIND!			EV0
Time Rem	ume oved Tem _)			nd. /cm)	Redox (mV)	Diss. O ₂ (mg/L) or %	Start:	Water Level (m)		Fin			
9.50	1 1.6			715							1		
the second se	5 2.3			825		River		3.02			1		
9:58 30		4 7.0		181				10.00					
10:03 45		2 1 1		47	200			3.29					
10:12 7:		7 7.4			3052			2113		- Sector			2
0:17 90			the second s	34				3.43			15 0		-
0.11 10	1.1.	2	1 9 120	100				D.11 1		AMP	LEC	ULLEC	rez
								1					
1		-	510				-			-		12	-
	-				00	-		_	1			a se	
		If yes	R	bon-like	OR OR	Metallio	c-like					-	
Odour:	es 🗆 No	If yes		DIII	IIIII	ITIII	I Very S	ilty				4.10	
Odour:	es 🗆 No	If yes		<u>D</u> 1111	- Same and a start	ITTII		Silty					1
Odour:	es 🗆 No	11111		100 mL	- Same and a start	I I I I I I ontainer Size		2 L	4L	Filte	ared	Prese	valives
Odour:	Yes □No ar III]	11111	1111	100	C	I I I I I I	2	179	4L	Filte	ered	Prese	vatives
Odour:	Yes □No ar 1111 Ty	pe	1111	100	C	I I I I I I	2	179				Prese	vatives
Odour:	Yes □ No ar III] Ty □ Plastic	pe D Giass	1111	100	C	I I I I I I	2	179		D Yes	D No	Prese	vatives
Odour:	Yes No ar III] Plastic Plastic	D Giass	1111	100	C	I I I I I I ontainer Size	2	179		D Yes	8 mm (1.5 inch) d	Prese	vatives
Odour:	Yes No ar IIII Plastic Plastic Plastic Plastic Plastic	D Glass Glass Glass Glass Glass Glass Glass	1111	100	C	I I I I I I ontainer Size	2	179		D Yes D Yes D Yes		Prese	valives
Odour:	Yes No 1111 Plastic Plastic Plastic Plastic Plastic Plastic	D Glass	1111	100	C	I I I I I I ontainer Size	2	179		Yes Yes Yes Yes	No No No No No No	Prese	vatives
Sheen: DY Turbidity: Cle	Yes No ar IIII Plastic Plastic Plastic Plastic Plastic	D Glass Glass Glass Glass Glass Glass Glass	1111	100	C	I I I I I I ontainer Size	2	179		Yes	No	Preser	vatives

C:\Users\BrMacdonaid\Desktop\New Forms\GW Development and Purging Sampling Data Sheet.docm

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development Purging/Sampling

No.: PC	C-MI	- 511	ROSS	IN.				Project No Date:			-136-1 EP. 12		1240
	ERC				erature:	100		Complete	-		RAD		ime: 10.
DNITORING the of Measure of the product: of the product: of the bottom meter Standp	elow To of Well	Pro	SO oduct thick ng:	ness:	6.40 r	netres	Tidally influ One well vo (B-A)*2.0 = (B-A)*1.1 = Sample interest	ienced: plume: 14.97.2	□ Yes	No litres	- for a 51 - for a 38	1 mm (2.0) inch) diamete 5 inch) diamete
AUIPMENT and Temp. Minductivity Metri solved Oxyge mp:	leter: er: en Meter		el 🔄	t s altič 🗆		Serial No. Serial No. Serial No. sible		(Calibratic Calibratic D.O. C D.Bailer	on Solution Chemet A		-4 - 	7 🗆 10
ELL DEVE rge Volume: g. Flow Rate:	We	ENT/PU			90	litre	es nin.	Start:][: 0	00	Fir	nish:	1:21
Time"	Volume Remove (L)			H hits) (Cond. uS/cm)	Redox (mV)	Diss. O ₂ (mg/L) or %	122.	Wate Leve (m)	l		Rema	rks
11:03	1	12.0	26.	29 10	1897				(11)				1 1 1 1 1
11:06	15	1	95 6.9	19/10	1986	- the	1 They	and a	-	6			1.
11:11	30.	1.9	27.	28/14	1930	13.	10	All is	12.4	2		0	· .
1.16	45	1.7	7 7	33 11	4893	1	a' 16.	122		00.		18.44	1
1.61	60	1.6	and the second se	37110	1896	2	-	No.	12.7	0	· the		199
1126	75	1.7	0 11	3911	4326	2		-			dean la		
11:31	40	1.50	0 7.2	9 1	1876	p	Prove State	di	29	5.45	AMP	'LE	COLLECT
		-						100-	11	-	-		11 M
								112				and some	
1 11					112			1 and 1		-		10 10	the states
1998 A	1							1 de	-			and the	(<u>)</u>
mments: Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	□ No □ No 1 1 1 1	If yes If yes	Contraction of the second	arbon-like IIIII	11111	111111		Silty		n- 	•	-Alex-
Analysis		Ту	pe	40 mL	100 ml		Container Siz	-		1	Filte	ered	Preservative
	4	D Plastic	D Giass	40 1112	100 m	. 250 ml	- 500 mL	1L	2 L	4 L	frank ?	1 de la	a de la realive
		D Plastic	D Glass	CONT.	-	1 2 3		-			D Yes	D No	13.11 S 2 3
AN ANT		D Plastic	Glass	10.00				1			Yes Yes		1 All
1		D Plastic	D Giass	1.2.2	1000	-			P	-		D No	
1 22.4		D Plastic	Glass	150		-		I NOT	-	107	D Yes	1 No	2
		D Plastic	D Glass	1 ang	1		50000		1	18-50	U Yes		
				-	-	-			1-1			0110	
		D Plastic	D Glass	12000			and the second sec		And .		D Vec	T No	and the second sec
		D Plastic	Glass Glass			17		351	Le	13	Yes Yes		1. 1

-

Surface	Water	Sampling	Data	Sheet
---------	-------	----------	------	-------

Field Characterization

ther:	08	V sca ^e	OY13=		6961	323	Project No Complete Date: Time: Reviewed	d By:	A BADGER 13.5EF. 12 13:30				>
and Temp. Me nductivity Mete solved Oxyger mp: (2) None mple Depth:	eter: er: n Mete e 🛛	Mo Mo er: Mo Waterra	VST del del del Peris FACE		Sei	rial No. rial No. rial No.	Bail		Calibration Calibration D.O. Ch	Solutio	n: <u>1</u> mpoule	413	7 □_10 Teflon □ PVC
JRFACE V	VAT	ERSA	MPLING	à									
Time 13:30		ume ved (L)	Temp. (°C) 7.30	pH (Units) 7.33	Cond. (uS/cm) 9982	Redc (mV	and the second se	ss. O ₂ L) or %	ME		SAM		ESERVES
Turbidity:	□ Ye □ Ye Clear	s DN				11111	11111	Very S	Silty				
Odour: Sheen:	□ Ye	s DN		11111			1	Very S	Silty				
Odour: Sheen: Turbidity:	Clear	S DN		1	100 mL			Very S	Silty	4 L	Filte		Preservatives
Odour: Sheen: Turbidity: Other:	Clear	s DN	lo If yes			Cor	ntainer Size			4 L	□ Yes	□ No	Preservatives
Odour: Sheen: Turbidity: Other:	Clear	S D N	lo If yes			Cor	ntainer Size			4L	Yes Yes	□ No	Preservatives
Odour: Sheen: Turbidity: Other:	Clear	s D N I I Plasti D Plasti	lo If yes			Cor	ntainer Size			4 L	Yes Yes Yes	No No No	Preservatives
Odour: Sheen: Turbidity: Other:	Clear	s D N I I D Plasti D Plasti D Plasti	Io If yes			Cor	ntainer Size			4L	Yes Yes Yes Yes	No No No No	Preservatives
Odour: Sheen: Turbidity: Other:	Clear	s D N I I Plasti D Plasti D Plasti D Plasti	lo If yes			Cor	ntainer Size			4L	Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No	Preservatives
Odour: Sheen: Turbidity: Other:	Clear	s D N I I D Plasti D Plasti D Plasti	lo If yes			Cor	ntainer Size			4 L	Yes Yes Yes Yes	No No No No	Preservatives

\\Cas1-s-filesrv1\data\Admin\Field Forms\Surface Water Sampling Data Sheet.de

APPENDIX D

Slug Test Data

Data	01 1		Test			
	Sheet				1	Falling Head
	Location: Project No.:		41 8394 (6961202		
	Date:	A BADGE				
	Time:	13:50				
IONITO	RING WELL INFO	RMATION				
	Depth to bottom Distance from to Well casing dian Borehold diame Screen length:		op of casing:	3.17 12.03 0.77 0.05	meters meters meters meters meters meters	(1 inch = 0.025 meters) (1 foot = 0.3048 meters)
	Screened unit:				(eg: sand, s	ilt, clay)
	Slug Mass: Length: Diameter: Pressure transc	0.0375	kiļograms meters meters		Inside dia	lumn height:meter meter:meter of water removed:litres
	Sampling Interv	val:	1		seconds	or minutes (circle one)
	Sampling Interv					
SINGLE	WELL RESPONS	E TEST 13:56		15:02	-	
SINGLE	WELL RESPONS Start time: Time	E TEST 13:56	Finish time: Water Level (m)		- Co	mments
SINGLE	WELL RESPONS Start time: Time	E TEST 13:56	Water Level (m)	TA 222	- Co 20	
SINGLE	WELL RESPONS Start time: Time 13:56 12:56	E TEST 13:56	Water Level (m)		- Co 20	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 12:56 14:03	E TEST 13:56	Water Level (m) 2.75 2.89	TA 222	- Co 20	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 13:58 14:03 14:08	E TEST 13:56	Water Level (m)	TA 222	- Co 20	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 13:56 14:03 14:08 14:08 14:18	E TEST 13:56	Water Level (m) 7.75 7.84 2.85	TA 222	- Co 20	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 13:58 14:03 14:08	E TEST 13:56	Water Level (m) 2.75 2.89 2.85 2.85 2.85	TA 222	Co 20 2N	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 13:58 14:03 14:08 14:08 14:18 14:38	E TEST 13:56	Water Level (m) 7.75 7.34 2.85 2.85 2.85 2.85	TA IN SLUG	Con 20 EN	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 12:58 14:03 14:08 14:08 14:18 14:18 14:38 15:00	E TEST 13:56	Water Level (m) 7.75 7.34 2.85 2.85 2.85 2.85	TA IN SUNG J	Con 20 EN	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 12:58 14:03 14:08 14:08 14:18 14:18 14:38 15:00	E TEST 13:56	Water Level (m) 7.75 7.34 2.85 2.85 2.85 2.85	TA IN SLUG	Con 20 EN	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 12:58 14:03 14:08 14:08 14:18 14:18 14:38 15:00	E TEST 13:56	Water Level (m) 7.75 7.34 2.85 2.85 2.85 2.85	TA IN SLUG	Con 20 EN	mments
SINGLE	WELL RESPONS Start time: Time 13:56 13:56 12:58 14:03 14:08 14:08 14:18 14:18 14:38 15:00	E TEST 13:56	Water Level (m) 7.75 7.34 2.85 2.85 2.85 2.85	TA IN SLUG	Con 20 EN	mments

Single-well Response Test Data Sheet

Rising Head
 •

Falling Head

	and the second second second		112-02		1.14		
	Location:	03 V 0	418406	696108	7		
	Project No.:		-0073 /20				
	Completed By:	ABADG	NER				
	Date:	13. SEP.	12				
	Time:	16:20					
MONITOR	RING WELL INFO	RMATION					
•		below top of cas	ing:	2.73	meters		
		n of well below to	-	15.46	meters		
		op of pipe to gro	-	0.76	meters		
	Well casing dia			0.05	meters	(1 inch = 0.025 meters)	
	Borehold diame		1	0.05	meters	(1 mon - 0.020 meters)	
	Screen length:				- meters	(1 foot = 0.3048 meters)	
	Screened unit:				(eg: sand, s		
						sit, day)	
EQUIPME				_			
. 5	Slug				Bailer		
	Mass:		kilograms			lumn height:	meters
	Length:		meters		Inside dia		meters
	Diameter:	0.038	meters	and/o	r Volume o	of water removed:	litres
	Pressure transo	ducer serial #:	0011032				
	Sampling Interv	val:	0011032		seconds	or minutes (circle one)	
SINGLE-V	Sampling Intervention	val:	l		seconds	or minutes (circle one)	
SINGLE-	Sampling Intervention	val: E TEST	Finish time:	-680	-	or minutes (circle one)	
SINGLE-	Sampling Intervention	val: SE TEST 16:22	Finish time:	17:00	- Co	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22	val: SE TEST 16:22	Finish time:	17:00 Tx IN	- Co	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25	val: SE TEST 16:22	Finish time: Water Level (m) 2.63	17:00	- Co	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22	val: SE TEST 16:22	Finish time: Water Level (m)	17:00 Tx IN SUNG	Co 20C F.P	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 Tx IN SUNG	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	
SINGLE-	Sampling Interv WELL RESPONS Start time: Time 16:22 16:25 16:30	val: SE TEST 16:22	Finish time: Water Level (m) 2.63 2.65	17:00 TX IN SUNG Jung 8	Co Zuc FN	mments	

Single-well Response Test Data Sheet

Rising Head

D

Falling Head

	Well No.:	10101	2-03		-		
	Location:	UBUO	418449	6961150			
	Project No .:			100			
	Completed By:		GER				
	Date:	13.SEP.	12				
	Time:	15:10			_		
NONITOR	RING WELL INFO	ORMATION					
	Depth to water	below top of casi	ing:	1.55	meters		
		n of well below to	-	16.35	- meters		
		top of pipe to gro	-	0.73	- meters		
	Well casing dia			0.05	- meters	(1 inch = 0.025 meters)	
	Borehold diame		-		meters		
	Screen length:				meters	(1 foot = 0.3048 meters)	
	Screened unit:				(eg: sand,		
EQUIPME					Deller		
5	Slug				Bailer		•
	Mass:		kilograms			blumn height:	meters
	Length:		meters		Inside di		meters
	Diameter:	0.0375	meters		or Volume	of water removed:	litres
-	Pressure trans	ducer serial #:	001103	2630			
	Sampling Inter	val:	(seconds	or minutes (circle one)	
SINGLE-	WELL RESPONS	SE TEST					
	o la r la no	:: 15:15	Finish time:	15:05	-		
	Time	Elapsed Time	Finish time: Water Level (m)	12:02	- Cc	mments	7
				15:05 TX IN	0.1		-
	Time			TY IN	0.1		
	Time 15 · 15 (5: (8		Water Level (m)	TY IN	20 C		
	Time 15:15		Water Level (m)	TY IN	20 C		
	Time 15:15 (5:68 15:23 15:73		Water Level (m)	Ty IN SUNG	20 C IN	m of Bottom	
	Time 15:15 (5:(8 15:23		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	Ty IN SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	
	Time 15:15 (5:(8 15:23 15:33 16:03		Water Level (m) 1.20 1.31 1.37	TX IN SUNG SUNG	20 C EN	m of Bottom	

APPENDIX E

Analytical Reports and Chain of Custody Forms

Table E-1Results of Water Analyses - Metals[YTG Landfill Monitoring, Pelly Crossing, Yukon]

SCN	[L1209363-4	L1209363-1	L1209363-2	L1209363-3
Location			PC-SURFACE	PC-MW12-01	PC-MW12-02	PC-MW12-03
QA/QC	-					
Date		Notes	13-SEP-12	09-SEP-12	10-SEP-12	10-SEP-12
Parameters		Hotes				
pH (field)			7.38	7.36	7.48	7.39
Temperature °C			7.30	1.58	1.13	1.56
Conductivity (uS/cm)			9482	10248	13066	14876
Dissolved Oxygen (mg/L)			9402	10240	13000	-
Dissolved Oxygen (hig/L)			-	-	-	-
Laboratory Parameters						
pH (laboratory)			8.13	7.83	7.93	7.87
Hardness (as CaCO3)			2350	5720	2500	3010
total dissolved solids			3870	8890	3970	4690
Aggregate Organics						
COD			218	123	56	81
dissolved organic carbon			68.6	33.8	17.2	18.1
Bacteriological						
Coliform Bacteria - Fecal			-	-	-	-
Dissolved Metals aluminum			<0.050	<0.10	<0.050	<0.050
antimony	0.2		<0.0025	<0.0050	<0.0025	<0.0025
arsenic	0.05		0.00134	0.0083	0.00855	0.00699
barium	10		<0.10	<0.20	<0.10	<0.10
beryllium	0.053		<0.0050	<0.010	<0.0050	<0.0050
bismuth	0.033		<0.20	<0.40	<0.20	<0.20
			<0.20 <0.50	<0.40 <1.0	<0.20 <0.50	<0.20 <0.50
boron	0.0001 0.0006	TT	<0.0010	<0.0020	<0.0010	<0.0010
cadmium	0.0001 - 0.0006	Н	278.0	372.0	213	263
calcium						
chromium	$0.010^{VI}, 0.090^{III}$	V	<0.010	<0.020	<0.010	<0.010
cobalt	0.009		<0.010	<0.020	<0.010	<0.010
copper	0.020 - 0.090	Н	<0.0050	<0.010	<0.0050	<0.0050
iron			0.079	0.463	0.475	0.297
lead	0.040 - 0.160	Н	<0.0025	<0.0050	<0.0025	<0.0025
lithium			0.031	0.025	0.021	0.035
magnesium			403	1160	477	571
manganese			0.042	0.691	0.377	0.400
mercury	0.001		<0.00020	<0.00020	<0.00020	<0.00020
molybdenum	10		<0.030	<0.060	<0.030	<0.030
nickel	0.250 - 1.5	Н	<0.050	<0.10	<0.050	<0.050
phosphorus			<0.30	<0.60	<0.30	<0.30
potassium			15.3	27.5	28.2	32.7
selenium	0.01		<0.0050	<0.010	<0.0050	<0.0050
silicon			8.51	6.37	6.51	7.69
silver	0.0005 - 0.015	Н	<0.010	<0.020	<0.010	<0.010
sodium			103.0	231.0	113	125.0
strontium			1.49	4.06	2.20	2.84
thallium	0.003		<0.20	<0.40	<0.20	<0.20
tin			<0.030	<0.060	<0.030	<0.030
titanium	1		0.020	<0.020	0.018	0.020
uranium	3		0.203	0.0639	0.00731	0.00886
vanadium			<0.030	<0.060	<0.030	<0.030
zinc	0.075 - 2.4	Н	<0.25	<0.50	<0.25	<0.25
Other Inorganics						
bicarbonate (CaCO3)			344	447	288	270
carbonate (CaCO3)			<1.0	<2.0	<2.0	<2.0
hydroxide (CaCO3)			<1.0	<2.0	<2.0	<2.0
total alkalinity (CaCO3)			344	447	288	270
ammonia	1.31 - 18.5	pН	0.342	1.84	1.54	1.80
bromide (free)		-				
chloride			76	109	90	105
fluoride	2 - 3	Н	0.48	<0.40	<0.40	<0.40
nitrate (as N)	400		<0.10	<0.25	<0.10	<0.10
	0.2.2	CI	<0.020	<0.050	<0.020	<0.020

intrate (ds IV)	400					
nitrite (as N)	0.2 - 2	Cl	<0.020	<0.050	<0.020	<0.020
total Kjeldahl nitrogen			3.95	4.04	2.54	3.07
sulphate	1000		2140	5840	2520	2900

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life) and DW (Drinking Water).

H = standard is Hardness dependent

CL = standard is chloride dependent

pH = standard is pH dependent

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperature

MCS = Most Conservative Standard

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Italics indicates standard is below detection limit.

Bold= Exceeds CSR Drinking water (DW) standard.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available. COC = Chain of Custody

Table E-2Results of Water Analyses - Hydrocarbons[YTG Landfill Monitoring, Pelly Crossing, Yukon]

SCN			L1209363-4	L1209363-1	L1209363-2	L1209363-3
Location	Aquatic Life		PC-SURFACE	PC-MW12-01	PC-MW12-02	PC-MW12-03
QA/QC	CSR-AW					
Date	(freshwater)		13-SEP-12	09-SEP-12	10-SEP-12	10-SEP-12
		Notes				
Monoaromatic Hydrocarbons						
benzene	4		<0.00050	<0.00050	<0.00050	<0.00050
ethylbenzene	2		<0.00050	<0.00050	<0.00050	<0.00050
styrene	0.72		<0.00050	<0.00050	<0.00050	<0.00050
toluene	0.390		<0.00050	<0.00050	<0.00050	<0.00050
ortho-xylene			<0.00050	<0.00050	<0.00050	<0.00050
meta- & para-xylene			<0.00050	<0.00050	<0.00050	<0.00050
total xylene			<0.00075	<0.00075	<0.00075	<0.00075
VHw ₆₋₁₀	15		<0.10	<0.10	<0.10	<0.10
VPHw	1.5		<0.10	<0.10	<0.10	<0.10
Polycyclic Aromatic Hydrocarbons						
acenaphthene			<0.000070	<0.000050	<0.000050	<0.000050
acenaphthylene			<0.000050	<0.000050	<0.000050	<0.000050
acridine	0.0005		<0.000050	<0.000050	<0.000050	<0.000050
anthracene	0.001		<0.000050	<0.000050	<0.000050	<0.000050
benzo(a)anthracene	0.001		<0.000050	<0.000050	<0.000050	<0.000050
benzo(a)pyrene	0.0001		<0.000010	<0.000010	<0.000010	<0.000010
benzo(b)fluoranthene			<0.000050	<0.000050	<0.000050	<0.000050
benzo(g,h,i)perylene			<0.000050	<0.000050	<0.000050	<0.000050
benzo(k)fluoranthene			<0.000050	<0.000050	<0.000050	<0.000050
chrysene			<0.000050	<0.000050	<0.000050	<0.000050
dibenzo(a,h)anthracene			<0.000050	<0.000050	<0.000050	<0.000050
fluoranthene	0.002		<0.000050	<0.000050	<0.000050	<0.000050
fluorene	0.12		<0.000050	<0.000050	<0.000050	<0.000050
indeno(1,2,3-c,d)pyrene			<0.000050	<0.000050	<0.000050	<0.000050
naphthalene	0.01		<0.000050	<0.000050	<0.000050	<0.000050
phenanthrene	0.003		<0.000050	<0.000050	<0.000050	<0.000050
pyrene	0.0002		<0.000050	0.000098	<0.000050	<0.000050
quinoline	0.034		<0.000050	<0.000050	<0.000050	<0.000050
Other Hydrocarbons						
EPHw ₁₀₋₁₉	5		0.47	<0.25	<0.25	<0.25
EPHw ₁₉₋₃₂			0.54	<0.25	<0.25	<0.25
LEPHw	0.5		0.47	<0.25	<0.25	<0.25
LEPHW HEPHw	0.3		0.47	<0.25	<0.25	<0.25
ПЕГПW			0.34	<0.20	NU.20	NU.20
Miscellaneous Organics						
methyl tertiary butyl ether (MTBE)			<0.00050	<0.00050	<0.00050	<0.00050
Notes						

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: DW (Drinking Water) and AW (Aquatic Life).

