February 23, 2013

# HYDROGEOLOGICAL ASSESSMENT

# Stewart Crossing Solid Waste Disposal Facility

#### Submitted to:

Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services Infrastructure Development Branch PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

REPORT

Report Number: Distribution: 1114360073-512-R-Rev0-2700

2 Copies - Yukon Government Community Services 2 Copies - Golder Associates Ltd.





# **Executive Summary**

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Stewart Crossing Solid Waste Disposal Facility (the "Facility" or "Site") is one of the facilities included in the program. A multiphase approach was implemented at each Facility in order to carry out the hydrogeological assessment. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. The sixth and final phase resulted in a draft of this Hydrogeological Assessment Report, documenting the results of the investigation.

In summary, the information obtained during the Hydrogeological Assessment indicated the following:

- Site Description: The Stewart Crossing Solid Waste Disposal Facility is located in the central portion of Yukon, within the Yukon Plateau (North) Ecological Region, and in the Na Cho Nyak Dun and Selkirk First Nations' traditional territory, at latitude 63° 20' north, and longitude 138° 53' west. The Facility is located on a 6.35 hectare Reserve Parcel to the Government of Yukon (Parcel ID Number 115P07-0000-00020). It is accessed off the west side of the Klondike Highway at kilometre 535, approximately 250 km north of Whitehorse, and 4.6 kilometres south of Stewart Crossing. The Facility serves as a domestic solid waste disposal facility for approximately 35 residents from the community of Stewart Crossing and Selkirk First Nation residents. The Facility accepts residential, commercial, industrial, and demolition wastes. Hazardous waste such as batteries, waste oils, and tires are stored in waste segregation areas on-Site and removed annually or when volumes warrant. Domestic waste is burned to reduce volume prior to burial at the Site. In a territory-wide attempt to phase out burning at solid waste facilities, it is anticipated that by June 2012, domestic waste will be collected on-Site and transferred to Mayo. No evidence of spills or discharges was observed during the Site reconnaissance.
- Site Topography: The Facility is at an elevation of approximately 550 m (1,800 feet) above sea level and lies within the Crooked Creek and Stewart River watersheds. A cleared area of approximately 32,000 square meters, which slopes gently to the north, is present at the Facility. Local surficial geology is mapped as gently rolling blanket till deposits, consisting of mixed rock fragments, silt, clay, and sand.
- Stratigraphy and Hydrogeology:
  - Subsurface conditions were investigated with the installation of three monitoring wells, including SX-MW12-01, SX-MW12-02, and SX-MW12-03, which were completed on July 19, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
  - The Site stratigraphy, based on the depth drilled, consists of 0.3 m to 2.0 m of sand overlying bedrock, drilled to a maximum depth of 31.4 metres below grade (m bg);







- Water was encountered in fractured bedrock during the drilling and installation of three monitoring wells at a depth of between 23.2 and 31.4 m bg;
- A series of hydraulic response tests were performed at the Site. The results of these tests indicate the hydraulic conductivity of the bedrock underlying the Site ranges from 1 x 10<sup>-4</sup> m/s to 6 x 10<sup>-6</sup> m/s. These values are considered reasonable for fractured bedrock;
- The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.05 m/m, sloping to the north;
- Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between  $1 \times 10^{-4}$  m/s and  $5 \times 10^{-7}$  m/s (approximately 0.04 to 9 metres per day); and
- Based on the groundwater flow direction determined from the initial groundwater monitoring event, SX-MW12-01 and SX-MW12-02 are both located downgradient of waste disposal areas at the Site and BU-MW12-03 is located upgradient of the Site; Therefore, the requirement of a minimum two downgradient wells has been met.
- Groundwater Chemistry:
  - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life are applicable to the Site;
  - Groundwater samples were collected from monitoring wells SX-MW12-01, SX-MW12-02, and SX-MW12-03, and a surface water sample was collected from the Stewart River located approximately 5 km north of the Facility, during one sampling event on September 10 and 12, 2012; and
  - Results of groundwater quality analysis on samples taken from monitoring wells at the Site indicated that landfill leachate was influencing groundwater quality in SX-MW12-01 and SX-MW12-02. The level of chloride in samples taken from SX-MW12-01 and SX-MW12-02 was above the range normally associated with naturally occurring groundwater and the concentration of cadmium and cobalt exceeded CSR criteria for freshwater aquatic life in the sample collect at SX-MW12-01.

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report and a moderate level of concern with potential impact of landfill leachate on groundwater quality:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;
- Groundwater quality at the Facility should be revaluated following two rounds of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Particular attention should be given to the analytes exceeding Yukon CSR standards, and an effort should be made to identify sources of groundwater contamination.





# **Study Limitations**

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Stewart Crossing Solid Waste Disposal Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, installation of monitoring wells, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.





# **Table of Contents**

| 1.0 |        |                                                                          |    |  |
|-----|--------|--------------------------------------------------------------------------|----|--|
|     | 1.1    | Background                                                               | 1  |  |
|     | 1.2    | Purpose and Objectives                                                   | 1  |  |
|     | 1.3    | Scope and Sequence of Work                                               | 1  |  |
|     | 1.4    | Qualifications of Assessors                                              | 2  |  |
|     | 1.5    | Authorization                                                            | 3  |  |
| 2.0 | SITE D | ESCRIPTION AND HISTORY                                                   | 3  |  |
|     | 2.1    | Site Location                                                            | 3  |  |
|     | 2.2    | Site History                                                             | 3  |  |
| 3.0 | METHO  | DDOLOGY                                                                  | 3  |  |
|     | 3.1    | Preliminary Hydrogeological Assessment                                   | 3  |  |
|     | 3.1.1  | Data Sources                                                             | 4  |  |
|     | 3.1.2  | Site Inspections                                                         | 5  |  |
|     | 3.1.3  | Background Geological Information Sources                                | 5  |  |
|     | 3.1.4  | Contaminated Sites Registry                                              | 5  |  |
|     | 3.1.5  | Review of Solid Waste Disposal Facility Permit and Waste Management Plan | 5  |  |
|     | 3.1.6  | Review of Environment Yukon Information                                  | 6  |  |
|     | 3.2    | Field Investigations                                                     | 6  |  |
|     | 3.2.1  | Scope of Field Investigations                                            | 6  |  |
|     | 3.2.2  | Groundwater Monitoring Well Network                                      | 7  |  |
|     | 3.2.3  | Monitoring Well Surveying                                                | 8  |  |
|     | 3.2.4  | Groundwater Monitoring Event                                             | 8  |  |
|     | 3.2.5  | Rising Head Hydraulic Response Tests                                     | 9  |  |
|     | 3.3    | Laboratory Analysis                                                      | 9  |  |
|     | 3.4    | Quality Assurance / Quality Control                                      | 9  |  |
|     | 3.5    | Application of Applicable Water Quality Standards                        | 10 |  |
| 4.0 | CONC   | EPTUAL HYDROGEOLOGICAL MODEL                                             | 12 |  |
|     | 4.1    | Setting                                                                  | 12 |  |





### STEWART CROSSING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

|     | 4.2             | Climate                                                         | 12 |  |
|-----|-----------------|-----------------------------------------------------------------|----|--|
|     | 4.3             | Geology and Hydrogeology                                        | 12 |  |
|     | 4.3.1           | Geological Framework                                            | 12 |  |
|     | 4.3.2           | Principal Aquifer                                               | 13 |  |
|     | 4.4             | Groundwater Flow Systems                                        | 13 |  |
|     | 4.4.1           | Regional Groundwater Flow                                       | 13 |  |
|     | 4.4.2           | Local Groundwater Flow                                          | 13 |  |
|     | 4.5             | Hydraulic Response Tests                                        | 13 |  |
|     | 4.6             | Estimated Linear Groundwater Velocity                           | 14 |  |
|     | 4.7             | Potential Contamination of Groundwater and Transport Mechanisms | 14 |  |
| 5.0 | GROUN           | NDWATER IMPACT ASSESSMENT                                       | 15 |  |
|     | 5.1             | Review of Groundwater Chemistry                                 | 15 |  |
|     | 5.2             | Interpretation of Groundwater Chemistry                         | 17 |  |
| 6.0 | CONCL           | USIONS                                                          | 18 |  |
| 7.0 | RECOMMENDATIONS |                                                                 |    |  |
| 8.0 | .0 CLOSURE      |                                                                 |    |  |





#### STEWART CROSSING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

#### TABLES

| Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements | 6  |
|---------------------------------------------------------------------------------------------|----|
| Table 2: Well Construction Details                                                          | 8  |
| Table 3: Monitoring Well Locations and Groundwater Elevations September 10, 2012            | 8  |
| Table 4: Parameters Analyzed in September 2012                                              | 9  |
| Table 5: Review of QA/QC Procedures Taken                                                   | 9  |
| Table 6: Applicable Water Quality Standards                                                 | 11 |
| Table 7 Aquifer Units Encountered at the Site                                               | 13 |
| Table 8: Estimated Hydraulic Conductivity                                                   | 14 |
| Table 9: Important Groundwater Chemistry Results                                            | 15 |

#### FIGURES

Figure 1: Key Plan
Figure 2: Site Plan and Cross-Section Location
Figure 3: Regional Surficial Geology
Figure 4: Cross Section A-A'
Figure 5: Regional Drainage and Land Zoning
Figure 6: Monitoring Well Location Map and Groundwater Elevation
Figure 7: Schoeller Plot
Figure 8: Piper Plot
Figure 9: Stiff Diagram

APPENDICES

APPENDIX A Site Photographs

APPENDIX B Well Construction Logs

APPENDIX C Well Development and Sampling Sheets

APPENDIX D Slug Test Data

APPENDIX E Analytical Reports and Chain of Custody Forms

## 1.0 INTRODUCTION

## 1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Stewart Crossing Solid Waste Disposal Facility (the "Facility" or the "Site") is one of the sites included in the program. This report presents the findings of our investigation.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, accepted by Yukon Government Community Services on October 7, 2011, and additional works detailed in our letter dated April 26, 2012 and accepted April 30, 2012.

## **1.2 Purpose and Objectives**

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies potential contaminant source(s), pathways, and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions, and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

## **1.3 Scope and Sequence of Work**

The following scope of work was proposed to develop the conceptual hydrogeological model for the Site and installation of a monitoring well network. This work was performed in accordance with the Waste Management Permit (Permit No. 80-009 effective June 17, 2010 to December 31, 2011), relevant Environment Yukon Protocols, and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (Document Number 2011-0284-025-1).





In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised the preparation of a draft of this Hydrogeological Assessment Report, documenting the results of this investigation.

## 1.4 Qualifications of Assessors

#### **Project Manager**

The role of Project Manager was filled by Gary Hamilton, P.Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant Hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work and reviewed this assessment report.

#### **Project Director**

The role of Project Director was filled by Guy Patrick, P.Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior Hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

#### Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. degree in Hydrogeology from Saint Francis Xavier University (2012). He has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger, who joined Golder in May 2012. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, and Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon since beginning work at Golder. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.





## 1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in out letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

## 2.0 SITE DESCRIPTION AND HISTORY

## 2.1 Site Location

The Stewart Crossing Solid Waste Disposal Facility is located in the central portion of Yukon, within the Na Cho Nyak Dun and Selkirk First Nations' traditional territory, at latitude 63° 20' north, and longitude 138° 53' west. The Facility is located on a 6.35 hectare Reserve Parcel to the Government of Yukon (Parcel ID. No.115P07-0000-00020). It is accessed off the west side of the Klondike Highway at kilometre 535, approximately 250 km north of Whitehorse, and 4.6 kilometres south of Stewart Crossing (Figure 1).

## 2.2 Site History

The Facility serves as a domestic solid waste disposal facility for approximately 35 residents from the community of Stewart Crossing and the Selkirk First Nation. The Facility accepts residential, commercial, industrial, and demolition wastes. Hazardous waste such as batteries, waste oils, and tires are stored in waste segregation areas on-Site and removed annually or when volumes warrant. Domestic waste is burned to reduce volume prior to burial at the Site. As of anticipated date of June 2012, domestic waste will be transferred to the Mayo SWDF. No evidence of spills or discharges was observed during the Site reconnaissance.

# 3.0 METHODOLOGY

## 3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a desktop review and interpretation of existing information, and an inspection of the Facility. The initial inspection of the Facility was conducted on October 19, 2011, and a follow up inspection was conducted on July 19, 2012. The purpose of the preliminary hydrogeological assessment was to identify the appropriate drilling methods, equipment, and potential well locations for the installation of a monitoring well network. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.







#### 3.1.1 Data Sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Access Consulting Group and G. J. Bull and Associates Inc., *Solid Waste Management Plan: Stewart Crossing*, Prepared for Yukon Community Services, Community Development Branch. 2003.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Environment Canada, Meteorological Service of Canada Last Modified 2012-05-29, Website: http://www.climate.weatheroffice.ec.gc.ca/climate\_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., *Applied Hydrogeology*, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Government of Yukon. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171, Schedule 3 - Generic Numerical Water Standards.
- Government of Yukon, Yukon Community Services, Community Services Infrastructure Branch, *Solid Waste Operation Plan: Stewart Crossing*, 2011.
- Government of Yukon, Yukon Environment, *Protocol for the Contaminated Sites Regulation Under the Environment Act.* 2011.
- Government of Yukon, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS
- Government of Yukon, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands
- Government of Yukon, Yukon Water, Water Data Catalogue Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/
- Government of Yukon, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006- Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api\_ngwds:gin/en/wmc/aquifermap.html
- Hughes, O. L., 1983. Surficial Geology and Geomorphology, Stewart Crossing, Yukon Territory, Geological Survey of Canada, Unpublished.
- Site inspections of October 19, 2011 and July 19, 2012.
- Surveys and Mapping Branch, Department of Energy, Mines, and Resources. The Atlas of Canada Website: *http://atlas.nrcan.gc.ca/site/english/maps/topo/map* Map 115 P/7, scale 1:50,000.





#### 3.1.2 Site Inspections

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the field work. The health and safety plan included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 19, 2011 and July 19, 2012. The initial Site visit was conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data. Proposed monitoring well locations were also reviewed for access constraints. During the second Site visit, the monitoring wells were drilled and installed. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

### 3.1.3 Background Geological Information Sources

Geological information was obtained through a review of topographic and geological maps from the Department of Energy Mines and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Data Catalogue did not identify water testing results within the vicinity of the Facility.

#### 3.1.4 Contaminated Sites Registry

A Site Registry search was conducted by Yukon Environment on December 1, 2011. The search identified no contaminated site files or spill reports for the Stewart Crossing Solid Waste Disposal Facility; however, it was noted that the Facility does not have any analytical results in the file to compare against Yukon Contaminated Site Regulation (CSR) standards to determine if any contamination exists. It was also noted that the Facility was largely unmonitored, and that there may have been opportunity for improper disposal and potentially unreported spillage of contaminants during its operation.

#### 3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Waste Management Permit No. 80-009 was issued on June 17, 2010 for the Facility. It states that the Facility is to be operated in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations.

Monitoring requirements set out in Waste Management Permit 80-009 include:

- Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sampling of downgradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outlined in Section 3.3;



- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011 standards; and
- Submitting monitoring results to Environment Yukon by January 31 each year.

A summary of the Facility permits and groundwater monitoring requirements for the Site are summarized in Table 1 below.

#### Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

| Site                                              | Site Disposal<br>Facility Permit<br>Number | Permit Type | Solid Waste<br>Management Plan                          | Required<br>Groundwater<br>Monitoring |
|---------------------------------------------------|--------------------------------------------|-------------|---------------------------------------------------------|---------------------------------------|
| Stewart Crossing Solid<br>Waste Disposal Facility | 80-009                                     | Landfill    | Community Services<br>Operations and<br>Programs (2011) | Twice Per Year                        |

#### 3.1.6 Review of Environment Yukon Information

Golder reviewed documents pertaining to the Stewart Crossing Facility on the Yukon Environment and Socioeconomic Board (YESAB) online registry on November 25, 2012. Documents reviewed included: the most current waste facility permit issued for the Facility, the most current Solid Waste Operation Plan, and the Yukon Environmental and Socioeconomic Act Decision Document.

## 3.2 Field Investigations

#### 3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Three (3) on-Site monitoring wells were completed by Midnight Sun Drilling under the supervision of Golder Associates on July 19, 2012;
- Monitoring wells were developed and sampled by Golder on September 10 and 12, 2012. The water level at each well was measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent to ALS Environmental Laboratory in Whitehorse, YT;
- Slug tests were carried out on monitoring wells SX-MW12-02 and SX-MW12-03 to assess horizontal hydraulic conductivity and linear groundwater velocity at the Site; and
- Results of field and laboratory data are summarized and interpreted in this report.





#### 3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken in general accordance with Yukon CSR Protocol (Yukon Environment, 2011).

Three groundwater monitoring wells were proposed for installation at the Site to characterize groundwater conditions underlying the waste disposal Facility. A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. SX-MW12-03 was intended to characterize upgradient groundwater conditions, while SX-MW12-01 and SX-MW12-02 were intended to assess groundwater conditions downgradient of the landfill. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, Site topography, suspected groundwater flow direction, and a Site inspection.

Specifics for each well are listed below:

- SX-MW12-01 was installed in the northeast corner of the Site, and advanced to a depth of 31.4 m below grade (bg);
- SX-MW12-02 was installed in the northwest corner of the Site, and advanced to a depth of 31.4 m bg; and
- SX-MW12-03 was installed on the south edge of the Site, and advanced to a depth of 27.4 m bg.

Wells were installed using a Driltech Marlin 5 truck-mounted air rotary drill rig.

Grab samples of drill cuttings were taken at regular intervals to log the stratigraphy encountered in each borehole. Borehole logs, documenting observed stratigraphy, along with well construction details, are provided in Appendix B. A summary of the stratigraphy and well construction details is provided in Table 2.

Each monitoring well was completed with the top of the well screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated conditions.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm, flush threaded Schedule 40 PVC casing;
- A 3 m long, PVC, factory-slotted well screen (10-slot) was installed in SX-MW12-01 and SX-MW12-02;
- SX-MW12-03 was fitted with a 6 m long, PVC, factory-slotted well screen (10-slot);
- PVC casing was installed above the well screen to between 0.5 and 0.95 m above grade;
- A silica sand filter pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1 m above the top of the screened interval;
- A bentonite chip seal, approximately 1 m thick, was placed directly above the sand pack. The remainder of the annulus was filled with bentonite grout;
- Each well was covered with a PVC end-cap and a lockable steel protective casing was installed to protect the wellhead; and
- All wells were developed by removing a minimum of three well volumes using dedicated Waterra<sup>™</sup> tubing and a Hydrolift<sup>™</sup> pump or hand bailer. Development logs are provided in Appendix C.



| Well ID    | Drilled Depth<br>(m bg) | Aquifer Unit<br>Monitored | Casing<br>Diameter (mm) | Screened<br>Interval (m bg) | Filter Pack<br>Interval (m bg) |
|------------|-------------------------|---------------------------|-------------------------|-----------------------------|--------------------------------|
| SX-MW12-01 | 31.4                    | Bedrock                   | 50                      | 28.4 – 31.4                 | 27.7 – 31.4                    |
| SX-MW12-02 | 31.4                    | Bedrock                   | 50                      | 28.4 – 31.4                 | 27.1 – 31.4                    |
| SX-MW12-03 | 27.4                    | Bedrock                   | 50                      | 21.3 – 27.4                 | 19.5 – 27.4                    |

#### **Table 2: Well Construction Details**

## 3.2.3 Monitoring Well Surveying

Golder carried out a level survey to determine the vertical elevation to the top of the PVC wellhead (measuring point) for each well on July 19, 2012. For the purposes of the level survey, the initial elevation was surveyed relative to the top of PVC pipe at SX-MW12-02, which was estimated, using topographic data, to be 551.95 masl. Relative elevation between wells, as determined from the level survey, has a precision of ±1 cm. Table 3 presents a summary of survey data and water level measurements (recorded on August 10, 2012).

| Well ID    | UTM Coordinates<br>(Zone 8 North) | Top of PVC Casing<br>Elevation (~masl) | Standing Water<br>Level (mbtoc) | Groundwater<br>Elevation (~masl) |
|------------|-----------------------------------|----------------------------------------|---------------------------------|----------------------------------|
| SX-MW12-01 | 7024616 m N<br>417036 m E         | 552.27                                 | 16.9                            | 535.37                           |
| SX-MW12-02 | 7024637 m N<br>416923 m E         | 551.95                                 | 17.5                            | 534.45                           |
| SX-MW12-03 | 7024491m N<br>416955 m E          | 556.38                                 | 14.4                            | 541.98                           |

#### Table 3: Monitoring Well Locations and Groundwater Elevations September 10, 2012

## 3.2.4 Groundwater Monitoring Event

Golder developed the monitoring wells on September 10, 2012. Due to logistical constraints, wells could not be developed immediately following installation.

All three wells were purged and sampled from September 10 to September 12, 2012. The procedure used for sampling adhered as nearly as possible CSR Protocol No. 7. Prior to purging each well, the water level was first measured with an electronic measuring tape. Between one and three well volumes were purged from each well, using 5/8 in. high density polyethylene (HDPE) Waterra<sup>™</sup> tubing, a foot valve, and a Hydrolift<sup>™</sup> pump. During purging, physiochemical parameters (pH, temperature, EC) were collected at regular intervals using a Hanna Instruments HI 991300 meter, and purging continued until field parameters were stable before sampling. Response in SX-MW12-01 was too slow to sample immediately following purging. The well was bailed dry on September 10, and a sample was collected 44 hours later on September 12. Groundwater development and sampling datasheets are presented in Appendix C. In addition to the three groundwater monitoring wells that were sampled, a surface water sample was collected from the Stewart River 5 km north of the Site (Figure 1).





Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field filtered using 0.45-micron, in-line filters and preserved with nitric acid. Samples were kept in coolers with ice packs prior to their delivery, and were delivered within appropriate holding times. ALS is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025.

#### 3.2.5 Rising Head Hydraulic Response Tests

Hydraulic response (slug) tests were performed on September 12, 2012, to assess the hydraulic conductivity of the surficial aquifer underlying the Site. Tests were performed using a 1.5 m long, solid 38 mm diameter PVC slug and a Solinst Levelogger pressure transducer set to measure head fluctuations at one-second intervals. Manual water level measurements were also recorded throughout the tests.

A summary of the analysis of these tests is provided in Section 4.5.

## 3.3 Laboratory Analysis

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Waste Management Permit (Permit No. 80-009).

Sampling and analysis were undertaken in general accordance with Yukon CSR Protocols 2 and 5 (Government of Yukon, 2011).

| Sample ID                      | General<br>Parameters | Nutrients    | Dissolved<br>Metals | PAH, BTEX,<br>DOC | VOCs         |
|--------------------------------|-----------------------|--------------|---------------------|-------------------|--------------|
| SX-MW12-01                     | $\checkmark$          | $\checkmark$ | $\checkmark$        | $\checkmark$      |              |
| SX-MW12-02                     | $\checkmark$          | $\checkmark$ | $\checkmark$        | $\checkmark$      |              |
| SX-MW12-03                     | $\checkmark$          | $\checkmark$ | $\checkmark$        | $\checkmark$      | $\checkmark$ |
| Stewart Crossing Surface Water | $\checkmark$          |              |                     | $\checkmark$      |              |

#### Table 4: Parameters Analyzed in September 2012

## 3.4 Quality Assurance / Quality Control

Table 5 provides a detailed description of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

| Table 5. Neview of WARdon Toccures Taken |                                                                                                                                     |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| QA/QC Aspect                             | Evidence and Evaluation                                                                                                             |  |  |  |  |
| Data Representativeness                  |                                                                                                                                     |  |  |  |  |
| Sample Integrity                         | All samples were kept at the appropriate temperature and delivered to the laborator within the appropriate holding times.           |  |  |  |  |
| Background Samples                       | SX-MW12-03 is shown to be located upgradient of the Facility and is used to provide background levels of physiochemical parameters. |  |  |  |  |

#### Table 5: Review of QA/QC Procedures Taken





#### STEWART CROSSING SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

| QA/QC Aspect                   | Evidence and Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Field Procedures               | Monitoring wells were purged and/or developed and sampled using dedicated tubing.<br>Equipment used in sampling more than one well was decontaminated using soap<br>(Alconox <sup>™</sup> ) and distilled water. Surface water samples were collected using<br>one-time-use syringes.                                                                                                                                                                       |  |  |
| Calibration of Field Equipment | Calibration of field equipment was undertaken daily, prior to sampling wells.                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Data Precision and Accuracy    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Blind Duplicate                | One blind duplicate was collected from Faro monitoring well FA-MW12-04 during the August/September 2012 groundwater monitoring event (Report # 1114360073-1100). Of the 110 analyte pairs tested, RPD values could not be calculated for 89 of the pairs, as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining analyte pairs tested, 1 exceeded the RPD acceptance criteria of ±30% and only 2 exceeded 5%. |  |  |
| Trip Blanks                    | A trip blank was not collected during the September 2012 groundwater monitoring event.                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Laboratory Internal QA/QC      | Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the lab report showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates, and matrix spikes.                                                                                                                                                                                                                             |  |  |
| Holding Times                  | Samples were delivered outside the acceptable (24 hour) hold time for physical parameters, however field parameters were taken during sample collection to compensate. Analysis for Nitrate and VOC's took place 1 - 2 days outside the recommended hold time.                                                                                                                                                                                              |  |  |
| Laboratory Detection Limit     | Laboratory reports indicate that detection limits were below the standards applicable to this assessment.                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Completeness of test program   | Wells were sampled in accordance with the Site Assessment and Work Plan criteria.                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Validity of Data Set           | The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.                                                                                                                     |  |  |
| Charge Balance                 | Charge balance was calculated on each of the samples analyzed by the laboratory. Percent error in charge balance for all samples was below 3.1%.                                                                                                                                                                                                                                                                                                            |  |  |

## 3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and a downgradient surface water receptor were sampled and tested for the following parameters:

- Major ions (Ca, Mg, Na, K, Cl, SO<sub>4</sub>, N, NO<sub>2</sub>, NO<sub>3</sub> and P)
- Dissolved Metals
- Mercury
- Hardness
- Alkalinity
- Carbonate

- Bicarbonate
- pH
- Total dissolved solids
- Ammonia
- Dissolved organic carbon
- VOCs

- Chemical oxygen demand
- Total Kjeldahl Nitrogen
- EPH<sub>w10-32</sub> & VH<sub>w6-10</sub>
- BTEX
- PAHs





Groundwater and surface water analytical results were compared to the Yukon CSR water quality standards or to the Canadian Environmental Quality Guidelines for constituents where no Yukon standards were available.

The four types of water uses outlined in the CSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

| Water Use      | Applicable Water Quality Standard                               | Applicable Plume<br>Radius (km) | Applicability to<br>Assessment |
|----------------|-----------------------------------------------------------------|---------------------------------|--------------------------------|
| Aquatic Life   | Schedule 3 – Contaminated Sites<br>Regulation (O.I.C. 2002/171) | 1.0                             | Applicable                     |
| Drinking Water | Schedule 3 – Contaminated Sites<br>Regulation (O.I.C. 2002/171) | 1.5                             | Not Applicable                 |
| Irrigation     | Schedule 3 – Contaminated Sites<br>Regulation (O.I.C. 2002/171) | 1.5                             | Not Applicable                 |
| Livestock      | Schedule 3 – Contaminated Sites<br>Regulation (O.I.C. 2002/171) | 1.5                             | Not Applicable                 |

#### **Table 6: Applicable Water Quality Standards**

The following discusses the applicability of each water quality standard to the Facility.