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19} = extractable petroleum hydrocarbons, carbon range 10-19$

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for EPHw₁₀₋₁₉ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} =$ volatile hydrocarbons, carbon range 6-10

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

Italics indicates standard is below detection limit.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

O:\Final\2011\1436\11-1436-0073\1114360073-513-R-Rev0-2400\Appendices\App E\ Pelly Crossing water quality tables 18-Oct-12 AR.xlsx [Hydrocarbons]

Golder Associates

GOLDER ASSOCIATES LTD. ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received:14-SEP-12Report Date:27-SEP-12 10:35 (MT)Version:FINAL

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #:

er #: L1209363

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 11-1436-0073/1200,2200,2400,2700

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1209363 CONTD.... PAGE 2 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	5720	2500	3010	2350	681
	рН (рН)	7.83	7.93	7.87	8.13	7.78
	Total Dissolved Solids (mg/L)	8890	3970	4690	3870	1470
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	447	288	270	344	107
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<1.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<1.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	447	288	270	344	107
	Ammonia, Total (as N) (mg/L)	1.84	1.54	1.80	0.342	0.0122
	Chloride (Cl) (mg/L)	109	90	105	76	431
	Fluoride (F) (mg/L)	<0.40	<0.40	<0.40	0.48	<0.20
	Nitrate (as N) (mg/L)	<0.25	<0.10	<0.10	<0.10	DLA <0.050
	Nitrite (as N) (mg/L)	DLA <0.050	<0.020	DLA <0.020	DLA <0.020	DLA <0.010
	Total Kjeldahl Nitrogen (mg/L)	4.04	2.54	3.07	3.95	0.179
	Sulfate (SO4) (mg/L)	5840	2520	2900	2140	63.0
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	33.8	17.2	18.1	68.6	3.32
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	LAB	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.10	<0.050	<0.050	<0.050	<0.050
	Antimony (Sb)-Dissolved (mg/L)	<0.0050	<0.0025	<0.0025	<0.0025	<0.0025
	Arsenic (As)-Dissolved (mg/L)	0.0083	0.00855	0.00699	0.00134	0.00060
	Barium (Ba)-Dissolved (mg/L)	onooco DLA <0.20	<0.10	<0.10	<0.10	<0.10
	Beryllium (Be)-Dissolved (mg/L)	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	DLA <0.40	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	DLA <1.0	DLA <0.50	DLA <0.50	DLA <0.50	<0.50
	Cadmium (Cd)-Dissolved (mg/L)	DLA <0.0020	DLA <0.0010	DLA <0.0010	DLA <0.0010	0.0016
	Calcium (Ca)-Dissolved (mg/L)	372	213	263	278	218
	Chromium (Cr)-Dissolved (mg/L)	DLA <0.020	DLA <0.010	DLA <0.010	DLA <0.010	<0.010
	Cobalt (Co)-Dissolved (mg/L)	DLA <0.020	<0.010	<0.010	<0.010	0.025
	Copper (Cu)-Dissolved (mg/L)	DLA <0.010	DLA <0.0050	DLA <0.0050	DLA <0.0050	DLA <0.0050
	Iron (Fe)-Dissolved (mg/L)	0.463	0.475	0.297	0.079	<0.030
	Lead (Pb)-Dissolved (mg/L)	DLA <0.0050	DLA <0.0025	DLA <0.0025	DLA <0.0025	ol.0025
	Lithium (Li)-Dissolved (mg/L)	0.025	0.021	0.035	0.031	0.021
	Magnesium (Mg)-Dissolved (mg/L)	1160	477	571	403	32.9
	Manganese (Mn)-Dissolved (mg/L)	0.691	0.377	0.400	0.042	1.28
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	DLA <0.060	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	DLA <0.10	<0.050	<0.050	<0.050	0.106

L1209363 CONTD.... PAGE 3 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	3120	189	3040	127	229
	рН (рН)	7.70	8.05	7.78	7.90	8.07
	Total Dissolved Solids (mg/L)	6260	227	6390	160	364
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	247	198	246	120	195
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	247	198	246	120	195
	Ammonia, Total (as N) (mg/L)	<0.0050	<0.0050	<0.0050	0.0110	0.0306
	Chloride (Cl) (mg/L)	2010	0.97	1970	<0.50	<0.50
	Fluoride (F) (mg/L)	ol.40	0.377	<0.40	0.193	0.077
	Nitrate (as N) (mg/L)	3.47	0.167	2.38	ola<0.10	0.0126
	Nitrite (as N) (mg/L)	DLA <0.050	<0.0010	<0.0010	DLA <0.020	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	^{ткы} 0.156	0.079	ткы 0.137	0.169	0.77
	Sulfate (SO4) (mg/L)	83	12.0	82	18.6	104
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.12	2.93	3.85	4.26	1.24
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	LAB	FIELD
	Aluminum (AI)-Dissolved (mg/L)	DLA <0.10	<0.010	DLA <0.10	<0.010	<0.010
	Antimony (Sb)-Dissolved (mg/L)	DLA <0.0050	<0.00050	DLA <0.0050	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	DLA <0.0010	0.00029	DLA <0.0010	0.00086	0.00377
	Barium (Ba)-Dissolved (mg/L)	DLA <0.20	0.021	DLA <0.20	0.094	0.050
	Beryllium (Be)-Dissolved (mg/L)	DLA <0.010	<0.0050	DLA <0.010	<0.0050	<0.0050
	Bismuth (Bi)-Dissolved (mg/L)	DLA <0.40	<0.20	DLA <0.40	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	DLA <1.0	<0.10	DLA <1.0	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	DLA <0.0020	<0.00020	DLA <0.0020	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	1200	61.2	1170	39.6	67.3
	Chromium (Cr)-Dissolved (mg/L)	DLA <0.020	<0.0020	DLA <0.020	<0.0020	<0.0020
	Cobalt (Co)-Dissolved (mg/L)	DLA <0.020	<0.010	DLA <0.020	<0.010	<0.010
	Copper (Cu)-Dissolved (mg/L)	DLA <0.010	<0.0010	DLA <0.010	<0.0010	<0.0010
	Iron (Fe)-Dissolved (mg/L)	DLA <0.060	<0.030	DLA <0.060	0.194	0.597
	Lead (Pb)-Dissolved (mg/L)	DLA <0.0050	<0.00050	DLA <0.0050	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	0.032	0.012	0.032	<0.010	<0.010
	Magnesium (Mg)-Dissolved (mg/L)	29.5	8.68	29.5	6.95	14.8
	Manganese (Mn)-Dissolved (mg/L)	DLA <0.020	0.113	DLA <0.020	0.129	0.482
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	DLA <0.060	<0.030	DLA <0.060	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	OLA <0.10	<0.050	DLA <0.10	<0.050	<0.050

L1209363 CONTD.... PAGE 4 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	419	191	252	108	719
	рН (рН)	7.94	8.02	8.04	8.16	7.69
	Total Dissolved Solids (mg/L)	4270	263	325	145	968
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	287	154	180	84.2	373
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	287	154	180	84.2	373
	Ammonia, Total (as N) (mg/L)	0.420	0.322	0.0090	<0.0050	0.0877
	Chloride (Cl) (mg/L)	5.1	<0.50	<0.50	<0.50	<5.0
	Fluoride (F) (mg/L)	0.23	0.074	0.057	0.061	<0.20
	Nitrate (as N) (mg/L)	0.161	0.0135	0.0137	0.0553	DLA <0.050
	Nitrite (as N) (mg/L)	0.020	<0.0010	<0.0010	<0.0010	DLA <0.010
	Total Kjeldahl Nitrogen (mg/L)	8.19	7.36	0.27	0.122	0.572
	Sulfate (SO4) (mg/L)	633	54.7	83.7	29.9	408
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	4.09	0.92	0.74	2.77	5.57
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	0.194	0.016	<0.010	0.026	0.058
	Antimony (Sb)-Dissolved (mg/L)	0.00588	0.00847	<0.00050	<0.00050	0.0019
	Arsenic (As)-Dissolved (mg/L)	0.00236	0.00245	0.00306	0.00225	0.00058
	Barium (Ba)-Dissolved (mg/L)	0.041	0.093	0.061	0.056	DLA <0.040
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.20
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	0.00142
	Calcium (Ca)-Dissolved (mg/L)	124	59.2	75.1	32.4	209
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	DLA <0.0040
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	0.076
	Copper (Cu)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	DLA <0.0020
	Iron (Fe)-Dissolved (mg/L)	0.221	<0.030	0.089	<0.030	0.183
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	ola <0.0010
	Lithium (Li)-Dissolved (mg/L)	0.023	<0.010	<0.010	<0.010	0.016
	Magnesium (Mg)-Dissolved (mg/L)	26.5	10.4	15.8	6.68	47.9
	Manganese (Mn)-Dissolved (mg/L)	0.859	0.271	0.319	0.0102	2.86
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	0.141

L1209363 CONTD.... PAGE 5 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	1790	95.5		
	рН (рН)	7.55	7.86		
	Total Dissolved Solids (mg/L)	2710	133		
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	408	41.1		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0		
	Alkalinity, Total (as CaCO3) (mg/L)	408	41.1		
	Ammonia, Total (as N) (mg/L)	0.0442	0.0085		
	Chloride (CI) (mg/L)	24	0.76		
	Fluoride (F) (mg/L)	<0.40	0.058		
	Nitrate (as N) (mg/L)	<0.10	0.127		
	Nitrite (as N) (mg/L)	0.062	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.520	0.186		
	Sulfate (SO4) (mg/L)	1540	52.9		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	5.04	1.33		
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (Al)-Dissolved (mg/L)	<0.050	0.042		
	Antimony (Sb)-Dissolved (mg/L)	<0.000 DLA <0.0025	<0.00050		
	Arsenic (As)-Dissolved (mg/L)	0.00081	0.00090		
	Barium (Ba)-Dissolved (mg/L)	<0.10	0.052		
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.002		
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20		
	Boron (B)-Dissolved (mg/L)	<0.50	<0.10		
	Cadmium (Cd)-Dissolved (mg/L)	0.0020	<0.00020		
	Calcium (Ca)-Dissolved (mg/L)	571	30.1		
	Chromium (Cr)-Dissolved (mg/L)	DLA <0.010	<0.0020		
	Cobalt (Co)-Dissolved (mg/L)	0.092	<0.010		
	Copper (Cu)-Dissolved (mg/L)	DLA <0.0050	<0.0010		
	Iron (Fe)-Dissolved (mg/L)	0.475	0.036		
	Lead (Pb)-Dissolved (mg/L)	DLA <0.0025	<0.00050		
	Lithium (Li)-Dissolved (mg/L)	0.071	<0.010		
	Magnesium (Mg)-Dissolved (mg/L)	88.8	4.95		
	Manganese (Mn)-Dissolved (mg/L)	4.20	0.0047		
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030		
	Nickel (Ni)-Dissolved (mg/L)	0.277	<0.050		

L1209363 CONTD.... PAGE 6 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	DLA <0.60	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	27.5	28.2	32.7	15.3	2.76
	Selenium (Se)-Dissolved (mg/L)	DLA <0.010	DLA <0.0050	DLA <0.0050	DLA <0.0050	DLA <0.0050
	Silicon (Si)-Dissolved (mg/L)	6.37	6.51	7.69	8.51	4.83
	Silver (Ag)-Dissolved (mg/L)	DLA <0.020	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	231	113	125	103	21.8
	Strontium (Sr)-Dissolved (mg/L)	4.06	2.20	2.84	1.49	0.837
	Thallium (TI)-Dissolved (mg/L)	<0.40	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	OLA <0.060	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	DLA <0.020	0.018	0.020	0.020	0.018
	Uranium (U)-Dissolved (mg/L)	0.0639	0.00731	0.00886	0.203	0.0267
	Vanadium (V)-Dissolved (mg/L)	DLA <0.060	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	DLA <0.50	<0.25	<0.25	<0.25	dla<0.25
Aggregate Organics	COD (mg/L)	123	56	81	218	52
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1209363 CONTD.... PAGE 7 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	DLA <0.60	<0.30	ola <0.60	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	1.2	0.49	1.3	1.09	1.77
	Selenium (Se)-Dissolved (mg/L)	DLA <0.010	<0.0010	DLA <0.010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)	4.80	4.93	4.84	4.08	2.40
	Silver (Ag)-Dissolved (mg/L)	ol.020	<0.010	ol.020	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	32.3	6.6	32.8	2.4	<2.0
	Strontium (Sr)-Dissolved (mg/L)	2.10	0.215	2.17	0.206	0.396
	Thallium (TI)-Dissolved (mg/L)	DLA <0.40	<0.20	<0.40	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	DLA <0.060	<0.030	DLA <0.060	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	ol.020	<0.010	DLA <0.020	<0.010	0.012
	Uranium (U)-Dissolved (mg/L)	0.204	0.0180	0.196	0.00086	0.00271
	Vanadium (V)-Dissolved (mg/L)	DLA <0.060	<0.030	DLA <0.060	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.50	<0.050	<0.50	<0.050	<0.050
Aggregate Organics	COD (mg/L)	81	<20	88	<20	53
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1209363 CONTD.... PAGE 8 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	4.10	2.50	1.76	0.50	1.52
	Selenium (Se)-Dissolved (mg/L)	0.0012	<0.0010	<0.0010	<0.0010	DLA <0.0020
	Silicon (Si)-Dissolved (mg/L)	4.69	2.61	2.91	2.08	5.77
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Sodium (Na)-Dissolved (mg/L)	166	<2.0	<2.0	<2.0	5.4
	Strontium (Sr)-Dissolved (mg/L)	1.02	0.276	0.325	0.163	0.510
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	<0.20
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Titanium (Ti)-Dissolved (mg/L)	0.022	<0.010	0.010	<0.010	0.029
	Uranium (U)-Dissolved (mg/L)	0.0542	0.0190	0.00454	0.00071	0.00232
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	<0.030
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	DLA <0.10
Aggregate Organics	COD (mg/L)	77	146	20	<20	47
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	<0.00070
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L1209363 CONTD.... PAGE 9 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE	
Grouping	Analyte	-		
WATER				T
Dissolved Metals	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	17.2	0.18	
	Selenium (Se)-Dissolved (mg/L)	0.0336	<0.0010	
	Silicon (Si)-Dissolved (mg/L)	9.32	2.92	
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	
	Sodium (Na)-Dissolved (mg/L)	26.9	<2.0	
	Strontium (Sr)-Dissolved (mg/L)	1.69	0.0880	
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	
	Titanium (Ti)-Dissolved (mg/L)	0.056	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.0412	0.00022	
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	
	Zinc (Zn)-Dissolved (mg/L)	<0.25	<0.050	
Aggregate Organics	COD (mg/L)	42	<20	
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	
	Bromoform (mg/L)	<0.0010	<0.0010	
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	
	Chlorobenzene (mg/L)	<0.0010	<0.0010	
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	
	Chloroethane (mg/L)	<0.0010	<0.0010	
	Chloroform (mg/L)	<0.0010	<0.0010	
	Chloromethane (mg/L)	<0.0050	<0.0050	
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	
	Dichloromethane (mg/L)	<0.0050	<0.0050	
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	
	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	

L1209363 CONTD.... PAGE 10 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwater 12-SEP-12 10:40 SX-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	77.8	79.3	80.7	79.6	79.1
	Surrogate: 1,4-Difluorobenzene (SS) (%)	83.2	83.0	82.5	83.1	82.9
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	0.47	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	0.54	<0.25
	LEPH (mg/L)	<0.25	<0.25	<0.25	0.47	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	0.54	<0.25
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	SURR- ND 69.0	80.1	76.0	81.9	85.7
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000070	<0.000050
-	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1209363 CONTD.... PAGE 11 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	0.00148	<0.00050	0.00148	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	0.0011	<0.0010	0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	77.1	77.8	78.2	76.2	78.6
	Surrogate: 1,4-Difluorobenzene (SS) (%)	82.9	83.0	83.3	83.1	83.5
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	<0.25	<0.25	<0.25	0.51
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	0.51
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	78.8	77.7	77.7	70.5	76.5
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
-	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1209363 CONTD.... PAGE 12 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-11 groundwater 11-SEP-12 12:30 MA-MW12-02	L1209363-12 groundwater 11-SEP-12 14:15 MA-MW12-03	L1209363-13 groundwater 11-SEP-12 15:15 MA-MW12-04	L1209363-14 surface water 12-SEP-12 17:30 MA SURFACE	L1209363-15 groundwater 13-SEP-12 09:25 KE-MW12-01
Grouping	Analyte					
WATER						
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
	Surrogate: 4-Bromofluorobenzene (SS) (%)	78.2	79.6	79.7	78.1	78.8
	Surrogate: 1,4-Difluorobenzene (SS) (%)	83.0	83.2	83.1	83.1	83.6
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	EPH19-32 (mg/L)	<0.25	0.78	0.50	<0.25	0.54
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	HEPH (mg/L)	<0.25	0.78	0.50	<0.25	0.54
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	71.3	83.0	75.8	78.8	75.4
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
-	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050

L1209363 CONTD.... PAGE 13 of 20 27-SEP-12 10:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE		
Grouping	Analyte				
WATER					
Volatile Organic Compounds	Ethylbenzene (mg/L)	<0.00050	<0.00050		
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050		
	Styrene (mg/L)	<0.00050	<0.00050		
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010		
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010		
	Toluene (mg/L)	0.00159	<0.00050		
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010		
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010		
	Trichloroethylene (mg/L)	<0.0010	<0.0010		
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010		
	Vinyl Chloride (mg/L)	<0.0010	<0.0010		
	ortho-Xylene (mg/L)	<0.00050	<0.00050		
	meta- & para-Xylene (mg/L)	0.00063	<0.00050		
	Xylenes (mg/L)	<0.00075	<0.00075		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	78.3	79.8		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	81.9	82.8		
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25		
	EPH19-32 (mg/L)	<0.25	<0.25		
	LEPH (mg/L)	<0.25	<0.25		
	HEPH (mg/L)	<0.25	<0.25		
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10		
	VPH (C6-C10) (mg/L)	<0.10	<0.10		
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	73.8	81.8		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050		
	Acenaphthylene (mg/L)	<0.000050	<0.000050		
	Acridine (mg/L)	<0.000050	<0.000050		
	Anthracene (mg/L)	<0.000050	<0.000050		
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050		
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010		
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050		
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050		
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050		
	Chrysene (mg/L)	<0.000050	<0.000050		
	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050		

L1209363 CONTD.... PAGE 14 of 20 27-SEP-12 10:35 (MT) Version: FINAL

Sample ID Description Sampled Date Sampled Time Client ID	L1209363-1 groundwater 09-SEP-12 15:40 PC-MW12-01	L1209363-2 groundwater 10-SEP-12 10:20 PC-MW12-02	L1209363-3 groundwater 10-SEP-12 11:30 PC-MW12-03	L1209363-4 surface water 13-SEP-12 13:30 PC SURFACE	L1209363-5 groundwate 12-SEP-12 10:40 SX-MW12-01	
Analyte						
Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	
Indeno(1,2,3-c,d)pyrene (mg/L)					< 0.00005	
					< 0.00005	
					<0.00005	
					< 0.00005	
					<0.00005	
					<0.00005 94.4	
					94.4 101.1	
					85.4 94.4	
					94.4 96.3	
	Description Sampled Date Sampled Time Client ID Analyte Fluoranthene (mg/L) Fluorene (mg/L)	Description Sampled Date Sampled Time Client IDgroundwater 09-SEP-12 15:40 PC-MW12-01AnalyteFluoranthene (mg/L)<0.000050	Description Sampled Date Sampled Time Client ID groundwater 09-SEP-12 15:40 PC-MW12-01 groundwater 10-SEP-12 10:20 PC-MW12-01 Analyte <0.000050	Description Sampled Date Sampled Time Client ID groundwater 09-SEP-12 15:40 PC-MW12:01 groundwater 10-SEP-12 10:20 PC-MW12:02 groundwater 10-SEP-12 11:30 PC-MW12:03 Analyte client ID client ID client ID groundwater 10-SEP-12 10:20 groundwater 10-SEP-12 10:20 groundwater 10-SEP-12 11:30 groundwater 10-SEP-12 11:30 Fluoranthene (mg/L) client ID client ID client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID client ID client ID Naphthalene (mg/L) client ID client ID client ID client ID client ID client ID Pyrene (mg/L) client ID client ID client ID client ID client ID client ID Surrogate: Acenaphthene d10 (%) 86.1 91.8 93.5 <thclient id<="" th=""> groundwater</thclient>	Description Sampled Date Sampled Time Client ID groundwater 09-SEP-12 15:40 PC-MW12-01 groundwater 10-SEP-12 10:20 PC-MW12-02 groundwater 10-SEP-12 11:30 PC-MW12-03 surface water 13-SEP-12 13:30 PC-MW12-03 Analyte Fluoranthene (mg/L) <0.00050	

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1209363 CONTD.... PAGE 15 of 20 27-SEP-12 10:35 (MT) Version: FINAL

Sample ID Description Sampled Date Sampled Time Client ID	L1209363-6 groundwater 10-SEP-12 16:30 SX-MW12-02	L1209363-7 groundwater 10-SEP-12 17:45 SX-MW12-03	L1209363-8 groundwater 10-SEP-12 16:30 SX-MW12-04	L1209363-9 surface water 12-SEP-12 13:20 SX SURFACE	L1209363-10 groundwater 11-SEP-12 10:45 MA-MW12-01
Analyte					
Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Naphthalene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Surrogate: Acenaphthene d10 (%)	99.8	90.1	90.2	95.7	94.4
Surrogate: Acridine d9 (%)	106.9	95.4	94.6	100.1	93.6
Surrogate: Chrysene d12 (%)	93.7	85.2	85.5	89.5	86.4
Surrogate: Naphthalene d8 (%)	100.7	90.3	89.7	95.2	93.9
Surrogate: Phenanthrene d10 (%)	103.0	92.2	91.2	97.9	95.4
	Description Sampled Date Sampled Time Client ID Analyte Fluoranthene (mg/L) Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L) Quinoline (mg/L) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%)	Description Sampled Date Sampled Time Client IDgroundwater 10-SEP-12 16:30 SX-MW12-02AnalyteFluoranthene (mg/L)<0.000050	Description Sampled Date Sampled Time Client ID groundwater 10-SEP-12 16:30 SX-MW12-02 groundwater 10-SEP-12 17:45 SX-MW12-03 Analyte	Description Sampled Date Sampled Time Client ID groundwater 10-SEP-12 16:30 SX-MW12-02 groundwater 10-SEP-12 17:45 SX-MW12-03 groundwater 10-SEP-12 17:45 SX-MW12-04 Analyte	Description Sampled Date Sampled Time Client ID groundwater 10-SEP-12 16:30 groundwater 10-SEP-12 17:45 groundwater 10-SEP-12 16:30 surface water 12-SEP-12 16:30 Analyte client ID surface water 10-SEP-12 16:30 surface water 10-SEP-12 16:30 surface water 12-SEP-12 16:30 Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID client ID Surgaria Additional Indentities client ID client ID client ID client ID Fluoranthene (mg/L) client ID client ID client ID client ID client ID <tr< td=""></tr<>

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1209363 CONTD.... PAGE 16 of 20 27-SEP-12 10:35 (MT) Version: FINAL

Analyte Fluoranthene (mg/L) Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L) Quinoline (mg/L)	<0.000050 <0.000050 <0.000050 <0.000050 <0.000050	<0.000050 <0.000050 <0.000050 0.000051	<0.000050 <0.000050 <0.000050	<0.000050	<0.000050
Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050 <0.000050 <0.000050	<0.000050 <0.000050	<0.000050		
Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050 <0.000050 <0.000050	<0.000050 <0.000050	<0.000050		
Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050 <0.000050	<0.000050		<0.000050	
Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050 <0.000050	<0.000050			<0.000050
Phenanthrene (mg/L) Pyrene (mg/L)	<0.000050			<0.000050	<0.000050
Pyrene (mg/L)		0.000031	<0.000050	<0.000050	0.000059
		<0.000050	<0.000050	<0.000050	<0.000050
Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Surrogate: Acenaphthene d10 (%)	89.7	89.6	98.3	92.0	104.8
Surrogate: Acridine d9 (%)	96.3	90.7	99.3	97.7	101.0
Surrogate: Chrysene d12 (%)	86.7	75.9	89.1	78.7	87.4
Surrogate: Naphthalene d8 (%)	89.8	88.9	97.8	92.5	88.0
Surrogate: Phenanthrene d10 (%)	92.3	91.3	99.6	93.7	96.5
	Surrogate: Naphthalene d8 (%)	Surrogate: Naphthalene d8 (%) 89.8	Surrogate: Naphthalene d8 (%) 89.8 88.9	Surrogate: Naphthalene d8 (%) 89.8 88.9 97.8	Surrogate: Naphthalene d8 (%) 89.8 88.9 97.8 92.5

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1209363 CONTD.... PAGE 17 of 20 27-SEP-12 10:35 (MT) Version: FINAL

Sample ID Description Sampled Date Sampled Time Client ID	L1209363-16 groundwater 13-SEP-12 09:55 KE-MW12-03	L1209363-17 surface water 11-SEP-12 19:15 KE SURFACE			
Analyte					
Fluoranthene (mg/L)	<0.000050	<0.000050			
Fluorene (mg/L)	<0.000050	<0.000050			
Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050			
Naphthalene (mg/L)	0.000065	<0.000050			
Phenanthrene (mg/L)	<0.000050	<0.000050			
Pyrene (mg/L)	<0.000050	<0.000050			
Quinoline (mg/L)	<0.000050	<0.000050			
Surrogate: Acenaphthene d10 (%)	106.9	89.3			
Surrogate: Acridine d9 (%)	91.2	87.3			
Surrogate: Chrysene d12 (%)	78.1	75.5			
Surrogate: Naphthalene d8 (%)	88.8	89.6			
Surrogate: Phenanthrene d10 (%)	88.4	88.3			
	Description Sampled Date Sampled Time Client ID Analyte Fluoranthene (mg/L) Fluorene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Indeno(1,2,3-c,d)pyrene (mg/L) Naphthalene (mg/L) Naphthalene (mg/L) Phenanthrene (mg/L) Pyrene (mg/L) Quinoline (mg/L) Surrogate: Acenaphthene d10 (%) Surrogate: Acridine d9 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%)	Description Sampled Date Sampled Time Client IDgroundwater 13-SEP-12 09:55 KE-MW12-03AnalyteFluoranthene (mg/L)<0.000050	Description Sampled Date Sampled Time Client ID groundwater 13-SEP-12 09:55 KE-MW12-03 surface water 11-SEP-12 19:15 KE SURFACE Analyte	Description Sampled Date Sampled Time Client ID groundwater 13-SEP-12 09:55 KE-MW12-03 surface water 11-SEP-12 19:15 KE SURFACE Analyte	Description Sampled Date Sampled Time Client ID groundwater 13-SEP-12 09:55 KE-MW12-03 surface water 11-SEP-12 19:15 KE SURFACE Analyte

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L1209363 CONTD.... PAGE 18 of 20 27-SEP-12 10:35 (MT) Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Nitrite (as N)	DLA	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, 4, -5, -6, -7, -8, -9
Duplicate	Nitrate (as N)	DLA	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, 4, -5, -6, -7, -8, -9
Duplicate	Aluminum (Al)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Boron (B)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Cadmium (Cd)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Chromium (Cr)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Copper (Cu)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Lead (Pb)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Selenium (Se)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Zinc (Zn)-Dissolved	DLA	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Duplicate	Fluoride (F)	DLM	L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, 4, -5, -6, -7, -8, -9
Method Blank	Manganese (Mn)-Dissolved	MB-LOR	L1209363-11, -12, -4, -9
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Potassium (K)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Uranium (U)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8
Qualifiers for Individual Parame	ters Listed:		
Qualifier Description			

DLA	Detection Limit Adjusted For required dilution
DLM	Detection Limit Adjusted For Sample Matrix Effects
MB-LOR	Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please contact ALS if re- analysis is required.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
SURR-ND	Surrogate recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
TKNI	TKN result is likely biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
			Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. OR This analysis is carried	l out using proce	edures adapted from APHA Method 2320 "A	calinity". Total Alkalinity is determined using the methyl orange Ikalinity". Total alkalinity is determined by potentiometric titration to a m phenolphthalein alkalinity and total alkalinity values.
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. Determination of Inorganic Anions by Ion Ch	"Ion Chromatography with Chemical Suppression of Eluent nromatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. Determination of Inorganic Anions by Ion Ch	"Ion Chromatography with Chemical Suppression of Eluent nromatography".
ANIONS-NO2-IC-WR	Water	Nitrite Nitrogen by Ion Chromatography	EPA 300.1
	m "Determinatio	n of Inorganic Anions in Environmental Wate	etermination of Inorganic Anions by Ion Chromatography", Revision ers Using a Hydroxide-Selective Column", Application Note 154 v.19

Reference Information

EPA 300.1

Nitrate Nitrogen by Ion Chromatography

ANIONS-NO3-IC-WR

Water

	etermination	of Inorganic Anions in Environmental Waters Using a H	of Inorganic Anions by Ion Chromatography", Revision Hydroxide-Selective Column", Application Note 154 v.19,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		ures adapted from APHA Method 4110 B. "Ion Chroma etermination of Inorganic Anions by Ion Chromatograph	
CARBONS-DOC-VA	Water	Dissolved organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
		ures adapted from APHA Method 5310 "Total Organic gh a 0.45 micron membrane filter prior to analysis.	Carbon (TOC)". Dissolved carbon (DOC) fractions are
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
This analysis is carried out determined using the close		ures adapted from APHA Method 5220 "Chemical Oxy rimetric method.	gen Demand (COD)". Chemical oxygen demand is
EPH-SF-FID-VA	Water	EPH in Water by GCFID	BCMOE EPH GCFID
Contaminated Sites "Extrac entire water sample with die	ctable Petrole chloromethan ion (GC/FID).	e with the British Columbia Ministry of Environment, La um Hydrocarbons in Water by GC/FID" (Version 2.1, Ju e. The extract is then solvent exchanged to toluene and EPH results include Polycyclic Aromatic Hydrocarbons ons (LEPH/HEPH).	uly 1999). The procedure involves extraction of the d analysed by capillary column gas chromatography
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
· · · · · · · · · · · · · · · · · · ·		s) is calculated from the sum of Calcium and Magnesiu centrations are preferentially used for the hardness calc	
HG-DIS-CVAFS-VA	Water	Dissolved Mercury in Water by CVAFS	EPA SW-846 3005A & EPA 245.7
American Public Health As States Environmental Prote involves a cold-oxidation of	sociation, and ection Agency the acidified atomic fluores	ures adapted from "Standard Methods for the Examina d with procedures adapted from "Test Methods for Eval r (EPA). The procedures may involve preliminary samp sample using bromine monochloride prior to reduction cence spectrophotometry (EPA Method 245.7).	luating Solid Waste" SW-846 published by the United ble treatment by filtration (EPA Method 3005A) and
LEPH/HEPH-CALC-VA	Water	LEPHs and HEPHs	BC MOE LABORATORY MANUAL (2005)
Environment, Lands, and P Solids or Water". Accordin Extractable Petroleum Hyd and Phenanthrene are subf Fluoranthene, and Pyrene a	arks Analytic g to this meth rocarbon resu tracted from E are subtracted	Hydrocarbons in water. These results are determined a al Method for Contaminated Sites "Calculation of Light hod, LEPH and HEPH are calculated by subtracting sel- ilts. To calculate LEPH, the individual results for Acena EPH(C10-19). To calculate HEPH, the individual results d from EPH(C19-32). Analysis of Extractable Petroleur leum Hydrocarbons in Water by GC/FID" (Version 2.1,	and Heavy Extractable Petroleum Hydrocarbons in lected Polycyclic Aromatic Hydrocarbon results from aphthene, Acridine, Anthracene, Fluorene, Naphthalene s for Benz(a)anthracene, Benzo(a)pyrene, m Hydrocarbons adheres to all prescribed elements of
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health As	sociation, and ection Agency	ures adapted from "Standard Methods for the Examina d with procedures adapted from "Test Methods for Eval r (EPA). The procedure involves filtration (EPA Method A Method 6010B).	uating Solid Waste" SW-846 published by the United
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health As States Environmental Prote	sociation, and ection Agency	ures adapted from "Standard Methods for the Examina d with procedures adapted from "Test Methods for Eval r (EPA). The procedures involves preliminary sample to pupled plasma - mass spectrometry (EPA Method 6020	luating Solid Waste" SW-846 published by the United reatment by filtration (EPA Method 3005A).
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
PAH-SF-MS-VA	Water	PAH in Water by GCMS	EPA 3510, 8270
		n dichloromethane, prior to analysis by gas chromatogr dily chromatographically separated, benzo(j)fluoranther	
PAH-SURR-MS-VA	Water	PAH Surrogates for Waters	EPA 3510, 8270
Analysed as per the corres demonstrate analytical acc		test method. Known quantities of surrogate compound	is are added prior to analysis to each sample to
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
The second set of the		A DUA NO STATE A DUA NO STATE A DO STAT	The set of the decision of the disk of the set of the s

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

Reference Information

L1209363 CONTD.... PAGE 20 of 20 27-SEP-12 10:35 (MT) Version: FINAL

It is recommended that this analysis be conducted in the field. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-F-VA** Water TKN in Water by Fluorescence APHA 4500-NORG D. This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection. VH in Water by Headspace GCFID **VH-HSFID-VA** Water B.C. MIN. OF ENV. LAB. MAN. (2009) The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection. **VH-SURR-FID-VA** Water VH Surrogates for Waters B.C. MIN. OF ENV. LAB. MAN. (2009) **VOC-HSMS-VA** Water VOCs in water by Headspace GCMS EPA8260B, 5021 The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA8260B 5021 The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA VOC7 and/or VOC Surrogates for Waters Water EPA8260B, 5021 **VPH-CALC-VA** Water VPH is VH minus select aromatics BC MOE LABORATORY MANUAL (2005) These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10). **XYLENES-CALC-VA** Water Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xvlenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WR ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA VA Chain of Custody Numbers: **GLOSSARY OF REPORT TERMS** Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L120936	3 Re	port Date:	27-SEP-12	Pa	ige 1 of 37
Client: Contact:	GOLDER ASSOCIATES # 201B, 170 Titanium W Whitehorse YT Y1A 00 Andrea Badger	Vay						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA	Water							
Batch	R2440917							
WG1551094 Alkalinity, T	I-10 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.2		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-11 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 102.5		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-12 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.5		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-13 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 105.2		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-14 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 103.6		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-15 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 103.8		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-16 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 106.1		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	1-9 CRM Total (as CaCO3)	VA-ALK-PC	T-CONTROL 107.8		%		85-115	21-SEP-12
WG1551094 Alkalinity, T	I-34 DUP Total (as CaCO3)	L1209363-1 2 154	2 155		mg/L	0.2	20	21-SEP-12
Alkalinity, B	Bicarbonate (as CaCO3)	154	155		mg/L	0.2	20	21-SEP-12
Alkalinity, C	Carbonate (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	25	21-SEP-12
Alkalinity, H	lydroxide (as CaCO3)	<1.0	<1.0	RPD-NA	mg/L	N/A	20	21-SEP-12
WG1551094 Alkalinity, T	I-2 MB Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, B	licarbonate (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, H	lydroxide (as CaCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094			4.0					
-	otal (as CaCO3) Bicarbonate (as CaCO3)		<1.0 <1.0		mg/L		1	21-SEP-12
	Carbonate (as CaCO3)		<1.0 <1.0		mg/L		1	21-SEP-12
	lydroxide (as CaCO3)		<1.0 <1.0		mg/L mg/L		1	21-SEP-12
WG1551094			<1.0		iiig/∟		1	21-SEP-12
	otal (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, B	licarbonate (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, C	Carbonate (as CaCO3)		<1.0		mg/L		1	21-SEP-12
-	lydroxide (as CaCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094 Alkalinity, T	1-6 MB Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12

		Workorder:	L120936	3	Report Date: 2	7-SEP-12	Pa	ige 2 of 3
est M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-PCT-VA V	Vater							
Batch R2440917								
WG1551094-6 MB Alkalinity, Bicarbonate (as 0	CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Carbonate (as Ca	aCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Hydroxide (as Ca	aCO3)		<1.0		mg/L		1	21-SEP-12
WG1551094-7 MB Alkalinity, Total (as CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Bicarbonate (as 0	CaCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Carbonate (as Ca	aCO3)		<1.0		mg/L		1	21-SEP-12
Alkalinity, Hydroxide (as CaCO3)			<1.0		mg/L		1	21-SEP-12
Batch R2443112								
WG1553049-10 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 104.1		%		85-115	25-SEP-12
WG1553049-11 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 104.3		%		85-115	25-SEP-12
WG1553049-12 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 104.1		%		85-115	25-SEP-12
WG1553049-13 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 102.9		%		85-115	25-SEP-12
WG1553049-14 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 102.5		%		85-115	25-SEP-12
WG1553049-15 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 105.2		%		85-115	25-SEP-12
WG1553049-16 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 102.1		%		85-115	25-SEP-12
WG1553049-9 CRM Alkalinity, Total (as CaCO3)	VA-ALK-PCT-	CONTROL 104.5		%		85-115	25-SEP-12
WG1553049-8 MB Alkalinity, Total (as CaCO3)		<1.0		mg/L		1	25-SEP-12
Alkalinity, Bicarbonate (as C	CaCO3)		<1.0		mg/L		1	25-SEP-12
Alkalinity, Carbonate (as Ca	aCO3)		<1.0		mg/L		1	25-SEP-12
Alkalinity, Hydroxide (as Ca	aCO3)		<1.0		mg/L		1	25-SEP-12
ALK-SCR-VA V	Vater							
Batch R2440701								
WG1550572-2 CRM Alkalinity, Total (as CaCO3)	VA-ALKL-CON	ITROL 97.4		%		85-115	20-SEP-12
WG1550572-5 CRM Alkalinity, Total (as CaCO3)	VA-ALKM-CO	NTROL 106.3		%		85-115	20-SEP-12
WG1550572-10 DUP		L1209363-10						

		Workorder:	L120936	63 Re	eport Date: 2	27-SEP-12	Pa	ige 3 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SCR-VA	Water							
	40701							
WG1550572-10		L1209363-10	404					
Alkalinity, Total (a		195	194		mg/L	0.4	20	20-SEP-12
WG1550572-1 Alkalinity, Total (a	MB s CaCO3)		<2.0		mg/L		2	20-SEP-12
WG1550572-4	MB							
Alkalinity, Total (a	s CaCO3)		<2.0		mg/L		2	20-SEP-12
WG1550572-7	MB							
Alkalinity, Total (a	s CaCO3)		<2.0		mg/L		2	20-SEP-12
NIONS-CL-IC-VA	Water							
Batch R243	39735							
	DUP	L1209363-12						
Chloride (Cl)		<0.50	<0.50	RPD-NA	mg/L	N/A	20	19-SEP-12
WG1549122-15 Chloride (Cl)	LCS		97.9		%		05 445	
			57.5		70		85-115	19-SEP-12
Chloride (Cl)	LCS		97.8		%		85-115	19-SEP-12
	МВ						00 110	
Chloride (Cl)			<0.50		mg/L		0.5	19-SEP-12
WG1549122-10	MB							
Chloride (Cl)			<0.50		mg/L		0.5	19-SEP-12
WG1549122-13	MB							
Chloride (Cl)			<0.50		mg/L		0.5	19-SEP-12
	MB		0.50					
Chloride (Cl)			<0.50		mg/L		0.5	19-SEP-12
WG1549122-7 Chloride (Cl)	MB		<0.50		mg/L		0.5	10 SED 40
WG1549122-11	Me	1 4000504 7	NO.30		my/⊏		0.5	19-SEP-12
Chloride (Cl)	WIJ	L1209564-7	101.1		%		75-125	19-SEP-12
WG1549122-14	MS	L1209704-1						
Chloride (Cl)			100.7		%		75-125	19-SEP-12
WG1549122-5	MS	L1209363-7						
Chloride (Cl)			100.5		%		75-125	19-SEP-12
	MS	L1209433-3						
Chloride (Cl)			100.5		%		75-125	19-SEP-12
NIONS-F-IC-VA	Water							

						•			
			Workorder:	L120936	3 Re	port Date: 2	27-SEP-12	Pa	ige 4 of
est		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-F-IC-VA		Water							
Batch R2	439735								
WG1549122-3 Fluoride (F)	DUP		L1209363-12 0.074	0.074		mg/L	0.0	20	19-SEP-12
WG1549122-15 Fluoride (F)	LCS			101.9		%		85-115	19-SEP-12
WG1549122-2 Fluoride (F)	LCS			101.6		%		85-115	19-SEP-12
WG1549122-1 Fluoride (F)	МВ			<0.020		mg/L		0.02	19-SEP-12
WG1549122-10 Fluoride (F)	МВ			<0.020		mg/L		0.02	19-SEP-12
WG1549122-13 Fluoride (F)	МВ			<0.020		mg/L		0.02	19-SEP-12
WG1549122-4 Fluoride (F)	МВ			<0.020		mg/L		0.02	19-SEP-12
WG1549122-7 Fluoride (F)	МВ			<0.020		mg/L		0.02	19-SEP-12
WG1549122-11 Fluoride (F)	MS		L1209564-7	100.4		%		75-125	19-SEP-12
WG1549122-14 Fluoride (F)	MS		L1209704-1	104.6		%		75-125	19-SEP-12
WG1549122-5 Fluoride (F)	MS		L1209363-7	100.5		%		75-125	19-SEP-12
WG1549122-8 Fluoride (F)	MS		L1209433-3	104.0		%		75-125	19-SEP-12
ANIONS-NO2-IC-W	/R	Water							
Batch R2	439214								
WG1549682-3 Nitrite (as N)	DUP		L1209363-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	14-SEP-12
WG1549682-2 Nitrite (as N)	LCS			104.8		%		85-115	14-SEP-12
WG1549682-6 Nitrite (as N)	LCS			104.0		%		85-115	14-SEP-12
WG1549682-1 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	14-SEP-12
WG1549682-5 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	14-SEP-12
WG1549682-4 Nitrite (as N)	MS		L1209363-7	97.1		%		75-125	14-SEP-12
WG1549682-8	MS		L1209430-2						