#### **Aquatic Life**

A search of the Yukon Lands viewer website, conducted by Golder November 26, 2012, showed no water bodies falling within a 1 km radius of the Site, as specified in the CSR, under which aquatic life standards are applied. A review of Google Earth images from 2012, conducted by Golder on the same day, identified several stream channels and wetlands within 1 km of the Site. Conservatively assuming that these water bodies meet the Yukon CSR criteria for surface water bodies, it was determined that aquatic life standards were **applicable** for the Facility.

#### **Drinking Water**

A search of drinking water wells on the Groundwater Information Network website and the Yukon Water Data Catalogue (accessed November 26, 2012) showed no drinking water wells located along the predicted downgradient direction between the Site and the Stewart River, nor in any other area within a 1.5 km radius of the Site. A review of the Solid Waste Operation Plan for Stewart Crossing indicated that the nearest dwelling to the Site is located approximately 2 km west of the Facility. It was therefore determined that CSR drinking water standards were **not applicable** for the Stewart Crossing Facility.

#### **Irrigation and Livestock**

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on November 26, 2012, showed no irrigation wells or wells for livestock on record for the Stewart Crossing area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible





that there are irrigation wells or wells for livestock in the area. A review of Google Earth Images from 2012, conducted by Golder on November 26, 2012, as well as several visits to the Facility conducted in July and September 2012 showed no agricultural land within 1.5 km of the Facility. It was therefore considered that CSR water quality standards for irrigation and livestock are **not applicable** to the Stewart Crossing Facility.

# 4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

## 4.1 Setting

The Facility is at an elevation of approximately 550 m (1,800 feet) above sea level within the Tintina Trench in the Yukon Plateau (North) Ecological Region. The Site is located in the Crooked Creek and Stewart River watersheds. A cleared area of approximately 32,000 square meters, which slopes gently to the north, is present at the Facility. In addition to the waste disposal Facility, a seepage pit it also located at the Site. Local surficial geology is mapped as gently rolling blanket till deposits, consisting of mixed fragments, silt, clay, and sand.

## 4.2 Climate

Climate data at the Site is likely similar to that at the Mayo Airport climate station (Climate ID 2100700), located approximately 50 kilometres northeast of the Facility at an elevation of approximately 503 m above sea level. Average monthly precipitation reported at the Mayo Airport station ranges from a low average of 9.2 mm in April to a high average of 54.4 mm in July. The average annual precipitation is approximately 312 mm, including 147 cm as snowfall. Temperature ranges from a low average of -31° C in January to a high average of 22.7° C in July (Environment Canada, 2012).

Annual precipitation is relatively low (approximately 300 mm per year). This suggests that the amount of infiltration of water through buried waste at the Site and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. The greatest potential for infiltration of water through the waste is during the spring snow melt; however, a significant portion of the water from snow melt would typically occur as surface runoff during this period.

# 4.3 Geology and Hydrogeology

#### 4.3.1 Geological Framework

The central Yukon, including the Stewart Crossing area, has undergone several episodes of glaciation. During the last glaciation (~200 kya), sediments such as glacial till, glaciofluvial, and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Stewart River Valley, located downgradient of the Site, and the Tintina Trench.

The Stewart Crossing area is mapped as being underlain primarily by moraine deposits, alluvium, and glaciofluvial deposits of Quaternary origin. Ablation till, colluvial glacial debris, morainal deposits, and bedrock exposures are found at higher elevations in the mountains surrounding the Site.





Surficial geology maps published by the Yukon Geological Survey indicate natural surficial materials at the Facility are gently sloping moraine till deposits. In general, deposits consist of well compacted to non-compacted sediments comprised of mixed rock fragments, mud (silt and clay), and sand (Hughes, 1983). The thickness of the unconsolidated sediments was found to be approximately 0 - 2 m thick at the Site.

### 4.3.2 Principal Aquifer

As shown in Figure 4, it is inferred that groundwater at the Site occurs in a fractured bedrock water bearing zone. For the purpose of this report, this aquifer has been named the Bedrock Aquifer (Table 7).

| Aquifer Name    | Location                               | Aquifer Type   | Comments                                                                                                     |
|-----------------|----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------|
| Bedrock Aquifer | SX-MW12-01<br>SX-MW12-02<br>SX-MW12-03 | Fractured Rock | <ul> <li>Hydraulic conductivity varies<br/>based on presence and orientation<br/>of the fractures</li> </ul> |

#### Table 7 Aquifer Units Encountered at the Site

## 4.4 Groundwater Flow Systems

#### 4.4.1 Regional Groundwater Flow

Regional topography slopes from south to north along the Tintina Trench. Groundwater elevation is predicted to be a subdued replica of topography in most locations, and flow to the north, discharging primarily to the Stewart River.

#### 4.4.2 Local Groundwater Flow

Topography in the area surrounding the Facility slopes from a local topographic high, located to the southeast of the Site (elevation approximately 580 m amsl), to the north towards the Stewart River (elevation 480 m amsl).

Golder used the groundwater depth data from September 10, 2012 and well survey elevation information collected in July 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations are presented in Table 3.

Local groundwater flow direction at the Site is inferred, from groundwater elevations in the newly installed monitoring well network, to be to the north (Figure 6), towards the Stewart River. The horizontal hydraulic gradient at the Site was estimated to be approximately 0.05 m/m.

## 4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on two newly installed monitoring wells at the Facility. The slug tests were analyzed using AQTESOLV version 4.5, and the results are included in Appendix D. Table 8 provides a summary of the findings.





| Monitoring Well ID | Primary Hydrogeological<br>Unit | Solution Used      | Calculated Hydraulic<br>Conductivity (m/s) |  |
|--------------------|---------------------------------|--------------------|--------------------------------------------|--|
| SX-MW12-02         | Sand and Gravel                 | Bouwer-Rice (1976) | 1 x 10 <sup>-4</sup>                       |  |
| SX-MW12-03         | Sand and Gravel                 | Bouwer-Rice (1976) | 6 x 10 <sup>-6</sup>                       |  |

#### **Table 8: Estimated Hydraulic Conductivity**

## 4.6 Estimated Linear Groundwater Velocity

As determined from the slug tests summarized in Table 8, the hydraulic conductivity of the shallow aquifer underlying the Site is ranges between  $1 \times 10^{-4}$  m/s and  $6 \times 10^{-6}$  m/s. The horizontal hydraulic gradient across the Site was assessed, using the monitoring well network, to be approximately 0.05 m/m to the north. A range of reasonable linear groundwater velocities is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s);
K: is the hydraulic conductivity in m/s as determined by slug testing;
i: is the horizontal hydraulic gradient (m/m); and
n: is the porosity which is estimated to be approximately between 5% and 60% for fracture dominated metamorphic rocks (Fetter, 1994).

The resulting groundwater velocity is estimated to be between  $1 \times 10^{-4}$  m/s and  $5 \times 10^{-7}$  m/s (approximately 0.04 to 9 metres per day). Groundwater at the Site may travel faster or slower than these estimates due to inaccuracies or seasonal variations in these parameters.

# 4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, hydrogeological investigation, and contaminant transport principals. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, metals, wood, construction debris, and any other potential waste disposed of at the Facility. Potential contaminates leaching from these sources include: heavy metals, nutrients (NO<sub>3</sub>, NH<sub>3</sub>), organic hydrocarbons (Fuels, PAH's, chlorinated hydrocarbons), and salts; and
- Leakage and spillage from on-Site hydrocarbon storage areas;





Transport mechanisms that may act on these sources of contamination and cause potential contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone; and
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

# 5.0 GROUNDWATER IMPACT ASSESSMENT

## 5.1 **Review of Groundwater Chemistry**

As discussed in Section 3.2.4, one round of groundwater monitoring was conducted on the three newly installed monitoring wells at the Stewart Crossing Solid Waste Disposal Facility and one surface water sampling location downgradient from the Site on September 10 and 12, 2012. Chain of custody forms for the groundwater samples collected, the complete groundwater chemistry results, and QA/QC data can be found in Appendix E. Table 9 summarizes parameters from the groundwater chemistry results, which are used to identify potential leachate contamination.

| Sample Location | Total Dissolved<br>Solids (mg/L) | Chloride<br>(mg/L) | Ammonia<br>(mg/L) | Sulphate<br>(mg/L) | DOC<br>(mg/L) | Sodium<br>(mg/L) |
|-----------------|----------------------------------|--------------------|-------------------|--------------------|---------------|------------------|
| SX-MW12-01      | 1470                             | 431                | 0.0122            | 63.0               | 3.32          | 21.8             |
| SX-MW12-02      | 6390                             | 2010               | <0.0050           | 83                 | 4.12          | 32.8             |
| SX-MW12-03      | 227                              | 0.97               | <0.0050           | 12.0               | 2.93          | 6.6              |
| Surface Water   | 160                              | <0.50              | 0.0110            | 18.6               | 4.26          | 2.4              |

#### **Table 9: Important Groundwater Chemistry Results**

## **Total Dissolved Solids**

Total dissolved solids (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by, for example, landfill leachate. Typically, major ions that comprise TDS include: NO<sub>3</sub>, NH<sub>3</sub>, Na, K, Mg, Ca, SO<sub>4</sub>, Cl, and HCO<sub>3</sub>. Concentration of TDS in the sample taken from SX-MW12-03, the upgradient well, was 227 mg/L which is considered to be within the normal range for naturally occurring groundwater. The TDS concentration in the surface water sample was lower (160 mg/L). TDS in samples taken from the two downgradient monitoring wells, SX-MW12-01 and SX-MW12-02 (1470 mg/L and 6390 mg/L respectively), were elevated above the background levels, and were above the normal range for naturally occurring groundwater. TDS concentrations in the two downgradient wells are indicative of landfill leachate influencing the quality of groundwater underlying the Site.





#### **Dissolved Organic Carbon**

Dissolved organic carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L. DOC levels from all monitoring wells at the Stewart Crossing Site ranged from 2.93 mg/L to 4.12 mg/L. The level of DOC detected in the surface water sample (4.26 mg/L) was well within the range of values associated with naturally occurring surface water. DOC concentrations in both groundwater and surface water samples did not indicate influence that landfill leachate is influencing groundwater quality underlying the Site.

#### Chloride

Chloride is often used as a tracer for anthropogenic influence on groundwater. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride might be expected due to degradation of waste with a high chloride concentration. The chloride concentration measured in the surface water sample was below the detection limit. Chloride concentration in the sample taken from SX-MW12-03, the upgradient well, was 0.97 mg/L which is considered to be within the normal range for naturally occurring groundwater. Chloride concentrations in samples taken from the two downgradient monitoring wells, SX-MW12-01 and SX-MW12-02, were elevated above the background levels, were above the normal range for naturally occurring groundwater, and are indicative of influence of landfill leachate on the groundwater underlying the Site.

#### Ammonia

Ammonia is a typical landfill leachate indicator. Ammonia concentrations in the groundwater samples were below the detection limit of 0.005 mg/L with exception of SX-MW12-01 which had a concentration of 0.0122 mg/L. The ammonia concentration in the surface water sample was slightly above the detection limit (0.0110 mg/L). None of the ammonia concentrations indicated influence from landfill leachate on groundwater underlying the Site.

#### **Metals**

Metal concentrations of cadmium and cobalt exceeded the Yukon CSR standards for freshwater aquatic life in monitoring well SX-MW12-01. All other metal concentrations were below the Yukon CSR standards.

#### Organics

Detectable levels of organic constituents are often a sign of leachate contamination. All samples were analyzed for the following hydrocarbons: BTEX, PAH,  $EPH_{w10-32} \& VH_{w6-10}$ , and MTBE. Levels of MTBE were above the detection limit in the sample from SX-MW12-02. Since MTBE is not present in naturally occurring groundwater, this result suggests that water quality of the groundwater underlying the Site is influenced by landfill leachate.





## 5.2 Interpretation of Groundwater Chemistry

Factors that may affect natural groundwater quality include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;
- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in groundwater. The ionic composition of water can be used to classify the water into ionic types based on the dominant dissolved cation and anion, expressed in milliequivalents per litre (meq/L). These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to identify differences in water chemistry by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of major cations and anions, and may be used to identify different water types. Here, the Schoeller plot indicates that the groundwater quality in the water samples taken from the downgradient monitoring wells (SX-MW12-01 and SX-MW12-02) differs significantly from sample taken from the upgradient well (SX-MW12-03) and the surface water sample. Key differences visible in the Schoeller Plot are an increase in total concentration of major ions, and enrichment in chloride over the upgradient sample.
- Piper: The Piper diagram (Figure 8) is used to compare the ratios of major ions and can be used to identify different water types. The Piper diagram illustrates that the background sample and the surface water sample have similar ratios of major ions, and are typed as Ca-HCO<sub>3</sub> and Ca-Mg-HCO<sub>3</sub> type water respectively. It also shows that the two downgradient groundwater samples are similar to one another, but distinct from the background and surface water samples, being enriched in chloride over bicarbonate. The two downgradient monitoring well samples are classified as Ca-Cl type water.
- Stiff: The stiff diagram allows for differences in groundwater chemistry to be presented and viewed spatially. Here, the stiff diagram shows that the surface water sample and the sample from SX-MW12-03 are different from samples taken from SX-MW12-01 and SX-MW12-02.

Elevated concentrations of chloride and TDS in samples taken from monitoring wells SX-MW12-01 and SX-MW12-02, when compared to the background sample (SX-MW12-03), indicate that landfill leachate is influencing the quality of groundwater underlying the Site.



## 6.0 CONCLUSIONS

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

- Stratigraphy and Hydrogeology:
  - Subsurface conditions were investigated with the installation of three monitoring wells, including SX-MW12-01, SX-MW12-02, and SX-MW12-03, which were completed on July 19, 2012, under the supervision of Golder Associates for the establishment of a monitoring well network at the Site;
  - The Site stratigraphy, based on the depth drilled, consists of 0.3 m to 2.0 m of sand overlying bedrock, drilled to a maximum depth of 31.4 metres below grade (m bg);
  - Water was encountered in fractured bedrock during the drilling and installation of three monitoring wells at a depth of between 23.2 and 31.4 m bg;
  - A series of hydraulic response tests were performed at the Site. The results of these tests indicate the hydraulic conductivity of the bedrock underlying the Site ranges from 1 x 10<sup>-4</sup> m/s to 6 x 10<sup>-6</sup> m/s. These values are considered reasonable for fractured bedrock;
  - The horizontal hydraulic gradient at the Site was determined, using monitoring well water level data, to be approximately 0.05 m/m, sloping to the north;
  - Average linear groundwater seepage velocity in the surficial aquifer is estimated to range between 1 x 10<sup>-4</sup> m/s and 5 x 10<sup>-7</sup> m/s (approximately 0.04 to 9 metres per day); and
  - Based on the groundwater flow direction determined from the initial groundwater monitoring event, SX-MW12-01 and SX-MW12-02 are both located downgradient of waste disposal areas at the Site and BU-MW12-03 is located upgradient of the Site; Therefore, the requirement of a minimum two downgradient wells has been met.
- Groundwater Chemistry:
  - The results of a desktop study and several Site visits indicate that the Yukon Contaminated Sites Regulation (CSR) standards for freshwater aquatic life are applicable to the Site;
  - Groundwater samples were collected from monitoring wells SX-MW12-01, SX-MW12-02, and SX-MW12-03, and a surface water sample was collected from the Stewart River located approximately 5 km north of the Facility, during one sampling event on September 10 and 12, 2012; and
  - Results of groundwater quality analysis on samples taken from monitoring wells at the Site indicated that landfill leachate was influencing groundwater quality in SX-MW12-01 and SX-MW12-02. The level of chloride in samples taken from SX-MW12-01 and SX-MW12-02 was above the range normally associated with naturally occurring groundwater and the concentration of cadmium and cobalt exceeded CSR criteria for freshwater aquatic life in the sample collect at SX-MW12-01.





## 7.0 RECOMMENDATIONS

The following recommendations are made, based on the results of the 2012 hydrogeological assessment presented in this report and a moderate level of concern with potential impact of landfill leachate on groundwater quality:

- As required by the Facility's Waste Management Permit, future groundwater monitoring should be conducted twice a year (spring and late summer);
- Monitoring well location, elevation for ground surface, and the elevation of the top of the PVC standpipe (measuring point) should be surveyed for each well by a professional land surveyor prior to the next monitoring event;
- Groundwater quality at the Facility should be revaluated following two rounds of groundwater monitoring to determine if there are any potential impacts present from landfill leachate; and
- Particular attention should be given to the analytes exceeding Yukon CSR standards, and an effort should be made to identify sources of groundwater contamination.

## 8.0 CLOSURE

We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information, please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

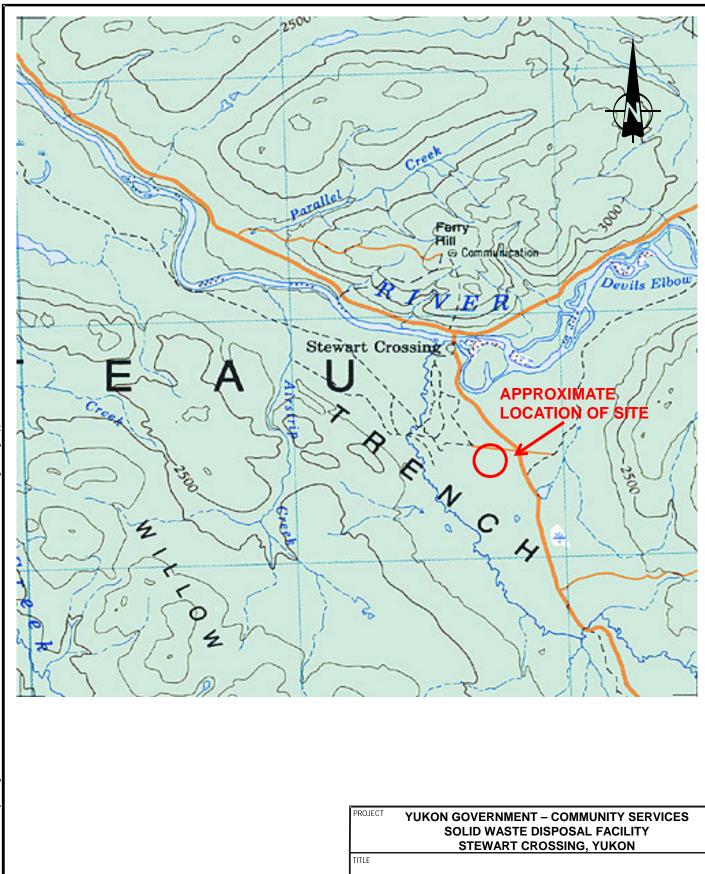
## **ORIGINAL SIGNED**

Calvin Beebe, M.Sc. Hydrogeologist

## **ORIGINAL SIGNED**

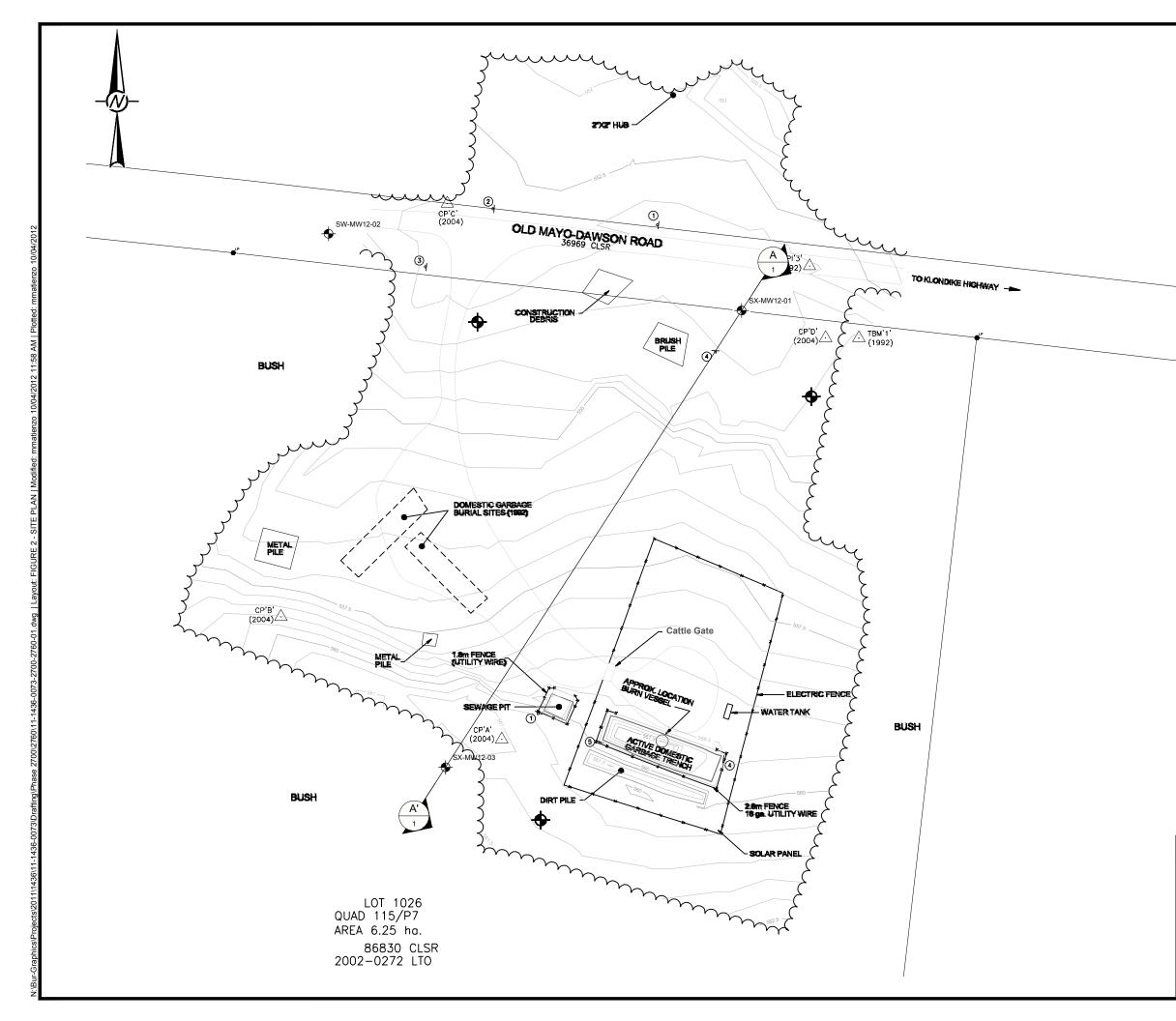
Gary Hamilton, P.Geo. Principal Hydrogeologist

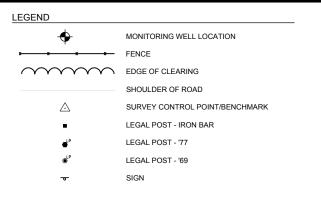
Reviewed By:


## **ORIGINAL SIGNED**

Guy C. Patrick, P.Eng. Principal Senior Hydrogeologist

JT\GJH\GCP\syd


o:\final\2011\1436\11-1436-0073\1114360073-512-r-rev0-2700\1114360073-512-r-rev0-2700\hydrogeo assess 23feb\_13.docx






## **KEY PLAN**

| Ē          | PROJECT No. 11-1436-0073 |     |         | PHASE No. 2700 |      |  |
|------------|--------------------------|-----|---------|----------------|------|--|
| Golder     | DESIGN                   | SYD | 23FEB13 | SCALE          | REV. |  |
| Colder     | CADD                     |     |         |                |      |  |
|            | CHECK                    |     |         | FIGURE 1       |      |  |
| Associates | REVIEW                   |     |         |                |      |  |



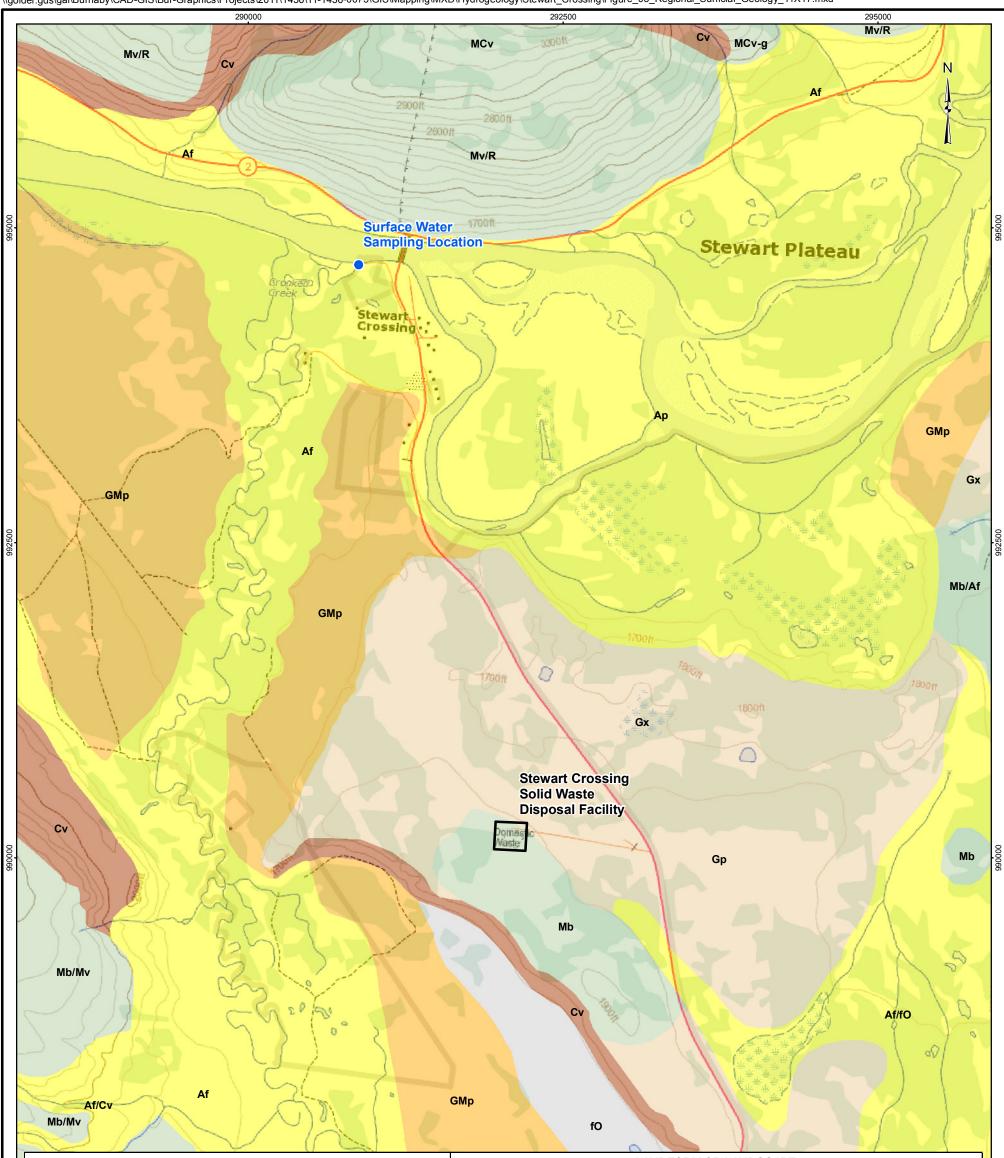


#### NOTES

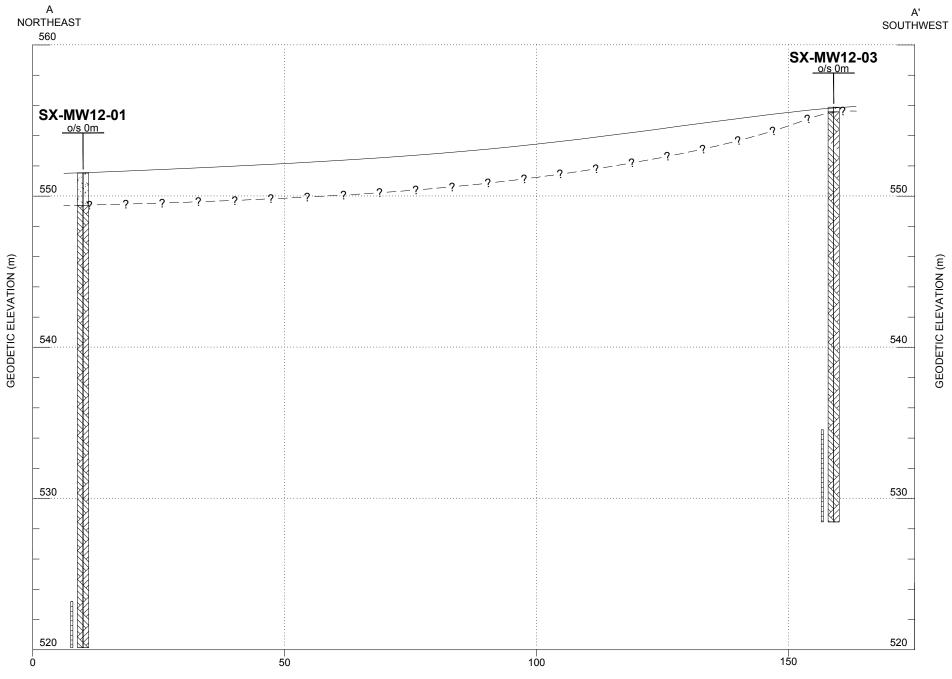
 BASE PLAN PROVIDED BY QUEST ENGINEERING GROUP CAD FILE: STEWART CROSSING.DWG DATED: 2004.09.23

#### REFERENCES

1. SITE PLAN IS NOT CONSITENT WITH OBSERVED CONDITION DURING DRILLING, BUT IS INTENDED TO SHOW LOCATIONS OF NEWLY INSTALLED MONITORING WELLS IN RELATION TO BURIED STRUCTURES.



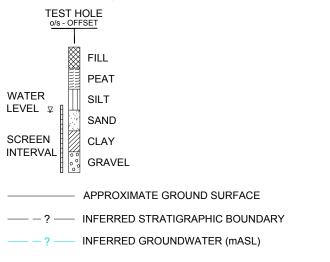

ROJECT YUKON GOVERNMENT-COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY STEWART CROSSING, YUKON


# SITE PLAN AND CROSS-SECTION LOCATION

| -            | PROJECT N | lo. 1 | 1-1436-0073 | FILE No. 11-1436 | 6-0073-2700-2760-01 |
|--------------|-----------|-------|-------------|------------------|---------------------|
|              | DESIGN    | CB    | 04OCT12     | SCALE            | AS SHOWN            |
| Golder       | CADD      | MM    | 04OCT12     |                  |                     |
| Associates   | CHECK     |       |             | FIGURE 2         | JRE 2               |
| 215500010005 | REVIEW    |       |             |                  |                     |

\\golder.gds\gal\Burnaby\CAD-GIS\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Stewart\_Crossing\Figure\_03\_Regional\_Surficial\_Geology\_11X17.mxd




| -                        |                            |                                                                                                                         | LANDFORM OR LANDSCAPE          |                                                                                                                                                                                                                                |  |  |
|--------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          |                            | MATERIAL                                                                                                                | ORIGIN                         | TOPOGRAPHY                                                                                                                                                                                                                     |  |  |
|                          | Gp                         | Sand and Gravel with a thin blanket of silt or peat                                                                     | Outwash plain                  | Flat to gently sloping, terraced in places, pitted. 3 to 60 m thick.                                                                                                                                                           |  |  |
|                          | Mb                         | Mixed silt clay and sand                                                                                                | Undifferentiated Till          | Generallyflat                                                                                                                                                                                                                  |  |  |
| -                        | Ap                         | Gravel with a veneer of sand and silt. Significant organic content.                                                     | Aluvial Floodplain             | Generally well drained with few channels. Averages between 3 and 10 m thick                                                                                                                                                    |  |  |
|                          | Gx                         | gravel, sand and silt                                                                                                   | Undifferentiated Glaciofluvial | Tin veneer conforming to underlying topograpy                                                                                                                                                                                  |  |  |
| 1                        | 5 1                        |                                                                                                                         | GMp                            |                                                                                                                                                                                                                                |  |  |
| EGEND                    |                            | 290000                                                                                                                  | 292500                         | 295000                                                                                                                                                                                                                         |  |  |
| <ul> <li>BUII</li> </ul> | ILITY<br>LDING<br>IOR ROAD |                                                                                                                         |                                | SCALE 1:30,000 KILOMETRES                                                                                                                                                                                                      |  |  |
|                          | TERCOURSE<br>TERBODY       |                                                                                                                         |                                | YUKON GOVERNMENT - COMMUNITY SERVICES<br>SOLID WASTE DISPOSAL FACILITY<br>STEWART CROSSING, YUKON                                                                                                                              |  |  |
|                          |                            |                                                                                                                         |                                |                                                                                                                                                                                                                                |  |  |
| SURFICIAL G              | BTAINED FROM               | I GEOGRATIS (NATURAL RESOURCES CANADA).<br>OBTAINED FROM THE YUKON GOVERNMENT, ENERGY, MINES AND RESOUCES.<br>V: ALBERS |                                | PROJECT NO.       11-1436-0073       PHASE NO.       2700         DESIGN       CB       6 Nov.       2012       SCALE AS SHOWN       REV         Greater       Vancouver       Office, B.C.       REVIEW       FIGURE:       3 |  |  |



DISTANCE (m)

## LEGEND

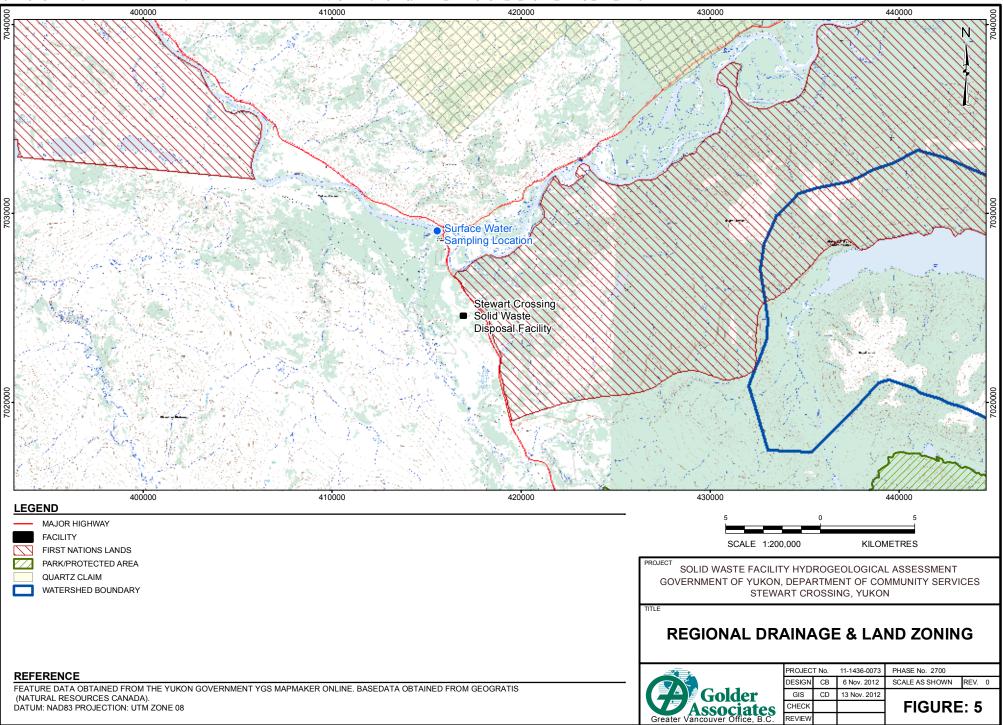
TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX ?).



SPECIAL NOTE: DATA CONCERNING THE VARIOUS STRATA HAVE BEEN OBTAINED AT TEST HOLE LOCATIONS ONLY. THE SOIL STRATIGRAPHY BETWEEN TEST HOLES HAS BEEN INFERRED FROM GEOLOGICAL EVIDENCE AND MAY VARY FROM THAT SHOWN.



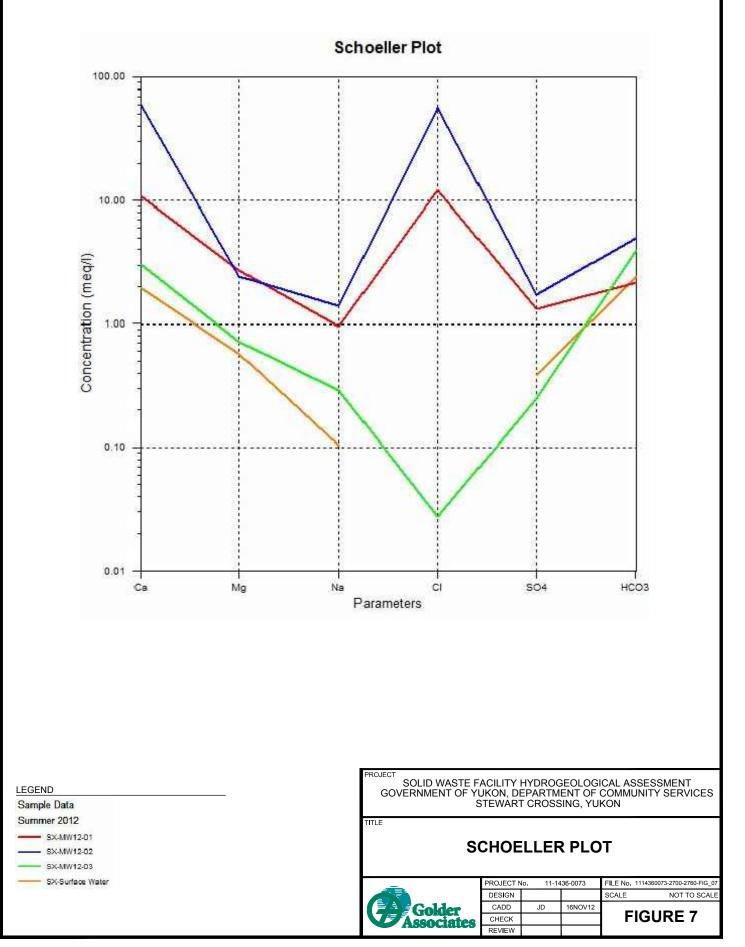


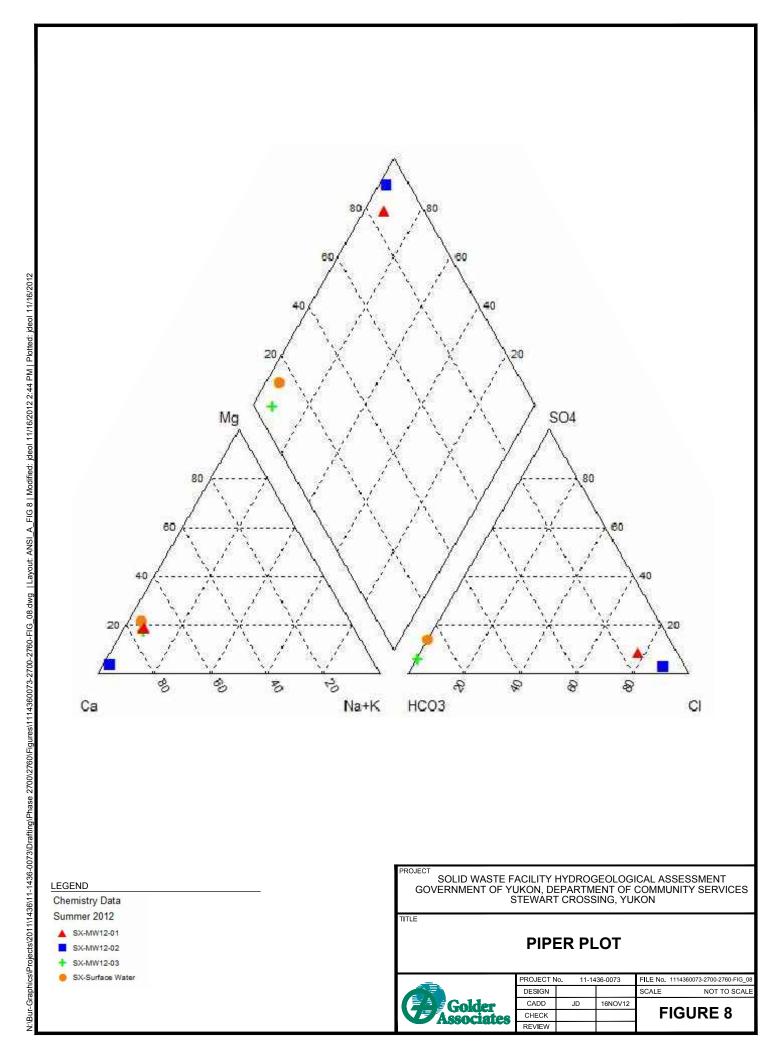

TITLE

GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES STEWART CROSSING, Y.T.

#### CONCEPTUAL HYDROGEOLOGICAL **CROSS - SECTION A-A'**

|              | PROJECT N | lo. | 11-1436-0073 | FILE No. | 1114360073-2700-2760-02 |
|--------------|-----------|-----|--------------|----------|-------------------------|
|              | DESIGN    | GJH | 240CT12      | SCALE    | AS SHOWN                |
| Golder       | CADD      | JHL | 07NOV12      |          |                         |
| Associates   | CHECK     | GCP |              | ] F      | IGURE 4                 |
| - Hosterates | REVIEW    |     |              |          |                         |


\lgolder.gds\gal\Burnaby\CAD-GIS\Bur-Graphics\Projects\2011\1436\11-1436-0073\GIS\Mapping\MXD\Hydrogeology\Stewart\_Crossing\Figure\_05\_Regional\_Drainage\_Land\_Zoning.mxd






golder.gds/ga/burmaby/CAD-GIS/Bur-Graphics/Projects/2011/1436/11-1436-0073/GIS/Mapping/MXD/Hydrogeology/Stewart\_Crossing/Figure\_06\_Borehole\_location.mxd

11/1436/11-1436-0073/Drafting/Phase 2700/2760/Figures/1114360073-2700-2760-FIG\_07.dwg | Layout: ANSI\_A\_FIG 7 | Modified: jdeol 11/16/2012 2:40 PM | Plotted: jdeol 11/16/2012 201 hics/Pr N-/B







lgolder.gds/ga/burnaby/CAD-GIS/Bur-Graphics/Projects/2011/1436/11-1436-0073/GIS/Mapping/MXD/Hydrogeology/Stewart\_Crossing/Figure\_09\_Stiff\_Diagrams.mxd





**Site Photographs** 







Photograph 1: The active burn vessel in the southern portion of the Site.



Photograph 2: Looking northwest across the Site at the burn vessel, access road, and sewage pit.







Photograph 3: A view along the eastern fence-line off the Facility showing the burn vessel and emergency water tank.

o:\final\2011\1436\11-1436-0073\1114360073-512-r-rev0-2700\appendices\app a\site photos.docx





# **APPENDIX B**

**Well Construction Logs** 



| PROJECT No.: | 11-1436-0073 (2700) |  |
|--------------|---------------------|--|
|              | wart Crossing       |  |

LOCATION: Stewart Crossing N: 7024616 E: 417036

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 1 OF 4 DATUM:

| ALE                   | , | тнор                                                   | SOIL PROFILE                                          |                                            |                    | SAM  | -          | -        |            | ID<br>pm      |    |          |     |     | 0 |             |          |          |          |          | JAL<br>ING                 | PIEZOMETEF<br>STANDPIPE<br>OR<br>THERMISTOF<br>INSTALLATIO | R,      |
|-----------------------|---|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|--------------------|------|------------|----------|------------|---------------|----|----------|-----|-----|---|-------------|----------|----------|----------|----------|----------------------------|------------------------------------------------------------|---------|
| DEPTH SCALE<br>METRES |   | BORING METHOD                                          | DESCRIPTION                                           | LOI LUI LUI LUI LUI LUI LUI LUI LUI LUI LU | NUMBER             | TYPE | BLOWS/0.3m | CORE No. | RECOVERY % | 5<br>ID<br>pm | 1  | 0        | 15  | 20  |   | WA1<br>Wp H |          |          | IT PER   |          | ADDITIONAL<br>LAB. TESTING | THERMISTOF                                                 | R<br>)N |
|                       |   | BO                                                     | Ground Surface                                        |                                            | +                  | i    | B          |          | 22         | 50            | 1( | 0        | 150 | 200 | ) |             |          |          |          | 0        | _                          | Stickup = 0.74m                                            |         |
|                       | 0 | M5 Drittech Truck Mounted Auger Dril Rig<br>Air Rotary | Ground Surface<br>(SP) fine SAND, light brown, moist. | 549.40<br>2.13                             |                    |      |            |          |            |               |    |          |     |     |   |             |          |          |          |          |                            | Stickup = 0.74m                                            |         |
| н 1                   | 0 | _L                                                     |                                                       |                                            | $\left  + \right $ | -    | -          | -+       |            |               |    |          | -   | -+  |   |             |          | <u> </u> | <u> </u> | <u> </u> |                            |                                                            |         |
| 8                     |   | РТН :<br>50                                            | SCALE                                                 | <u>   </u>                                 |                    |      |            |          |            |               |    | <u> </u> |     |     |   | <u> </u>    | <u> </u> | 1        | L        | L<br>LO  | GGEE<br>CHEC               | ): AB<br>KED: <b>DRA</b>                                   | FT      |

| PROJECT No .: | 11-1436-0073 (2700) |  |
|---------------|---------------------|--|
|               |                     |  |

LOCATION: Stewart Crossing N: 7024616 E: 417036

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 2 OF 4 DATUM:

| 9                                                                                   | Б                                                       | SOIL PROFILE                          |             |                       |        | SA   | MPL        | ES       | _                  | PID<br>ppm            |         |              | Ð      |              |           |           |                          | łg r                       | PIEZOMETER,<br>STANDPIPE                                     |
|-------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-------------|-----------------------|--------|------|------------|----------|--------------------|-----------------------|---------|--------------|--------|--------------|-----------|-----------|--------------------------|----------------------------|--------------------------------------------------------------|
| METRES                                                                              | BORING METHOD                                           | DESCRIPTION                           | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE | BLOWS/0.3m | CORE No. | CORE<br>RECOVERY % | 5<br>PID<br>ppm<br>50 | 10<br>1 |              | 20<br> | Wp           |           | /         | L<br>CENT<br>–I WI<br>10 | ADDITIONAL<br>LAB. TESTING | PIEZOMETER,<br>STANDPIPE<br>OR<br>THERMISTOR<br>INSTALLATION |
| 10 - 11<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 -<br>DEI<br>1 : | M5 Drittech Truck Mounted Auger Drill Rig<br>Air Rotary | BEDROCK, light grey, dry. (continued) |             |                       |        |      |            |          |                    |                       |         |              |        |              |           |           |                          |                            | Bentonite Seal                                               |
| 20                                                                                  |                                                         |                                       |             | [                     | Γ      | Γ    | 1_         |          |                    |                       |         | <br><u> </u> | T      | $\Gamma^{-}$ | $\square$ | $\square$ |                          |                            |                                                              |

| PROJECT No .: | 11-1436-0073 (2700) |  |
|---------------|---------------------|--|
|               |                     |  |

LOCATION: Stewart Crossing N: 7024616 E: 417036

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 3 OF 4 DATUM:

|                               | ДОН                                                     | SOIL PROFILE                                                |             |                       |        | SA   | MPL        | _        |                    | PID<br>ppm            |  |    |     | ⊕ |     |     |     |      | NG                         | PIEZOMETER,<br>STANDPIPE                                     |
|-------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-------------|-----------------------|--------|------|------------|----------|--------------------|-----------------------|--|----|-----|---|-----|-----|-----|------|----------------------------|--------------------------------------------------------------|
| METRES                        | BORING METHOD                                           | DESCRIPTION                                                 | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE | BLOWS/0.3m | CORE No. | CORE<br>RECOVERY % | 5<br>PID<br>ppm<br>50 |  | 15 | 20  |   | Wpł |     | 1   | H WI | ADDITIONAL<br>LAB. TESTING | PIEZOMETER,<br>STANDPIPE<br>OR<br>THERMISTOR<br>INSTALLATION |
| 20 21<br>21<br>22<br>23<br>24 | M5 Driftech Truck Mounted Auger Drift Rig<br>Air Rotary | BEDROCK, light grey, dry. (continued)                       |             |                       |        |      |            |          |                    | 50                    |  |    | 200 |   |     |     |     |      |                            | Bentonite Seal                                               |
| 27<br>28<br>29<br>30 -        |                                                         |                                                             |             |                       |        |      |            |          |                    |                       |  |    |     |   |     |     |     |      |                            | 10/20 Silica<br>Sand<br>51mm Slotted<br>PVC Pipe             |
|                               |                                                         | $\square$ $\_$ $\_$ $\_$ $\_$ $\_$ $\_$ $\_$ $\_$ $\_$ $\_$ | K/A         |                       | L _    | ⊢ _  | 1_         |          |                    |                       |  |    |     |   | L _ | L _ | L _ | L _  |                            | !                                                            |

| PROJECT No.:  | 11-1436-0073 (2700) |  |
|---------------|---------------------|--|
| LOCATION: Ste | wart Crossing       |  |

N: 7024616 E: 417036

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 4 OF 4 DATUM:

PID ppm PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING ...É NL CORE ddd ddd  $\oplus$ STRATA PLOT BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp H - WI (m) 100 150 200 10 20 30 40 50 30 BEDROCK, light grey, dry. (continued) Air Rotary 51mm Slotted PVC Pipe 31 520.14 31.39 End of Monitoring Well. 32 12/31/12 33 HCSPROJECTS2011148611-4454.0073DRAFTINGGINT14-1436.0073 (2700 SX).GPJ OLIDUTE (CONTEMPLATE REPLATE REPLAT 34 35 36 37 38 39 40 DEPTH SCALE LOGGED: AB CHECKED: DRAFT 1 : 50 1

PROJECT No.: 11-1436-0073 (2700) LOCATION: Stewart Crossing

#### RECORD OF MONITORING WELL: SX-MW12-02

LOCATION: Stewart Crossing N: 7024637 E: 416923

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

PID ppm PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING  $\oplus$ ALL CORE ALL STRATA PLOT BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp H - WI (m) 100 150 200 10 20 30 40 50 Stickup = 0.95m Ground Surface 551.00 0 (SP) fine SAND, light brown, moist. 0.00 550.09 0.91 BEDROCK, light grey, dry. 1 2 12/31/12 3 PROJECTS20111-4436-0073/DRAFTING/GINT/1-436-0073/2700 SX), GPJ\_OutputFormEC\_BOREHOLE (EWIRO) Template BC REGION TEMPLATE BETA 1. GDT\_Lbary.BC REGION LIBRARY GLB\_ggorzynski 4 M5 Driltech Truck Mounted Auger Drill Rig Air Rotar 5 Bentonite Seal 6 7 8 9 10 CONTINUED NEXT PAGE LOGGED: AB DEPTH SCALE CHECKED: DRAFT 1 : 50 1

SHEET 1 OF 4 DATUM:

| PROJECT No.: | 11-1436-0073 (2700) |
|--------------|---------------------|
|              |                     |

LOCATION: Stewart Crossing N: 7024637 E: 416923

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 2 OF 4

DATUM:

PID ppm PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING  $\oplus$ CORE RECOVERY % ddd STRATA PLOT BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp H - WI (m) 100 150 200 10 20 30 40 50 10 BEDROCK, light grey, dry. (continued) 11 12 12/31/12 13 PROJECTS20111466011-1426-0073DPAFTINGGINT11-1436-0073 [ZT00 SX), GPJ OutputForm:BC\_BOREHOLE (ENVIRO) Templake BC REGION TEMPLATE BETA 1.GDT Labray: BC REGION LIBRARY.GLB ggorzynasi 14 M5 Driltech Truck Mounted Auger Drill Rig Air Rotary Bentonite Seal 15 16 17 18 19 20 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: AB CHECKED: DRAFT 1 : 50 1

| PROJECT No.: | 11-1436-0073 (2700) |
|--------------|---------------------|
|              | and Creation        |

LOCATION: Stewart Crossing N: 7024637 E: 416923

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 3 OF 4

DATUM:

PID ppm PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING  $\oplus$ STRATA PLOT CORE RECOVERY % BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE PID WATER CONTENT PERCENT DESCRIPTION DEPTH ppm OW Wp H WI (m) 100 150 200 10 20 30 40 50 20 BEDROCK, light grey, dry. (continued) 21 22 12/31/12 23 PROJECTS20111466011-1426-0073DPAFTINGGINT11-1436-0073 [ZT00 SX), GPJ OutputForm:BC\_BOREHOLE (ENVIRO) Templake BC REGION TEMPLATE BETA 1.GDT Labray: BC REGION LIBRARY.GLB ggorzynasi Bentonite Seal 24 M5 Driltech Truck Mounted Auger Drill Rig Air Rotar 25 26 27 523.57 27.43 (SW) SAND, brown, wet. 10/20 Silica Sand 28 29 51mm Slotted PVC Pipe 30 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: AB CHECKED: DRAFT 1 : 50

| PROJECT No.:  | 11-1436-0073 (2700) |
|---------------|---------------------|
| LOCATION: Ste | ewart Crossing      |