		Workorder:	L1209363	B Re	port Date: 2	27-SEP-12	Pa	ige 5 of 37
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-NO2-IC-WR Batch R24392 WG1549682-8 MS Nitrite (as N)		L1209430-2	102.8		%		75-125	14-SEP-12
ANIONS-NO3-IC-WR	Water							
Batch R24392	214							
WG1549682-3 DU Nitrate (as N)	JP	L1209363-1 <0.25	<0.25	RPD-NA	mg/L	N/A	20	14-SEP-12
WG1549682-2 LC Nitrate (as N)	S		104.2		%		85-115	14-SEP-12
WG1549682-6 LC Nitrate (as N)	S		104.5		%		85-115	14-SEP-12
WG1549682-1 MI Nitrate (as N)	3		<0.0050		mg/L		0.005	14-SEP-12
WG1549682-5 MB Nitrate (as N)	3		<0.0050		mg/L		0.005	14-SEP-12
WG1549682-4 MS Nitrate (as N)	6	L1209363-7	99.6		%		75-125	14-SEP-12
WG1549682-8 MS Nitrate (as N)	3	L1209430-2	100.7		%		75-125	14-SEP-12
ANIONS-SO4-IC-VA	Water							
Batch R2439	735							
WG1549122-3 DU Sulfate (SO4)	JP	L1209363-12 54.7	54.7		mg/L	0.0	20	19-SEP-12
WG1549122-15 LC Sulfate (SO4)	S		101.1		%		85-115	19-SEP-12
WG1549122-2 LC Sulfate (SO4)	S		100.9		%		85-115	19-SEP-12
WG1549122-1 ME Sulfate (SO4)	3		<0.50		mg/L		0.5	19-SEP-12
WG1549122-10 MI Sulfate (SO4)	3		<0.50		mg/L		0.5	19-SEP-12
WG1549122-13 ME Sulfate (SO4)	3		<0.50		mg/L		0.5	19-SEP-12
WG1549122-4 ME Sulfate (SO4)	3		<0.50		mg/L		0.5	19-SEP-12
WG1549122-7 ME Sulfate (SO4)	3		<0.50		mg/L		0.5	19-SEP-12
WG1549122-11 MS	3	L1209564-7			-			

				-	•			
		Workorder:	L120936	63	Report Date: 2	7-SEP-12	Pa	age 6 of 37
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-SO4-IC-VA	Water							
Batch R2439735								
WG1549122-11 MS Sulfate (SO4)		L1209564-7	102.9		%		75-125	19-SEP-12
WG1549122-14 MS Sulfate (SO4)		L1209704-1	102.5		%		75-125	19-SEP-12
WG1549122-5 MS Sulfate (SO4)		L1209363-7	101.2		%		75-125	19-SEP-12
WG1549122-8 MS Sulfate (SO4)		L1209433-3	97.9		%		75-125	19-SEP-12
CARBONS-DOC-VA	Water							
Batch R2439116								
WG1549198-2 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 100.2		%		80-120	18-SEP-12
WG1549198-4 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 98.0		%		80-120	18-SEP-12
WG1549198-1 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	18-SEP-12
WG1549198-3 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	18-SEP-12
WG1549198-7 MS Dissolved Organic Carbo	on	L1209483-3	90.6		%		70-130	18-SEP-12
Batch R2439195								
WG1548363-10 CRM	~~	VA-DOC-C-C	AFFEINE 97.7		%		00.400	
Dissolved Organic Carbo	UII				70		80-120	17-SEP-12
WG1548363-2 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 99.5		%		80-120	17-SEP-12
WG1548363-4 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 94.2		%		80-120	17-SEP-12
WG1548363-6 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 95.6		%		80-120	17-SEP-12
WG1548363-8 CRM Dissolved Organic Carbo	on	VA-DOC-C-C	AFFEINE 95.8		%		80-120	17-SEP-12
WG1548363-13 DUP Dissolved Organic Carbo	on	L1209363-16 5.04	4.95		mg/L	1.8	20	17-SEP-12
WG1548363-1 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	17-SEP-12
WG1548363-3 MB Dissolved Organic Carbo	on		<0.50		mg/L		0.5	17-SEP-12
WG1548363-5 MB					-			· ·

WG1548363-5 MB

		Workorder:	1 1 2 0 0 2 0	* • •	Poport Data: 0		-		
Fact	Matrix	Reference	Result	Qualifier	Report Date: 2	7-SEP-12 	Limit	ge 7 of 37	
est	Watrix	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed	
CARBONS-DOC-VA	Water								
Batch R2439195									
WG1548363-5 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	17-SEP-12	
WG1548363-7 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	17-SEP-12	
WG1548363-9 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	17-SEP-12	
WG1548363-14 MS Dissolved Organic Carbo	n	L1209478-2	96.4		%		70-130	17-SEP-12	
Batch R2439946									
WG1550152-2 CRM Dissolved Organic Carbo	n	VA-DOC-C-C	AFFEINE 98.1		%		80-120	19-SEP-12	
WG1550152-4 CRM Dissolved Organic Carbo	n	VA-DOC-C-C	AFFEINE 94.2		%		80-120	19-SEP-12	
WG1550152-6 CRM Dissolved Organic Carbo	n	VA-DOC-C-C	AFFEINE 90.1		%		80-120	19-SEP-12	
WG1550152-8 CRM Dissolved Organic Carbo	n	VA-DOC-C-C	AFFEINE 90.4		%		80-120	19-SEP-12	
WG1550152-1 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	19-SEP-12	
WG1550152-3 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	19-SEP-12	
WG1550152-5 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	19-SEP-12	
WG1550152-7 MB Dissolved Organic Carbo	n		<0.50		mg/L		0.5	19-SEP-12	
WG1550152-10 MS Dissolved Organic Carbo		L1210319-11	100.4		%		70-130	19-SEP-12	
COD-COL-VA	Water								
Batch R2437967									
WG1548328-10 LCS COD			104.4		%		85-115	18-SEP-12	
WG1548328-2 LCS COD			104.5		%		85-115	18-SEP-12	
WG1548328-6 LCS COD			102.1		%		85-115	18-SEP-12	
WG1548328-1 MB COD			<20		mg/L		20	18-SEP-12	
WG1548328-5 MB					y , -		20		

				•			
	Workorde	r: L120936	3	Report Date: 2	7-SEP-12	Pa	ge 8 of 37
Test	Matrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COD-COL-VA	Water						
Batch R2437967							
WG1548328-5 MB COD		<20		mg/L		20	18-SEP-12
WG1548328-9 MB COD		<20		mg/L		20	18-SEP-12
WG1548328-4 MS COD	L1209045-1	103.7		%		75-125	18-SEP-12
WG1548328-8 MS COD	L1209491-2	96.7		%		75-125	18-SEP-12
EPH-SF-FID-VA	Water						
Batch R2439979							
WG1549364-1 MB							
EPH10-19		<0.25		mg/L		0.25	20-SEP-12
EPH19-32		<0.25		mg/L		0.25	20-SEP-12
Batch R2440082							
WG1549364-3 MB EPH10-19		<0.25		mg/L		0.25	21-SEP-12
EPH19-32		<0.25		mg/L		0.25	21-SEP-12
Batch R2442176 WG1550411-1 MB							
EPH10-19		<0.25		mg/L		0.25	24-SEP-12
EPH19-32		<0.25		mg/L		0.25	24-SEP-12
WG1550411-3 MB EPH10-19		<0.25		mg/L		0.25	24-SEP-12
EPH19-32		<0.25		mg/L		0.25	24-SEP-12
	Matan	10.20		g. =		0.20	
	Water						
Batch R2438056 WG1548035-3 LCS							
Mercury (Hg)-Dissolved		91.4		%		80-120	18-SEP-12
WG1548035-1 MB Mercury (Hg)-Dissolved		<0.00005	0	mg/L		0.00005	18-SEP-12
Batch R2439159							
WG1548683-10 LCS Mercury (Hg)-Dissolved		95.4		%		80-120	19-SEP-12
WG1548683-11 LCS Mercury (Hg)-Dissolved		99.3		%		80-120	19-SEP-12
WG1548683-1 MB							

		Workorder:	L1209363	Re	eport Date:	27-SEP-12	Pa	ge 9 of 37
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-DIS-CVAFS-VA	Water							
Batch R2439159								
WG1548683-7 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	19-SEP-12
Batch R2440928								
WG1548035-18 DUP Mercury (Hg)-Dissolved		L1209363-2 <0.00020	<0.000050	RPD-NA	mg/L	N/A	20	21-SEP-12
WG1548035-19 MS Mercury (Hg)-Dissolved		L1209363-3	87.1		%		70-130	21-SEP-12
Batch R2442023								
WG1552509-8 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	24-SEP-12
Batch R2443000 WG1552509-14 LCS Mercury (Hg)-Dissolved			89.5		%		80-120	25-SEP-12
WG1552509-15 LCS Mercury (Hg)-Dissolved			90.8		%		80-120	25-SEP-12
WG1552509-7 LCS Mercury (Hg)-Dissolved			89.9		%		80-120	25-SEP-12
WG1552509-1 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	25-SEP-12
WG1552509-9 MB Mercury (Hg)-Dissolved			<0.000050		mg/L		0.00005	25-SEP-12
MET-DIS-ICP-VA	Water							
Batch R2437951								
WG1548035-2 CRM		VA-HIGH-WA			0/			
Beryllium (Be)-Dissolved			95.2		%		80-120	17-SEP-12
Bismuth (Bi)-Dissolved			99.6		%		80-120	17-SEP-12
Cobalt (Co)-Dissolved			95.0		%		80-120	17-SEP-12
Iron (Fe)-Dissolved			97.4		%		80-120	17-SEP-12
Lithium (Li)-Dissolved	luga		100.2		%		80-120	17-SEP-12
Molybdenum (Mo)-Disso	ived		96.4		%		80-120	17-SEP-12
Nickel (Ni)-Dissolved	d		96.3		%		80-120	17-SEP-12
Phosphorus (P)-Dissolve	, u		101.7		%		80-120	17-SEP-12
Silicon (Si)-Dissolved			103.7		%		80-120	17-SEP-12
Silver (Ag)-Dissolved			93.8		%		80-120	17-SEP-12
Sodium (Na)-Dissolved			99.7		%		80-120	17-SEP-12

		Workorder	: L120936	63	Report Date: 2	7-SEP-12	Page 10 of 37		
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-DIS-ICP-VA	Water								
Batch R243	37951								
	CRM	VA-HIGH-W							
Strontium (Sr)-Dis			99.3		%		80-120	17-SEP-12	
Thallium (TI)-Diss			96.9		%		80-120	17-SEP-12	
Tin (Sn)-Dissolve			98.9		%		80-120	17-SEP-12	
Titanium (Ti)-Diss			96.9		%		80-120	17-SEP-12	
Vanadium (V)-Dis			96.2		%		80-120	17-SEP-12	
WG1548035-1 Beryllium (Be)-Dis	MB		<0.0050		mall		0.005		
			<0.0050		mg/L		0.005	17-SEP-12	
Bismuth (Bi)-Diss Cobalt (Co)-Disso			<0.20 <0.010		mg/L mg/L		0.2	17-SEP-12	
Iron (Fe)-Dissolve			<0.010		-		0.01	17-SEP-12	
					mg/L		0.03	17-SEP-12	
Lithium (Li)-Disso			<0.010		mg/L		0.01	17-SEP-12	
Molybdenum (Mo			<0.030		mg/L		0.03	17-SEP-12	
Nickel (Ni)-Dissol			<0.050		mg/L		0.05	17-SEP-12	
Phosphorus (P)-D			<0.30		mg/L		0.3	17-SEP-12	
Silicon (Si)-Dissol			<0.050		mg/L		0.05	17-SEP-12	
Silver (Ag)-Dissol			<0.010		mg/L		0.01	17-SEP-12	
Sodium (Na)-Diss			<2.0		mg/L		2	17-SEP-12	
Strontium (Sr)-Dis			<0.0050		mg/L		0.005	17-SEP-12	
Thallium (TI)-Diss			<0.20		mg/L		0.2	17-SEP-12	
Tin (Sn)-Dissolve			<0.030		mg/L		0.03	17-SEP-12	
Titanium (Ti)-Diss			<0.010		mg/L		0.01	17-SEP-12	
Vanadium (V)-Dis	solved		<0.030		mg/L		0.03	17-SEP-12	
Batch R243	38999								
WG1548683-4 Beryllium (Be)-Dis	CRM	VA-HIGH-W	ATRM 94.1		%		00.400		
Bismuth (Bi)-Diss			94.1 99.0		%		80-120	18-SEP-12	
Cobalt (Co)-Disso			99.0 96.0		%		80-120	18-SEP-12	
Iron (Fe)-Dissolve			98.0 98.2		%		80-120	18-SEP-12	
Lithium (Li)-Disso			90.2 100.0		%		80-120	18-SEP-12	
			97.0				80-120	18-SEP-12	
Molybdenum (Mo	,		97.0 96.4		%		80-120	18-SEP-12	
Nickel (Ni)-Dissol			96.4 99.1		%		80-120	18-SEP-12	
Phosphorus (P)-E					%		80-120	18-SEP-12	
Silicon (Si)-Dissol			102.3		%		80-120	18-SEP-12	
Silver (Ag)-Dissol			95.2		%		80-120	18-SEP-12	
Sodium (Na)-Diss	soivea		99.1		%		80-120	18-SEP-12	

		Workorder	: L120936	63	Report Date: 2	7-SEP-12	Pa	age 11 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2438999)							
WG1548683-4 CRM		VA-HIGH-W			0/			
Strontium (Sr)-Dissolve			100.1		%		80-120	18-SEP-12
Thallium (TI)-Dissolved	1		97.6		%		80-120	18-SEP-12
Tin (Sn)-Dissolved			97.6		%		80-120	18-SEP-12
Titanium (Ti)-Dissolved			100.9		%		80-120	18-SEP-12
Vanadium (V)-Dissolve	d		96.4		%		80-120	18-SEP-12
WG1548683-8 CRM Beryllium (Be)-Dissolve	he	VA-HIGH-W	92.8		%		80-120	18-SEP-12
Bismuth (Bi)-Dissolved			99.0		%		80-120 80-120	18-SEP-12
Cobalt (Co)-Dissolved			96.4		%		80-120	18-SEP-12
Iron (Fe)-Dissolved			97.0		%		80-120	18-SEP-12
Lithium (Li)-Dissolved			98.3		%		80-120 80-120	18-SEP-12
Molybdenum (Mo)-Diss	solved		97.1		%		80-120 80-120	18-SEP-12
Nickel (Ni)-Dissolved	Joived		96.8		%		80-120	18-SEP-12
Phosphorus (P)-Dissol	ved		99.0		%		80-120 80-120	18-SEP-12
Silicon (Si)-Dissolved	veu		101.3		%		80-120	18-SEP-12
Silver (Ag)-Dissolved			94.9		%		80-120	18-SEP-12
Sodium (Na)-Dissolved	4		98.3		%		80-120	18-SEP-12
Strontium (Sr)-Dissolve			98.4		%		80-120	18-SEP-12
Thallium (TI)-Dissolved			98.5		%		80-120	18-SEP-12
Tin (Sn)-Dissolved	•		98.2		%		80-120	18-SEP-12
Titanium (Ti)-Dissolved	4		100.1		%		80-120	18-SEP-12
Vanadium (V)-Dissolve			95.0		%		80-120	18-SEP-12
WG1548683-1 MB			00.0				00 120	TO OLI TZ
Beryllium (Be)-Dissolve	ed		<0.0050		mg/L		0.005	18-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.2	18-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Molybdenum (Mo)-Diss	solved		<0.030		mg/L		0.03	18-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	18-SEP-12
Phosphorus (P)-Dissol	ved		<0.30		mg/L		0.3	18-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	18-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Sodium (Na)-Dissolved	I		<2.0		mg/L		2	18-SEP-12
Strontium (Sr)-Dissolve	ed		<0.0050		mg/L		0.005	18-SEP-12

		Workorder:	L120936	3	Report Date: 2	7-SEP-12	Pa	age 12 of 3 [°]
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R243899	9							
WG1548683-1 MB								
Thallium (TI)-Dissolved	a		<0.20		mg/L		0.2	18-SEP-12
Tin (Sn)-Dissolved	J		<0.030		mg/L		0.03	18-SEP-12
Titanium (Ti)-Dissolve			<0.010		mg/L		0.01	18-SEP-12
Vanadium (V)-Dissolve	ed		<0.030		mg/L		0.03	18-SEP-12
WG1548683-7 MB Beryllium (Be)-Dissolv	ed		<0.0050		mg/L		0.005	18-SEP-12
Bismuth (Bi)-Dissolved			<0.20		mg/L		0.005	
Cobalt (Co)-Dissolved			<0.20		mg/L		0.2	18-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L			18-SEP-12
Lithium (Li)-Dissolved			<0.030		mg/L		0.03	18-SEP-12
Molybdenum (Mo)-Dis	colvod		<0.010		mg/L		0.01 0.03	18-SEP-12
Nickel (Ni)-Dissolved	Solveu		<0.050		mg/L		0.03	18-SEP-12
Phosphorus (P)-Dissol	lved		<0.30		mg/L		0.05	18-SEP-12 18-SEP-12
Silicon (Si)-Dissolved	ivea		<0.050		mg/L		0.3	
Silver (Ag)-Dissolved			<0.030		mg/L		0.03	18-SEP-12 18-SEP-12
Sodium (Na)-Dissolved	Ч		<2.0		mg/L		2	
Strontium (Sr)-Dissolve			<0.0050		mg/L		2	18-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L			18-SEP-12
Tin (Sn)-Dissolved	J		<0.20		mg/L		0.2	18-SEP-12
Titanium (Ti)-Dissolved	ч		<0.030		-		0.03	18-SEP-12
					mg/L		0.01	18-SEP-12
Vanadium (V)-Dissolve			<0.030		mg/L		0.03	18-SEP-12
Batch R243988	6							
WG1548035-17 MS Iron (Fe)-Dissolved		L1208829-3	93.9		%		70-130	20-SEP-12
Sodium (Na)-Dissolved	Ч		100.1		%		70-130	20-SEP-12 20-SEP-12
Titanium (Ti)-Dissolve			106.0		%		70-130	20-SEP-12 20-SEP-12
			100.0		70		70-130	20-3EF-12
Batch R2440104	4	1 4000 400 0						
WG1548035-11 MS Iron (Fe)-Dissolved		L1209483-3	96.0		%		70-130	19-SEP-12
Sodium (Na)-Dissolve	d		102.0		%		70-130	19-SEP-12
Titanium (Ti)-Dissolve			105.4		%		70-130	19-SEP-12
Batch R244103	°							
WG1548683-6 MS	<u> </u>	L1209093-4						
Iron (Fe)-Dissolved		2.20000-4	90.8		%		70-130	20-SEP-12
Sodium (Na)-Dissolved	d		103.3		%		70-130	20-SEP-12

		Workorder:	L120936	63	Report Date: 2	7-SEP-12	Pa	age 13 of 3 ⁻
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R244103	32							
WG1548683-6 MS Titanium (Ti)-Dissolve		L1209093-4	103.7		%		70-130	20-SEP-12
Batch R244212	22							
WG1552509-10 CRM Beryllium (Be)-Dissolv		VA-HIGH-WA	ATRM 98.6		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolve	ed		102.1		%		80-120	24-SEP-12
Cobalt (Co)-Dissolved	d		97.5		%		80-120	24-SEP-12
Iron (Fe)-Dissolved			100.2		%		80-120	24-SEP-12
Lithium (Li)-Dissolved	ł		100.9		%		80-120	24-SEP-12
Molybdenum (Mo)-Di	ssolved		100.1		%		80-120	24-SEP-12
Nickel (Ni)-Dissolved			98.1		%		80-120	24-SEP-12
Phosphorus (P)-Disso	olved		102.2		%		80-120	24-SEP-12
Silicon (Si)-Dissolved			102.1		%		80-120	24-SEP-12
Silver (Ag)-Dissolved			101.9		%		80-120	24-SEP-12
Sodium (Na)-Dissolve	ed		102.2		%		80-120	24-SEP-12
Strontium (Sr)-Dissol	ved		101.8		%		80-120	24-SEP-12
Thallium (TI)-Dissolve	ed		100.1		%		80-120	24-SEP-12
Tin (Sn)-Dissolved			98.6		%		80-120	24-SEP-12
Titanium (Ti)-Dissolve	ed		105.0		%		80-120	24-SEP-12
Vanadium (V)-Dissolv	ved		101.3		%		80-120	24-SEP-12
WG1552509-8 MB Beryllium (Be)-Dissolv			<0.0050		mg/L		0.005	24-SEP-12
Bismuth (Bi)-Dissolve	ed		<0.20		mg/L		0.2	24-SEP-12
Cobalt (Co)-Dissolved	d		<0.010		mg/L		0.01	24-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Lithium (Li)-Dissolved	Ł		<0.010		mg/L		0.01	24-SEP-12
Molybdenum (Mo)-Di	ssolved		<0.030		mg/L		0.03	24-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Phosphorus (P)-Disso	olved		<0.30		mg/L		0.3	24-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Sodium (Na)-Dissolve	ed		<2.0		mg/L		2	24-SEP-12
Strontium (Sr)-Dissol	ved		<0.0050		mg/L		0.005	24-SEP-12
Thallium (TI)-Dissolve	ed		<0.20		mg/L		0.2	24-SEP-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	24-SEP-12