LOCATION: Stewart Crossing N: 7024637 E: 416923

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 4 OF 4 DATUM:

| щ                     | ДŎ            | SOIL PROFILE                       |             |                 |        | SAN  | IPLE       | S                |            | PID<br>ppm |      |    |     |    | Ð |       |     |      |             |      | ٥                          | PIEZOMETER<br>STANDPIPE                                     | l,            |
|-----------------------|---------------|------------------------------------|-------------|-----------------|--------|------|------------|------------------|------------|------------|------|----|-----|----|---|-------|-----|------|-------------|------|----------------------------|-------------------------------------------------------------|---------------|
| DEPTH SCALE<br>METRES | BORING METHOD |                                    | STRATA PLOT | ELEV.           | 3ER    | щ    | 3/0.3m     | No.              |            | 5          | 1    | 0  | 15  | 2  |   | 10/07 |     |      | I<br>IT PER |      | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>STANDPIPE<br>OR<br>THERMISTOR<br>INSTALLATION | N             |
| DEPT<br>ME            | BORING        | DESCRIPTION                        | TRATA       | DEPTH<br>(m)    | NUMBER | TYPE | BLOWS/0.3m | CORE No.<br>CORE | RECOVERY % | PID<br>ppm |      |    |     |    |   | Wpł   |     | V    | V           | H WI | ADD<br>LAB.                |                                                             |               |
| - 30                  | Ē             |                                    | 0           |                 |        |      |            |                  |            | 50         | 0 10 | 00 | 150 | 20 | 0 |       | 0 2 | 20 3 | 30 4        | 10   |                            |                                                             |               |
| -                     |               | (SW) SAND, brown, wet. (continued) |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             |               |
| -                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            | 51mm Slotted                                                |               |
| _                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            | 51mm Slotted<br>PVC Pipe                                    |               |
| 31<br>-<br>-          |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             |               |
|                       | $\vdash$      | End of Monitoring Well.            |             | 519.61<br>31.39 |        |      |            |                  |            |            |      |    | +   |    |   |       |     |      |             |      |                            | E.                                                          | <u>1961 -</u> |
| -                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| — 32<br>-<br>-        |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             |               |
| -                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| 33                    |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| _                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 34                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 35                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| -                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 36                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| -<br>-<br>- 37        |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| -<br>-<br>-<br>- 38   |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -<br>-        |
| -                     |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 39                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 39                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
|                       |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             | -             |
| - 40                  |               |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             |      |                            |                                                             |               |
| DE                    | EPTH          | SCALE                              |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             | LC   | GGED                       | ): AB                                                       |               |
| 1                     | : 50          |                                    |             |                 |        |      |            |                  |            |            |      |    |     |    |   |       |     |      |             | (    | CHEC                       |                                                             | <b>-T</b>     |

PROJECT No.: 11-1436-0073 (2700) LOCATION: Stewart Crossing

#### RECORD OF MONITORING WELL: SX-MW12-03

LOCATION: Stewart Crossing N: 7024491 E: 416955

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 1 OF 3 DATUM:

| U    | 1      | ac                                                      | SOIL PROFILE                                          |       | Τ                | SA   | MPL        | ES       |                    | PID<br>ppm |     |          |     |    | Ð |             |   |       |       |     | . (1)                      | PIEZOMETE                                                 | R,            |
|------|--------|---------------------------------------------------------|-------------------------------------------------------|-------|------------------|------|------------|----------|--------------------|------------|-----|----------|-----|----|---|-------------|---|-------|-------|-----|----------------------------|-----------------------------------------------------------|---------------|
| SCAL | METRES | BORING METHOD                                           |                                                       | LOT L | H.               |      | 0.3m       | No.      | ۲۶ %               |            | 5 1 | 10       | 15  | 20 |   |             | 1 | 1     | 1     | 1   | ADDITIONAL<br>LAB. TESTING | PIEZOMETEI<br>STANDPIPE<br>OR<br>THERMISTO<br>INSTALLATIO | =<br>)R<br>NN |
| РТН  | MET    | RING                                                    | DESCRIPTION                                           | (m)   |                  | ТҮРЕ | BLOWS/0.3m | CORE No. | CORE<br>RECOVERY % | PID<br>ppm |     |          |     |    |   | WAT<br>Wp I |   | ONTEN | T PER |     | ADDIT<br>-AB. Ti           | INSTALLATIC                                               | JN            |
| _    |        | BC                                                      |                                                       |       | _                |      | В          | 0        | E E                | 5          | 0 1 | 00       | 150 | 20 | 0 |             |   |       |       | 0   |                            | Stickup = 0.5m?????                                       |               |
| -    | 0      |                                                         | Ground Surface<br>(SP) fine SAND, light brown, moist. | 555.8 | 00               |      |            |          |                    |            |     | +        | +   |    |   |             |   |       |       |     |                            | 0.5m??????                                                |               |
| F    |        |                                                         | BEDROCK, light grey, dry.                             | 555.0 | . <u>8</u><br>10 |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| F    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 1      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           | -             |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           | -             |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 2      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 3      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
|      |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 4      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        | Rig                                                     |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    |        | ger Drill                                               |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        | nted Au(                                                |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 5      | M5 Driltech Truck Mounted Auger Drill Rig<br>Air Rotarv |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            | Bentonite Seal                                            |               |
| -    |        | ech Tru                                                 |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        | M5 Dril                                                 |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 6      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
|      |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 7      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | -      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           | -             |
| -    | 8      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    | 9      |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           | -             |
| E    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| -    |        |                                                         |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
| _    | 10     |                                                         |                                                       | Ø     |                  | L_   |            |          |                    |            | L   | <u> </u> |     |    |   | L_          |   | L_    | L_    | L _ |                            |                                                           |               |
|      |        |                                                         | CONTINUED NEXT PAGE                                   |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       |     |                            |                                                           |               |
|      | DE     | РТН                                                     | SCALE                                                 |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       | LO  | GGED                       | ): AB                                                     |               |
|      |        | 50                                                      |                                                       |       |                  |      |            |          |                    |            |     |          |     |    |   |             |   |       |       | (   | CHEC                       |                                                           | FT            |

| PROJECT No.: | 11-1436-0073 (2700) |
|--------------|---------------------|
|              | and Creation        |

LOCATION: Stewart Crossing N: 7024491 E: 416955

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 2 OF 3

DATUM:

PID ppm PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING  $\oplus$ CORE RECOVERY % ddd STRATA PLOT BLOWS/0.3m 10 15 20 5 CORE No. NUMBER ELEV. TYPE WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp H - WI (m) 100 150 200 10 20 30 40 50 10 BEDROCK, light grey, dry. (continued) 11 12 12/31/12 13 PROJECTS20111466011-1426-0073DPAFTINGGINT11-1436-0073 [ZT00 SX), GPJ OutputForm:BC\_BOREHOLE (ENVIRO) Templake BC REGION TEMPLATE BETA 1.GDT Labray: BC REGION LIBRARY.GLB ggorzynasi 14 M5 Driltech Truck Mounted Auger Drill Rig Bentonite Seal Air Rotary 15 16 17 18 19 20 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: AB CHECKED: DRAFT 1 : 50 1

| PROJECT No.:   | 11-1436-0073 (2700) |  |
|----------------|---------------------|--|
| I OCATION: Ste | wart Crossing       |  |

LOCATION: Stewart Crossing N: 7024491 E: 416955

DRILLING DATE: July 19, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 3 OF 3 DATUM:

| щ                                   | ДQ            | SOIL PROFILE                          |       |                          | S | SAMP       | LES      |                    | PID<br>ppm           |   |   |           |    | Đ |     | <br>                |                     |    |                                         | PIEZOMET                                            | ER,<br>PE |
|-------------------------------------|---------------|---------------------------------------|-------|--------------------------|---|------------|----------|--------------------|----------------------|---|---|-----------|----|---|-----|---------------------|---------------------|----|-----------------------------------------|-----------------------------------------------------|-----------|
| DEPTH SCALE<br>METRES               | BORING METHOD | DESCRIPTION                           | TA DE | EPTH<br>(m)              |   | BLOWS/0.3m | CORE No. | CORE<br>RECOVERY % | 5<br>PID<br>ppm<br>5 | 1 | 0 | 15<br>150 | 20 |   | Wpł | <br>-0 <sup>N</sup> | T PERC<br>/<br>/ 40 |    | ADDITIONAL<br>LAB. TESTING              | PIEZOMET<br>STANDPIF<br>OR<br>THERMIST<br>INSTALLAT | OR<br>ION |
|                                     |               | BEDROCK, light grey, dry. (continued) |       | 5 <u>528.45</u><br>27.43 |   |            |          |                    | ppm 54               |   |   |           |    |   | Wpł | <br>—0 <sup>N</sup> | /                   |    | ADC | 10/20 Silica<br>Sand                                |           |
| R-GRAPHICS/PROJECTS/2011/1436/11-14 | РТН           | SCALE                                 |       |                          |   |            |          |                    |                      |   |   |           |    |   |     |                     |                     | LO | OGGED                                   | : AB                                                |           |
|                                     | 50            | JUALE                                 |       |                          |   |            |          |                    |                      |   |   |           |    |   |     | <br>                |                     |    |                                         | KED: <b>DRA</b>                                     | FT        |



# **APPENDIX C**

**Well Development and Sampling Sheets** 



|                                |                | PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JRGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER<br>SAMPL   | LING D        | ATA SH                          | HEET                |             |        |                                                    |                                                            | velopment<br>rging/Sampling |
|--------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|---------------------------------|---------------------|-------------|--------|----------------------------------------------------|------------------------------------------------------------|-----------------------------|
|                                |                | w12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08V 00           | 11703         | 6 76                            | 246<br>Project N    | 16<br>•.: 1 | 1.14   | 36.0                                               | 073                                                        | 12700                       |
|                                | NERCI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SING             |               |                                 | Date:               | -           |        | 59.12                                              |                                                            | ime: 13.14                  |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mperature:       | 100           |                                 | Complete            | d by:       | 7      | BA                                                 | OGE                                                        | 52                          |
| NITORING<br>e of Measure       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     |             |        | Ser As                                             | RONN                                                       | LIGH CHEN                   |
| th to product                  |                | 13:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ><br>t thickness:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               | Tidally Influe<br>One well vo   |                     | □ Yes       | 凤 No   |                                                    |                                                            | There are                   |
| th to water B                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A 16.90          |               | (B-A)*2.0 =                     |                     | 3104        | litros | 600 0 T                                            |                                                            |                             |
| th to Bottom                   | of Well Be     | low Top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 32.42          |               | (B-A)*1.1 =                     |                     | 01.04       | litres | - for a 38                                         | 1 mm (2.0<br>3 mm (1.5                                     | ) inch) diameter w          |
| meter Standp                   | ipe:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c                | mm :          | Sample inta                     | ake depth:          |             | metres |                                                    | 2 11111 ( 1.4                                              | many diameter w             |
| UIPMENT                        | LIST           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 556 1            | 10K           |                                 |                     |             |        | _                                                  |                                                            |                             |
| and Temp. M                    |                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 002 r            | Serial No.    |                                 | (                   | Calibration | Buffer | s. D                                               | 24 0                                                       | 7 🗆 10                      |
| ductivity Met                  |                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Serial No.    |                                 |                     | Calibration |        |                                                    | 1413                                                       | / 110                       |
| solved Oxyge                   |                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Devietalija                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOUL             | Serial No.    |                                 |                     | D.O. Ch     |        | mpoule                                             |                                                            | The start plant of          |
| np Details:                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peristaltic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | rsible        |                                 | [                   | Bailer T    | ype:   |                                                    | 1. 57.                                                     | NO DOMO                     |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 1             |                                 |                     |             | _      |                                                    |                                                            |                             |
| ELL DEVE                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 12            |                                 |                     |             |        | anes                                               | 1.917                                                      |                             |
| ge Volume:<br>I. Flow Rate:    |                | Vol. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 124            | L/m           | · ·                             | Chart               | 13.5        | ~      |                                                    | 1                                                          | 2-5EP-12                    |
|                                | Voiume         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               | Diss. O <sub>2</sub>            | Start:              | Water       |        | Fir                                                | nish:                                                      | 10:31                       |
| Time                           | Removed<br>(L) | Temp.<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pH<br>(Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cond.<br>(uS/cm) | Redox<br>(mV) | (mg/L)<br>or %                  |                     | Level       |        |                                                    | Remar                                                      | ks                          |
| 12:57                          | 1              | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7091             |               | 01.70                           |                     | (m)         |        |                                                    |                                                            |                             |
| 14:03                          | 15             | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6079             |               |                                 |                     |             |        |                                                    |                                                            |                             |
| 4:12                           | 30             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6318             |               |                                 |                     | 31.23       | 21     |                                                    | 1                                                          |                             |
| 4:52                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | -             |                                 |                     | 31.83       | -      |                                                    |                                                            |                             |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     | -01-0-      | -      |                                                    |                                                            |                             |
| 2 - P 1 -                      |                | RETU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | LLEC          | T SY                            | Ampl                | E.          |        |                                                    |                                                            |                             |
| 0:18                           | 0,5            | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4422             |               |                                 |                     | 17.20       | 1      |                                                    |                                                            |                             |
| 0.5                            | 10             | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3709             |               |                                 |                     |             | 51     | AMPL                                               | E COL                                                      | LECTED                      |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     |             |        |                                                    |                                                            |                             |
| -                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     |             |        | -                                                  |                                                            |                             |
|                                |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     |             | -      |                                                    | a fi                                                       | and the face                |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               | 1                               |                     |             | -      |                                                    |                                                            |                             |
| nments:                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                 |                     |             |        |                                                    |                                                            |                             |
| nments:<br>Odour:              | □ Yes          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |               |                                 |                     |             |        |                                                    |                                                            |                             |
|                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rocarbon-like    | e 🗆 OR        | Metallic                        | -like 🖸             |             |        |                                                    | 0.00                                                       |                             |
| Odour:                         | □ Yes          | □ No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yes Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rocarbon-like    |               | A CONTRACTOR OF A CONTRACTOR    | -like 🗆<br>I Very S | Silty       |        |                                                    | 0                                                          |                             |
| Odour:<br>Sheen:<br>Turbidity: | □ Yes          | □ No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yes Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 11111         |                                 | 0.0000              | Silty       |        |                                                    |                                                            |                             |
| Odour:<br>Sheen:               | □ Yes          | □ No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yes Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111111           | 11111         | I I I I I I I<br>Container Size | 0.0000              |             | 41     | Filte                                              | rred                                                       | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yes Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              | Silty<br>2L | 4L     |                                                    |                                                            | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Ciear          | No If<br>IIIIII<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yes Hydr<br>IIIIIIIIIII<br>40 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 41     | Filte                                              | red                                                        | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Yes Clear      | No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yes Hydr<br>IIIIIIIIII<br>40 r<br>Giass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 4L     | □ Yes                                              | D No                                                       | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If<br>I I I I I I I<br>Type<br>Plastic 0<br>Plastic 0<br>Plastic 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yes Hydr<br>IIIIIIIII<br>40 r<br>Glass<br>Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 4L     | Yes   Yes                                          | No No                                                      | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If<br>I I I I I I I I<br>Type<br>Plastic 0<br>Plastic 0<br>Plastic 0<br>Plastic 0<br>Plastic 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yes Hydi<br>III()II<br>Glass<br>Glass<br>Glass<br>Glass<br>Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 4L     | Yes Yes Yes                                        | No<br>No                                                   | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If<br>I I I I I I I I<br>Type<br>Plastic 0<br>Plastic | yes Hydi<br>I I I III I<br>Glass<br>Glass<br>Glass<br>Glass<br>Glass<br>Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 41     | Yes Yes Yes Yes Yes                                | No<br>No<br>No<br>No                                       | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If<br>I I I I I I I<br>Type<br>Plastic 0<br>Plastic 0<br>Plasti                                           | yes Hydi<br>I I I II I I<br>Glass Glass Glas Gla | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 4L     | Yes  Yes  Yes  Yes  Yes  Yes                       | No No No No No No No No                                    | Preservatives               |
| Odour:<br>Sheen:<br>Turbidity: | Clear          | No If<br>I I I I I I I<br>Type<br>Plastic 0<br>Plastic 0<br>Plasti                                           | yes Hydi<br>I I I III I<br>Glass<br>Glass<br>Glass<br>Glass<br>Glass<br>Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111111           | 11111         | I I I I I I I<br>Container Size | Very S              |             | 4 L    | □ Yes<br>□ Yes<br>□ Yes<br>□ Yes<br>□ Yes<br>□ Yes | No     No     No     No     No     No     No     No     No | Preservatives               |

-

| Contraction of the second seco |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

. 1

### GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development Purging/Sampling

-

| Vell N<br>.ocat              | ion: ST                                                                               |                                          | 27                                      | CR-05             | 1                |                 | 1.6.4                               |                                                                        | Project No<br>Date: | 1                                                   | 0.56              | 9.17       | Ti                 | 2700<br>me: 15:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-------------------|------------------|-----------------|-------------------------------------|------------------------------------------------------------------------|---------------------|-----------------------------------------------------|-------------------|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Veath                        |                                                                                       | VER                                      |                                         |                   |                  | rature:         | 1.5                                 | (                                                                      | Complete            | d by:                                               | A                 | BA         | oGen               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Time<br>Depi<br>Depi<br>Depi | NITORIN<br>of Measure<br>th to produc<br>th to water E<br>th to Bottom<br>neter Stand | ement:<br>t:<br>Below Top<br>n of Well B | Pro<br>of Casin                         | duct thickn<br>g: | ess:<br>A        | 7.50 m          | Cetres (E                           | idally influe<br>ne well vo<br>3-A)*2.0 =<br>3-A)*1.1 =<br>Sample inta | lume:<br> 5.04.2    |                                                     | litres            | - for a 38 | mm (2.0<br>mm (1.5 | inch) diameter well<br>inch) diameter well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pH a<br>Con<br>Diss<br>Pum   | UIPMENT<br>and Temp. M<br>ductivity Me<br>olved Oxygo<br>pp:                          | Meter:<br>eter:<br>en Meter:             | Mode<br>Mode<br>Mode<br>Vaterra         | 1                 | -                | S               | erial No.<br>erial Ño.<br>erial No. |                                                                        |                     | Calibration<br>Calibration<br>D.O. Ch<br>D Bailer T | Solutio<br>emet A | n:         | 14 H               | 7 🗆 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Purg                         | LL DEVE<br>ge Volume:<br>Flow Rate:                                                   | Well                                     |                                         | S6.08-3           | = 0              | 10.24           | litres                              |                                                                        | Start:              | 15:0                                                | 15                | Fin        | ish: l             | 6:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | Time                                                                                  | Volume<br>Removed<br>(L)                 | Temp<br>(°C)                            |                   |                  | Cond.<br>JS/cm) | Redox<br>(mV)                       | Diss. O <sub>2</sub><br>(mg/L)<br>or %                                 | in the second       | Water<br>Level<br>(m)                               |                   |            | Remark             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 5:45                                                                                  | 14                                       | 2.8                                     | 3 6.3             | 0 2              | 0990            |                                     |                                                                        |                     | (111)                                               | 1                 |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 5:51                                                                                  | ISL                                      | 3.0                                     | 1 6.2             |                  | 9962            |                                     | -                                                                      | -                   |                                                     |                   |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 5:57                                                                                  | 302                                      | 2.8                                     | 6 7.0             |                  | 1952            |                                     |                                                                        |                     | 17.52                                               |                   |            | _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 6:04                                                                                  | 45                                       | 2.7                                     | 3 7.1             |                  | 906             |                                     |                                                                        | 940                 |                                                     | -                 |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14                           | 6:10                                                                                  | 60                                       | 2.7                                     | 87.1              |                  | 0911            |                                     |                                                                        |                     | 17.56                                               | -                 |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 6:17                                                                                  | 75                                       | 2.6                                     | 6 7.1             |                  |                 |                                     |                                                                        |                     | 11.00                                               | -                 |            | - barris           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                            | 6.25                                                                                  | 90                                       | 2.8                                     |                   |                  | 516             |                                     |                                                                        |                     |                                                     | 100               | 1.Q. E     | 7                  | UPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T                            | 0                                                                                     |                                          |                                         |                   |                  |                 |                                     |                                                                        |                     |                                                     |                   |            |                    | and the second se |
| Γ                            |                                                                                       | -                                        | -                                       |                   |                  |                 | - De                                |                                                                        |                     | -                                                   | 100               | ULCO       |                    | X-MW12-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Π                            |                                                                                       | 1.                                       |                                         |                   | 1                |                 |                                     |                                                                        |                     |                                                     | X                 | 5 .        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Γ                            |                                                                                       |                                          |                                         | -                 | 1                |                 |                                     |                                                                        |                     |                                                     |                   |            |                    | AT OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F                            | 1                                                                                     | 1                                        |                                         |                   | -                |                 |                                     |                                                                        |                     |                                                     |                   | 0.93       |                    | EN HEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 03                         | nments:<br>Odour:<br>Sheen:<br>Furbidity:                                             | □ Yes<br>□ Yes<br>Clear                  | □ No<br>□ No<br>1 1 D€                  | If yes<br>If yes  | and the subscore | irbon-like      |                                     | Metallic<br>IIIII                                                      | -like               | Silty                                               |                   |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Г                            |                                                                                       |                                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                   |                  |                 |                                     |                                                                        |                     |                                                     | -                 |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| P                            | Analysis                                                                              |                                          | Тур                                     | e                 | 40 mL            | 100 mL          | 250 mL                              | 500 mL                                                                 | 1L                  | 21                                                  |                   | Filte      | red                | Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 1                          |                                                                                       |                                          | Plastic                                 | D Glass           |                  |                 |                                     | 000 mL                                                                 | 11                  | 21                                                  | 4 L               | DYes       | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T                            | 6                                                                                     | -                                        | Plastic                                 | Giass             | -                | 13              | 1                                   |                                                                        |                     |                                                     |                   | D Yes      | D NO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                            |                                                                                       |                                          | Plastic                                 | D Glass           |                  | -               |                                     |                                                                        | -                   | -                                                   | 100               | D Yes      | D No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T                            |                                                                                       |                                          | Plastic                                 | D Glass           |                  | 1               |                                     |                                                                        |                     |                                                     |                   | I Yes      | D No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F                            | -                                                                                     |                                          | Plastic                                 | D Glass           | -                |                 |                                     |                                                                        |                     |                                                     | -                 | I Yes      | D No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6T                           |                                                                                       |                                          | Plastic                                 |                   | -                |                 | 1                                   | 1                                                                      |                     |                                                     |                   | I Yes      | □ No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |                                                                                       |                                          | Plastic                                 |                   |                  | 1               | 1                                   | 7                                                                      |                     |                                                     |                   | C Yes      | D No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F                            | -                                                                                     |                                          | Piastic                                 |                   | 1                | 1               | 1                                   | 132                                                                    |                     |                                                     |                   | □ Yes      | D No               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | CNI NIC                                                                               |                                          |                                         |                   |                  |                 | 1                                   | 1                                                                      | -                   |                                                     |                   | D Yes      | □ No               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | SCN No.<br>Field Dup.                                                                 |                                          | - Consu                                 | mables:           |                  | on Tubing       |                                     |                                                                        | DPE/Tefior          |                                                     |                   |            | roundwat           | er Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |                                                                                       | 1.Dacktonible                            | - Earmal@                               | W Daveland        |                  | and Sampling    |                                     |                                                                        | O. Ampou            | iles                                                | -                 | _ 0        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NG/SA                          | MPL      | ING DA     | ATA SH                      | HEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U            | 2014        |                                                                        |                                                    | evelopment<br>Jrging/Samplin |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------------------------------------------------------------|----------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 1012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |            |                             | Project No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .: <u>1</u>  | 1.143       | 6.0                                                                    | 07                                                 | 3/2700                       |
| ather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |          |            |                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            | OSEP        |                                                                        |                                                    | Time: 17:0                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | ERCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tempera                        | ature:   | 200        | -                           | Completer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d by:        | AT          | BAT                                                                    | PGF                                                | 52                           |
| MONITORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | C Stat                                                                 | 10.41                                              | LUNW CHEN                    |
| epth to prodi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | and the second s | 17:0<br>oduct thickr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |          |            | idally Influ<br>One well vo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ Yes        | No          |                                                                        |                                                    | prinary and                  |
| epth to wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Below              | Top of Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 14                           | .40m     |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =27 37       | litres . fr | or o 51                                                                |                                                    | 0 inch) diameter w           |
| epth to Botto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m of We            | Il Below To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p of Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 3.04m    | netres (   | D-A) 1.1 =                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | litres - fr | or a 38                                                                | mm (2.                                             | 5 inch) diameter w           |
| iameter Stan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dpipe:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                              | n        | 1m 5       | Sample inta                 | ake depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | metres      |                                                                        |                                                    |                              |
| QUIPMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st s                           | 56       | MPS        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            |             |                                                                        |                                                    |                              |
| H and Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 5        | Serial No. | -                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alibration   | Buffers:    | Ł                                                                      | 4 总                                                | 7 🗆 10                       |
| onductivity N<br>issolved Oxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          | Serial No. |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Solution:   | (                                                                      | 413                                                |                              |
| ump: DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | er: Mod<br>Waterra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | el<br>□ Perista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | ubmers   | Serial No. |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | iemet Amp   | oule                                                                   | a trail of                                         | The second                   |
| ump Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | ubiners  | sidie      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bailer T     | уре:        |                                                                        |                                                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |                                                                        |                                                    |                              |
| VELL DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.27.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 - 5                          | 32       | litre      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |                                                                        |                                                    |                              |
| vg. Flow Rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | icii. vol. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 5 -      | litre      |                             | Start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17:          | 08          | Finis                                                                  |                                                    | 7:40                         |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volur              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p. pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 00                           | nd.      | Redox      | Diss. O2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water        | 1           |                                                                        | sn. <u></u>                                        | 7.00                         |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remo<br>(L)        | ved /*C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) (Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ts) (uS/                       |          | (mV)       | (mg/L)<br>or %              | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>(m) |             |                                                                        | Rema                                               | irks                         |
| 17:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 195                          | 6        |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |                                                                        | 3. 1                                               |                              |
| 17.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.10        | 5           | -                                                                      |                                                    | 1                            |
| 1111717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                 | 2.3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 9        |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.10        | )           |                                                                        |                                                    |                              |
| 17:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1110               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0 +. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 12:                         | 34       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P Ht         | 1           | 1                                                                      |                                                    | a                            |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 10                           | 0 0      |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |                                                                        |                                                    | and the second second second |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 36       | 5          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.20        | )           |                                                                        |                                                    | -                            |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |                                                                        |                                                    |                              |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.51        |             | ipe                                                                    | EC                                                 | OLLECTS                      |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       | <u></u>    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | ipe                                                                    | EC                                                 | outers                       |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | npe                                                                    | EC                                                 | OLLECNE                      |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | ipe                                                                    | EC                                                 | outors                       |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       | <u>.</u>   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | npl                                                                    | EC                                                 | OLLECK                       |
| 17:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 120                          | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | MPL                                                                    | £C                                                 | OLLECNS                      |
| 17:25<br>(7:30<br>17:35<br>17:40<br>00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60<br>75<br>90     | 2.2<br>2.2<br>2.2<br>3<br>3<br>3<br>5 □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 7.0<br>0 7.0<br>.2 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 120                          | 18       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | npc                                                                    | EC                                                 | OLLECK                       |
| 17:25<br>(7:30)<br>17:35<br>17:40<br>17:40<br>0mments:<br>Odour:<br>Sheen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>75<br>90     | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 7.0<br>0 7.0<br>.2 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 120<br>1 125<br>Hydrocarb    | n8<br>59 |            |                             | -like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.51        |             | M.D.L.                                                                 | £C                                                 | OLLECK                       |
| 17:25<br>(7:30<br>17:35<br>17:40<br>00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60<br>75<br>90     | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 7.0<br>0 7.0<br>.2 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 120<br>1 125<br>Hydrocarb    | n8<br>59 |            |                             | and the second se | 15.51        |             | MPL                                                                    | EC                                                 | OLLECNE                      |
| 17:25<br>(7:30)<br>17:35<br>17:40<br>17:40<br>0mments:<br>Odour:<br>Sheen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GO<br>75<br>90<br> | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 7.0<br>9.0<br>7.1<br>1.1<br>If yes<br>If yes<br>1.0<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 120<br>1 125<br>Hydrocarb    | n8<br>59 | 11111      |                             | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             |                                                                        |                                                    | OLLECK                       |
| 17:25<br>(7:30<br>17:30<br>17:40<br>17:40<br>000r:<br>Sheen:<br>Turbidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GO<br>75<br>90<br> | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 7.0<br>7.0<br>7.1<br>If yes<br>If yes<br>101111<br>Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 12 123<br>1 123<br>Hydrocarb | n8<br>59 | 11111      | 11111                       | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere                                                                |                                                    | Preservatives                |
| 17:25<br>(7:30<br>17:30<br>17:40<br>17:40<br>000r:<br>Sheen:<br>Turbidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GO<br>75<br>90<br> | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>9<br>10<br>1111<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 7.0<br>7.0<br>7.0<br>7.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 120<br>1 125<br>Hydrocarb    | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        | 5.40        |                                                                        |                                                    |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | 2.2<br>2.2<br>2.2<br>3<br>3<br>5<br>8<br>No<br>5<br>1111<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B       7.0         0       7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 120<br>1 125<br>Hydrocarb    | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere                                                                | d                                                  |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | S No<br>S No<br>S No<br>I I I I<br>Plastic<br>Plastic<br>Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8         7.0           7.0         7.0           2         7.1           If yes         1           If yes         1           IO         1           D         Glass           D         Glass           D         Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 120<br>1 125<br>Hydrocarb    | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere<br>1 Yes<br>1 Yes<br>1 Yes                                     | rd<br>D No                                         |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | S No<br>S No<br>I I I I<br>Piastic<br>Piastic<br>Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8         7.0           7.0         7.0           2         7.1           If yes         1           If yes         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         1           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I         I           I                                                                                            | 9 120<br>1 125<br>Hydrocarb    | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere<br>1 Yes<br>1 Yes<br>1 Yes<br>1 Yes                            | ed No                                              |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | S No<br>S No<br>S No<br>I I I I<br>Plastic<br>Plastic<br>Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8         7.0           7.0         7.0           2         7.1           If yes         1           If yes         1           IO         1           D         Glass           D         Glass           D         Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 120<br>1 125<br>Hydrocarb    | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes          | nd No<br>No<br>No<br>No<br>No<br>No                |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | S No<br>S No<br>S No<br>I I I I<br>Piastic<br>Piastic<br>Piastic<br>Piastic<br>Piastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8         7.0           7.0         7.1           2         7.1           If yes         1           If yes         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0         1           I 0                                                      | 9 12 123<br>1 123<br>Hydrocarb | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes | rd<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No |                              |
| 17:25<br>17:30<br>17:35<br>17:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7:40<br>I7 | GO<br>75<br>90<br> | S No<br>S No<br>S No<br>I I I I<br>Plastic<br>Plastic<br>Plastic<br>Plastic<br>Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8         7.0           7.0         7.0           2         7.1           If yes         1           If yes         1      < | 9 12 123<br>1 123<br>Hydrocarb | 000-like | C          | 1 1 1 1 1<br>ontainer Size  | I Very S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.51        |             | Filtere<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes<br>) Yes          | nd No<br>No<br>No<br>No<br>No<br>No                |                              |

-

| unacc           | Wate                           | r Sam              | npiin         | g Da             | ta S        | neet                                          |                                    |            |                          | /         | Sampli       | ng                                       |
|-----------------|--------------------------------|--------------------|---------------|------------------|-------------|-----------------------------------------------|------------------------------------|------------|--------------------------|-----------|--------------|------------------------------------------|
| ather:          | 5× 51<br>03 V<br>00ERCA<br>3°C | 20415:<br>0415:    | 559           | 7029             | 062         | Project<br>Comple<br>Date:<br>Time:<br>Review | eted By:                           | A          | 1436<br>BAD<br>BAN<br>20 | GER       | 125          | 2700<br>EP-12                            |
| QUIPMENT        | LIST                           | YSE                | 556           | mes              | 5           |                                               |                                    |            |                          |           |              | 3                                        |
| l and Temp. Me  |                                | odel               |               | Se               | rial No.    |                                               |                                    | Calibratio | n Buffer                 | s:        |              | 1 10                                     |
| nductivity Mete |                                | odel               |               |                  | rial No.    |                                               | (                                  | Calibratio | n Soluti                 | on:       | 14           | U                                        |
| ssolved Oxyger  |                                | odel               |               | Se               | rial No.    |                                               | 1                                  | D.O. C     | hemet A                  | Ampoule   |              |                                          |
| mp: DNone       |                                |                    | taltic 🗆      | Submersit        | le          | B                                             | ailer: I                           | □ None     | □ St                     | ainless S | Steel 🗆      | Teflon PVC                               |
| mple Depth:     | SUR                            | PACE               |               |                  |             |                                               |                                    |            |                          |           | _            |                                          |
| URFACE W        | VATER SA                       | AMPLING            | à             |                  |             |                                               |                                    | 10.0       |                          |           |              |                                          |
| Time            | Volume<br>Removed (L)          | Temp.<br>(°C)      | pH<br>(Units) | Cond.<br>(uS/cm) | Redo<br>(mV |                                               | Diss. O <sub>2</sub><br>ng/L) or % |            |                          | F         | emarks       |                                          |
| 13:20           | (L)                            | 5.1%               | 6.65          |                  | (mv         | ) (11)                                        | 19/L) 01 70                        |            |                          |           | and a second |                                          |
|                 | P                              | 210                | 0.0-          | 000              |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               | _                                  | _          |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          |           |              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          | -         |              |                                          |
|                 |                                |                    |               | 1                |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    | -          |                          |           |              |                                          |
|                 |                                |                    |               |                  |             |                                               |                                    |            |                          |           |              |                                          |
| Sheen: [        | □Yes □N<br>□Yes □N<br>Clear    |                    | 11111         | 11111            |             | 1111                                          | Very S                             | ilty       |                          |           |              |                                          |
| Analysia        |                                | F                  |               |                  | Cont        | ainer Size                                    |                                    |            |                          | -         |              |                                          |
| Analysis        |                                | Туре               | 40 mL         | 100 mL           | 250 mL      | 500 mL                                        | 1 L                                | 2L         | 4 L                      | Filte     | ered         | Preservatives                            |
|                 | Plastic                        |                    |               |                  |             |                                               |                                    |            |                          | □ Yes     | □ No         |                                          |
|                 | Plastic                        |                    |               |                  |             |                                               |                                    |            |                          | □ Yes     | □ No         |                                          |
|                 | Plastic                        |                    |               |                  |             |                                               |                                    |            |                          | □ Yes     | D No         |                                          |
|                 |                                | Glass              |               |                  |             |                                               |                                    |            |                          | □ Yes     | □ No         |                                          |
|                 | Plastic     Plastic            | Glass              |               |                  |             |                                               |                                    |            |                          | LIES      | UNO          |                                          |
|                 | Plastic                        |                    |               |                  |             |                                               |                                    |            |                          |           |              |                                          |
|                 |                                | Glass              |               |                  |             |                                               |                                    |            |                          | C Yes     | 🗆 No         |                                          |
|                 | Plastic     Plastic            | C Glass<br>C Glass |               |                  |             |                                               |                                    |            |                          |           |              |                                          |

F .-



# APPENDIX D

**Slug Test Data** 



|       | le-well R<br>Sheet                                                                             | lesponse                                                        | Test                                     |                                                                                       |                                                    | Rising Head<br>Falling Head                                          |                            |
|-------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------|
|       | Well No.:<br>Location:<br>Project No.:<br>Completed By<br>Date:<br>Time:                       | 11-1436-00                                                      | 946923<br>273/2700<br>ER                 | 7024632                                                                               | 1                                                  |                                                                      |                            |
| ONITO | Depth to botto                                                                                 | er below top of cas<br>om of well below t<br>top of pipe to gro | op of casing:<br>ound surface:           | 17.50<br>32.48<br>0.94<br>0.94                                                        | meters<br>meters<br>meters                         |                                                                      |                            |
|       | Borehold dian<br>Screen length<br>Screened unit                                                | neter:<br>I:                                                    |                                          | 50003                                                                                 | _ meters<br>_ meters<br>_ meters<br>_ (eg: sand, s | (1 inch = 0.025 meters)<br>(1 foot = 0.3048 meters)<br>ilt, clay)    |                            |
|       | Slug<br>Mass:<br>Length:<br>Diameter:                                                          |                                                                 | kilograms<br>meters<br>meters<br>0011049 |                                                                                       | Inside dia<br>r Volume of                          | umn height:<br>meter:<br>f water removed:<br>or minutes (circle one) | meters<br>meters<br>litres |
| NOLL  | Start time                                                                                     |                                                                 | Finish time:                             | 11:45                                                                                 | -                                                  |                                                                      |                            |
|       | Time<br>11:10<br>11:10<br>11:15<br>11:20<br>11:25<br>11:30<br>11:35<br>11:40<br>11:40<br>11:45 | Elapsed Time                                                    | Water Level (m)                          | Tx IN<br>SLUG J<br>SLUG J<br>SLUG C<br>SLUG C<br>SLUG C<br>SLUG J<br>SLUG J<br>Tx OWE | 20                                                 | nments<br>cm off Borron                                              |                            |
|       |                                                                                                |                                                                 |                                          |                                                                                       |                                                    |                                                                      |                            |

|         | e-well Re<br>Sheet                                                        | esponse                                                                          | Test                            |                        |                                                                |                                                  | Rising Head<br>Falling Head |                            |
|---------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------|
|         | Well No.:<br>Location:<br>Project No.:<br>Completed By:<br>Date:<br>Time: |                                                                                  | 4/6955 7<br>2073/270<br>052     | 024491                 |                                                                |                                                  |                             |                            |
| ONITOR  | RING WELL INFO                                                            |                                                                                  |                                 |                        | -                                                              |                                                  |                             | and the second             |
|         | Depth to water<br>Depth to bottor                                         | below top of cas<br>n of well below to<br>top of pipe to gro<br>ameter:<br>eter: | op of casing:                   | 14.54<br>28.03<br>0.52 | meters<br>meters<br>meters<br>meters<br>meters<br>(eg: sand, s | (1 inch = 0.025<br>(1 foot = 0.304<br>ilt, clay) |                             |                            |
| OLIPME  | NT LIST                                                                   |                                                                                  |                                 |                        |                                                                |                                                  |                             |                            |
|         | Slug<br>Mass:<br>Length:<br>Diameter:                                     | 0.0375                                                                           | kilograms<br>meters<br>meters   |                        | Inside dia                                                     | umn height:<br>meter:<br>f water removed         | ł:                          | meters<br>meters<br>litres |
|         | Pressure trans<br>Sampling Inter                                          |                                                                                  | 001104                          | 0419                   | -                                                              | or minutes (circle                               |                             |                            |
| INGLE-V | VELL RESPONS<br>Start time:<br>Time                                       |                                                                                  | Finish time:<br>Water Level (m) | 13:00                  |                                                                | <b>~</b> ,                                       |                             | 7                          |
|         | 12:00                                                                     | Elapsed Time                                                                     | water Level (m)                 | The tal                |                                                                | nments                                           | 7.00                        | -                          |
|         | 12:05                                                                     |                                                                                  | 14.10<br>14.36<br>14.36         | SLUG :                 | IN                                                             |                                                  | barrow                      |                            |
|         | 12:45                                                                     |                                                                                  | 14.36                           | sene c                 | ULT ;                                                          | Tx OUT                                           |                             |                            |
|         |                                                                           |                                                                                  |                                 |                        |                                                                |                                                  |                             |                            |
|         |                                                                           |                                                                                  |                                 |                        |                                                                |                                                  |                             |                            |



# **APPENDIX E**

**Analytical Reports and Chain of Custody Forms** 



# Table E-1Results of Water Analyses - Metals[YTG Landfill Monitoring, Stewart Crossing, Yukon ]

| SCN                       |                           |       | L1209363-9       | L1209363-5      | L1209363-6      | L1209363-7       | L1209363-8      |
|---------------------------|---------------------------|-------|------------------|-----------------|-----------------|------------------|-----------------|
| Location                  |                           |       | SX SURFACE       | SX-MW12-01      | SX-MW12-02      | SX-MW12-03       | SX-MW12-04      |
| QA/QC                     |                           |       |                  |                 | FDA             |                  | FD              |
| Date                      | (freshwater)              | Notes | 12-SEP-12        | 12-SEP-12       | 10-SEP-12       | 10-SEP-12        | 10-SEP-12       |
| Parameters                |                           |       |                  |                 |                 |                  |                 |
| pH (field)                |                           |       | 6.65             | 6.59            | 7.12            | 7.11             | 7.12            |
| Temperature °C            |                           |       | 5.18             | 2.57            | 2.81            | 2.22             | 2.81            |
| Conductivity (uS/cm)      |                           |       |                  | 3709            | 2.81            |                  |                 |
| Dissolved Oxygen (mg/L)   |                           |       | 608              | 3709            |                 | 1254             | 20910           |
| Dissolved Oxygen (hig/L)  |                           |       | -                | -               | -               | -                | -               |
| Laboratory Parameters     |                           |       |                  |                 |                 |                  |                 |
| pH (laboratory)           |                           |       | 7.90             | 7.78            | 7.70            | 8.05             | 7.78            |
| Hardness (as CaCO3)       |                           |       | 127              | 681             | 3120            | 189              | 3040            |
| total dissolved solids    |                           |       | 160              | 1470            | 6260            | 227              | 6390            |
| Aggregate Organics        |                           |       |                  |                 |                 |                  |                 |
| COD                       |                           |       | <20              | 52              | 81              | <20              | 88              |
| dissolved organic carbon  |                           |       | 4.26             | 3.32            | 4.12            | 2.93             | 3.85            |
| Bacteriological           |                           |       |                  |                 |                 |                  |                 |
| Coliform Bacteria - Fecal |                           |       | -                | -               | -               | -                | -               |
| Dissolved Metals          |                           |       |                  |                 |                 |                  |                 |
| aluminum                  |                           |       | <0.010           | <0.050          | <0.10           | <0.010           | <0.10           |
| antimony                  | 0.2                       |       | <0.00050         | <0.0025         | <0.0050         | <0.00050         | <0.0050         |
| arsenic                   | 0.05                      |       | 0.00086          | 0.00060         | <0.0010         | 0.00029          | <0.0010         |
| barium                    | 10                        |       | 0.094            | <0.10           | <0.20           | 0.021            | <0.20           |
| beryllium                 | 0.053                     |       | <0.0050          | <0.0050         | <0.010          | <0.0050          | <0.010          |
| bismuth                   |                           |       | <0.20            | <0.20           | <0.40           | <0.20            | <0.40           |
| boron                     |                           |       | <0.10            | <0.50           | <1.0            | <0.10            | <1.0            |
| cadmium                   | 0.0001 - 0.0006           | Н     | <0.00020         | 0.0016          | <0.0020         | <0.00020         | <0.0020         |
| calcium                   |                           |       | 39.6             | 218             | 1200            | 61.2             | 1170            |
| chromium                  | $0.010^{VI}, 0.090^{III}$ | V     | <0.0020          | <0.010          | <0.020          | <0.0020          | <0.020          |
| cobalt                    | 0.009                     |       | <0.010           | 0.025           | <0.020          | <0.010           | <0.020          |
| copper                    | 0.020 - 0.090             | Н     | <0.0010          | <0.0050         | <0.010          | <0.0010          | <0.010          |
| iron                      |                           |       | 0.194            | <0.030          | <0.060          | <0.030           | <0.060          |
| lead                      | 0.040 - 0.160             | Н     | <0.00050         | <0.0025         | <0.0050         | <0.00050         | <0.0050         |
| lithium                   |                           |       | <0.010           | 0.021           | 0.032           | 0.012            | 0.032           |
| magnesium                 |                           |       | 6.95             | 32.9            | 29.5            | 8.68             | 29.5            |
| manganese                 |                           |       | 0.129            | 1.28            | <0.020          | 0.113            | <0.020          |
| mercury                   | 0.001                     |       | <0.00020         | <0.00020        | <0.00020        | <0.00020         | <0.00020        |
| molybdenum                | 10                        |       | <0.030           | <0.030          | <0.060          | <0.030           | <0.060          |
| nickel                    | 0.250 - 1.5               | Н     | <0.050           | 0.106           | <0.10           | <0.050           | <0.10           |
| phosphorus                |                           |       | <0.30            | <0.30           | <0.60           | <0.30            | <0.60           |
| potassium                 |                           |       | 1.09             | 2.76            | 1.2             | 0.49             | 1.3             |
| selenium                  | 0.01                      |       | <0.0010          | <0.0050         | <0.010          | <0.0010          | <0.010          |
| silicon                   |                           |       | 4.08             | 4.83            | 4.80            | 4.93             | 4.84            |
| silver                    | 0.0005 - 0.015            | Η     | <0.010           | <0.010          | <0.020          | <0.010           | <0.020          |
| sodium                    |                           |       | 2.4              | 21.8            | 32.3            | 6.6              | 32.8            |
| strontium                 |                           |       | 0.206            | 0.837           | 2.10            | 0.215            | 2.17            |
| thallium                  | 0.003                     |       | <0.20            | <0.20           | <0.40           | <0.20            | <0.40           |
| tin<br>                   |                           |       | <0.030           | < 0.030         | <0.060          | < 0.030          | < 0.060         |
| titanium                  | 1                         |       | < 0.010          | 0.018           | < 0.020         | < 0.010          | < 0.020         |
| uranium<br>               | 3                         |       | 0.00086          | 0.0267          | 0.204           | 0.0180           | 0.196           |
| vanadium<br>zinc          | 0.075 - 2.4               | Н     | <0.030<br><0.050 | <0.030<br><0.25 | <0.060<br><0.50 | <0.030<br><0.050 | <0.060<br><0.50 |
|                           |                           |       |                  |                 |                 |                  |                 |
| Other Inorganics          |                           |       |                  |                 |                 |                  |                 |
| bicarbonate (CaCO3)       |                           |       | 120              | 107             | 247             | 198              | 246             |
| carbonate (CaCO3)         |                           |       | <2.0             | <2.0            | <2.0            | <2.0             | <2.0            |
| hydroxide (CaCO3)         |                           |       | <2.0<br>120      | <2.0<br>107     | <2.0<br>247     | <2.0<br>198      | <2.0<br>246     |
| total alkalinity (CaCO3)  | 1 21 10 5                 |       | 0.0110           | 0.0122          | <0.0050         | <0.0050          | 246<br><0.0050  |
| ammonia                   | 1.31 - 18.5               | pН    | 0.0110           | 0.0122          | ~0.0000         | ~0.0000          | ~0.0030         |
| bromide (free)            |                           |       | <0.50            | 431             | 2010            | 0.97             | 1970            |
| chloride<br>fluoride      | 2 - 3                     | Н     | 0.193            | <0.20           | <0.40           | 0.377            | <0.40           |
| nitrate (as N)            | 400                       | 11    | <0.10            | <0.050          | 3.47            | 0.167            | 2.38            |
|                           | 400                       | ~     | <0.10            | <0.030          | <0.050          | <0.0010          | ~0.0010         |

| initiate (ds 11)        | 400     |    |        |        |        |         |         |
|-------------------------|---------|----|--------|--------|--------|---------|---------|
| nitrite (as N)          | 0.2 - 2 | Cl | <0.020 | <0.010 | <0.050 | <0.0010 | <0.0010 |
| total Kjeldahl nitrogen |         |    | 0.169  | 0.179  | 0.156  | 0.079   | 0.137   |
| sulphate                | 1000    |    | 18.6   | 63.0   | 83     | 12.0    | 82      |
|                         |         |    |        |        |        |         |         |

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: AW (Aquatic Life) and DW (Drinking Water).

H = standard is Hardness dependent

CL = standard is chloride dependent

pH = standard is pH dependent

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperature

MCS = Most Conservative Standard

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Italics indicates standard is below detection limit.

#### Bold= Exceeds CSR Drinking water (DW) standard.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available. COC = Chain of Custody

# Table E-2Results of Water Analyses - Hydrocarbons[YTG Landfill Monitoring, Stewart Crossing, Yukon ]

| SCN                                                                 | 1      |       | L1209363-9             | L1209363-5             | L1209363-6             | L1209363-7             | L1209363-8             |
|---------------------------------------------------------------------|--------|-------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Location                                                            |        |       | SX SURFACE             | SX-MW12-01             | SX-MW12-02             | SX-MW12-03             | SX-MW12-04             |
| QA/Q0                                                               | -      |       |                        |                        | DUP                    |                        | DUP                    |
| Dat                                                                 |        |       | 12-SEP-12              | 12-SEP-12              | 10-SEP-12              | 10-SEP-12              | 10-SEP-12              |
|                                                                     |        | Notes |                        |                        |                        |                        |                        |
|                                                                     |        |       |                        |                        |                        |                        |                        |
| Monoaromatic Hydrocarbons                                           |        |       |                        |                        |                        |                        |                        |
| benzene                                                             | 4      |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| ethylbenzene                                                        | 2      |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| styrene                                                             | 0.72   |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| toluene                                                             | 0.390  |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| ortho-xylene                                                        |        |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| meta- & para-xylene                                                 |        |       | <0.00050               | <0.00050               | <0.00050               | <0.00050               | <0.00050               |
| total xylene                                                        |        |       | <0.00075               | <0.00075               | <0.00075               | <0.00075               | <0.00075               |
| VHw <sub>6-10</sub>                                                 | 15     |       | <0.10                  | <0.10                  | <0.10                  | <0.10                  | <0.10                  |
| VPHw                                                                | 1.5    |       | <0.10                  | <0.10                  | <0.10                  | <0.10                  | <0.10                  |
|                                                                     |        |       |                        |                        |                        |                        |                        |
| Polycyclic Aromatic Hydrocarbons                                    |        |       |                        |                        |                        |                        |                        |
| acenaphthene                                                        |        |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| acenaphthylene                                                      |        |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| acridine                                                            | 0.0005 |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| anthracene                                                          | 0.001  |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| benzo(a)anthracene                                                  | 0.001  |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| benzo(a)pyrene                                                      | 0.0001 |       | <0.000010              | <0.000010              | <0.000010              | <0.000010              | <0.000010              |
| benzo(b)fluoranthene                                                |        |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| benzo(g,h,i)perylene                                                |        |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| benzo(k)fluoranthene                                                |        |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| chrysene                                                            |        |       | <0.000050              | < 0.000050             | <0.000050              | <0.000050              | < 0.000050             |
| dibenzo(a,h)anthracene                                              | 0.000  |       | <0.000050<br><0.000050 | <0.000050<br><0.000050 | <0.000050<br><0.000050 | <0.000050<br><0.000050 | <0.000050<br><0.000050 |
| fluoranthene                                                        | 0.002  |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| fluorene                                                            | 0.12   |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| indeno(1,2,3-c,d)pyrene                                             | 0.01   | l     | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| naphthalene                                                         | 0.01   |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| phenanthrene                                                        | 0.003  |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| pyrene                                                              | 0.0002 |       | <0.000050              | <0.000050              | <0.000050              | <0.000050              | <0.000050              |
| quinoline                                                           | 0.034  |       | <0.000000              | <0.000000              | <0.000000              | <0.000000              | <0.000030              |
| Other Hydrocarbons                                                  |        |       |                        |                        |                        |                        |                        |
| EPHw <sub>10-19</sub>                                               | 5      |       | <0.25                  | <0.25                  | <0.25                  | <0.25                  | <0.25                  |
|                                                                     | 5      |       | <0.25                  | <0.25                  | <0.25                  | <0.25                  | <0.25                  |
| EPHw <sub>19-32</sub>                                               |        | I     |                        |                        |                        |                        |                        |
| LEPHw                                                               | 0.5    |       | <0.25                  | <0.25                  | <0.25                  | <0.25                  | <0.25                  |
| HEPHw                                                               |        |       | <0.25                  | <0.25                  | <0.25                  | <0.25                  | <0.25                  |
| Missellaneous Oreanies                                              |        |       |                        |                        |                        |                        |                        |
| <i>Miscellaneous Organics</i><br>methyl tertiary butyl ether (MTBE) |        |       | <0.00050               | <0.00050               | 0.00148                | <0.00050               | 0.00148                |
| meuryi tertiary butyi etter (wiiDE)                                 |        |       | <0.00000               | <0.00000               | 0.00140                | <0.00000               | 0.00140                |
|                                                                     |        |       |                        |                        |                        |                        |                        |
|                                                                     |        |       | 1                      |                        |                        |                        |                        |

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Land Use abbreviations: DW (Drinking Water) and AW (Aquatic Life).

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

 $EPHw_{10-19} = extractable petroleum hydrocarbons, carbon range 10-19$ 

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for EPHw 10-19 is equivalent to LEPHw, when no LEPHw analysis is undertaken.

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} =$  volatile hydrocarbons, carbon range 6-10

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

Italics indicates standard is below detection limit.

Yellow highlight and box= Exceeds CSR freshwater aquatic life (AW) standards; AW standards assume minimum 1:10 dilution is available.