		Workorder:	L1209363	Re Re	port Date: 2	27-SEP-12	Pa	age 14 of 3
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442122								
WG1552509-8 MB			0.040		··· · · //			
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Batch R2442237								
WG1548035-27 MS Iron (Fe)-Dissolved		L1209469-4	95.2		%		70-130	21-SEP-12
Sodium (Na)-Dissolved			104.9		%		70-130	21-SEP-12
Titanium (Ti)-Dissolved			105.2		%		70-130	21-SEP-12
							10 100	21 021 12
Batch R2442242 WG1548035-18 DUP		L1209363-2						
Beryllium (Be)-Dissolved		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	21-SEP-12
Bismuth (Bi)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	21-SEP-12
Cobalt (Co)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	21-SEP-12
Iron (Fe)-Dissolved		0.475	0.481		mg/L	1.4	20	21-SEP-12
Lithium (Li)-Dissolved		0.021	0.021		mg/L	0.4	20	21-SEP-12
Molybdenum (Mo)-Dissolv	red	<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
Nickel (Ni)-Dissolved		<0.050	<0.050	RPD-NA	mg/L	N/A	20	21-SEP-12
Phosphorus (P)-Dissolved	I	<0.30	<0.30	RPD-NA	mg/L	N/A	20	21-SEP-12
Silicon (Si)-Dissolved		6.51	6.58		mg/L	1.1	20	21-SEP-12
Silver (Ag)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	21-SEP-12
Sodium (Na)-Dissolved		113	113		mg/L	0.1	20	21-SEP-12
Strontium (Sr)-Dissolved		2.20	2.22		mg/L	0.7	20	21-SEP-12
Thallium (TI)-Dissolved		<0.20	<0.20	RPD-NA	mg/L	N/A	20	21-SEP-12
Tin (Sn)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
Titanium (Ti)-Dissolved		0.018	0.019		mg/L	2.7	20	21-SEP-12
Vanadium (V)-Dissolved		<0.030	<0.030	RPD-NA	mg/L	N/A	20	21-SEP-12
WG1548035-19 MS Iron (Fe)-Dissolved		L1209363-3	104.2		%		70.400	
Sodium (Na)-Dissolved			104.2 N/A				70-130	21-SEP-12
, ,				MS-B	%		-	21-SEP-12
Titanium (Ti)-Dissolved			113.9		%		70-130	21-SEP-12
Batch R2442243								
WG1548035-25 MS Iron (Fe)-Dissolved		L1209711-3	94.5		%		70-130	22-SEP-12
Sodium (Na)-Dissolved			97.7		%		70-130	22-SEP-12
Titanium (Ti)-Dissolved			99.3		%		70-130	22-SEP-12

		Workorder:	L120936	3	Report Date: 2	7-SEP-12	Pa	age 15 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442493								
WG1548035-29 MS Iron (Fe)-Dissolved		L1210039-13	93.3		%		70-130	22-SEP-12
Sodium (Na)-Dissolved			101.6		%		70-130	22-SEP-12
Titanium (Ti)-Dissolved			107.9		%		70-130	22-SEP-12
WG1548035-31 MS		L1210039-31						-
Iron (Fe)-Dissolved		21210000 01	93.9		%		70-130	22-SEP-12
Sodium (Na)-Dissolved			98.5		%		70-130	22-SEP-12
Titanium (Ti)-Dissolved			104.9		%		70-130	22-SEP-12
Batch R2442899								
WG1552509-11 CRM		VA-HIGH-WA	TRM					
Beryllium (Be)-Dissolved	1		95.7		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolved			99.1		%		80-120	24-SEP-12
Cobalt (Co)-Dissolved			95.6		%		80-120	24-SEP-12
Iron (Fe)-Dissolved			98.1		%		80-120	24-SEP-12
Lithium (Li)-Dissolved			101.3		%		80-120	24-SEP-12
Molybdenum (Mo)-Disso	lved		97.6		%		80-120	24-SEP-12
Nickel (Ni)-Dissolved			97.2		%		80-120	24-SEP-12
Phosphorus (P)-Dissolve	ed		100.4		%		80-120	24-SEP-12
Silicon (Si)-Dissolved			100.8		%		80-120	24-SEP-12
Silver (Ag)-Dissolved			102.4		%		80-120	24-SEP-12
Sodium (Na)-Dissolved			97.1		%		80-120	24-SEP-12
Strontium (Sr)-Dissolved	ł		100.0		%		80-120	24-SEP-12
Thallium (TI)-Dissolved			96.9		%		80-120	24-SEP-12
Tin (Sn)-Dissolved			99.0		%		80-120	24-SEP-12
Titanium (Ti)-Dissolved			102.1		%		80-120	24-SEP-12
Vanadium (V)-Dissolved			100.9		%		80-120	24-SEP-12
WG1552509-5 CRM		VA-HIGH-WA	TRM					
Beryllium (Be)-Dissolved	1		96.5		%		80-120	24-SEP-12
Bismuth (Bi)-Dissolved			99.1		%		80-120	24-SEP-12
Cobalt (Co)-Dissolved			95.4		%		80-120	24-SEP-12
Iron (Fe)-Dissolved			98.7		%		80-120	24-SEP-12
Lithium (Li)-Dissolved			106.5		%		80-120	24-SEP-12
Molybdenum (Mo)-Disso	olved		99.3		%		80-120	24-SEP-12
Nickel (Ni)-Dissolved			97.5		%		80-120	24-SEP-12
Phosphorus (P)-Dissolve	ed		100.9		%		80-120	24-SEP-12
Silicon (Si)-Dissolved			102.7		%		80-120	24-SEP-12

		Workorder	: L120936	63	Report Date: 2	7-SEP-12	Pa	age 16 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442899	Ð							
WG1552509-5 CRM		VA-HIGH-W			0/			
Silver (Ag)-Dissolved			104.3		%		80-120	24-SEP-12
Sodium (Na)-Dissolved			98.4		%		80-120	24-SEP-12
Strontium (Sr)-Dissolve			101.8		%		80-120	24-SEP-12
Thallium (TI)-Dissolved	1		97.9		%		80-120	24-SEP-12
Tin (Sn)-Dissolved	J		97.7		%		80-120	24-SEP-12
Titanium (Ti)-Dissolved			103.0		%		80-120	24-SEP-12
Vanadium (V)-Dissolve	ð		101.6		%		80-120	24-SEP-12
WG1552509-1 MB Beryllium (Be)-Dissolve	ed		<0.0050		mg/L		0.005	24-SEP-12
Bismuth (Bi)-Dissolved	Į		<0.20		mg/L		0.2	24-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Molybdenum (Mo)-Diss	solved		<0.030		mg/L		0.03	24-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Phosphorus (P)-Dissol	ved		<0.30		mg/L		0.3	24-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Sodium (Na)-Dissolved	ł		<2.0		mg/L		2	24-SEP-12
Strontium (Sr)-Dissolve	ed		<0.0050		mg/L		0.005	24-SEP-12
Thallium (TI)-Dissolved	ł		<0.20		mg/L		0.2	24-SEP-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Titanium (Ti)-Dissolved	ł		<0.010		mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolve	ed		<0.030		mg/L		0.03	24-SEP-12
WG1552509-9 MB								
Beryllium (Be)-Dissolve			<0.0050		mg/L		0.005	24-SEP-12
Bismuth (Bi)-Dissolved	l		<0.20		mg/L		0.2	24-SEP-12
Cobalt (Co)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Iron (Fe)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Lithium (Li)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Molybdenum (Mo)-Diss	solved		<0.030		mg/L		0.03	24-SEP-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Phosphorus (P)-Dissol	ved		<0.30		mg/L		0.3	24-SEP-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	24-SEP-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	24-SEP-12

		Workorder:	L120936	3	Report Date: 2	7-SEP-12	Pa	age 17 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2442899)							
WG1552509-9 MB					_			
Sodium (Na)-Dissolved			<2.0		mg/L		2	24-SEP-12
Strontium (Sr)-Dissolve			<0.0050		mg/L		0.005	24-SEP-12
Thallium (TI)-Dissolved			<0.20		mg/L		0.2	24-SEP-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	24-SEP-12
Titanium (Ti)-Dissolved	l		<0.010		mg/L		0.01	24-SEP-12
Vanadium (V)-Dissolve	d		<0.030		mg/L		0.03	24-SEP-12
Batch R2443052	2							
WG1548035-9 MS		L1209492-46			0/			
Iron (Fe)-Dissolved			100.2		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			101.8		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			109.3		%		70-130	25-SEP-12
Batch R2443115								
WG1548035-5 MS		L1209555-18			0/			
Iron (Fe)-Dissolved			99.9		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			114.6		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			112.7		%		70-130	25-SEP-12
WG1548035-7 MS Iron (Fe)-Dissolved		L1209555-29	101.7		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			109.8		%		70-130	25-SEP-12 25-SEP-12
Titanium (Ti)-Dissolved			109.0		%		70-130	25-SEP-12 25-SEP-12
			112.0		70		70-130	20-3EF-12
Batch R2443141		1 4000507 4						
WG1548035-15 MS Iron (Fe)-Dissolved		L1209537-4	96.5		%		70-130	23-SEP-12
Sodium (Na)-Dissolved			101.9		%		70-130	23-SEP-12
Titanium (Ti)-Dissolved			106.4		%		70-130	23-SEP-12
							10-100	
Batch R2443782 WG1548035-13 MS		L1209540-7						
Iron (Fe)-Dissolved		L1209340-7	87.8		%		70-130	25-SEP-12
Sodium (Na)-Dissolved			97.3		%		70-130	25-SEP-12
Titanium (Ti)-Dissolved			94.9		%		70-130	25-SEP-12
Batch R2444051								
WG1548035-33 MS		L1209581-2						
Iron (Fe)-Dissolved			100.4		%		70-130	24-SEP-12
Sodium (Na)-Dissolved			108.6		%		70-130	24-SEP-12
Titanium (Ti)-Dissolved	I		111.1		%		70-130	24-SEP-12

		Workorder	: L120936	3	Report Date: 2	7-SEP-12	Pa	ge 18 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2438088	3							
WG1548035-1 MB								
Aluminum (Al)-Dissolv			<0.0030		mg/L		0.003	18-SEP-12
Antimony (Sb)-Dissolv			<0.00010		mg/L		0.0001	18-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	18-SEP-12
Barium (Ba)-Dissolved			<0.00005	0	mg/L		0.00005	18-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Cadmium (Cd)-Dissolv	ed		<0.00005	0	mg/L		0.00005	18-SEP-12
Calcium (Ca)-Dissolve	d		<0.020		mg/L		0.02	18-SEP-12
Chromium (Cr)-Dissolv	ved		<0.00050		mg/L		0.0005	18-SEP-12
Copper (Cu)-Dissolved	l		<0.00050		mg/L		0.0005	18-SEP-12
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	18-SEP-12
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	18-SEP-12
Manganese (Mn)-Disse	olved		<0.00005	0	mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	18-SEP-12
Selenium (Se)-Dissolv	ed		<0.0010		mg/L		0.001	18-SEP-12
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	18-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	18-SEP-12
Batch R2438189)							
WG1548683-4 CRM		VA-HIGH-W/	ATRM					
Aluminum (Al)-Dissolv			112.9		%		80-120	18-SEP-12
Antimony (Sb)-Dissolv	ed		107.1		%		80-120	18-SEP-12
Arsenic (As)-Dissolved			112.9		%		80-120	18-SEP-12
Barium (Ba)-Dissolved			114.2		%		80-120	18-SEP-12
Cadmium (Cd)-Dissolv	ed		113.0		%		80-120	18-SEP-12
Calcium (Ca)-Dissolve	d		108.0		%		80-120	18-SEP-12
Chromium (Cr)-Dissolv	ved		111.6		%		80-120	18-SEP-12
Copper (Cu)-Dissolved	l		108.3		%		80-120	18-SEP-12
Lead (Pb)-Dissolved			107.6		%		80-120	18-SEP-12
Magnesium (Mg)-Disso	olved		111.6		%		80-120	18-SEP-12
Manganese (Mn)-Disse	olved		110.1		%		80-120	18-SEP-12
Potassium (K)-Dissolve	ed		110.9		%		80-120	18-SEP-12
Selenium (Se)-Dissolv	ed		101.4		%		80-120	18-SEP-12
Uranium (U)-Dissolved			104.0		%		80-120	18-SEP-12
							00.400	
Zinc (Zn)-Dissolved			102.4		%		80-120	10-3EP-12
Zinc (Zn)-Dissolved WG1548683-7 MB			102.4		%		80-120	18-SEP-12

		Workorder:	L1209363	}	Report Date: 2	7-SEP-12	Pa	ge 19 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2438189								
WG1548683-7 MB			0.0004.0					
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	18-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	18-SEP-12
Barium (Ba)-Dissolved			<0.000050		mg/L		0.00005	18-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Cadmium (Cd)-Dissolved			<0.000050		mg/L		0.00005	18-SEP-12
Chromium (Cr)-Dissolved	d		<0.00050		mg/L		0.0005	18-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	18-SEP-12
Lead (Pb)-Dissolved			<0.000050		mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolved			<0.050		mg/L		0.05	18-SEP-12
Selenium (Se)-Dissolved	l		<0.0010		mg/L		0.001	18-SEP-12
Uranium (U)-Dissolved			<0.000010		mg/L		0.00001	18-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	18-SEP-12
Batch R2438609								
WG1548683-1 MB			<0.0030		~~~ <i>"</i>		0.000	
Aluminum (Al)-Dissolved					mg/L		0.003	18-SEP-12
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	18-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	18-SEP-12
Barium (Ba)-Dissolved			<0.000050		mg/L		0.00005	18-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	18-SEP-12
Cadmium (Cd)-Dissolved	d		<0.000050		mg/L		0.00005	18-SEP-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	18-SEP-12
Chromium (Cr)-Dissolved	d		<0.00050		mg/L		0.0005	18-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	18-SEP-12
Lead (Pb)-Dissolved			<0.000050		mg/L		0.00005	18-SEP-12
Magnesium (Mg)-Dissolv	ved		<0.0050		mg/L		0.005	18-SEP-12
Manganese (Mn)-Dissolv	/ed		<0.000050)	mg/L		0.00005	18-SEP-12
Potassium (K)-Dissolved	l		<0.050		mg/L		0.05	18-SEP-12
Selenium (Se)-Dissolved	I		<0.0010		mg/L		0.001	18-SEP-12
Uranium (U)-Dissolved			<0.000010	1	mg/L		0.00001	18-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	18-SEP-12
Batch R2439752								
WG1548035-2 CRM		VA-HIGH-WA						
Aluminum (Al)-Dissolved			103.1		%		80-120	19-SEP-12
Antimony (Sb)-Dissolved	l		100.6		%		80-120	19-SEP-12

	Workorder: L120936	Report Date: 2	7-SEP-12	Page 20 of
est Matrix	Reference Result	Qualifier Units	RPD L	imit Analyzed
MET-DIS-LOW-MS-VA Water				
Batch R2439752				
WG1548035-2 CRM	VA-HIGH-WATRM			
Arsenic (As)-Dissolved	103.3	%		30-120 19-SEP-
Barium (Ba)-Dissolved	105.0	%		30-120 19-SEP-
Boron (B)-Dissolved	108.1	%		30-120 19-SEP-
Cadmium (Cd)-Dissolved	103.0	%		30-120 19-SEP-
Calcium (Ca)-Dissolved	97.7	%	8	30-120 19-SEP-
Chromium (Cr)-Dissolved	102.6	%	8	30-120 19-SEP-
Copper (Cu)-Dissolved	97.1	%	8	30-120 19-SEP-
Lead (Pb)-Dissolved	101.3	%	8	30-120 19-SEP-
Magnesium (Mg)-Dissolved	99.2	%	8	30-120 19-SEP-
Manganese (Mn)-Dissolved	101.8	%	8	30-120 19-SEP-
Potassium (K)-Dissolved	99.6	%	8	30-120 19-SEP-
Selenium (Se)-Dissolved	100.4	%	8	30-120 19-SEP-
Uranium (U)-Dissolved	101.5	%	8	30-120 19-SEP-
Zinc (Zn)-Dissolved	94.6	%	8	30-120 19-SEP-
WG1548683-8 CRM	VA-HIGH-WATRM			
Aluminum (Al)-Dissolved	99.8	%	8	30-120 19-SEP-
Antimony (Sb)-Dissolved	104.3	%	8	30-120 19-SEP-
Arsenic (As)-Dissolved	100.7	%	8	30-120 19-SEP-
Barium (Ba)-Dissolved	103.6	%	8	30-120 19-SEP-
Boron (B)-Dissolved	110.7	%	8	30-120 19-SEP-
Cadmium (Cd)-Dissolved	102.1	%	8	30-120 19-SEP-
Calcium (Ca)-Dissolved	100.5	%	8	30-120 19-SEP-
Chromium (Cr)-Dissolved	100.7	%	8	30-120 19-SEP-
Copper (Cu)-Dissolved	96.1	%	8	30-120 19-SEP-
Lead (Pb)-Dissolved	105.2	%	8	30-120 19-SEP-
Magnesium (Mg)-Dissolved	98.2	%	8	30-120 19-SEP-
Manganese (Mn)-Dissolved	101.9	%	8	30-120 19-SEP-
Potassium (K)-Dissolved	97.7	%	8	30-120 19-SEP-
Selenium (Se)-Dissolved	100.6	%		30-120 19-SEP-
Uranium (U)-Dissolved	109.6	%		30-120 19-SEP-
Zinc (Zn)-Dissolved	93.4	%		30-120 19-SEP-
Batch R2440035				
WG1548683-7 MB				
Calcium (Ca)-Dissolved	<0.020	mg/L	C	0.02 20-SEP-
Magnesium (Mg)-Dissolved	<0.0050	mg/L	C	0.005 20-SEP-

	Workord	er: L1209363	B Re	eport Date: 2	27-SEP-12	Pa	ge 21 of 37
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA W	ater						
Batch R2440035							
WG1548683-7 MB Manganese (Mn)-Dissolved		0.000077	MB-LOR	mg/L		0.00005	20-SEP-12
Batch R2441054							
WG1548035-18 DUP	L1209363	-2					
Aluminum (AI)-Dissolved	<0.050	<0.015	RPD-NA	mg/L	N/A	20	20-SEP-12
Antimony (Sb)-Dissolved	<0.0025	0.00061		mg/L	1.2	20	20-SEP-12
Arsenic (As)-Dissolved	0.00855	0.00861		mg/L	0.7	20	20-SEP-12
Barium (Ba)-Dissolved	<0.10	0.0123		mg/L	0.3	20	20-SEP-12
Boron (B)-Dissolved	<0.50	<0.050	RPD-NA	mg/L	N/A	20	20-SEP-12
Cadmium (Cd)-Dissolved	<0.0010	<0.00025	RPD-NA	mg/L	N/A	20	20-SEP-12
Calcium (Ca)-Dissolved	213	213		mg/L	0.0	20	20-SEP-12
Chromium (Cr)-Dissolved	<0.010	<0.0025	RPD-NA	mg/L	N/A	20	20-SEP-12
Copper (Cu)-Dissolved	<0.0050	<0.0025	RPD-NA	mg/L	N/A	20	20-SEP-12
Lead (Pb)-Dissolved	<0.0025	<0.00025	RPD-NA	mg/L	N/A	20	20-SEP-12
Magnesium (Mg)-Dissolved	477	482		mg/L	1.2	20	20-SEP-12
Manganese (Mn)-Dissolved	0.377	0.385		mg/L	2.1	20	20-SEP-12
Potassium (K)-Dissolved	28.2	28.9		mg/L	2.3	20	20-SEP-12
Selenium (Se)-Dissolved	<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	20-SEP-12
Uranium (U)-Dissolved	0.00731	0.00741		mg/L	1.4	20	20-SEP-12
Zinc (Zn)-Dissolved	<0.25	<0.015	RPD-NA	mg/L	N/A	20	20-SEP-12
WG1548035-19 MS Aluminum (Al)-Dissolved	L1209363	-3 91.6		%		70-130	20-SEP-12
Arsenic (As)-Dissolved		112.8		%		70-130	20-SEP-12 20-SEP-12
Cadmium (Cd)-Dissolved		93.0		%		70-130	20-SEP-12 20-SEP-12
Calcium (Ca)-Dissolved		N/A	MS-B	%		70-130	20-SEP-12 20-SEP-12
Chromium (Cr)-Dissolved		94.6	MO-D	%		- 70-130	20-SEP-12 20-SEP-12
Copper (Cu)-Dissolved		87.6		%			
Lead (Pb)-Dissolved		101.2		%		70-130	20-SEP-12
Magnesium (Mg)-Dissolved		N/A	MS-B	%		70-130	20-SEP-12
Magnesium (Mg)-Dissolved		N/A	MS-B	%		-	20-SEP-12
Potassium (K)-Dissolved		N/A	MS-B MS-B	%		-	20-SEP-12
						-	20-SEP-12
Uranium (U)-Dissolved		N/A	MS-B	%		-	20-SEP-12
Zinc (Zn)-Dissolved		80.7		%		70-130	20-SEP-12

		Workorder:	L120936	3	Report Date: 27	7-SEP-12	Pa	ge 22 of 3
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2442159)							
WG1552509-8 MB								
Aluminum (Al)-Dissolve			<0.0030		mg/L		0.003	24-SEP-12
Antimony (Sb)-Dissolve			<0.00010		mg/L		0.0001	24-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
Barium (Ba)-Dissolved			<0.00005	0	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolv	ed		<0.00005	0	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved	d		<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolv	ved		<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	24-SEP-12
Manganese (Mn)-Disso	olved		<0.00005	0	mg/L		0.00005	24-SEP-12
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	24-SEP-12
Selenium (Se)-Dissolve	ed		<0.0010		mg/L		0.001	24-SEP-12
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	24-SEP-12
WG1548035-19 MS		L1209363-3						
Antimony (Sb)-Dissolve	ed		126.6		%		70-130	24-SEP-12
Boron (B)-Dissolved			127.0		%		70-130	24-SEP-12
Batch R2442738	3							
WG1552509-1 MB								
Aluminum (Al)-Dissolve			<0.0030		mg/L		0.003	24-SEP-12
Antimony (Sb)-Dissolve			<0.00010		mg/L		0.0001	24-SEP-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	24-SEP-12
Barium (Ba)-Dissolved			<0.00005	0	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolv			<0.00005	0	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolv	red		<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Disso	olved		<0.0050		mg/L		0.005	24-SEP-12
Manganese (Mn)-Disso	olved		<0.00005	0	mg/L		0.00005	24-SEP-12
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	24-SEP-12
Selenium (Se)-Dissolve	ed		<0.0010		mg/L		0.001	24-SEP-12