O:\Final\2011\1436\11-1436-0073\1114360073-512-R-Rev0-2700\Appendices\App E\ Stewart Crossing water quality tables 18-Oct-12 AR.xlsx [Hydrocarbons]

**Golder Associates** 

# Table E-3 Results of Quality Control Analyses - Metals [YTG Landfill Monitoring, Stewart Crossing, Yukon]

|                          | SCN L1209363-6     | L1209363-8 |           |        | _          |            |
|--------------------------|--------------------|------------|-----------|--------|------------|------------|
|                          | ocation SX-MW12-02 | SX-MW12-04 | Method    |        | Relative   | Difference |
| (                        | QA/QC FDA          | FD         | Detection | Mean   | Percent    | Factor     |
|                          | Date 10-SEP-12     | 10-SEP-12  | Limit     |        | Difference | (DF)       |
|                          |                    |            |           |        |            |            |
| Laboratory Parameters    |                    |            |           |        |            |            |
| pH (laboratory)          | 7.70               | 7.78       | 0.10      | 7.74   | 1.03%      | NA         |
| Hardness (as CaCO3)      | 3120               | 3040       | 0.50      | 3080   | 2.60%      | NA         |
| total dissolved solids   | 6260               | 6390       | 10        | 6325   | 2.06%      | NA         |
| Aggregate Organics       |                    |            |           |        |            |            |
| COD                      | 81                 | 88         | 20        | 84.5   | NA         | 0.00       |
| dissolved organic carbon | 4.12               | 3.85       | 1.0       | 3.985  | NA         | 80.00      |
|                          |                    |            |           |        |            |            |
| Dissolved Metals         |                    |            |           |        |            |            |
| aluminum                 | <0.10              | <0.10      | 0.010     | NC     | NC         | NA         |
| antimony                 | <0.0050            | <0.0050    | 0.00050   | NC     | NC         | NA         |
| arsenic                  | <0.0010            | <0.0010    | 0.00010   | NC     | NC         | NA         |
| barium                   | <0.20              | <0.20      | 0.020     | NC     | NC         | NA         |
| beryllium                | <0.010             | <0.010     | 0.0050    | NC     | NC         | NA         |
| bismuth                  | <0.40              | <0.40      | 0.20      | NC     | NC         | NA         |
| boron                    | <1.0               | <1.0       | 0.10      | NC     | NC         | NA         |
| cadmium                  | <0.0020            | <0.0020    | 0.00020   | NC     | NC         | NA         |
| calcium                  | 1200               | 1170       | 0.10      | 1185   | 2.53%      | NA         |
| chromium                 | <0.020             | <0.020     | 0.0020    | NC     | NC         | NA         |
| cobalt                   | <0.020             | <0.020     | 0.010     | NC     | NC         | NA         |
| copper                   | <0.010             | <0.010     | 0.0010    | NC     | NC         | NA         |
| iron                     | <0.060             | <0.060     | 0.030     | NC     | NC         | NA         |
| lead                     | <0.0050            | <0.0050    | 0.00050   | NC     | NC         | NA         |
| lithium                  | 0.032              | 0.032      | 0.010     | 0.032  | NA         | 0.00       |
| magnesium                | 29.5               | 29.5       | 0.10      | 29.5   | 0.00%      | NA         |
| manganese                | <0.020             | <0.020     | 0.0020    | NC     | NC         | NA         |
| mercury                  | <0.00020           | <0.00020   | 0.00020   | NC     | NC         | NA         |
| molybdenum               | <0.060             | <0.060     | 0.030     | NC     | NC         | NA         |
| nickel                   | <0.10              | <0.10      | 0.050     | NC     | NC         | NA         |
| phosphorus               | <0.60              | <0.60      | 0.30      | NC     | NC         | NA         |
| potassium                | 1.2                | 1.3        | 0.10      | 1.25   | 8.00%      | NA         |
| selenium                 | <0.010             | <0.010     | 0.0010    | NC     | NC         | NA         |
| silicon                  | 4.80               | 4.84       | 0.050     | 4.82   | 0.83%      | NA         |
| silver                   | <0.020             | <0.020     | 0.010     | NC     | NC         | NA         |
| sodium                   | 32.3               | 32.8       | 2.0       | 32.55  | 1.54%      | NA         |
| strontium                | 2.10               | 2.17       | 0.0050    | 2.135  | 3.28%      | NA         |
| thallium                 | <0.40              | <0.40      | 0.20      | NC     | NC         | NA         |
| tin                      | <0.060             | <0.060     | 0.030     | NC     | NC         | NA         |
| titanium                 | <0.020             | <0.020     | 0.010     | NC     | NC         | NA         |
| uranium                  | 0.204              | 0.196      | 0.00010   | 0.2    | 4.00%      | NA         |
| vanadium                 | <0.060             | <0.060     | 0.030     | NC     | NC         | NA         |
| zinc                     | <0.50              | <0.50      | 0.050     | NC     | NC         | NA         |
| Other Inorganics         |                    |            |           |        |            |            |
| bicarbonate (CaCO3)      | 247                | 246        | 2.0       | 246.5  | 0.41%      | NA         |
| carbonate (CaCO3)        | <2.0               | <2.0       | 2.0       | NC     | NA         | NA         |
| hydroxide (CaCO3)        | <2.0               | <2.0       | 2.0       | NC     | NA         | NA         |
| total alkalinity (CaCO3) | 247                | 246        | 2.0       | 246.5  | 0.41%      | NA         |
| ammonia                  | <0.0050            | <0.0050    | 0.0050    | NC     | NA         | NA         |
| chloride                 | 2010               | 1970       | 5.0       | 1990   | 2.01%      | NA         |
| fluoride                 | <0.40              | <0.40      | 0.20      | NC     | NA         | NA         |
| nitrate (as N)           | 3.47               | 2.38       | 0.050     | 2.925  | 37.26%     | NA         |
| nitrite (as N)           | <0.050             | <0.0010    | 0.010     | NC     | NA         | NA         |
| total Kjeldahl nitrogen  | 0.156              | 0.137      | 0.25      | 0.1465 | NA         | 0.08       |
| sulphate                 | 83                 | 82         | 5.0       | 82.5   | 1.21%      | NA         |
| •                        |                    |            |           | *      |            |            |

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target is less than 2.

NC = Not Calculated

NA = not applicable

FDA = field duplicate available

FD = field duplicate QA/QC = quality assurance/quality control SCN = sample control number COC = Chain of Custody **BOLD** font indicates the parameter analysed exceeds Golder's internal QA/QC targets.

# Table E-4Results of Quality Control Analyses - Hydrocarbons[YTG Landfill Monitoring, Stewart Crossing, Yukon]

| SCN                                  | L1209363-6                     | L1209363-8                     |                              |         |                                   |                              |
|--------------------------------------|--------------------------------|--------------------------------|------------------------------|---------|-----------------------------------|------------------------------|
| Location<br>QA/QC<br>Date            | SX-MW12-02<br>DUP<br>10-SEP-12 | SX-MW12-04<br>DUP<br>10-SEP-12 | Method<br>Detection<br>Limit | Mean    | Relative<br>Percent<br>Difference | Difference<br>Factor<br>(DF) |
| Management a Historia and and        |                                |                                |                              |         |                                   |                              |
| Monoaromatic Hydrocarbons<br>benzene | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| ethylbenzene                         | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| styrene                              | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| toluene                              | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| ortho-xylene                         | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| meta- & para-xylene                  | <0.00050                       | <0.00050                       | 0.00050                      | NC      | NC                                | NA                           |
| total xylene                         | <0.00075                       | <0.00075                       | 0.00075                      | NC      | NC                                | NA                           |
| VHw <sub>6-10</sub>                  | <0.10                          | <0.10                          | 0.10                         | NC      | NC                                | NA                           |
| VPHw                                 | <0.10                          | <0.10                          |                              | NC      | NC                                |                              |
| ¥ F I I W                            | <0.10                          | <0.10                          | 0.10                         | NU      | NC                                | NA                           |
| Polycyclic Aromatic Hydrocarbons     |                                |                                |                              |         |                                   |                              |
| acenaphthene                         | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| acenaphthylene                       | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| acridine                             | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| anthracene                           | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| benzo(a)anthracene                   | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| benzo(a)pyrene                       | <0.000010                      | <0.000010                      | 0.000010                     | NC      | NC                                | NA                           |
| benzo(b)fluoranthene                 | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| benzo(g,h,i)perylene                 | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| benzo(k)fluoranthene                 | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| chrysene                             | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| dibenzo(a,h)anthracene               | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| fluoranthene                         | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| fluorene                             | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| indeno(1,2,3-c,d)pyrene              | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| naphthalene                          | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| phenanthrene                         | <0.000050                      | < 0.000050                     | 0.000050                     | NC      | NC                                | NA                           |
| pyrene                               | <0.000050                      | <0.000050                      | 0.000050                     | NC      | NC                                | NA                           |
| quinoline                            | <0.000050                      | <0.000050                      | 0.00005                      | NC      | NC                                | NA                           |
| Other Hydrocarbons                   |                                |                                |                              |         |                                   |                              |
| EPHw <sub>10-19</sub>                | <0.25                          | <0.25                          | 0.25                         | NC      | NC                                | NA                           |
| EPHw <sub>19-32</sub>                | <0.25                          | <0.25                          | 0.25                         | NC      | NC                                | NA                           |
| LEPHw                                | <0.25                          | <0.25                          | 0.25                         | NC      | NC                                | NA                           |
| HEPHw                                | <0.25                          | <0.25                          | 0.25                         | NC      | NC                                | NA                           |
| Miscellaneous Organics               |                                |                                |                              |         |                                   |                              |
| methyl tertiary butyl ether (MTBE)   | 0.00148                        | 0.00148                        | 0.00050                      | 0.00148 | 0.00%                             | NA                           |
|                                      |                                |                                |                              |         |                                   |                              |
| Notes                                |                                |                                |                              |         |                                   |                              |

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target is less than 2.

NC = Not Calculated

NA = not applicable

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

BOLD font indicates the parameter analysed exceeds Golder's internal QA/QC targets.



GOLDER ASSOCIATES LTD. ATTN: Andrea Badger # 201B, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received:14-SEP-12Report Date:27-SEP-12 10:35 (MT)Version:FINAL

Client Phone: 867-633-6076

## **Certificate of Analysis**

#### Lab Work Order #:

## er #: L1209363

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 11-1436-0073/1200,2200,2400,2700

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

L1209363 CONTD.... PAGE 2 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-1<br>groundwater<br>09-SEP-12<br>15:40<br>PC-MW12-01 | L1209363-2<br>groundwater<br>10-SEP-12<br>10:20<br>PC-MW12-02 | L1209363-3<br>groundwater<br>10-SEP-12<br>11:30<br>PC-MW12-03 | L1209363-4<br>surface water<br>13-SEP-12<br>13:30<br>PC SURFACE | L1209363-5<br>groundwater<br>12-SEP-12<br>10:40<br>SX-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                               |
| WATER                         |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                               |
| Physical Tests                | Hardness (as CaCO3) (mg/L)                                            | 5720                                                          | 2500                                                          | 3010                                                          | 2350                                                            | 681                                                           |
|                               | рН (рН)                                                               | 7.83                                                          | 7.93                                                          | 7.87                                                          | 8.13                                                            | 7.78                                                          |
|                               | Total Dissolved Solids (mg/L)                                         | 8890                                                          | 3970                                                          | 4690                                                          | 3870                                                            | 1470                                                          |
| Anions and<br>Nutrients       | Alkalinity, Bicarbonate (as CaCO3) (mg/L)                             | 447                                                           | 288                                                           | 270                                                           | 344                                                             | 107                                                           |
|                               | Alkalinity, Carbonate (as CaCO3) (mg/L)                               | <2.0                                                          | <2.0                                                          | <2.0                                                          | <1.0                                                            | <2.0                                                          |
|                               | Alkalinity, Hydroxide (as CaCO3) (mg/L)                               | <2.0                                                          | <2.0                                                          | <2.0                                                          | <1.0                                                            | <2.0                                                          |
|                               | Alkalinity, Total (as CaCO3) (mg/L)                                   | 447                                                           | 288                                                           | 270                                                           | 344                                                             | 107                                                           |
|                               | Ammonia, Total (as N) (mg/L)                                          | 1.84                                                          | 1.54                                                          | 1.80                                                          | 0.342                                                           | 0.0122                                                        |
|                               | Chloride (Cl) (mg/L)                                                  | 109                                                           | 90                                                            | 105                                                           | 76                                                              | 431                                                           |
|                               | Fluoride (F) (mg/L)                                                   | ollm <0.40                                                    | <0.40                                                         | <0.40                                                         | 0.48                                                            | <0.20                                                         |
|                               | Nitrate (as N) (mg/L)                                                 | olla <0.25                                                    | <0.10                                                         | <0.10                                                         | <0.10                                                           | DLA<br><0.050                                                 |
|                               | Nitrite (as N) (mg/L)                                                 | DLA<br><0.050                                                 | <0.020                                                        | DLA<br><0.020                                                 | DLA<br><0.020                                                   | DLA<br><0.010                                                 |
|                               | Total Kjeldahl Nitrogen (mg/L)                                        | 4.04                                                          | 2.54                                                          | 3.07                                                          | 3.95                                                            | 0.179                                                         |
|                               | Sulfate (SO4) (mg/L)                                                  | 5840                                                          | 2520                                                          | 2900                                                          | 2140                                                            | 63.0                                                          |
| Organic /<br>Inorganic Carbon | Dissolved Organic Carbon (mg/L)                                       | 33.8                                                          | 17.2                                                          | 18.1                                                          | 68.6                                                            | 3.32                                                          |
| Dissolved Metals              | Dissolved Metals Filtration Location                                  | FIELD                                                         | FIELD                                                         | FIELD                                                         | LAB                                                             | FIELD                                                         |
|                               | Aluminum (AI)-Dissolved (mg/L)                                        | <0.10                                                         | <0.050                                                        | <0.050                                                        | <0.050                                                          | <0.050                                                        |
|                               | Antimony (Sb)-Dissolved (mg/L)                                        | <0.0050                                                       | <0.0025                                                       | <0.0025                                                       | <0.0025                                                         | <0.0025                                                       |
|                               | Arsenic (As)-Dissolved (mg/L)                                         | 0.0083                                                        | 0.00855                                                       | 0.00699                                                       | 0.00134                                                         | 0.00060                                                       |
|                               | Barium (Ba)-Dissolved (mg/L)                                          | DLA <0.20                                                     | <0.10                                                         | <0.10                                                         | <0.10                                                           | <0.10                                                         |
|                               | Beryllium (Be)-Dissolved (mg/L)                                       | <0.010                                                        | <0.0050                                                       | <0.0050                                                       | <0.0050                                                         | <0.0050                                                       |
|                               | Bismuth (Bi)-Dissolved (mg/L)                                         | DLA <0.40                                                     | <0.20                                                         | <0.20                                                         | <0.20                                                           | <0.20                                                         |
|                               | Boron (B)-Dissolved (mg/L)                                            | DLA <1.0                                                      | DLA<br><0.50                                                  | DLA<br><0.50                                                  | DLA <0.50                                                       | <0.50                                                         |
|                               | Cadmium (Cd)-Dissolved (mg/L)                                         | DLA<br><0.0020                                                | DLA<br><0.0010                                                | DLA<br><0.0010                                                | DLA<br><0.0010                                                  | 0.0016                                                        |
|                               | Calcium (Ca)-Dissolved (mg/L)                                         | 372                                                           | 213                                                           | 263                                                           | 278                                                             | 218                                                           |
|                               | Chromium (Cr)-Dissolved (mg/L)                                        | DLA<br><0.020                                                 | DLA<br><0.010                                                 | DLA<br><0.010                                                 | DLA<br><0.010                                                   | <0.010                                                        |
|                               | Cobalt (Co)-Dissolved (mg/L)                                          | DLA<br><0.020                                                 | <0.010                                                        | <0.010                                                        | <0.010                                                          | 0.025                                                         |
|                               | Copper (Cu)-Dissolved (mg/L)                                          | DLA<br><0.010                                                 | DLA<br><0.0050                                                | DLA<br><0.0050                                                | DLA<br><0.0050                                                  | DLA<br><0.0050                                                |
|                               | Iron (Fe)-Dissolved (mg/L)                                            | 0.463                                                         | 0.475                                                         | 0.297                                                         | 0.079                                                           | <0.030                                                        |
|                               | Lead (Pb)-Dissolved (mg/L)                                            | DLA<br><0.0050                                                | DLA<br><0.0025                                                | DLA<br><0.0025                                                | DLA<br><0.0025                                                  | DLA<br><0.0025                                                |
|                               | Lithium (Li)-Dissolved (mg/L)                                         | 0.025                                                         | 0.021                                                         | 0.035                                                         | 0.031                                                           | 0.021                                                         |
|                               | Magnesium (Mg)-Dissolved (mg/L)                                       | 1160                                                          | 477                                                           | 571                                                           | 403                                                             | 32.9                                                          |
|                               | Manganese (Mn)-Dissolved (mg/L)                                       | 0.691                                                         | 0.377                                                         | 0.400                                                         | 0.042                                                           | 1.28                                                          |
|                               | Mercury (Hg)-Dissolved (mg/L)                                         | <0.00020                                                      | <0.00020                                                      | <0.00020                                                      | <0.00020                                                        | <0.00020                                                      |
|                               | Molybdenum (Mo)-Dissolved (mg/L)                                      | DLA<br><0.060                                                 | <0.030                                                        | <0.030                                                        | <0.030                                                          | <0.030                                                        |
|                               | Nickel (Ni)-Dissolved (mg/L)                                          | DLA <0.10                                                     | <0.050                                                        | <0.050                                                        | <0.050                                                          | 0.106                                                         |

L1209363 CONTD.... PAGE 3 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-6<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02 | L1209363-7<br>groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03 | L1209363-8<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-04 | L1209363-9<br>surface water<br>12-SEP-12<br>13:20<br>SX SURFACE | L1209363-10<br>groundwater<br>11-SEP-12<br>10:45<br>MA-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                                |
| WATER                         |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                                |
| Physical Tests                | Hardness (as CaCO3) (mg/L)                                            | 3120                                                          | 189                                                           | 3040                                                          | 127                                                             | 229                                                            |
|                               | рН (рН)                                                               | 7.70                                                          | 8.05                                                          | 7.78                                                          | 7.90                                                            | 8.07                                                           |
|                               | Total Dissolved Solids (mg/L)                                         | 6260                                                          | 227                                                           | 6390                                                          | 160                                                             | 364                                                            |
| Anions and<br>Nutrients       | Alkalinity, Bicarbonate (as CaCO3) (mg/L)                             | 247                                                           | 198                                                           | 246                                                           | 120                                                             | 195                                                            |
|                               | Alkalinity, Carbonate (as CaCO3) (mg/L)                               | <2.0                                                          | <2.0                                                          | <2.0                                                          | <2.0                                                            | <2.0                                                           |
|                               | Alkalinity, Hydroxide (as CaCO3) (mg/L)                               | <2.0                                                          | <2.0                                                          | <2.0                                                          | <2.0                                                            | <2.0                                                           |
|                               | Alkalinity, Total (as CaCO3) (mg/L)                                   | 247                                                           | 198                                                           | 246                                                           | 120                                                             | 195                                                            |
|                               | Ammonia, Total (as N) (mg/L)                                          | <0.0050                                                       | <0.0050                                                       | <0.0050                                                       | 0.0110                                                          | 0.0306                                                         |
|                               | Chloride (Cl) (mg/L)                                                  | 2010                                                          | 0.97                                                          | 1970                                                          | <0.50                                                           | <0.50                                                          |
|                               | Fluoride (F) (mg/L)                                                   | <0.40                                                         | 0.377                                                         | <0.40                                                         | 0.193                                                           | 0.077                                                          |
|                               | Nitrate (as N) (mg/L)                                                 | 3.47                                                          | 0.167                                                         | 2.38                                                          | ola<0.10                                                        | 0.0126                                                         |
|                               | Nitrite (as N) (mg/L)                                                 | DLA<br><0.050                                                 | <0.0010                                                       | <0.0010                                                       | DLA<br><0.020                                                   | <0.0010                                                        |
|                               | Total Kjeldahl Nitrogen (mg/L)                                        | <sup>ткы</sup><br>0.156                                       | 0.079                                                         | ткы<br>0.137                                                  | 0.169                                                           | 0.77                                                           |
|                               | Sulfate (SO4) (mg/L)                                                  | 83                                                            | 12.0                                                          | 82                                                            | 18.6                                                            | 104                                                            |
| Organic /<br>Inorganic Carbon | Dissolved Organic Carbon (mg/L)                                       | 4.12                                                          | 2.93                                                          | 3.85                                                          | 4.26                                                            | 1.24                                                           |
| Dissolved Metals              | Dissolved Metals Filtration Location                                  | FIELD                                                         | FIELD                                                         | FIELD                                                         | LAB                                                             | FIELD                                                          |
|                               | Aluminum (AI)-Dissolved (mg/L)                                        | DLA <0.10                                                     | <0.010                                                        | DLA<br><0.10                                                  | <0.010                                                          | <0.010                                                         |
|                               | Antimony (Sb)-Dissolved (mg/L)                                        | DLA<br><0.0050                                                | <0.00050                                                      | DLA<br><0.0050                                                | <0.00050                                                        | <0.00050                                                       |
|                               | Arsenic (As)-Dissolved (mg/L)                                         | DLA<br><0.0010                                                | 0.00029                                                       | DLA<br><0.0010                                                | 0.00086                                                         | 0.00377                                                        |
|                               | Barium (Ba)-Dissolved (mg/L)                                          | DLA <0.20                                                     | 0.021                                                         | DLA<br><0.20                                                  | 0.094                                                           | 0.050                                                          |
|                               | Beryllium (Be)-Dissolved (mg/L)                                       | DLA<br><0.010                                                 | <0.0050                                                       | DLA<br><0.010                                                 | <0.0050                                                         | <0.0050                                                        |
|                               | Bismuth (Bi)-Dissolved (mg/L)                                         | DLA <0.40                                                     | <0.20                                                         | DLA<br><0.40                                                  | <0.20                                                           | <0.20                                                          |
|                               | Boron (B)-Dissolved (mg/L)                                            | DLA <1.0                                                      | <0.10                                                         | DLA<br><1.0                                                   | <0.10                                                           | <0.10                                                          |
|                               | Cadmium (Cd)-Dissolved (mg/L)                                         | DLA<br><0.0020                                                | <0.00020                                                      | DLA<br><0.0020                                                | <0.00020                                                        | <0.00020                                                       |
|                               | Calcium (Ca)-Dissolved (mg/L)                                         | 1200                                                          | 61.2                                                          | 1170                                                          | 39.6                                                            | 67.3                                                           |
|                               | Chromium (Cr)-Dissolved (mg/L)                                        | DLA<br><0.020                                                 | <0.0020                                                       | DLA<br><0.020                                                 | <0.0020                                                         | <0.0020                                                        |
|                               | Cobalt (Co)-Dissolved (mg/L)                                          | DLA<br><0.020                                                 | <0.010                                                        | DLA<br><0.020                                                 | <0.010                                                          | <0.010                                                         |
|                               | Copper (Cu)-Dissolved (mg/L)                                          | DLA<br><0.010                                                 | <0.0010                                                       | DLA<br><0.010                                                 | <0.0010                                                         | <0.0010                                                        |
|                               | Iron (Fe)-Dissolved (mg/L)                                            | DLA<br><0.060                                                 | <0.030                                                        | DLA<br><0.060                                                 | 0.194                                                           | 0.597                                                          |
|                               | Lead (Pb)-Dissolved (mg/L)                                            | DLA<br><0.0050                                                | <0.00050                                                      | DLA<br><0.0050                                                | <0.00050                                                        | <0.00050                                                       |
|                               | Lithium (Li)-Dissolved (mg/L)                                         | 0.032                                                         | 0.012                                                         | 0.032                                                         | <0.010                                                          | <0.010                                                         |
|                               | Magnesium (Mg)-Dissolved (mg/L)                                       | 29.5                                                          | 8.68                                                          | 29.5                                                          | 6.95                                                            | 14.8                                                           |
|                               | Manganese (Mn)-Dissolved (mg/L)                                       | DLA<br><0.020                                                 | 0.113                                                         | DLA<br><0.020                                                 | 0.129                                                           | 0.482                                                          |
|                               | Mercury (Hg)-Dissolved (mg/L)                                         | <0.00020                                                      | <0.00020                                                      | <0.00020                                                      | <0.00020                                                        | <0.00020                                                       |
|                               | Molybdenum (Mo)-Dissolved (mg/L)                                      | DLA<br><0.060                                                 | <0.030                                                        | DLA<br><0.060                                                 | <0.030                                                          | <0.030                                                         |
|                               | Nickel (Ni)-Dissolved (mg/L)                                          | DLA<br><0.10                                                  | <0.050                                                        | DLA<br><0.10                                                  | <0.050                                                          | <0.050                                                         |

L1209363 CONTD.... PAGE 4 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-11<br>groundwater<br>11-SEP-12<br>12:30<br>MA-MW12-02 | L1209363-12<br>groundwater<br>11-SEP-12<br>14:15<br>MA-MW12-03 | L1209363-13<br>groundwater<br>11-SEP-12<br>15:15<br>MA-MW12-04 | L1209363-14<br>surface water<br>12-SEP-12<br>17:30<br>MA SURFACE | L1209363-15<br>groundwater<br>13-SEP-12<br>09:25<br>KE-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                                |                                                                |                                                                |                                                                  |                                                                |
| WATER                         |                                                                       |                                                                |                                                                |                                                                |                                                                  |                                                                |
| Physical Tests                | Hardness (as CaCO3) (mg/L)                                            | 419                                                            | 191                                                            | 252                                                            | 108                                                              | 719                                                            |
|                               | рН (рН)                                                               | 7.94                                                           | 8.02                                                           | 8.04                                                           | 8.16                                                             | 7.69                                                           |
|                               | Total Dissolved Solids (mg/L)                                         | 4270                                                           | 263                                                            | 325                                                            | 145                                                              | 968                                                            |
| Anions and<br>Nutrients       | Alkalinity, Bicarbonate (as CaCO3) (mg/L)                             | 287                                                            | 154                                                            | 180                                                            | 84.2                                                             | 373                                                            |
|                               | Alkalinity, Carbonate (as CaCO3) (mg/L)                               | <1.0                                                           | <1.0                                                           | <2.0                                                           | <2.0                                                             | <2.0                                                           |
|                               | Alkalinity, Hydroxide (as CaCO3) (mg/L)                               | <1.0                                                           | <1.0                                                           | <2.0                                                           | <2.0                                                             | <2.0                                                           |
|                               | Alkalinity, Total (as CaCO3) (mg/L)                                   | 287                                                            | 154                                                            | 180                                                            | 84.2                                                             | 373                                                            |
|                               | Ammonia, Total (as N) (mg/L)                                          | 0.420                                                          | 0.322                                                          | 0.0090                                                         | <0.0050                                                          | 0.0877                                                         |
|                               | Chloride (Cl) (mg/L)                                                  | 5.1                                                            | <0.50                                                          | <0.50                                                          | <0.50                                                            | <5.0                                                           |
|                               | Fluoride (F) (mg/L)                                                   | 0.23                                                           | 0.074                                                          | 0.057                                                          | 0.061                                                            | ol.20                                                          |
|                               | Nitrate (as N) (mg/L)                                                 | 0.161                                                          | 0.0135                                                         | 0.0137                                                         | 0.0553                                                           | DLA <0.050                                                     |
|                               | Nitrite (as N) (mg/L)                                                 | 0.020                                                          | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | DLA<br><0.010                                                  |
|                               | Total Kjeldahl Nitrogen (mg/L)                                        | 8.19                                                           | 7.36                                                           | 0.27                                                           | 0.122                                                            | 0.572                                                          |
|                               | Sulfate (SO4) (mg/L)                                                  | 633                                                            | 54.7                                                           | 83.7                                                           | 29.9                                                             | 408                                                            |
| Organic /<br>Inorganic Carbon | Dissolved Organic Carbon (mg/L)                                       | 4.09                                                           | 0.92                                                           | 0.74                                                           | 2.77                                                             | 5.57                                                           |
| Dissolved Metals              | Dissolved Metals Filtration Location                                  | LAB                                                            | LAB                                                            | FIELD                                                          | FIELD                                                            | FIELD                                                          |
|                               | Aluminum (AI)-Dissolved (mg/L)                                        | 0.194                                                          | 0.016                                                          | <0.010                                                         | 0.026                                                            | 0.058                                                          |
|                               | Antimony (Sb)-Dissolved (mg/L)                                        | 0.00588                                                        | 0.00847                                                        | <0.00050                                                       | <0.00050                                                         | 0.0019                                                         |
|                               | Arsenic (As)-Dissolved (mg/L)                                         | 0.00236                                                        | 0.00245                                                        | 0.00306                                                        | 0.00225                                                          | 0.00058                                                        |
|                               | Barium (Ba)-Dissolved (mg/L)                                          | 0.041                                                          | 0.093                                                          | 0.061                                                          | 0.056                                                            | DLA <0.040                                                     |
|                               | Beryllium (Be)-Dissolved (mg/L)                                       | <0.0050                                                        | <0.0050                                                        | <0.0050                                                        | <0.0050                                                          | < 0.0050                                                       |
|                               | Bismuth (Bi)-Dissolved (mg/L)                                         | <0.20                                                          | <0.20                                                          | <0.20                                                          | <0.20                                                            | <0.20                                                          |
|                               | Boron (B)-Dissolved (mg/L)                                            | <0.10                                                          | <0.10                                                          | <0.10                                                          | <0.10                                                            | <0.20                                                          |
|                               | Cadmium (Cd)-Dissolved (mg/L)                                         | <0.00020                                                       | <0.00020                                                       | <0.00020                                                       | <0.00020                                                         | 0.00142                                                        |
|                               | Calcium (Ca)-Dissolved (mg/L)                                         | 124                                                            | 59.2                                                           | 75.1                                                           | 32.4                                                             | 209                                                            |
|                               | Chromium (Cr)-Dissolved (mg/L)                                        | <0.0020                                                        | <0.0020                                                        | <0.0020                                                        | <0.0020                                                          | DLA <0.0040                                                    |
|                               | Cobalt (Co)-Dissolved (mg/L)                                          | <0.010                                                         | <0.010                                                         | <0.010                                                         | <0.010                                                           | 0.076                                                          |
|                               | Copper (Cu)-Dissolved (mg/L)                                          | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | DLA<br><0.0020                                                 |
|                               | Iron (Fe)-Dissolved (mg/L)                                            | 0.221                                                          | <0.030                                                         | 0.089                                                          | <0.030                                                           | 0.183                                                          |
|                               | Lead (Pb)-Dissolved (mg/L)                                            | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | ola <0.0010                                                    |
|                               | Lithium (Li)-Dissolved (mg/L)                                         | 0.023                                                          | <0.010                                                         | <0.010                                                         | <0.010                                                           | 0.016                                                          |
|                               | Magnesium (Mg)-Dissolved (mg/L)                                       | 26.5                                                           | 10.4                                                           | 15.8                                                           | 6.68                                                             | 47.9                                                           |
|                               | Manganese (Mn)-Dissolved (mg/L)                                       | 0.859                                                          | 0.271                                                          | 0.319                                                          | 0.0102                                                           | 2.86                                                           |
|                               | Mercury (Hg)-Dissolved (mg/L)                                         | <0.00020                                                       | <0.00020                                                       | <0.00020                                                       | <0.00020                                                         | <0.00020                                                       |
|                               | Molybdenum (Mo)-Dissolved (mg/L)                                      | <0.030                                                         | <0.030                                                         | <0.030                                                         | <0.030                                                           | <0.030                                                         |
|                               | Nickel (Ni)-Dissolved (mg/L)                                          | <0.050                                                         | <0.050                                                         | <0.050                                                         | <0.050                                                           | 0.141                                                          |

L1209363 CONTD.... PAGE 5 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                                      | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-16<br>groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03 | L1209363-17<br>surface water<br>11-SEP-12<br>19:15<br>KE SURFACE |  |  |
|--------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Grouping                             | Analyte                                                               |                                                                |                                                                  |  |  |
| WATER                                |                                                                       |                                                                |                                                                  |  |  |
| Physical Tests                       | Hardness (as CaCO3) (mg/L)                                            | 1790                                                           | 95.5                                                             |  |  |
|                                      | рН (рН)                                                               | 7.55                                                           | 7.86                                                             |  |  |
|                                      | Total Dissolved Solids (mg/L)                                         | 2710                                                           | 133                                                              |  |  |
| Anions and<br>Nutrients              | Alkalinity, Bicarbonate (as CaCO3) (mg/L)                             | 408                                                            | 41.1                                                             |  |  |
|                                      | Alkalinity, Carbonate (as CaCO3) (mg/L)                               | <2.0                                                           | <2.0                                                             |  |  |
|                                      | Alkalinity, Hydroxide (as CaCO3) (mg/L)                               | <2.0                                                           | <2.0                                                             |  |  |
|                                      | Alkalinity, Total (as CaCO3) (mg/L)                                   | 408                                                            | 41.1                                                             |  |  |
|                                      | Ammonia, Total (as N) (mg/L)                                          | 0.0442                                                         | 0.0085                                                           |  |  |
|                                      | Chloride (Cl) (mg/L)                                                  | 24                                                             | 0.76                                                             |  |  |
|                                      | Fluoride (F) (mg/L)                                                   | olm                                                            | 0.058                                                            |  |  |
|                                      | Nitrate (as N) (mg/L)                                                 | DLA<br><0.10                                                   | 0.127                                                            |  |  |
|                                      | Nitrite (as N) (mg/L)                                                 | 0.062                                                          | <0.0010                                                          |  |  |
|                                      | Total Kjeldahl Nitrogen (mg/L)                                        | 0.520                                                          | 0.186                                                            |  |  |
|                                      | Sulfate (SO4) (mg/L)                                                  | 1540                                                           | 52.9                                                             |  |  |
| Organic /                            | Dissolved Organic Carbon (mg/L)                                       | 5.04                                                           | 1.33                                                             |  |  |
| Inorganic Carbon<br>Dissolved Metals | Dissolved Metals Filtration Location                                  | FIELD                                                          | FIELD                                                            |  |  |
|                                      | Aluminum (AI)-Dissolved (mg/L)                                        | <0.050                                                         | 0.042                                                            |  |  |
|                                      | Antimony (Sb)-Dissolved (mg/L)                                        | <0.000<br>DLA<br><0.0025                                       | <0.00050                                                         |  |  |
|                                      | Arsenic (As)-Dissolved (mg/L)                                         | 0.00081                                                        | 0.00090                                                          |  |  |
|                                      | Barium (Ba)-Dissolved (mg/L)                                          | <0.10                                                          | 0.052                                                            |  |  |
|                                      | Beryllium (Be)-Dissolved (mg/L)                                       | <0.0050                                                        | <0.0050                                                          |  |  |
|                                      | Bismuth (Bi)-Dissolved (mg/L)                                         | <0.20                                                          | <0.20                                                            |  |  |
|                                      | Boron (B)-Dissolved (mg/L)                                            | <0.50                                                          | <0.10                                                            |  |  |
|                                      | Cadmium (Cd)-Dissolved (mg/L)                                         | 0.0020                                                         | <0.00020                                                         |  |  |
|                                      | Calcium (Ca)-Dissolved (mg/L)                                         | 571                                                            | 30.1                                                             |  |  |
|                                      | Chromium (Cr)-Dissolved (mg/L)                                        | DLA<br><0.010                                                  | <0.0020                                                          |  |  |
|                                      | Cobalt (Co)-Dissolved (mg/L)                                          | 0.092                                                          | <0.010                                                           |  |  |
|                                      | Copper (Cu)-Dissolved (mg/L)                                          | DLA<br><0.0050                                                 | <0.0010                                                          |  |  |
|                                      | Iron (Fe)-Dissolved (mg/L)                                            | 0.475                                                          | 0.036                                                            |  |  |
|                                      | Lead (Pb)-Dissolved (mg/L)                                            | DLA<br><0.0025                                                 | <0.00050                                                         |  |  |
|                                      | Lithium (Li)-Dissolved (mg/L)                                         | 0.071                                                          | <0.010                                                           |  |  |
|                                      | Magnesium (Mg)-Dissolved (mg/L)                                       | 88.8                                                           | 4.95                                                             |  |  |
|                                      | Manganese (Mn)-Dissolved (mg/L)                                       | 4.20                                                           | 0.0047                                                           |  |  |
|                                      | Mercury (Hg)-Dissolved (mg/L)                                         | <0.00020                                                       | <0.00020                                                         |  |  |
|                                      | Molybdenum (Mo)-Dissolved (mg/L)                                      | <0.030                                                         | <0.030                                                           |  |  |
|                                      | Nickel (Ni)-Dissolved (mg/L)                                          | 0.277                                                          | <0.050                                                           |  |  |

L1209363 CONTD.... PAGE 6 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-1<br>groundwater<br>09-SEP-12<br>15:40<br>PC-MW12-01 | L1209363-2<br>groundwater<br>10-SEP-12<br>10:20<br>PC-MW12-02 | L1209363-3<br>groundwater<br>10-SEP-12<br>11:30<br>PC-MW12-03 | L1209363-4<br>surface water<br>13-SEP-12<br>13:30<br>PC SURFACE | L1209363-5<br>groundwater<br>12-SEP-12<br>10:40<br>SX-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                               |
| WATER                         |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                               |
| Dissolved Metals              | Phosphorus (P)-Dissolved (mg/L)                                       | DLA<br><0.60                                                  | <0.30                                                         | <0.30                                                         | <0.30                                                           | <0.30                                                         |
|                               | Potassium (K)-Dissolved (mg/L)                                        | 27.5                                                          | 28.2                                                          | 32.7                                                          | 15.3                                                            | 2.76                                                          |
|                               | Selenium (Se)-Dissolved (mg/L)                                        | DLA<br><0.010                                                 | DLA<br><0.0050                                                | DLA<br><0.0050                                                | DLA <0.0050                                                     | DLA <0.0050                                                   |
|                               | Silicon (Si)-Dissolved (mg/L)                                         | 6.37                                                          | 6.51                                                          | 7.69                                                          | 8.51                                                            | 4.83                                                          |
|                               | Silver (Ag)-Dissolved (mg/L)                                          | DLA<br><0.020                                                 | <0.010                                                        | <0.010                                                        | <0.010                                                          | <0.010                                                        |
|                               | Sodium (Na)-Dissolved (mg/L)                                          | 231                                                           | 113                                                           | 125                                                           | 103                                                             | 21.8                                                          |
|                               | Strontium (Sr)-Dissolved (mg/L)                                       | 4.06                                                          | 2.20                                                          | 2.84                                                          | 1.49                                                            | 0.837                                                         |
|                               | Thallium (TI)-Dissolved (mg/L)                                        | <0.40                                                         | <0.20                                                         | <0.20                                                         | <0.20                                                           | <0.20                                                         |
|                               | Tin (Sn)-Dissolved (mg/L)                                             | DLA<br><0.060                                                 | <0.030                                                        | <0.030                                                        | <0.030                                                          | <0.030                                                        |
|                               | Titanium (Ti)-Dissolved (mg/L)                                        | DLA<br><0.020                                                 | 0.018                                                         | 0.020                                                         | 0.020                                                           | 0.018                                                         |
|                               | Uranium (U)-Dissolved (mg/L)                                          | 0.0639                                                        | 0.00731                                                       | 0.00886                                                       | 0.203                                                           | 0.0267                                                        |
|                               | Vanadium (V)-Dissolved (mg/L)                                         | DLA<br><0.060                                                 | <0.030                                                        | <0.030                                                        | <0.030                                                          | <0.030                                                        |
|                               | Zinc (Zn)-Dissolved (mg/L)                                            | ola <0.50                                                     | <0.25                                                         | <0.25                                                         | <0.25                                                           | <0.25                                                         |
| Aggregate<br>Organics         | COD (mg/L)                                                            | 123                                                           | 56                                                            | 81                                                            | 218                                                             | 52                                                            |
| Volatile Organic<br>Compounds | Benzene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                               | Bromodichloromethane (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Bromoform (mg/L)                                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Carbon Tetrachloride (mg/L)                                           | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                               | Chlorobenzene (mg/L)                                                  | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Dibromochloromethane (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Chloroethane (mg/L)                                                   | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Chloroform (mg/L)                                                     | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | Chloromethane (mg/L)                                                  | <0.0050                                                       | <0.0050                                                       | <0.0050                                                       | <0.0050                                                         | <0.0050                                                       |
|                               | 1,2-Dichlorobenzene (mg/L)                                            | <0.00070                                                      | <0.00070                                                      | <0.00070                                                      | <0.00070                                                        | <0.00070                                                      |
|                               | 1,3-Dichlorobenzene (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | 1,4-Dichlorobenzene (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | 1,1-Dichloroethane (mg/L)                                             | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | 1,2-Dichloroethane (mg/L)                                             | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | 1,1-Dichloroethylene (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | cis-1,2-Dichloroethylene (mg/L)                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | trans-1,2-Dichloroethylene (mg/L)                                     | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | 1,3-Dichloropropene (cis & trans) (mg/L)                              | <0.0014                                                       | <0.0014                                                       | <0.0014                                                       | <0.0014                                                         | <0.0014                                                       |
|                               | Dichloromethane (mg/L)                                                | <0.0050                                                       | <0.0050                                                       | <0.0050                                                       | <0.0050                                                         | <0.0050                                                       |
|                               | 1,2-Dichloropropane (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | cis-1,3-Dichloropropylene (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                               | trans-1,3-Dichloropropylene (mg/L)                                    | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |

#### L1209363 CONTD.... PAGE 7 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-6<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02 | L1209363-7<br>groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03 | L1209363-8<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-04 | L1209363-9<br>surface water<br>12-SEP-12<br>13:20<br>SX SURFACE | L1209363-10<br>groundwater<br>11-SEP-12<br>10:45<br>MA-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                                |
| WATER                         |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                                |
| <b>Dissolved Metals</b>       | Phosphorus (P)-Dissolved (mg/L)                                       | DLA<br><0.60                                                  | <0.30                                                         | ola <0.60                                                     | <0.30                                                           | <0.30                                                          |
|                               | Potassium (K)-Dissolved (mg/L)                                        | 1.2                                                           | 0.49                                                          | 1.3                                                           | 1.09                                                            | 1.77                                                           |
|                               | Selenium (Se)-Dissolved (mg/L)                                        | DLA<br><0.010                                                 | <0.0010                                                       | DLA<br><0.010                                                 | <0.0010                                                         | <0.0010                                                        |
|                               | Silicon (Si)-Dissolved (mg/L)                                         | 4.80                                                          | 4.93                                                          | 4.84                                                          | 4.08                                                            | 2.40                                                           |
|                               | Silver (Ag)-Dissolved (mg/L)                                          | DLA<br><0.020                                                 | <0.010                                                        | ola <0.020                                                    | <0.010                                                          | <0.010                                                         |
|                               | Sodium (Na)-Dissolved (mg/L)                                          | 32.3                                                          | 6.6                                                           | 32.8                                                          | 2.4                                                             | <2.0                                                           |
|                               | Strontium (Sr)-Dissolved (mg/L)                                       | 2.10                                                          | 0.215                                                         | 2.17                                                          | 0.206                                                           | 0.396                                                          |
|                               | Thallium (TI)-Dissolved (mg/L)                                        | DLA<br><0.40                                                  | <0.20                                                         | <0.40                                                         | <0.20                                                           | <0.20                                                          |
|                               | Tin (Sn)-Dissolved (mg/L)                                             | <0.060                                                        | <0.030                                                        | DLA<br><0.060                                                 | <0.030                                                          | <0.030                                                         |
|                               | Titanium (Ti)-Dissolved (mg/L)                                        | DLA<br><0.020                                                 | <0.010                                                        | <0.020                                                        | <0.010                                                          | 0.012                                                          |
|                               | Uranium (U)-Dissolved (mg/L)                                          | 0.204                                                         | 0.0180                                                        | 0.196                                                         | 0.00086                                                         | 0.00271                                                        |
|                               | Vanadium (V)-Dissolved (mg/L)                                         | DLA<br><0.060                                                 | <0.030                                                        | DLA<br><0.060                                                 | <0.030                                                          | <0.030                                                         |
|                               | Zinc (Zn)-Dissolved (mg/L)                                            | ola <0.50                                                     | <0.050                                                        | <0.50                                                         | <0.050                                                          | <0.050                                                         |
| Aggregate<br>Organics         | COD (mg/L)                                                            | 81                                                            | <20                                                           | 88                                                            | <20                                                             | 53                                                             |
| Volatile Organic<br>Compounds | Benzene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                               | Bromodichloromethane (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Bromoform (mg/L)                                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Carbon Tetrachloride (mg/L)                                           | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                               | Chlorobenzene (mg/L)                                                  | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Dibromochloromethane (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Chloroethane (mg/L)                                                   | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Chloroform (mg/L)                                                     | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | Chloromethane (mg/L)                                                  | <0.0050                                                       | <0.0050                                                       | <0.0050                                                       | <0.0050                                                         | <0.0050                                                        |
|                               | 1,2-Dichlorobenzene (mg/L)                                            | <0.00070                                                      | <0.00070                                                      | <0.00070                                                      | <0.00070                                                        | <0.00070                                                       |
|                               | 1,3-Dichlorobenzene (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | 1,4-Dichlorobenzene (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | 1,1-Dichloroethane (mg/L)                                             | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | 1,2-Dichloroethane (mg/L)                                             | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | 1,1-Dichloroethylene (mg/L)                                           | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | cis-1,2-Dichloroethylene (mg/L)                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | trans-1,2-Dichloroethylene (mg/L)                                     | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | 1,3-Dichloropropene (cis & trans) (mg/L)                              | <0.0014                                                       | <0.0014                                                       | <0.0014                                                       | <0.0014                                                         | <0.0014                                                        |
|                               | Dichloromethane (mg/L)                                                | <0.0050                                                       | <0.0050                                                       | <0.0050                                                       | <0.0050                                                         | <0.0050                                                        |
|                               | 1,2-Dichloropropane (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | cis-1,3-Dichloropropylene (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                               | trans-1,3-Dichloropropylene (mg/L)                                    | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |

L1209363 CONTD.... PAGE 8 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-11<br>groundwater<br>11-SEP-12<br>12:30<br>MA-MW12-02 | L1209363-12<br>groundwater<br>11-SEP-12<br>14:15<br>MA-MW12-03 | L1209363-13<br>groundwater<br>11-SEP-12<br>15:15<br>MA-MW12-04 | L1209363-14<br>surface water<br>12-SEP-12<br>17:30<br>MA SURFACE | L1209363-15<br>groundwater<br>13-SEP-12<br>09:25<br>KE-MW12-01 |
|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                                |                                                                |                                                                |                                                                  |                                                                |
| WATER                         |                                                                       |                                                                |                                                                |                                                                |                                                                  |                                                                |
| <b>Dissolved Metals</b>       | Phosphorus (P)-Dissolved (mg/L)                                       | <0.30                                                          | <0.30                                                          | <0.30                                                          | <0.30                                                            | <0.30                                                          |
|                               | Potassium (K)-Dissolved (mg/L)                                        | 4.10                                                           | 2.50                                                           | 1.76                                                           | 0.50                                                             | 1.52                                                           |
|                               | Selenium (Se)-Dissolved (mg/L)                                        | 0.0012                                                         | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | DLA<br><0.0020                                                 |
|                               | Silicon (Si)-Dissolved (mg/L)                                         | 4.69                                                           | 2.61                                                           | 2.91                                                           | 2.08                                                             | 5.77                                                           |
|                               | Silver (Ag)-Dissolved (mg/L)                                          | <0.010                                                         | <0.010                                                         | <0.010                                                         | <0.010                                                           | <0.010                                                         |
|                               | Sodium (Na)-Dissolved (mg/L)                                          | 166                                                            | <2.0                                                           | <2.0                                                           | <2.0                                                             | 5.4                                                            |
|                               | Strontium (Sr)-Dissolved (mg/L)                                       | 1.02                                                           | 0.276                                                          | 0.325                                                          | 0.163                                                            | 0.510                                                          |
|                               | Thallium (TI)-Dissolved (mg/L)                                        | <0.20                                                          | <0.20                                                          | <0.20                                                          | <0.20                                                            | <0.20                                                          |
|                               | Tin (Sn)-Dissolved (mg/L)                                             | <0.030                                                         | <0.030                                                         | <0.030                                                         | <0.030                                                           | <0.030                                                         |
|                               | Titanium (Ti)-Dissolved (mg/L)                                        | 0.022                                                          | <0.010                                                         | 0.010                                                          | <0.010                                                           | 0.029                                                          |
|                               | Uranium (U)-Dissolved (mg/L)                                          | 0.0542                                                         | 0.0190                                                         | 0.00454                                                        | 0.00071                                                          | 0.00232                                                        |
|                               | Vanadium (V)-Dissolved (mg/L)                                         | <0.030                                                         | <0.030                                                         | <0.030                                                         | <0.030                                                           | <0.030                                                         |
|                               | Zinc (Zn)-Dissolved (mg/L)                                            | <0.050                                                         | <0.050                                                         | <0.050                                                         | <0.050                                                           | <sub>DL4</sub><br><0.10                                        |
| Aggregate<br>Organics         | COD (mg/L)                                                            | 77                                                             | 146                                                            | 20                                                             | <20                                                              | 47                                                             |
| Volatile Organic<br>Compounds | Benzene (mg/L)                                                        | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                               | Bromodichloromethane (mg/L)                                           | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Bromoform (mg/L)                                                      | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Carbon Tetrachloride (mg/L)                                           | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                               | Chlorobenzene (mg/L)                                                  | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Dibromochloromethane (mg/L)                                           | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Chloroethane (mg/L)                                                   | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Chloroform (mg/L)                                                     | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | Chloromethane (mg/L)                                                  | <0.0050                                                        | <0.0050                                                        | <0.0050                                                        | <0.0050                                                          | <0.0050                                                        |
|                               | 1,2-Dichlorobenzene (mg/L)                                            | <0.00070                                                       | <0.00070                                                       | <0.00070                                                       | <0.00070                                                         | <0.00070                                                       |
|                               | 1,3-Dichlorobenzene (mg/L)                                            | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | 1,4-Dichlorobenzene (mg/L)                                            | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | 1,1-Dichloroethane (mg/L)                                             | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | 1,2-Dichloroethane (mg/L)                                             | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | 1,1-Dichloroethylene (mg/L)                                           | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | cis-1,2-Dichloroethylene (mg/L)                                       | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | trans-1,2-Dichloroethylene (mg/L)                                     | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | 1,3-Dichloropropene (cis & trans) (mg/L)                              | <0.0014                                                        | <0.0014                                                        | <0.0014                                                        | <0.0014                                                          | <0.0014                                                        |
|                               | Dichloromethane (mg/L)                                                | <0.0050                                                        | <0.0050                                                        | <0.0050                                                        | <0.0050                                                          | <0.0050                                                        |
|                               | 1,2-Dichloropropane (mg/L)                                            | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                               | cis-1,3-Dichloropropylene (mg/L)                                      | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | < 0.0010                                                       |
|                               | trans-1,3-Dichloropropylene (mg/L)                                    | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |

L1209363 CONTD.... PAGE 9 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-16<br>groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03 | L1209363-17<br>surface water<br>11-SEP-12<br>19:15<br>KE SURFACE |  |  |
|-------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Grouping                      | Analyte                                                               |                                                                |                                                                  |  |  |
| WATER                         |                                                                       |                                                                |                                                                  |  |  |
| Dissolved Metals              | Phosphorus (P)-Dissolved (mg/L)                                       | <0.30                                                          | <0.30                                                            |  |  |
|                               | Potassium (K)-Dissolved (mg/L)                                        | 17.2                                                           | 0.18                                                             |  |  |
|                               | Selenium (Se)-Dissolved (mg/L)                                        | 0.0336                                                         | <0.0010                                                          |  |  |
|                               | Silicon (Si)-Dissolved (mg/L)                                         | 9.32                                                           | 2.92                                                             |  |  |
|                               | Silver (Ag)-Dissolved (mg/L)                                          | <0.010                                                         | <0.010                                                           |  |  |
|                               | Sodium (Na)-Dissolved (mg/L)                                          | 26.9                                                           | <2.0                                                             |  |  |
|                               | Strontium (Sr)-Dissolved (mg/L)                                       | 1.69                                                           | 0.0880                                                           |  |  |
|                               | Thallium (TI)-Dissolved (mg/L)                                        | <0.20                                                          | <0.20                                                            |  |  |
|                               | Tin (Sn)-Dissolved (mg/L)                                             | <0.030                                                         | <0.030                                                           |  |  |
|                               | Titanium (Ti)-Dissolved (mg/L)                                        | 0.056                                                          | <0.010                                                           |  |  |
|                               | Uranium (U)-Dissolved (mg/L)                                          | 0.0412                                                         | 0.00022                                                          |  |  |
|                               | Vanadium (V)-Dissolved (mg/L)                                         | <0.030                                                         | <0.030                                                           |  |  |
|                               | Zinc (Zn)-Dissolved (mg/L)                                            | ola<0.25                                                       | <0.050                                                           |  |  |
| Aggregate<br>Organics         | COD (mg/L)                                                            | 42                                                             | <20                                                              |  |  |
| Volatile Organic<br>Compounds | Benzene (mg/L)                                                        | <0.00050                                                       | <0.00050                                                         |  |  |
|                               | Bromodichloromethane (mg/L)                                           | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Bromoform (mg/L)                                                      | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Carbon Tetrachloride (mg/L)                                           | <0.00050                                                       | <0.00050                                                         |  |  |
|                               | Chlorobenzene (mg/L)                                                  | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Dibromochloromethane (mg/L)                                           | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Chloroethane (mg/L)                                                   | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Chloroform (mg/L)                                                     | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | Chloromethane (mg/L)                                                  | <0.0050                                                        | <0.0050                                                          |  |  |
|                               | 1,2-Dichlorobenzene (mg/L)                                            | <0.00070                                                       | <0.00070                                                         |  |  |
|                               | 1,3-Dichlorobenzene (mg/L)                                            | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | 1,4-Dichlorobenzene (mg/L)                                            | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | 1,1-Dichloroethane (mg/L)                                             | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | 1,2-Dichloroethane (mg/L)                                             | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | 1,1-Dichloroethylene (mg/L)                                           | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | cis-1,2-Dichloroethylene (mg/L)                                       | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | trans-1,2-Dichloroethylene (mg/L)                                     | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | 1,3-Dichloropropene (cis & trans) (mg/L)                              | <0.0014                                                        | <0.0014                                                          |  |  |
|                               | Dichloromethane (mg/L)                                                | <0.0050                                                        | <0.0050                                                          |  |  |
|                               | 1,2-Dichloropropane (mg/L)                                            | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | cis-1,3-Dichloropropylene (mg/L)                                      | <0.0010                                                        | <0.0010                                                          |  |  |
|                               | trans-1,3-Dichloropropylene (mg/L)                                    | <0.0010                                                        | <0.0010                                                          |  |  |