	Workorde	er: L1209363	3 F	Report Date: 2	7-SEP-12	Pa	ge 23 of 37
Test Mat	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Wa	iter						
Batch R2442738							
WG1552509-1 MB							
Uranium (U)-Dissolved		<0.000010	0	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved		<0.0030		mg/L		0.003	24-SEP-12
WG1552509-9 MB Aluminum (Al)-Dissolved		<0.0030		~~~/		0.000	
Antimony (Sb)-Dissolved		<0.0000		mg/L mg/L		0.003	24-SEP-12
Antimolity (35)-Dissolved		<0.00010				0.0001	24-SEP-12
. ,		<0.00010	h	mg/L		0.0001	24-SEP-12
Barium (Ba)-Dissolved			5	mg/L		0.00005	24-SEP-12
Boron (B)-Dissolved		<0.010	^	mg/L		0.01	24-SEP-12
Cadmium (Cd)-Dissolved		<0.000050	J	mg/L		0.00005	24-SEP-12
Calcium (Ca)-Dissolved		<0.020		mg/L		0.02	24-SEP-12
Chromium (Cr)-Dissolved		<0.00050		mg/L		0.0005	24-SEP-12
Copper (Cu)-Dissolved		<0.00050	_	mg/L		0.0005	24-SEP-12
Lead (Pb)-Dissolved		<0.000050)	mg/L		0.00005	24-SEP-12
Magnesium (Mg)-Dissolved		<0.0050	_	mg/L		0.005	24-SEP-12
Manganese (Mn)-Dissolved		<0.000050	0	mg/L		0.00005	24-SEP-12
Potassium (K)-Dissolved		<0.050		mg/L		0.05	24-SEP-12
Selenium (Se)-Dissolved		<0.0010		mg/L		0.001	24-SEP-12
Uranium (U)-Dissolved		<0.000010	0	mg/L		0.00001	24-SEP-12
Zinc (Zn)-Dissolved		<0.0030		mg/L		0.003	24-SEP-12
Batch R2443662							
WG1552509-10 CRM	VA-HIGH-V			0/			
Aluminum (Al)-Dissolved		104.6		%		80-120	25-SEP-12
Antimony (Sb)-Dissolved		106.7		%		80-120	25-SEP-12
Arsenic (As)-Dissolved		102.2		%		80-120	25-SEP-12
Barium (Ba)-Dissolved		102.5		%		80-120	25-SEP-12
Boron (B)-Dissolved		91.1		%		80-120	25-SEP-12
Cadmium (Cd)-Dissolved		103.9		%		80-120	25-SEP-12
Calcium (Ca)-Dissolved		99.3		%		80-120	25-SEP-12
Chromium (Cr)-Dissolved		100.1		%		80-120	25-SEP-12
Copper (Cu)-Dissolved		98.5		%		80-120	25-SEP-12
Lead (Pb)-Dissolved		102.2		%		80-120	25-SEP-12
Magnesium (Mg)-Dissolved		101.5		%		80-120	25-SEP-12
Manganese (Mn)-Dissolved		102.0		%		80-120	25-SEP-12
Potassium (K)-Dissolved		102.0		%		80-120	25-SEP-12
Selenium (Se)-Dissolved		102.5		%		80-120	25-SEP-12

	Workorder: L120936	Report Date: 2	7-SEP-12	Pa	age 24 of 3
est Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Water					
Batch R2443662					
WG1552509-10 CRM Uranium (U)-Dissolved	VA-HIGH-WATRM 103.1	%		00.400	
Zinc (Zn)-Dissolved	97.0	%		80-120	25-SEP-12
		70		80-120	25-SEP-12
WG1552509-11 CRM Aluminum (Al)-Dissolved	VA-HIGH-WATRM 104.9	%		80-120	25-SEP-12
Antimony (Sb)-Dissolved	106.5	%		80-120	25-SEP-12
Arsenic (As)-Dissolved	101.2	%		80-120	25-SEP-12
Barium (Ba)-Dissolved	101.0	%		80-120	25-SEP-12
Boron (B)-Dissolved	91.4	%		80-120	25-SEP-12
Cadmium (Cd)-Dissolved	102.0	%		80-120	25-SEP-12
Calcium (Ca)-Dissolved	99.7	%		80-120	25-SEP-12
Chromium (Cr)-Dissolved	102.1	%		80-120	25-SEP-12
Copper (Cu)-Dissolved	98.5	%		80-120	25-SEP-12
Lead (Pb)-Dissolved	97.8	%		80-120	25-SEP-12
Magnesium (Mg)-Dissolved	105.0	%		80-120	25-SEP-12
Manganese (Mn)-Dissolved	102.5	%		80-120	25-SEP-12
Potassium (K)-Dissolved	101.3	%		80-120	25-SEP-12
Selenium (Se)-Dissolved	99.6	%		80-120	25-SEP-12
Uranium (U)-Dissolved	99.7	%		80-120	25-SEP-12
Zinc (Zn)-Dissolved	97.3	%		80-120	25-SEP-12
WG1552509-5 CRM	VA-HIGH-WATRM	%		00,400	
Aluminum (Al)-Dissolved	106.5			80-120	25-SEP-12
Antimony (Sb)-Dissolved	105.9	%		80-120	25-SEP-12
Arsenic (As)-Dissolved	102.8	%		80-120	25-SEP-12
Barium (Ba)-Dissolved Boron (B)-Dissolved	102.5	%		80-120	25-SEP-12
	93.2	%		80-120	25-SEP-12
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	103.4 101.6	%		80-120	25-SEP-12
Chromium (Cr)-Dissolved	101.8	%		80-120	25-SEP-12
Copper (Cu)-Dissolved	99.2	%		80-120 80-120	25-SEP-12
Lead (Pb)-Dissolved	99.2 103.4	%		80-120 80-120	25-SEP-12
Magnesium (Mg)-Dissolved	103.4	%		80-120 80-120	25-SEP-12
Manganese (Mn)-Dissolved	103.1	%		80-120 80-120	25-SEP-12
Potassium (K)-Dissolved	103.2	%		80-120 80-120	25-SEP-12 25-SEP-12
Selenium (Se)-Dissolved	103.2	%		80-120 80-120	25-SEP-12 25-SEP-12
Uranium (U)-Dissolved	103.8	%		80-120 80-120	25-SEP-12 25-SEP-12

				-	•			
		Workorder	: L120936	3	Report Date: 2	7-SEP-12	Pa	age 25 of 37
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA Batch R2443662 WG1552509-5 CRM Zinc (Zn)-Dissolved	Water	VA-HIGH-W	ATRM 98.7		%		80-120	25-SEP-12
NH3-F-VA	Water							
Batch R2441464 WG1551682-10 CRM Ammonia, Total (as N)		VA-NH3-F	94.4		%		85-115	23-SEP-12
WG1551682-2 CRM Ammonia, Total (as N)		VA-NH3-F	101.4		%		85-115	23-SEP-12
WG1551682-4 CRM Ammonia, Total (as N)		VA-NH3-F	98.9		%		85-115	23-SEP-12
WG1551682-6 CRM Ammonia, Total (as N)		VA-NH3-F	93.4		%		85-115	23-SEP-12
WG1551682-8 CRM Ammonia, Total (as N)		VA-NH3-F	93.7		%		85-115	23-SEP-12
WG1551682-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	23-SEP-12
WG1551682-12 MS Ammonia, Total (as N)		L1209742-2	95.1		%		75-125	23-SEP-12
Batch R2442196 WG1552459-10 CRM Ammonia, Total (as N)		VA-NH3-F	86.6		%		85-115	24-SEP-12
WG1552459-2 CRM Ammonia, Total (as N)		VA-NH3-F	101.0		%		85-115	24-SEP-12
WG1552459-4 CRM Ammonia, Total (as N)		VA-NH3-F	93.1		%		85-115	24-SEP-12
WG1552459-6 CRM Ammonia, Total (as N)		VA-NH3-F	95.5		%		85-115	24-SEP-12
WG1552459-8 CRM Ammonia, Total (as N)		VA-NH3-F	95.6		%		85-115	24-SEP-12
WG1552459-1 MB							-	

WG1552459-1 MB

		Workorder:	L120936	3	Report Date: 2	7-SEP-12	Pa	ge 26 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-VA	Water							
Batch R2442196								
WG1552459-1 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	24-SEP-12
WG1552459-3 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	24-SEP-12
WG1552459-5 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	24-SEP-12
WG1552459-7 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	24-SEP-12
WG1552459-9 MB Ammonia, Total (as N)			<0.0050		mg/L		0.005	24-SEP-12
WG1552459-12 MS		L1209462-7			-			
Ammonia, Total (as N)	Matan		95.5		%		75-125	24-SEP-12
PAH-SF-MS-VA	Water							
Batch R2438644 WG1549364-2 LCS								
Acenaphthene			105.0		%		60-130	20-SEP-12
Acenaphthylene			104.9		%		60-130	20-SEP-12
Acridine			101.3		%		60-130	20-SEP-12
Anthracene			107.2		%		60-130	20-SEP-12
Benz(a)anthracene			101.2		%		60-130	20-SEP-12
Benzo(a)pyrene			100.3		%		60-130	20-SEP-12
Benzo(b)fluoranthene			94.7		%		60-130	20-SEP-12
Benzo(g,h,i)perylene			90.0		%		60-130	20-SEP-12
Benzo(k)fluoranthene			93.4		%		60-130	20-SEP-12
Chrysene			102.6		%		60-130	20-SEP-12
Dibenz(a,h)anthracene			98.9		%		60-130	20-SEP-12
Fluoranthene			105.4		%		60-130	20-SEP-12
Fluorene			102.7		%		60-130	20-SEP-12
Indeno(1,2,3-c,d)pyrene			104.2		%		60-130	20-SEP-12
Naphthalene			102.0		%		50-130	20-SEP-12
Phenanthrene			110.2		%		60-130	20-SEP-12
Pyrene			104.7		%		60-130	20-SEP-12
Quinoline			99.4		%		60-130	20-SEP-12
WG1549364-1 MB								
Acenaphthene			<0.00005	0	mg/L		0.00005	20-SEP-12
Acenaphthylene			<0.00005					

		Workorder:	L1209363		Report Date: 27	-SEP-12	Pa	ge 27 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2438644								
WG1549364-1 MB					"			
Acridine			<0.000050		mg/L		0.00005	20-SEP-12
Anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	20-SEP-12
Benzo(b)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Chrysene			<0.000050		mg/L		0.00005	20-SEP-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Fluorene			<0.000050		mg/L		0.00005	20-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	20-SEP-12
Naphthalene			<0.000050		mg/L		0.00005	20-SEP-12
Phenanthrene			<0.000050		mg/L		0.00005	20-SEP-12
Pyrene			<0.000050		mg/L		0.00005	20-SEP-12
Quinoline			<0.000050		mg/L		0.00005	20-SEP-12
WG1549364-3 MB								
Acenaphthene			<0.000050		mg/L		0.00005	20-SEP-12
Acenaphthylene			<0.000050		mg/L		0.00005	20-SEP-12
Acridine			<0.000050		mg/L		0.00005	20-SEP-12
Anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	20-SEP-12
Benzo(b)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	20-SEP-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Chrysene			<0.000050		mg/L		0.00005	20-SEP-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	20-SEP-12
Fluoranthene			<0.000050		mg/L		0.00005	20-SEP-12
Fluorene			<0.000050		mg/L		0.00005	20-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	20-SEP-12
Naphthalene			<0.000050		mg/L		0.00005	20-SEP-12
Phenanthrene			<0.000050		mg/L		0.00005	20-SEP-12
Pyrene			<0.000050		mg/L		0.00005	20-SEP-12

Batch R2439714 WG1550411-2 LCS Acenaphthene 91.8 % 60-130 Acenaphthylene 88.5 % 60-130 Acridine 90.0 % 60-130 Antridine 90.0 % 60-130 Anthracene 95.8 % 60-130 Benzo(a)nthracene 86.4 % 60-130 Benzo(a)pyrene 76.7 % 60-130 Benzo(b)fluoranthene 89.5 % 60-130 Benzo(b)fluoranthene 99.4 % 60-130 Benzo(b)fluoranthene 94.7 % 60-130 Chrysene 92.6 % 60-130 Fluoranthene 93.1 % 60-130 Fluoranthene 83.3 % 60-130 Pluoranthene 83.3 % 60-130 Pyrene 93.5 % 60-130 Naphthalene 86.2 % 60-130 Pyrene 83.5 % </th <th>Page 28 of 3</th> <th>-SEP-12</th> <th>Report Date: 27</th> <th>3</th> <th>L1209363</th> <th>Workorder:</th> <th></th> <th></th>	Page 28 of 3	-SEP-12	Report Date: 27	3	L1209363	Workorder:		
Batch R2438644 WG1543364-3 MB Quinoline <0.00050 mg/L 0.00050 Batch R2439714 0.00050 mg/L 0.00050 Batch R2439714 0.00050 0.00050 0.00050	Limit Analyzed	RPD	Units	Qualifier	Result	Reference	Matrix	
WG1549364-3 MB <0.00050 mg/L 0.00050 Batch R2439714 <							Water	-SF-MS-VA
Quinoline < 0.000050 mg/L 0.000050 Batch R2439714 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>tch R2438644</td></td<>								tch R2438644
WG1550411-2 LCS Acenaphthene 91.8 % 60-130 Acenaphthylene 88.5 % 60-130 Acridine 90.0 % 60-130 Anthracene 95.8 % 60-130 Benz(a)anthracene 86.4 % 60-130 Benz(a)pyrene 76.7 % 60-130 Benz(a)pyrene 91.9 % 60-130 Benzo(g)t,i)perylene 91.9 % 60-130 Benzo(g)t,i)perylene 92.6 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluoranthene 93.1 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 8.5 @ 60-130	0.00005 20-SEP-12		mg/L)	<0.000050			
WG1550411-2 LCS Acenaphthene 91.8 % 60-130 Acenaphthylene 88.5 % 60-130 Acridine 90.0 % 60-130 Anthracene 95.8 % 60-130 Benz(a)anthracene 86.4 % 60-130 Benz(a)pyrene 76.7 % 60-130 Benz(a)pyrene 91.9 % 60-130 Benzo(g)t,ilperylene 91.9 % 60-130 Benzo(g)t,ilperylene 91.9 % 60-130 Benzo(g)t,ilperylene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluoranthene 86.2 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 80.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 85.5 % 60-130								tch R2439714
Acridine 90.0 % 60-130 Anthracene 95.8 % 60-130 Benz(a)anthracene 86.4 % 60-130 Benzo(a)pyrene 76.7 % 60-130 Benzo(b)fluoranthene 89.5 % 60-130 Benzo(g),h,i)perylene 91.9 % 60-130 Benzo(k)fluoranthene 99.4 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indenc(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 50-130 Phenanthrene 89.2 % 60-130 Quinoline 83.5 % 60-130 Quinoline 80.2 % 60-130 Acenaphthene <0.000050	60-130 21-SEP-12		%		91.8			G1550411-2 LCS
Anthracene 98.8 % 60-130 Benz(a)anthracene 86.4 % 60-130 Benzo(a)pyrene 76.7 % 60-130 Benzo(b)fluoranthene 89.5 % 60-130 Benzo(g), i)perylene 91.9 % 60-130 Benzo(k)fluoranthene 99.4 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a, h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 Quinoline 83.5 % 60-130 Quinoline 80.2 % 60-130 Quinoline 80.5 % 60-130 Acenaphthylene <0.000050	60-130 21-SEP-12		%		88.5			Acenaphthylene
Benz(a)anthracene B6.4 % 60-130 Benzo(a)pyrene 76.7 % 60-130 Benzo(b)fluoranthene 89.5 % 60-130 Benzo(g,h,i)perylene 91.9 % 60-130 Benzo(g,h,i)perylene 99.4 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Phenanthrene 89.2 % 60-130 Quinoline 83.5 % 60-130 Quinoline 80.2 % 60-130 Verre 93.5 % 60-130 Quinoline 80.2 % 60-130 Verre 93.5 % 60-130 Acenaphthylene <0.00050	60-130 21-SEP-12		%		90.0			Acridine
Berzo(a)pyrene 76.7 % 60-130 Benzo(b)fluoranthene 89.5 % 60-130 Benzo(g,h,i)perylene 91.9 % 60-130 Benzo(k)fluoranthene 99.4 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Phenanthrene 83.5 % 60-130 Quinoline 83.5 % 60-130 Quinoline 83.5 % 60-130 Quinoline 83.5 % 60-130 Quinoline 80.2 % 60-130 Quinoline 80.2 % 60-130 Quinoline 80.2 % 60-130 Acenaphthylene <0.000050	60-130 21-SEP-12		%		95.8			Anthracene
Benzo(b)fluoranthene 89.5 % 60-130 Benzo(g,h,i)perylene 91.9 % 60-130 Benzo(k)fluoranthene 99.4 % 60-130 Chrysene 92.6 % 60-130 Diberz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 VG1550411-1 MB MB 60-130 Acenaphthene <0.00050	60-130 21-SEP-12		%		86.4			Benz(a)anthracene
Benzo(g),h.j)perylene 91.9 % 60-130 Benzo(k)fluoranthene 99.4 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 50-130 Phenanthrene 89.2 % 60-130 Quinoline 83.5 % 60-130 Quinoline 83.5 % 60-130 Acenaphthene <0.00050	60-130 21-SEP-12		%		76.7			Benzo(a)pyrene
Benzo(k)fluoranthene 99.4 % 60-130 Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 VG1550411-1 MB 0.000050 mg/L 0.000050 Acenaphthene <0.000050	60-130 21-SEP-12		%		89.5			Benzo(b)fluoranthene
Chrysene 92.6 % 60-130 Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB MB 60-130 Acenaphthene <0.000050	60-130 21-SEP-12		%		91.9			Benzo(g,h,i)perylene
Dibenz(a,h)anthracene 94.7 % 60-130 Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 60-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB ME 60-130 Acenaphthene <0.00050	60-130 21-SEP-12		%		99.4			Benzo(k)fluoranthene
Fluoranthene 93.1 % 60-130 Fluorene 90.6 % 60-130 Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 50-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB MB 60-000050 Acenaphthene <0.00050	60-130 21-SEP-12		%		92.6			Chrysene
Fluorene 90.6 % 60.130 Indeno(1,2,3-c,d)pyrene 88.3 % 60.130 Naphthalene 86.2 % 50.130 Phenanthrene 89.2 % 60.130 Pyrene 93.5 % 60.130 Quinoline 83.5 % 60.130 WG1550411-1 MB MB Magnet Magnet Acenaphthylene <0.00050	60-130 21-SEP-12		%		94.7			Dibenz(a,h)anthracene
Indeno(1,2,3-c,d)pyrene 88.3 % 60-130 Naphthalene 86.2 % 50-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB 60-000050 mg/L 0.000050 Acenaphthene <0.000050	60-130 21-SEP-12		%		93.1			luoranthene
Naphthalene 86.2 % 50-130 Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB 60-000050 mg/L 0.000055 Acenaphthene <0.00050	60-130 21-SEP-12		%		90.6			luorene
Phenanthrene 89.2 % 60-130 Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB 83.5 % 60-130 WG1550411-1 MB - 0.000050 mg/L 0.000050 Acenaphthene <0.000050	60-130 21-SEP-12		%		88.3			ndeno(1,2,3-c,d)pyrene
Pyrene 93.5 % 60-130 Quinoline 83.5 % 60-130 WG1550411-1 MB % 60-130 Acenaphthene <0.000050	50-130 21-SEP-12		%		86.2			Naphthalene
Quinoline 83.5 % 60-130 WG1550411-1 MB	60-130 21-SEP-12		%		89.2			Phenanthrene
WG1550411-1 MB Acenaphthene <0.000050	60-130 21-SEP-12		%		93.5			Pyrene
Acenaphthene <0.000050	60-130 21-SEP-12		%		83.5			Quinoline
Acenaphthylene <0.000050								
Acridine <0.000050	0.00005 21-SEP-12		-					
Anthracene <0.000050 mg/L 0.000050 Benz(a)anthracene <0.000050	0.00005 21-SEP-12)	<0.000050			
Benz(a)anthracene <0.000050 mg/L 0.000050 Benzo(a)pyrene <0.000010	0.00005 21-SEP-12		•					
Benzo(a)pyrene <0.000010 mg/L 0.00001 Benzo(b)fluoranthene <0.000050								
Benzo(b)fluoranthene <0.000050 mg/L 0.000050 Benzo(g,h,i)perylene <0.000050								
Benzo(g,h,i)perylene <0.000050 mg/L 0.000050 Benzo(k)fluoranthene <0.000050	0.00001 21-SEP-12							
Benzo(k)fluoranthene <0.000050 mg/L 0.00005	0.00005 21-SEP-12							
	0.00005 21-SEP-12							
	0.00005 21-SEP-12							
	0.00005 21-SEP-12							-
-	0.00005 21-SEP-12							
Fluoranthene <0.000050 mg/L 0.00005	0.00005 21-SEP-12		mg/L)	<0.000050			luoranthene

		Workorder:	1 1209363	}	Report Date: 27	-SEP-12	Da	ge 29 of 3
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							-
Batch R2439714	mator							
WG1550411-1 MB								
Fluorene			<0.000050)	mg/L		0.00005	21-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Naphthalene			<0.000050)	mg/L		0.00005	21-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	21-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	21-SEP-12
Batch R2440768								
WG1550411-3 MB								
Acenaphthene			<0.000050)	mg/L		0.00005	21-SEP-12
Acenaphthylene			<0.000050)	mg/L		0.00005	21-SEP-12
Acridine			<0.000050)	mg/L		0.00005	21-SEP-12
Anthracene			<0.000050)	mg/L		0.00005	21-SEP-12
Benz(a)anthracene			<0.000050)	mg/L		0.00005	21-SEP-12
Benzo(a)pyrene			<0.000010)	mg/L		0.00001	21-SEP-12
Benzo(b)fluoranthene			<0.000050)	mg/L		0.00005	21-SEP-12
Benzo(g,h,i)perylene			<0.000050)	mg/L		0.00005	21-SEP-12
Benzo(k)fluoranthene			<0.000050)	mg/L		0.00005	21-SEP-12
Chrysene			<0.000050)	mg/L		0.00005	21-SEP-12
Dibenz(a,h)anthracene			<0.000050)	mg/L		0.00005	21-SEP-12
Fluoranthene			<0.000050)	mg/L		0.00005	21-SEP-12
Fluorene			<0.000050)	mg/L		0.00005	21-SEP-12
Indeno(1,2,3-c,d)pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Naphthalene			<0.000050)	mg/L		0.00005	21-SEP-12
Phenanthrene			<0.000050)	mg/L		0.00005	21-SEP-12
Pyrene			<0.000050)	mg/L		0.00005	21-SEP-12
Quinoline			<0.000050)	mg/L		0.00005	21-SEP-12
РН-РСТ-VA	Water							
Batch R2443112								
WG1553049-24 CRM pH		VA-PH7-BUF	7.03		pН		6.9-7.1	25-SEP-12
WG1553049-25 CRM рН		VA-PH7-BUF	7.03		рН		6.9-7.1	25-SEP-12
, WG1553049-26 СRM рН		VA-PH7-BUF	7.03		pH		6.9-7.1	25-SEP-12
WG1553049-27 CRM		VA-PH7-BUF			ч.,		0.3-1.1	20-025-12

					•			
Test		Workorder: L1209363		3	Report Date: 27-SEP-12		Page 30 of 37	
	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-PCT-VA	Water							
Batch R2443112 WG1553049-27 CRM pH		VA-PH7-BUF	7.02		рН		6.9-7.1	25-SEP-12
WG1553049-28 CRM рН		VA-PH7-BUF	7.02		рН		6.9-7.1	25-SEP-12
WG1553049-29 СRM рН		VA-PH7-BUF	7.01		pН		6.9-7.1	25-SEP-12
WG1553049-30 CRM рН		VA-PH7-BUF	7.01		рН		6.9-7.1	25-SEP-12
TDS-VA	Water							
Batch R2439701 WG1548151-3 DUP Total Dissolved Solids		L1209363-1 8890	8750		mg/L	1.6	20	18-SEP-12
WG1548151-11 LCS Total Dissolved Solids			99.2		%		85-115	18-SEP-12
WG1548151-2 LCS Total Dissolved Solids			100.4		%		85-115	18-SEP-12
WG1548151-5 LCS Total Dissolved Solids			97.8		%		85-115	18-SEP-12
WG1548151-8 LCS Total Dissolved Solids			97.6		%		85-115	18-SEP-12
WG1548151-1 MB Total Dissolved Solids			<10		mg/L		10	18-SEP-12
WG1548151-10 MB Total Dissolved Solids			<10		mg/L		10	18-SEP-12
WG1548151-4 MB Total Dissolved Solids			<10		mg/L		10	18-SEP-12
WG1548151-7 MB Total Dissolved Solids			<10		mg/L		10	18-SEP-12
TKN-F-VA	Water							
Batch R2441463 WG1549655-6 DUP Total Kjeldahl Nitrogen		L1209363-15 0.572	0.556		mg/L	2.8	20	23-SEP-12
WG1549655-2 LCS Total Kjeldahl Nitrogen			104.2		%		75-125	23-SEP-12
WG1549655-5 LCS Total Kjeldahl Nitrogen			112.2		%		75-125	23-SEP-12
WG1549655-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	23-SEP-12

	Workord	er: L120936	53 Re	eport Date: 2	27-SEP-12	Pa	age 31 of 37
Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-VA Wa	ater						
Batch R2441463							
WG1549655-4 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	23-SEP-12
Batch R2442141							
WG1550523-2 LCS Total Kjeldahl Nitrogen		93.5		%		75-125	24-SEP-12
WG1550523-1 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	24-SEP-12
Batch R2443047							
WG1550523-5 LCS Total Kjeldahl Nitrogen		98.2		%		75-125	24-SEP-12
WG1550523-4 MB Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	24-SEP-12
VH-HSFID-VA Wa	ater						
Batch R2441333							
WG1550775-3 DUP Volatile Hydrocarbons (VH6-	10) L1209363	-17 <0.10	RPD-NA	mg/L	N/A	50	22-SEP-12
WG1550775-2 LCS Volatile Hydrocarbons (VH6-	10)	85.2		%		70-130	22-SEP-12
WG1550775-1 MB Volatile Hydrocarbons (VH6-	10)	<0.10		mg/L		0.1	22-SEP-12
VOC-HSMS-VA Wa	ater						
Batch R2443281							
WG1554616-2 LCS							
Bromodichloromethane		93.9		%		70-130	26-SEP-12
Bromoform		93.6		%		70-130	26-SEP-12
Carbon Tetrachloride		103.1		%		70-130	26-SEP-12
Chlorobenzene		98.5		%		70-130	26-SEP-12
Dibromochloromethane		93.9		%		70-130	26-SEP-12
Chloroethane		95.8		%		60-140	26-SEP-12
Chloroform		94.2		%		70-130	26-SEP-12
Chloromethane		96.7		%		60-140	26-SEP-12
1,2-Dichlorobenzene		99.6		%		70-130	26-SEP-12
1,3-Dichlorobenzene		103.1		%		70-130	26-SEP-12
1,4-Dichlorobenzene		100.8		%		70-130	26-SEP-12
1,1-Dichloroethane		90.6		%		70-130	26-SEP-12
1,2-Dichloroethane		85.3		%		70-130	26-SEP-12

		Workorder	: L120936	3	Report Date: 2	7-SEP-12	Pa	age 32 of 3
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R2443								
WG1554616-2 LC 1,1-Dichloroethylend			80.5		%		70.400	
cis-1,2-Dichloroethy			95.2		%		70-130	26-SEP-12
trans-1,2-Dichloroet			88.8		%		70-130 70-130	26-SEP-12 26-SEP-12
Dichloromethane			86.3		%		60-140	26-SEP-12 26-SEP-12
1,2-Dichloropropane	9		90.6		%		70-130	26-SEP-12 26-SEP-12
cis-1,3-Dichloroprop			88.1		%		70-130	26-SEP-12 26-SEP-12
trans-1,3-Dichlorop	-		88.0		%		70-130	26-SEP-12 26-SEP-12
1,1,1,2-Tetrachloroe			100.7		%		70-130	26-SEP-12 26-SEP-12
1,1,2,2-Tetrachloroe			84.9		%		70-130	26-SEP-12
Tetrachloroethylene			106.3		%		70-130	26-SEP-12
1,1,1-Trichloroethar			100.3		%		70-130	26-SEP-12 26-SEP-12
1,1,2-Trichloroethar			89.1		%		70-130	26-SEP-12
Trichloroethylene			101.7		%		70-130	26-SEP-12
Trichlorofluorometh	ane		111.4		%		60-140	26-SEP-12
Vinyl Chloride			99.8		%		60-140	26-SEP-12
WG1554616-1 MI	в						00 140	20 021 12
Bromodichlorometh			<0.0010		mg/L		0.001	26-SEP-12
Bromoform			<0.0010		mg/L		0.001	26-SEP-12
Carbon Tetrachlorid	le		<0.00050		mg/L		0.0005	26-SEP-12
Chlorobenzene			<0.0010		mg/L		0.001	26-SEP-12
Dibromochlorometh	ane		<0.0010		mg/L		0.001	26-SEP-12
Chloroethane			<0.0010		mg/L		0.001	26-SEP-12
Chloroform			<0.0010		mg/L		0.001	26-SEP-12
Chloromethane			<0.0050		mg/L		0.005	26-SEP-12
1,2-Dichlorobenzen	e		<0.00070		mg/L		0.0007	26-SEP-12
1,3-Dichlorobenzen	e		<0.0010		mg/L		0.001	26-SEP-12
1,4-Dichlorobenzen	e		<0.0010		mg/L		0.001	26-SEP-12
1,1-Dichloroethane			<0.0010		mg/L		0.001	26-SEP-12
1,2-Dichloroethane			<0.0010		mg/L		0.001	26-SEP-12
1,1-Dichloroethylen	е		<0.0010		mg/L		0.001	26-SEP-12
cis-1,2-Dichloroethy	lene		<0.0010		mg/L		0.001	26-SEP-12
trans-1,2-Dichloroet	thylene		<0.0010		mg/L		0.001	26-SEP-12
Dichloromethane			<0.0050		mg/L		0.005	26-SEP-12
1,2-Dichloropropane	e		<0.0010		mg/L		0.001	26-SEP-12

		Workorder:	L1209363	B Re	port Date: 2	27-SEP-12	Pa	age 33 of 37
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R244328	1							
WG1554616-1 MB								
cis-1,3-Dichloropropyle			<0.0010		mg/L		0.001	26-SEP-12
trans-1,3-Dichloroprop	ylene		<0.0010		mg/L		0.001	26-SEP-12
1,1,1,2-Tetrachloroeth	ane		<0.0010		mg/L		0.001	26-SEP-12
1,1,2,2-Tetrachloroeth	ane		<0.0010		mg/L		0.001	26-SEP-12
Tetrachloroethylene			<0.0010		mg/L		0.001	26-SEP-12
1,1,1-Trichloroethane			<0.0010		mg/L		0.001	26-SEP-12
1,1,2-Trichloroethane			<0.0010		mg/L		0.001	26-SEP-12
Trichloroethylene			<0.0010		mg/L		0.001	26-SEP-12
Trichlorofluoromethan	e		<0.0010		mg/L		0.001	26-SEP-12
Vinyl Chloride			<0.0010		mg/L		0.001	26-SEP-12
VOC7-HSMS-VA	Water							
Batch R244106	6							
WG1550775-3 DUP		L1209363-17						
Benzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Methyl t-butyl ether (M	TBE)	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
meta- & para-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
ortho-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	23-SEP-12
WG1550775-2 LCS								
Benzene			101.5		%		70-130	22-SEP-12
Ethylbenzene			106.6		%		70-130	22-SEP-12
Methyl t-butyl ether (M	TBE)		103.4		%		70-130	22-SEP-12
Styrene			98.7		%		70-130	22-SEP-12
Toluene			101.6		%		70-130	22-SEP-12
meta- & para-Xylene			103.3		%		70-130	22-SEP-12
ortho-Xylene			104.7		%		70-130	22-SEP-12
WG1550775-1 MB								
Benzene			<0.00050		mg/L		0.0005	22-SEP-12
Ethylbenzene			<0.00050		mg/L		0.0005	22-SEP-12
Methyl t-butyl ether (M	TBE)		<0.00050		mg/L		0.0005	22-SEP-12
Styrene			<0.00050		mg/L		0.0005	22-SEP-12
Toluene			<0.00050		mg/L		0.0005	22-SEP-12
meta- & para-Xylene			<0.00050		mg/L		0.0005	22-SEP-12

		Workorder	: L1209363	3	Report Date: 2	7-SEP-12	Pa	age 34 of 37
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC7-HSMS-VA	Water							
Batch R24410 WG1550775-1 ME ortho-Xylene			<0.00050		mg/L		0.0005	22-SEP-12
ortilo Xylone			<0.00000		iiig/L		0.0005	22-3EF-12

Workorder: L1209363

Report Date: 27-SEP-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MB-LOR	Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please contact ALS if re-analysis is required.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1209363

Report Date: 27-SEP-12

Page 36 of 37

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests		• =					
Total Dissolved Solids by G	Gravimetric						
	1	09-SEP-12 15:40	18-SEP-12 00:00	7	8	days	EHT
	2	10-SEP-12 10:20	18-SEP-12 00:00	7	8	days	EHT
	3	10-SEP-12 11:30	18-SEP-12 00:00	7	8	days	EHT
pH by Meter (Automated)							
	1	09-SEP-12 15:40	25-SEP-12 11:16	0.25	380	hours	EHTR-FM
	2	10-SEP-12 10:20	25-SEP-12 11:16	0.25	361	hours	EHTR-FM
	3	10-SEP-12 11:30	25-SEP-12 11:16	0.25	360	hours	EHTR-FM
	4	13-SEP-12 13:30	25-SEP-12 11:16	0.25	286	hours	EHTR-FM
	5	12-SEP-12 10:40	25-SEP-12 11:16	0.25	313	hours	EHTR-FM
	6	10-SEP-12 16:30	25-SEP-12 11:16	0.25	355	hours	EHTR-FM
	7	10-SEP-12 17:45	25-SEP-12 11:16	0.25	354	hours	EHTR-FM
	8	10-SEP-12 16:30	25-SEP-12 11:16	0.25	355	hours	EHTR-FM
	9	12-SEP-12 13:20	25-SEP-12 11:16	0.25	310	hours	EHTR-FM
	10	11-SEP-12 10:45	25-SEP-12 11:16	0.25	336	hours	EHTR-FM
	11	11-SEP-12 12:30	25-SEP-12 11:16	0.25	335	hours	EHTR-FM
	12 13	11-SEP-12 14:15	25-SEP-12 11:16	0.25	333	hours	EHTR-FM
	13	11-SEP-12 15:15 12-SEP-12 17:30	25-SEP-12 11:16 25-SEP-12 11:16	0.25 0.25	332 306	hours	EHTR-FM EHTR-FM
	14	13-SEP-12 17.30	25-SEP-12 11:16	0.25	290	hours hours	EHTR-FM
	16	13-SEP-12 09:55	25-SEP-12 11:16	0.25	290	hours	EHTR-FM
	17	11-SEP-12 19:15	25-SEP-12 11:16	0.25	328	hours	EHTR-FM
Anions and Nutrients	17	11-0EI -12 13.15	20-011-12 11.10	0.20	520	nouis	
Nitrate Nitrogen by Ion Chr	omotography						
Nicate Nicogen by Ion Chi				2	<i>r</i>	dava	FUTD
	1	09-SEP-12 15:40 10-SEP-12 10:20	14-SEP-12 17:19 14-SEP-12 17:19	3 3	5	days	EHTR EHTR
	2 3	10-SEP-12 10.20	14-SEP-12 17:19	3	4 4	days days	EHTR
	6	10-SEP-12 11:30	14-SEP-12 17:19	3	4	days days	EHTR
	7	10-SEP-12 17:45	14-SEP-12 17:19	3	4	days	EHTR
	8	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
Nitrite Nitrogen by Ion Chro	-	10 021 12 10.00		0		dayo	Linix
Hand Harogen by for one	1	09-SEP-12 15:40	14-SEP-12 17:19	3	5	days	EHTR
	2	10-SEP-12 10:20	14-SEP-12 17:19	3	4	days	EHTR
	3	10-SEP-12 11:30	14-SEP-12 17:19	3	4	days	EHTR
	6	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
	7	10-SEP-12 17:45	14-SEP-12 17:19	3	4	days	EHTR
	8	10-SEP-12 16:30	14-SEP-12 17:19	3	4	days	EHTR
Volatile Organic Compound	S						
VOCs in water by Headspa	ce GCMS						
	1	09-SEP-12 15:40	26-SEP-12 19:41	14	17	days	EHT
	2	10-SEP-12 10:20	26-SEP-12 19:41	14	16	days	EHT
	3	10-SEP-12 11:30	26-SEP-12 19:41	14	16	days	EHT
	6	10-SEP-12 16:30	26-SEP-12 19:41	14	16	days	EHT
	7	10-SEP-12 17:45	26-SEP-12 19:41	14	16	days	EHT
	8	10-SEP-12 16:30	26-SEP-12 19:41	14	16	days	EHT
	10	11-SEP-12 10:45	26-SEP-12 19:41	14	15	days	EHT
	11	11-SEP-12 12:30	26-SEP-12 19:41	14	15	days	EHT
	12	11-SEP-12 14:15	26-SEP-12 19:41	14	15	days	EHT
	13	11-SEP-12 15:15	26-SEP-12 19:41	14	15	days	EHT
	17	11-SEP-12 19:15	26-SEP-12 19:41	14	15	days	EHT
Legend & Qualifier Definition	ns:						

Legend & Qualifier Definitions:

Workorder: L1209363

Report Date: 27-SEP-12

Page 37 of 37

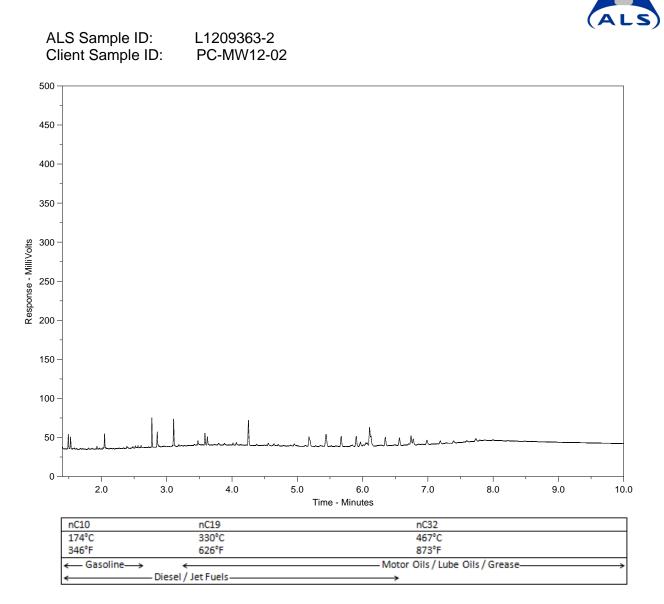
EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1209363 were received on 14-SEP-12 10:55.

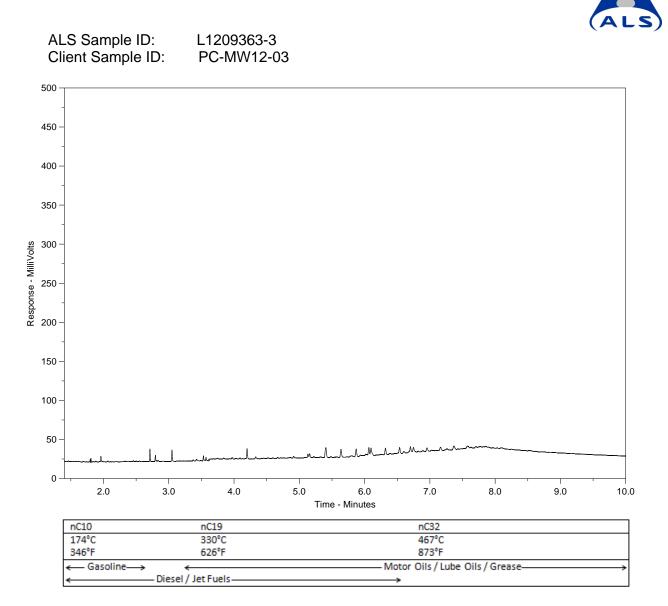
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

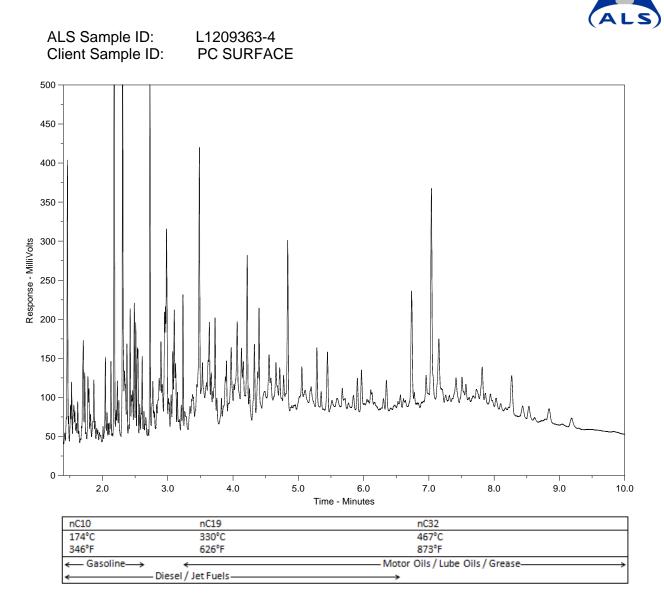
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

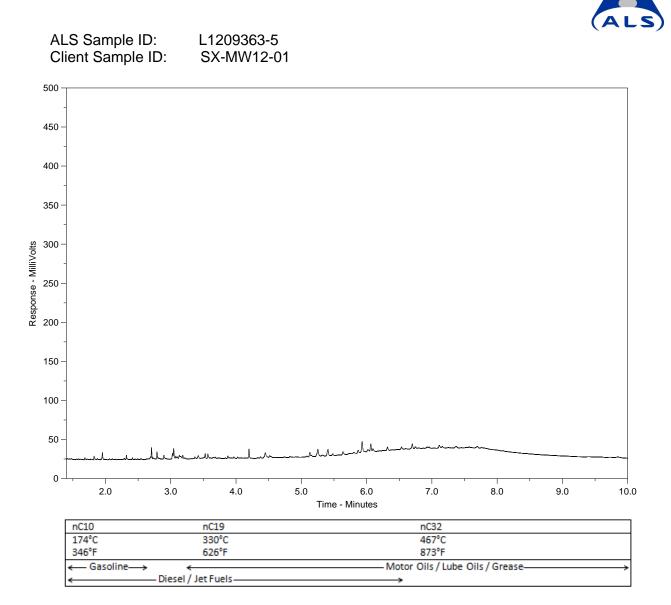
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