L1209363 CONTD.... PAGE 10 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                                        | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-1<br>groundwater<br>09-SEP-12<br>15:40<br>PC-MW12-01 | L1209363-2<br>groundwater<br>10-SEP-12<br>10:20<br>PC-MW12-02 | L1209363-3<br>groundwater<br>10-SEP-12<br>11:30<br>PC-MW12-03 | L1209363-4<br>surface water<br>13-SEP-12<br>13:30<br>PC SURFACE | L1209363-5<br>groundwater<br>12-SEP-12<br>10:40<br>SX-MW12-01 |
|----------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Grouping                               | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                               |
| WATER                                  |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                               |
| Volatile Organic<br>Compounds          | Ethylbenzene (mg/L)                                                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | Methyl t-butyl ether (MTBE) (mg/L)                                    | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | Styrene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | 1,1,1,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | 1,1,2,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | Tetrachloroethylene (mg/L)                                            | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | Toluene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | 1,1,1-Trichloroethane (mg/L)                                          | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | 1,1,2-Trichloroethane (mg/L)                                          | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | Trichloroethylene (mg/L)                                              | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | Trichlorofluoromethane (mg/L)                                         | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | Vinyl Chloride (mg/L)                                                 | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                       |
|                                        | ortho-Xylene (mg/L)                                                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | meta- & para-Xylene (mg/L)                                            | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                      |
|                                        | Xylenes (mg/L)                                                        | <0.00075                                                      | <0.00075                                                      | <0.00075                                                      | <0.00075                                                        | <0.00075                                                      |
|                                        | Surrogate: 4-Bromofluorobenzene (SS) (%)                              | 77.8                                                          | 79.3                                                          | 80.7                                                          | 79.6                                                            | 79.1                                                          |
|                                        | Surrogate: 1,4-Difluorobenzene (SS) (%)                               | 83.2                                                          | 83.0                                                          | 82.5                                                          | 83.1                                                            | 82.9                                                          |
| Hydrocarbons                           | EPH10-19 (mg/L)                                                       | <0.25                                                         | <0.25                                                         | <0.25                                                         | 0.47                                                            | <0.25                                                         |
|                                        | EPH19-32 (mg/L)                                                       | <0.25                                                         | <0.25                                                         | <0.25                                                         | 0.54                                                            | <0.25                                                         |
|                                        | LEPH (mg/L)                                                           | <0.25                                                         | <0.25                                                         | <0.25                                                         | 0.47                                                            | <0.25                                                         |
|                                        | HEPH (mg/L)                                                           | <0.25                                                         | <0.25                                                         | <0.25                                                         | 0.54                                                            | <0.25                                                         |
|                                        | Volatile Hydrocarbons (VH6-10) (mg/L)                                 | <0.10                                                         | <0.10                                                         | <0.10                                                         | <0.10                                                           | <0.10                                                         |
|                                        | VPH (C6-C10) (mg/L)                                                   | <0.10                                                         | <0.10                                                         | <0.10                                                         | <0.10                                                           | <0.10                                                         |
|                                        | Surrogate: 3,4-Dichlorotoluene (SS) (%)                               | SURR-<br>ND<br>69.0                                           | 80.1                                                          | 76.0                                                          | 81.9                                                            | 85.7                                                          |
| Polycyclic<br>Aromatic<br>Hydrocarbons | Acenaphthene (mg/L)                                                   | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000070                                                       | <0.000050                                                     |
| -                                      | Acenaphthylene (mg/L)                                                 | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Acridine (mg/L)                                                       | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Anthracene (mg/L)                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Benz(a)anthracene (mg/L)                                              | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Benzo(a)pyrene (mg/L)                                                 | <0.000010                                                     | <0.000010                                                     | <0.000010                                                     | <0.000010                                                       | <0.000010                                                     |
|                                        | Benzo(b)fluoranthene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Benzo(g,h,i)perylene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Benzo(k)fluoranthene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Chrysene (mg/L)                                                       | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |
|                                        | Dibenz(a,h)anthracene (mg/L)                                          | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                     |

L1209363 CONTD.... PAGE 11 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                                        | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-6<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02 | L1209363-7<br>groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03 | L1209363-8<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-04 | L1209363-9<br>surface water<br>12-SEP-12<br>13:20<br>SX SURFACE | L1209363-10<br>groundwater<br>11-SEP-12<br>10:45<br>MA-MW12-01 |
|----------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                               | Analyte                                                               |                                                               |                                                               |                                                               |                                                                 |                                                                |
| WATER                                  |                                                                       |                                                               |                                                               |                                                               |                                                                 |                                                                |
| Volatile Organic<br>Compounds          | Ethylbenzene (mg/L)                                                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                                        | Methyl t-butyl ether (MTBE) (mg/L)                                    | 0.00148                                                       | <0.00050                                                      | 0.00148                                                       | <0.00050                                                        | <0.00050                                                       |
|                                        | Styrene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                                        | 1,1,1,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | 1,1,2,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | Tetrachloroethylene (mg/L)                                            | 0.0011                                                        | <0.0010                                                       | 0.0010                                                        | <0.0010                                                         | <0.0010                                                        |
|                                        | Toluene (mg/L)                                                        | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                                        | 1,1,1-Trichloroethane (mg/L)                                          | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | 1,1,2-Trichloroethane (mg/L)                                          | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | Trichloroethylene (mg/L)                                              | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | Trichlorofluoromethane (mg/L)                                         | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | Vinyl Chloride (mg/L)                                                 | <0.0010                                                       | <0.0010                                                       | <0.0010                                                       | <0.0010                                                         | <0.0010                                                        |
|                                        | ortho-Xylene (mg/L)                                                   | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                                        | meta- & para-Xylene (mg/L)                                            | <0.00050                                                      | <0.00050                                                      | <0.00050                                                      | <0.00050                                                        | <0.00050                                                       |
|                                        | Xylenes (mg/L)                                                        | <0.00075                                                      | <0.00075                                                      | <0.00075                                                      | <0.00075                                                        | <0.00075                                                       |
|                                        | Surrogate: 4-Bromofluorobenzene (SS) (%)                              | 77.1                                                          | 77.8                                                          | 78.2                                                          | 76.2                                                            | 78.6                                                           |
|                                        | Surrogate: 1,4-Difluorobenzene (SS) (%)                               | 82.9                                                          | 83.0                                                          | 83.3                                                          | 83.1                                                            | 83.5                                                           |
| Hydrocarbons                           | EPH10-19 (mg/L)                                                       | <0.25                                                         | <0.25                                                         | <0.25                                                         | <0.25                                                           | <0.25                                                          |
|                                        | EPH19-32 (mg/L)                                                       | <0.25                                                         | <0.25                                                         | <0.25                                                         | <0.25                                                           | 0.51                                                           |
|                                        | LEPH (mg/L)                                                           | <0.25                                                         | <0.25                                                         | <0.25                                                         | <0.25                                                           | <0.25                                                          |
|                                        | HEPH (mg/L)                                                           | <0.25                                                         | <0.25                                                         | <0.25                                                         | <0.25                                                           | 0.51                                                           |
|                                        | Volatile Hydrocarbons (VH6-10) (mg/L)                                 | <0.10                                                         | <0.10                                                         | <0.10                                                         | <0.10                                                           | <0.10                                                          |
|                                        | VPH (C6-C10) (mg/L)                                                   | <0.10                                                         | <0.10                                                         | <0.10                                                         | <0.10                                                           | <0.10                                                          |
|                                        | Surrogate: 3,4-Dichlorotoluene (SS) (%)                               | 78.8                                                          | 77.7                                                          | 77.7                                                          | 70.5                                                            | 76.5                                                           |
| Polycyclic<br>Aromatic<br>Hydrocarbons | Acenaphthene (mg/L)                                                   | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
| -                                      | Acenaphthylene (mg/L)                                                 | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
|                                        | Acridine (mg/L)                                                       | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | < 0.000050                                                     |
|                                        | Anthracene (mg/L)                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | < 0.000050                                                     |
|                                        | Benz(a)anthracene (mg/L)                                              | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
|                                        | Benzo(a)pyrene (mg/L)                                                 | <0.000010                                                     | <0.000010                                                     | <0.000010                                                     | <0.000010                                                       | <0.000010                                                      |
|                                        | Benzo(b)fluoranthene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
|                                        | Benzo(g,h,i)perylene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
|                                        | Benzo(k)fluoranthene (mg/L)                                           | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | < 0.000050                                                     |
|                                        | Chrysene (mg/L)                                                       | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |
|                                        | Dibenz(a,h)anthracene (mg/L)                                          | <0.000050                                                     | <0.000050                                                     | <0.000050                                                     | <0.000050                                                       | <0.000050                                                      |

L1209363 CONTD.... PAGE 12 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                                        | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-11<br>groundwater<br>11-SEP-12<br>12:30<br>MA-MW12-02 | L1209363-12<br>groundwater<br>11-SEP-12<br>14:15<br>MA-MW12-03 | L1209363-13<br>groundwater<br>11-SEP-12<br>15:15<br>MA-MW12-04 | L1209363-14<br>surface water<br>12-SEP-12<br>17:30<br>MA SURFACE | L1209363-15<br>groundwater<br>13-SEP-12<br>09:25<br>KE-MW12-01 |
|----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| Grouping                               | Analyte                                                               |                                                                |                                                                |                                                                |                                                                  |                                                                |
| WATER                                  |                                                                       |                                                                |                                                                |                                                                |                                                                  |                                                                |
| Volatile Organic<br>Compounds          | Ethylbenzene (mg/L)                                                   | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | Methyl t-butyl ether (MTBE) (mg/L)                                    | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | Styrene (mg/L)                                                        | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | 1,1,1,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | 1,1,2,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | Tetrachloroethylene (mg/L)                                            | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | Toluene (mg/L)                                                        | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | 1,1,1-Trichloroethane (mg/L)                                          | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | 1,1,2-Trichloroethane (mg/L)                                          | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | Trichloroethylene (mg/L)                                              | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | Trichlorofluoromethane (mg/L)                                         | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | Vinyl Chloride (mg/L)                                                 | <0.0010                                                        | <0.0010                                                        | <0.0010                                                        | <0.0010                                                          | <0.0010                                                        |
|                                        | ortho-Xylene (mg/L)                                                   | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | meta- & para-Xylene (mg/L)                                            | <0.00050                                                       | <0.00050                                                       | <0.00050                                                       | <0.00050                                                         | <0.00050                                                       |
|                                        | Xylenes (mg/L)                                                        | <0.00075                                                       | <0.00075                                                       | <0.00075                                                       | <0.00075                                                         | <0.00075                                                       |
|                                        | Surrogate: 4-Bromofluorobenzene (SS) (%)                              | 78.2                                                           | 79.6                                                           | 79.7                                                           | 78.1                                                             | 78.8                                                           |
|                                        | Surrogate: 1,4-Difluorobenzene (SS) (%)                               | 83.0                                                           | 83.2                                                           | 83.1                                                           | 83.1                                                             | 83.6                                                           |
| Hydrocarbons                           | EPH10-19 (mg/L)                                                       | <0.25                                                          | <0.25                                                          | <0.25                                                          | <0.25                                                            | <0.25                                                          |
|                                        | EPH19-32 (mg/L)                                                       | <0.25                                                          | 0.78                                                           | 0.50                                                           | <0.25                                                            | 0.54                                                           |
|                                        | LEPH (mg/L)                                                           | <0.25                                                          | <0.25                                                          | <0.25                                                          | <0.25                                                            | <0.25                                                          |
|                                        | HEPH (mg/L)                                                           | <0.25                                                          | 0.78                                                           | 0.50                                                           | <0.25                                                            | 0.54                                                           |
|                                        | Volatile Hydrocarbons (VH6-10) (mg/L)                                 | <0.10                                                          | <0.10                                                          | <0.10                                                          | <0.10                                                            | <0.10                                                          |
|                                        | VPH (C6-C10) (mg/L)                                                   | <0.10                                                          | <0.10                                                          | <0.10                                                          | <0.10                                                            | <0.10                                                          |
|                                        | Surrogate: 3,4-Dichlorotoluene (SS) (%)                               | 71.3                                                           | 83.0                                                           | 75.8                                                           | 78.8                                                             | 75.4                                                           |
| Polycyclic<br>Aromatic<br>Hydrocarbons | Acenaphthene (mg/L)                                                   | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
| -                                      | Acenaphthylene (mg/L)                                                 | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Acridine (mg/L)                                                       | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Anthracene (mg/L)                                                     | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Benz(a)anthracene (mg/L)                                              | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Benzo(a)pyrene (mg/L)                                                 | <0.000010                                                      | <0.000010                                                      | <0.000010                                                      | <0.000010                                                        | <0.000010                                                      |
|                                        | Benzo(b)fluoranthene (mg/L)                                           | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Benzo(g,h,i)perylene (mg/L)                                           | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Benzo(k)fluoranthene (mg/L)                                           | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Chrysene (mg/L)                                                       | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |
|                                        | Dibenz(a,h)anthracene (mg/L)                                          | <0.000050                                                      | <0.000050                                                      | <0.000050                                                      | <0.000050                                                        | <0.000050                                                      |

L1209363 CONTD.... PAGE 13 of 20 27-SEP-12 10:35 (MT) Version: FINAL

|                                        | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-16<br>groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03 | L1209363-17<br>surface water<br>11-SEP-12<br>19:15<br>KE SURFACE |  |  |
|----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Grouping                               | Analyte                                                               |                                                                |                                                                  |  |  |
| WATER                                  |                                                                       |                                                                |                                                                  |  |  |
| Volatile Organic<br>Compounds          | Ethylbenzene (mg/L)                                                   | <0.00050                                                       | <0.00050                                                         |  |  |
|                                        | Methyl t-butyl ether (MTBE) (mg/L)                                    | <0.00050                                                       | <0.00050                                                         |  |  |
|                                        | Styrene (mg/L)                                                        | <0.00050                                                       | <0.00050                                                         |  |  |
|                                        | 1,1,1,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | 1,1,2,2-Tetrachloroethane (mg/L)                                      | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | Tetrachloroethylene (mg/L)                                            | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | Toluene (mg/L)                                                        | 0.00159                                                        | <0.00050                                                         |  |  |
|                                        | 1,1,1-Trichloroethane (mg/L)                                          | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | 1,1,2-Trichloroethane (mg/L)                                          | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | Trichloroethylene (mg/L)                                              | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | Trichlorofluoromethane (mg/L)                                         | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | Vinyl Chloride (mg/L)                                                 | <0.0010                                                        | <0.0010                                                          |  |  |
|                                        | ortho-Xylene (mg/L)                                                   | <0.00050                                                       | <0.00050                                                         |  |  |
|                                        | meta- & para-Xylene (mg/L)                                            | 0.00063                                                        | <0.00050                                                         |  |  |
|                                        | Xylenes (mg/L)                                                        | <0.00075                                                       | <0.00075                                                         |  |  |
|                                        | Surrogate: 4-Bromofluorobenzene (SS) (%)                              | 78.3                                                           | 79.8                                                             |  |  |
|                                        | Surrogate: 1,4-Difluorobenzene (SS) (%)                               | 81.9                                                           | 82.8                                                             |  |  |
| Hydrocarbons                           | EPH10-19 (mg/L)                                                       | <0.25                                                          | <0.25                                                            |  |  |
|                                        | EPH19-32 (mg/L)                                                       | <0.25                                                          | <0.25                                                            |  |  |
|                                        | LEPH (mg/L)                                                           | <0.25                                                          | <0.25                                                            |  |  |
|                                        | HEPH (mg/L)                                                           | <0.25                                                          | <0.25                                                            |  |  |
|                                        | Volatile Hydrocarbons (VH6-10) (mg/L)                                 | <0.10                                                          | <0.10                                                            |  |  |
|                                        | VPH (C6-C10) (mg/L)                                                   | <0.10                                                          | <0.10                                                            |  |  |
|                                        | Surrogate: 3,4-Dichlorotoluene (SS) (%)                               | 73.8                                                           | 81.8                                                             |  |  |
| Polycyclic<br>Aromatic<br>Hydrocarbons | Acenaphthene (mg/L)                                                   | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Acenaphthylene (mg/L)                                                 | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Acridine (mg/L)                                                       | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Anthracene (mg/L)                                                     | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Benz(a)anthracene (mg/L)                                              | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Benzo(a)pyrene (mg/L)                                                 | <0.000010                                                      | <0.000010                                                        |  |  |
|                                        | Benzo(b)fluoranthene (mg/L)                                           | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Benzo(g,h,i)perylene (mg/L)                                           | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Benzo(k)fluoranthene (mg/L)                                           | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Chrysene (mg/L)                                                       | <0.000050                                                      | <0.000050                                                        |  |  |
|                                        | Dibenz(a,h)anthracene (mg/L)                                          | <0.000050                                                      | <0.000050                                                        |  |  |

#### L1209363 CONTD.... PAGE 14 of 20 27-SEP-12 10:35 (MT) Version: FINAL

| Sample ID<br>Description<br>Sampled Date | L1209363-1<br>groundwater<br>09-SEP-12                                                                                                                                                                                                                                                                                     | L1209363-2<br>groundwater<br>10-SEP-12                                    | L1209363-3<br>groundwater<br>10-SEP-12                                                      | L1209363-4<br>surface water<br>13-SEP-12                                                                                      | L1209363-5<br>groundwater                                   |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Sampled Time<br>Client ID                | 15:40<br>PC-MW12-01                                                                                                                                                                                                                                                                                                        | 10:20<br>PC-MW12-02                                                       | 11:30<br>PC-MW12-03                                                                         | 13:30<br>PC SURFACE                                                                                                           | 12-SEP-12<br>10:40<br>SX-MW12-01                            |
| Analyte                                  |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               |                                                             |
| Analyte                                  |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               |                                                             |
| Fluoranthene (mg/L)                      | <0.000050                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                 | <0.000050                                                                                   | <0.000050                                                                                                                     | <0.000050                                                   |
| Fluorene (mg/L)                          | <0.000050                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                 | <0.000050                                                                                   | <0.000050                                                                                                                     | <0.000050                                                   |
| Indeno(1,2,3-c,d)pyrene (mg/L)           |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | <0.000050                                                   |
| Naphthalene (mg/L)                       |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | <0.000050                                                   |
| Phenanthrene (mg/L)                      |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | <0.000050                                                   |
| Pyrene (mg/L)                            |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | <0.000050                                                   |
| Quinoline (mg/L)                         |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | < 0.000050                                                  |
| Surrogate: Acenaphthene d10 (%)          |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | 94.4                                                        |
| Surrogate: Acridine d9 (%)               |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | 101.1                                                       |
| Surrogate: Chrysene d12 (%)              |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | 85.4                                                        |
| Surrogate: Naphthalene d8 (%)            |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | 94.4                                                        |
| Surrogate: Phenanthrene d10 (%)          |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               | 96.3                                                        |
|                                          |                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                                             |                                                                                                                               |                                                             |
|                                          | Analyte         Fluoranthene (mg/L)         Fluorene (mg/L)         Indeno(1,2,3-c,d)pyrene (mg/L)         Naphthalene (mg/L)         Phenanthrene (mg/L)         Pyrene (mg/L)         Quinoline (mg/L)         Surrogate: Acenaphthene d10 (%)         Surrogate: Chrysene d12 (%)         Surrogate: Naphthalene d8 (%) | Analyte         <0.000050           Fluoranthene (mg/L)         <0.000050 | Analyte         <0.000050         <0.000050           Fluoranthene (mg/L)         <0.000050 | Analyte         <0.00050         <0.00050         <0.000050         <0.000050           Fluoranthene (mg/L)         <0.000050 | Analyte               Fluoranthene (mg/L)         <0.000050 |

#### L1209363 CONTD.... PAGE 15 of 20 27-SEP-12 10:35 (MT) Version: FINAL

| Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-6<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02                                                                                                                                                                                                                                                                                                                                              | L1209363-7<br>groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03                                                                              | L1209363-8<br>groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-04                                                                                                                              | L1209363-9<br>surface water<br>12-SEP-12<br>13:20<br>SX SURFACE                                                                                                                                                                                    | L1209363-10<br>groundwater<br>11-SEP-12<br>10:45<br>MA-MW12-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fluoranthene (mg/L)                                                   | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fluorene (mg/L)                                                       | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Indeno(1,2,3-c,d)pyrene (mg/L)                                        | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Naphthalene (mg/L)                                                    | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phenanthrene (mg/L)                                                   | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pyrene (mg/L)                                                         | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Quinoline (mg/L)                                                      | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                  | <0.000050                                                                                                                                  | <0.000050                                                                                                                                                                                  | <0.000050                                                                                                                                                                                                                                          | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Surrogate: Acenaphthene d10 (%)                                       | 99.8                                                                                                                                                                                                                                                                                                                                                                                                       | 90.1                                                                                                                                       | 90.2                                                                                                                                                                                       | 95.7                                                                                                                                                                                                                                               | 94.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surrogate: Acridine d9 (%)                                            | 106.9                                                                                                                                                                                                                                                                                                                                                                                                      | 95.4                                                                                                                                       | 94.6                                                                                                                                                                                       | 100.1                                                                                                                                                                                                                                              | 93.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surrogate: Chrysene d12 (%)                                           | 93.7                                                                                                                                                                                                                                                                                                                                                                                                       | 85.2                                                                                                                                       | 85.5                                                                                                                                                                                       | 89.5                                                                                                                                                                                                                                               | 86.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surrogate: Naphthalene d8 (%)                                         | 100.7                                                                                                                                                                                                                                                                                                                                                                                                      | 90.3                                                                                                                                       | 89.7                                                                                                                                                                                       | 95.2                                                                                                                                                                                                                                               | 93.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Surrogate: Phenanthrene d10 (%)                                       | 103.0                                                                                                                                                                                                                                                                                                                                                                                                      | 92.2                                                                                                                                       | 91.2                                                                                                                                                                                       | 97.9                                                                                                                                                                                                                                               | 95.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                       | Description         Sampled Date         Sampled Time         Client ID         Analyte         Fluoranthene (mg/L)         Fluorene (mg/L)         Indeno(1,2,3-c,d)pyrene (mg/L)         Naphthalene (mg/L)         Phenanthrene (mg/L)         Pyrene (mg/L)         Quinoline (mg/L)         Surrogate: Acenaphthene d10 (%)         Surrogate: Chrysene d12 (%)         Surrogate: Naphthalene d8 (%) | Description<br>Sampled Date<br>Sampled Time<br>Client IDgroundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02AnalyteFluoranthene (mg/L)<0.000050 | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02         groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03           Analyte | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>10-SEP-12<br>16:30<br>SX-MW12-02         groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-03         groundwater<br>10-SEP-12<br>17:45<br>SX-MW12-04           Analyte | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>10-SEP-12<br>16:30         groundwater<br>10-SEP-12<br>17:45         groundwater<br>10-SEP-12<br>16:30         surface water<br>12-SEP-12<br>16:30           Analyte         client ID         surface water<br>10-SEP-12<br>16:30         surface water<br>10-SEP-12<br>16:30         surface water<br>12-SEP-12<br>16:30           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID         client ID           Surgaria         Additional Indentities         client ID         client ID         client ID         client ID           Fluoranthene (mg/L)         client ID         client ID         client ID         client ID         client ID <tr< td=""></tr<> |

#### L1209363 CONTD.... PAGE 16 of 20 27-SEP-12 10:35 (MT) Version: FINAL

| Analyte         Fluoranthene (mg/L)         Fluorene (mg/L)         Indeno(1,2,3-c,d)pyrene (mg/L)         Naphthalene (mg/L)         Phenanthrene (mg/L)         Pyrene (mg/L)         Quinoline (mg/L) | <0.000050<br><0.000050<br><0.000050<br><0.000050<br><0.000050 | <0.000050<br><0.000050<br><0.000050<br>0.000051 | <0.000050<br><0.000050<br><0.000050     | <0.000050                                                            | <0.000050                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Fluorene (mg/L)<br>Indeno(1,2,3-c,d)pyrene (mg/L)<br>Naphthalene (mg/L)<br>Phenanthrene (mg/L)<br>Pyrene (mg/L)                                                                                          | <0.000050<br><0.000050<br><0.000050                           | <0.000050<br><0.000050                          | <0.000050                               |                                                                      |                                                                                   |
| Fluorene (mg/L)<br>Indeno(1,2,3-c,d)pyrene (mg/L)<br>Naphthalene (mg/L)<br>Phenanthrene (mg/L)<br>Pyrene (mg/L)                                                                                          | <0.000050<br><0.000050<br><0.000050                           | <0.000050<br><0.000050                          | <0.000050                               |                                                                      |                                                                                   |
| Indeno(1,2,3-c,d)pyrene (mg/L)<br>Naphthalene (mg/L)<br>Phenanthrene (mg/L)<br>Pyrene (mg/L)                                                                                                             | <0.000050<br><0.000050                                        | <0.000050                                       |                                         | <0.000050                                                            |                                                                                   |
| Naphthalene (mg/L)<br>Phenanthrene (mg/L)<br>Pyrene (mg/L)                                                                                                                                               | <0.000050<br><0.000050                                        | <0.000050                                       |                                         |                                                                      | <0.000050                                                                         |
| Phenanthrene (mg/L)<br>Pyrene (mg/L)                                                                                                                                                                     | <0.000050                                                     |                                                 |                                         | <0.000050                                                            | <0.000050                                                                         |
| Pyrene (mg/L)                                                                                                                                                                                            |                                                               | 0.000031                                        | <0.000050                               | <0.000050                                                            | 0.000059                                                                          |
|                                                                                                                                                                                                          |                                                               | <0.000050                                       | <0.000050                               | <0.000050                                                            | <0.000050                                                                         |
| Quinoline (mg/L)                                                                                                                                                                                         | <0.000050                                                     | <0.000050                                       | <0.000050                               | <0.000050                                                            | <0.000050                                                                         |
|                                                                                                                                                                                                          | <0.000050                                                     | <0.000050                                       | <0.000050                               | <0.000050                                                            | <0.000050                                                                         |
| Surrogate: Acenaphthene d10 (%)                                                                                                                                                                          | 89.7                                                          | 89.6                                            | 98.3                                    | 92.0                                                                 | 104.8                                                                             |
| Surrogate: Acridine d9 (%)                                                                                                                                                                               | 96.3                                                          | 90.7                                            | 99.3                                    | 97.7                                                                 | 101.0                                                                             |
| Surrogate: Chrysene d12 (%)                                                                                                                                                                              | 86.7                                                          | 75.9                                            | 89.1                                    | 78.7                                                                 | 87.4                                                                              |
| Surrogate: Naphthalene d8 (%)                                                                                                                                                                            | 89.8                                                          | 88.9                                            | 97.8                                    | 92.5                                                                 | 88.0                                                                              |
| Surrogate: Phenanthrene d10 (%)                                                                                                                                                                          | 92.3                                                          | 91.3                                            | 99.6                                    | 93.7                                                                 | 96.5                                                                              |
|                                                                                                                                                                                                          |                                                               |                                                 |                                         |                                                                      |                                                                                   |
|                                                                                                                                                                                                          |                                                               |                                                 |                                         |                                                                      |                                                                                   |
|                                                                                                                                                                                                          | Surrogate: Naphthalene d8 (%)                                 | Surrogate: Naphthalene d8 (%) 89.8              | Surrogate: Naphthalene d8 (%) 89.8 88.9 | Surrogate: Naphthalene d8 (%)         89.8         88.9         97.8 | Surrogate: Naphthalene d8 (%)         89.8         88.9         97.8         92.5 |

L1209363 CONTD.... PAGE 17 of 20 27-SEP-12 10:35 (MT) Version: FINAL

| Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1209363-16<br>groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03                                                                                                                                                                                                                                                                                                                                                              | L1209363-17<br>surface water<br>11-SEP-12<br>19:15<br>KE SURFACE                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Fluoranthene (mg/L)                                                   | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Fluorene (mg/L)                                                       | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Indeno(1,2,3-c,d)pyrene (mg/L)                                        | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Naphthalene (mg/L)                                                    | 0.000065                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Phenanthrene (mg/L)                                                   | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Pyrene (mg/L)                                                         | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Quinoline (mg/L)                                                      | <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.000050                                                                                                                                  |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Surrogate: Acenaphthene d10 (%)                                       | 106.9                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.3                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Surrogate: Acridine d9 (%)                                            | 91.2                                                                                                                                                                                                                                                                                                                                                                                                                        | 87.3                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Surrogate: Chrysene d12 (%)                                           | 78.1                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.5                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Surrogate: Naphthalene d8 (%)                                         | 88.8                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.6                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
| Surrogate: Phenanthrene d10 (%)                                       | 88.4                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.3                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                              |
|                                                                       | Description<br>Sampled Date<br>Sampled Time<br>Client ID<br>Analyte<br>Fluoranthene (mg/L)<br>Fluorene (mg/L)<br>Indeno(1,2,3-c,d)pyrene (mg/L)<br>Indeno(1,2,3-c,d)pyrene (mg/L)<br>Naphthalene (mg/L)<br>Phenanthrene (mg/L)<br>Phenanthrene (mg/L)<br>Pyrene (mg/L)<br>Quinoline (mg/L)<br>Surrogate: Acenaphthene d10 (%)<br>