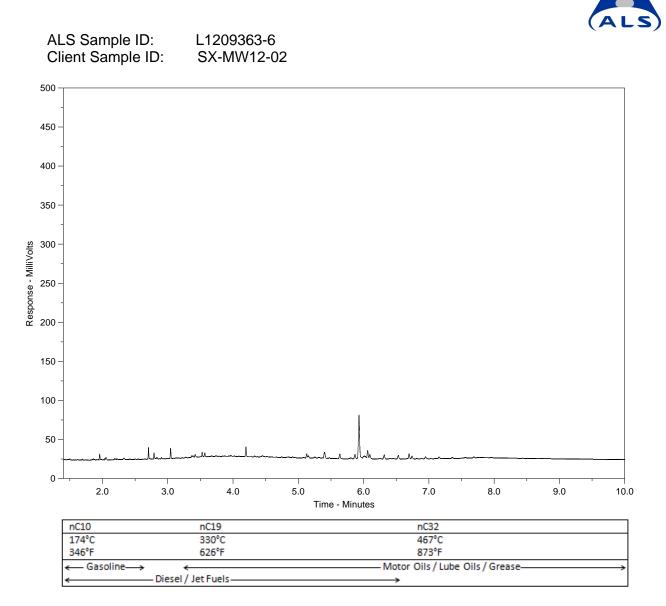
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

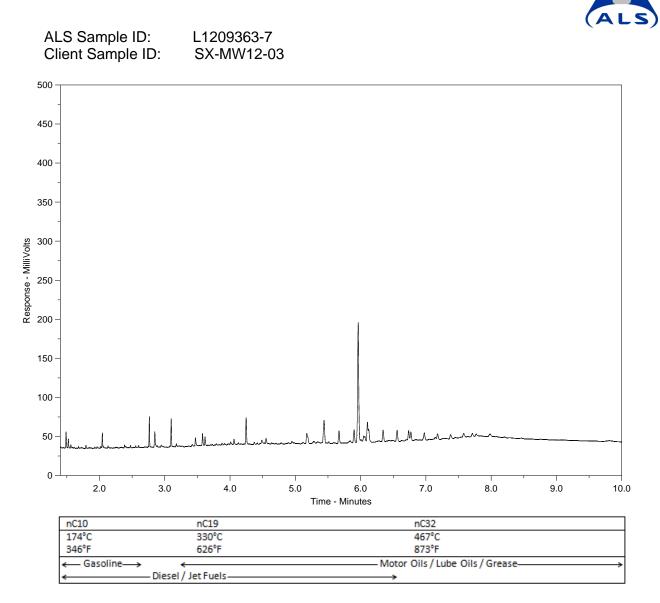
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

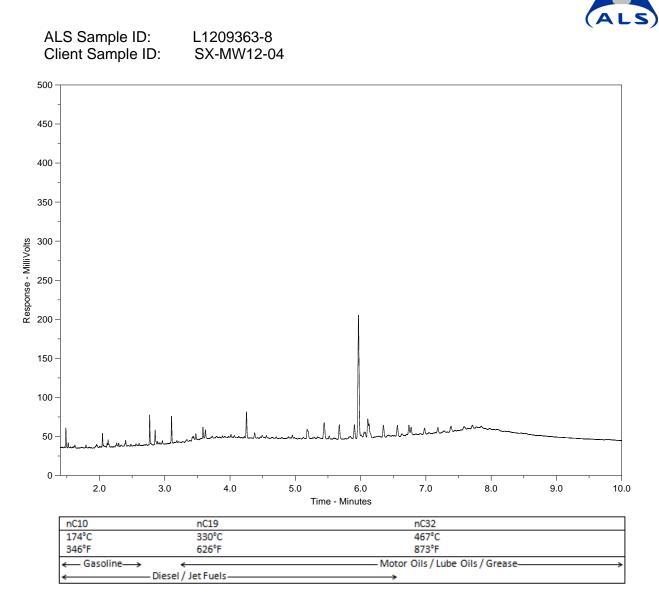
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

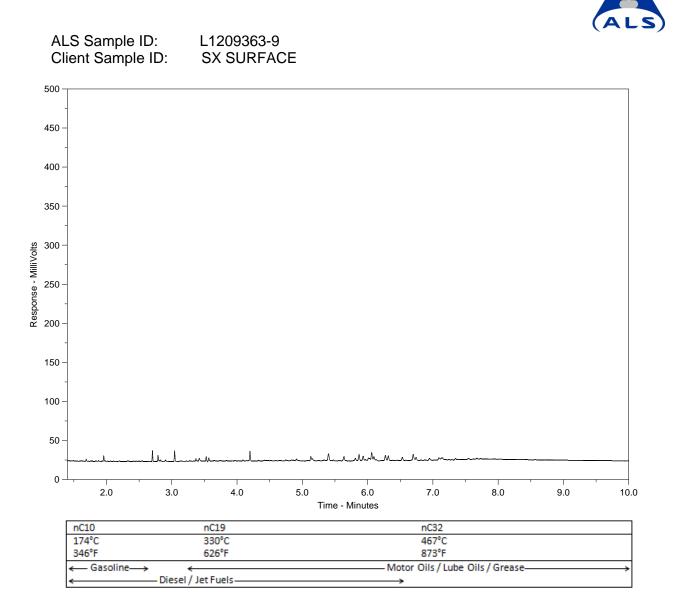
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

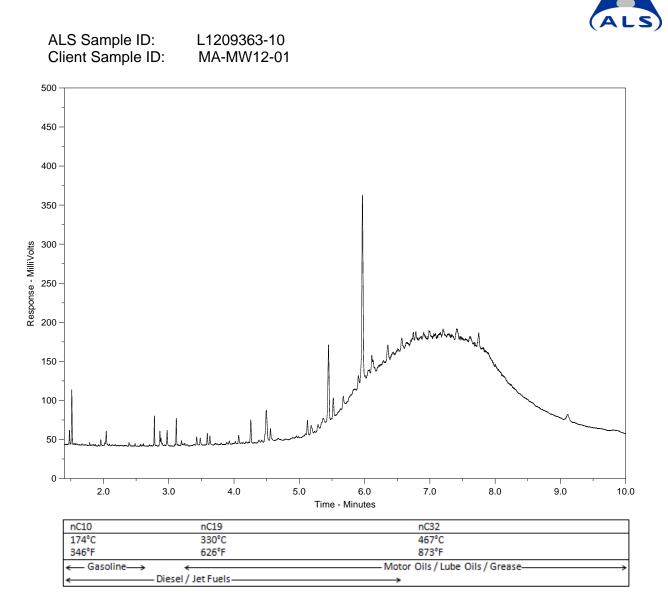
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

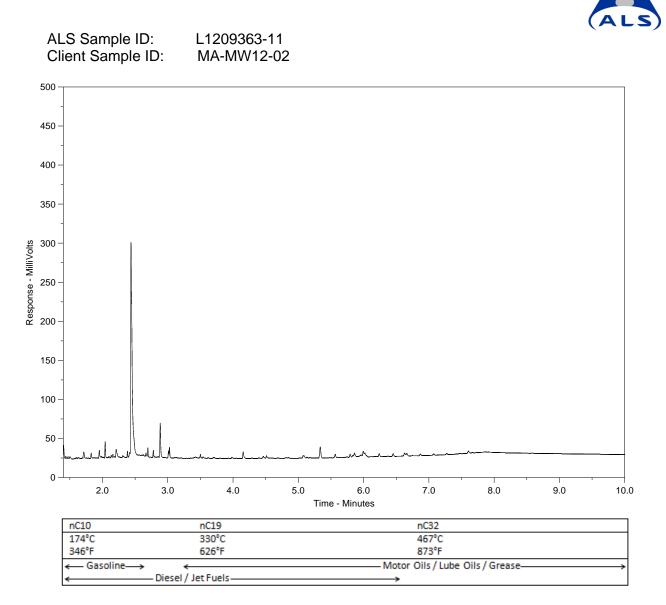
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

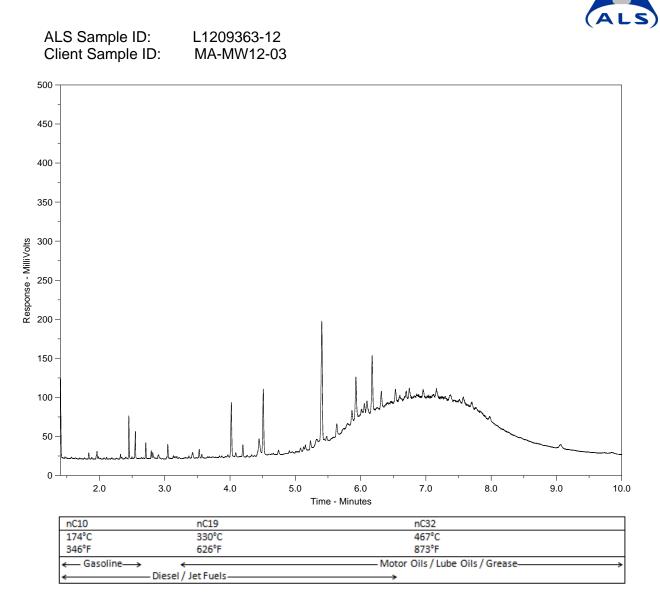
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

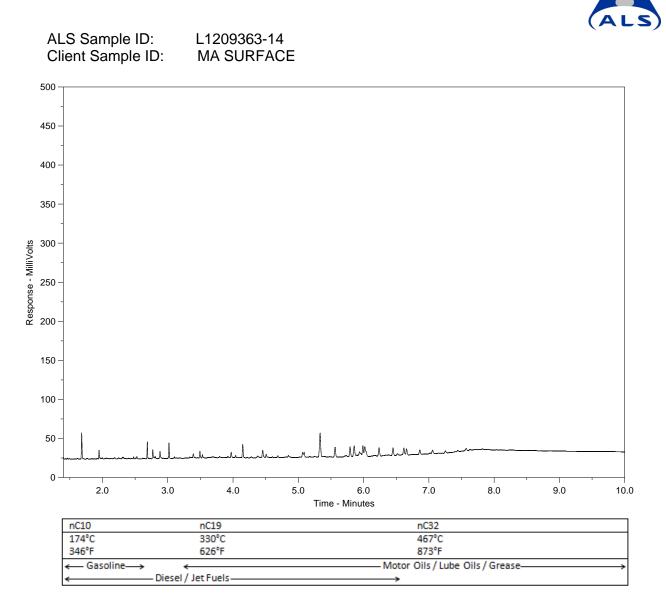
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

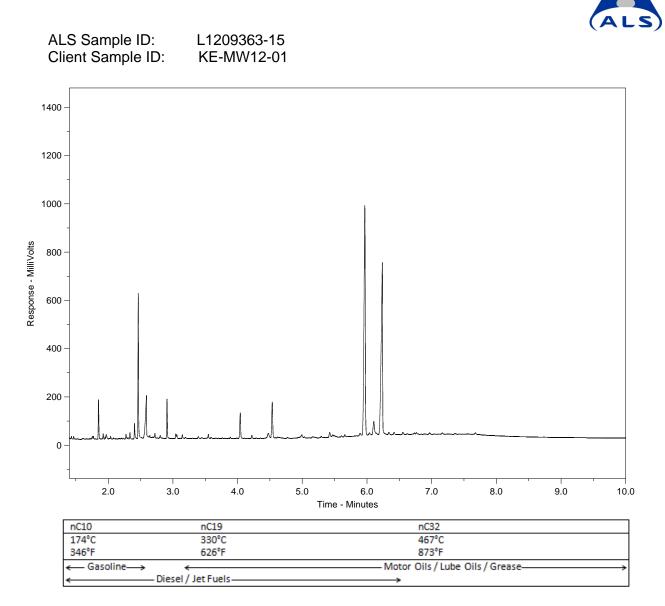
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

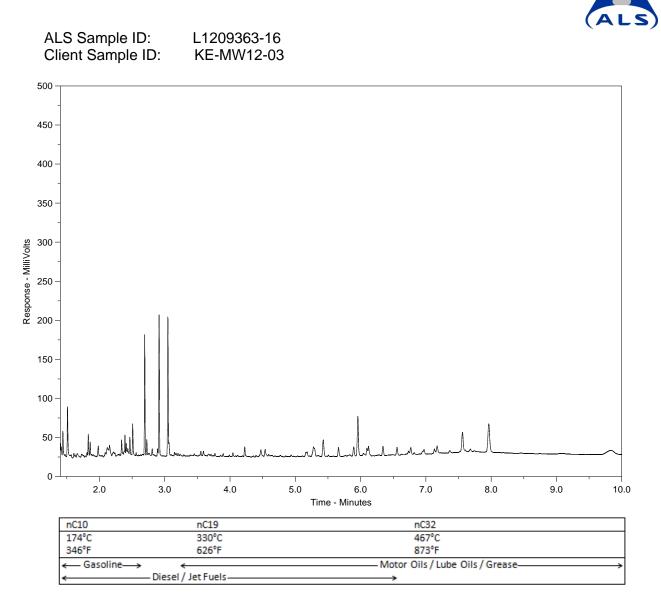
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

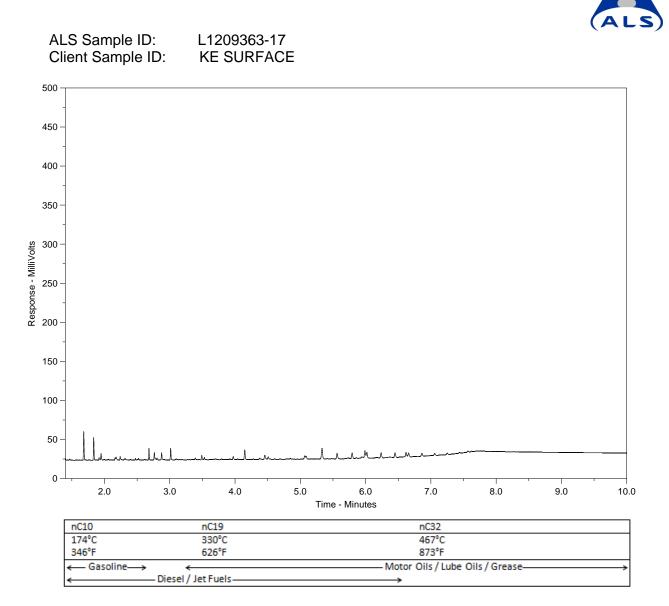
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Digital

Fax

Report Format / Distribution

√ Standard

✓ PDF

Email 1:

Other

✓ Excel

andrea badger@golder.com

COC#

Service Requested (Rush for routine analysis subject to availability)

O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT

O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT

O Same Day or Weekend Emergency - Contact ALS to Confirm TAT

Regular (Standard Turnaround Times - Business Days)

Page

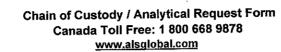
1	of	2	

	onmental
Report To	

Golder Associates

203 170 Titanium Way

Andrea Badger


Company:

Contact:

Address:

	Whitehorse, YT Y1A 0G1			Email 2:	gary hamilton@	golder.com		Same Day or Weekend Emergency - Contact ALS to Confirm 1A1 Analysis Request											
Phone:	867-633-6076	Fax:		Email 3:	calvin beebe@	golder.com									or both		E/P)		
nvoice To	Same as Report ?	✓ Yes	No	Client /	Project Informati	on		Plea	se indi	cate be		Itereo	I, Pres		or both	(r, r, T	г <i>л</i> г) Г		
	Invoice with Report?	Yes	No No	Job #:	11-1436-0073/1	200, 2200, 240	00, 2700					<u> </u>							
Company:	·····			PO / AF	E:			×											
Contact:				LSD:				2XX							.		1	20	
Address:	•	······					• · ·	202		: ·	·		-					aine	
hone:		Fax:		Quote #	·			96				1				1			
Lab V	Vork Order # o use only)	L12093	63	ALS Contact	t:	Sampler:	A Badger	er 11-1436-0072/xxxx		-								Number of Containers	
Sample		Sample Ide			Date	(hh:mm)	Sample Type	As per										Nun	
#	(This	description will a	ppear on the re	port)	(dd-mmm-yy)			_ X				+						8	
	PC-MW12-01				09-Sep-12	15:40	Groundwater					+						8	
	PC-MW12-02				10-Sep-12	10:20	Groundwater	X		_	_					+	+	8	
	PC-MW12-03				10-Sep-12	11:30	Groundwater	X		_			<u> </u>	L				<u>+</u>	
	PC Surface		·	······································	13-Sep-12	13:30	Surface Water	Х										8	
	SX-MW12-01	·····			12-Sep-12	10:40	Groundwater	Х										8	
					10-Sep-12	16:30	Groundwater	X										8	
	SX-MW12-02				10-Sep-12	17:45	Groundwater	X										8	
	SX-MW12-03				10-Sep-12	16:30	Groundwater	X	- †									8	
	SX-MW12-04				_	13:20	Surface Water	x			-	-						8	
	SX Surface			·····	12-Sep-12			x	┝━╀							+	+	8	
	MA-MW12-01				11-Sep-12	10:45	Groundwater	<u> </u>			_}_	+						1 8	
	MA-MW12-02				11-Sep-12	12:30	Groundwater	X						┢──┤╸			- {		
	MA-MW12-03				11-Sep-12	14:15	Groundwater	X						<u> </u>			<u> </u>		
	Special Instru	uctions / Regula	tions with wat	er or land use (C	CME-Freshwater	Aquatic Life/E	BC CSR - Commer	cial/A	B Tier	1 - Na	tural,	etc) /	Hazar	dous	Jetails				
PC Surface	, SX Surface, MA-MW samples for DOC are	12-02 and MA-M	W12-03 sample	es for dissolved m	etals are not filtere	d or preserved											_		
NOTE OF THE	samples for DOC are		Tallung to con	plete all portions	s of this form ma	y delay analys	is. Please fill in th	is foi	m LEC	iBLY.	arata I	Evcal	tah						
		By the use of t	his form the u	ser acknowledge	s and agrees wit	h the Terms a	nd Conditions as p le container / pres	irovi0 servat	tion / h	a sepi oldino	i time	table	for co	mmon	analy	ses.			
			ab are the ALS	S location addres	ises, phone num	TION (jah use)	only)	T		SHI	MEN	T VEF	RIFICA	TION (lab use	only)			
Released I	SHIPMENT RELE		Time (hh-mm)	Received by:	Date:	Time:	Temperature:		ified by			ate:		Time		Ot Ye	serva s / No	?	
audar - Driv	dece	14_Sen_12	10:30	You -	18-LP-	210:50	3.200									_	es ac		
Andrea Bad	dger	14-Sep-12	10:30	Su-	14-24-1	410.50	31200							<u> </u>	GE	_		es au 01 Froi	

COC #

Page <u>2</u> of <u>2</u>

_

		Report Format / Distribution												Service Requested (Rush for routine analysis subject to availability)											
Report To	Golder Associates	Standard				Regula																			
sompany.		PDF	Excel	Digital																					
	Andrea Badger		andrea badger(O Emerge										J									
laaroos.	Whitehorse, YT Y1A 0G1		gary hamilton@			O Same I	Day or W	eekend I						rm TAT											
			calvin beebe@							-		quest													
	867-633-6076 Fax: Same as Report ? Yes		oject Informati			Please	indicat	te belov	v Filt	tered,	Pres	erved	or be	oth (F,	P, F/P)	_									
	Invoice with Report? Yes No		11-1436-0073/1		0, 2700											4									
		PO / AFE:		· · · · · · · · · · · · · · · · · · ·		,										1									
Company: Contact:		LSD:		· · · ·		X							1			s s									
Address:						12								ŀ	•	iner									
Phone:	Fax:	Quote #:			•	ğ						·				nta									
	Vork Order #	ALS				1 43										ုဂ္ဂ									
		Contact:		Sampler:	A Badger											er o									
	Sample Identification		Date	Time		As per 11-1436-0072/xxxx										Number of Containers									
Sample	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	As I										<u>n</u> Z									
#	MA-MW12-04		11-Sep-12	15:15	Groundwater	X									_	8									
	MA Surface		12-Sep-12	18:30	Surface Water	X										8									
e di finiti Tana	KE-MW12-01		13-Sep-12	9:25	Groundwater	X										8									
	KE-MW12-03		13-Sep-12	9:55	Groundwater	X										8									
			11-Sep-12	19:15	Surface Water	X		T						i		8									
	KE Surface					1 1-		1 1								·									
			· · · · · · · · · · · · · · · · · · ·			+ +		┨┈┥																	
						+		╉┈╌┠	_																
											<u> </u> _					+									
]														
	· · · · · · · · · · · · · · · · · · ·									1	Γ					_									
						┼━┼╴		┼━─┦		1		1													
					0.007.0.0		Fior 1	Natur	al of	tc)/b	12721		Deta	ils											
	Special Instructions / Regulations with water or	land use (CCI	ME-Freshwater	Aquatic Life/B	C CSR - Comme	CIAI/AD		Matur	ai, ci																
PC Surface,	, SX Surface, MA-MW12-02 and MA-MW12-03 samples for	dissolved meta	als are not filtere	d or preserved																					
None of the	samples for DOC are filtered or preserved Failure to complete				s Please fill in t	his form	LEGIB	BLY.							-										
	m in the form the year of	knowlodgee	and arrees with	the Terms an	d Conditions as	provided	onas	separa	te Ex	kcel t	ab.														
	By the use of this form the user at Also provided on another Excel tab are the ALS loca	tion addresse	es, phone numb	ers and samp	le container / pre	servatio	17 11010	անց ա		able i		ommo	n ana	alyses	i.										
	SHIPMENT RELEASE (client use)	SHIF	MENT RECEP	FION (lab use o	nly)		5	SHIPM			FICA		(1000	use or		- 47 -									
Released b	Dece	ved by:	Date:	Time:	Temperature:	Verifie	d by:		Dat	le:		Tim	e:		Observ Yes / N										
Released D		-			•(<u>.</u>						1			If Yes a										
Andrea Bad	lger 14-Sep-12 10:30					<u> </u>								GENF	18.01 Fr	ont									

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada T: +1 (604) 296 4200

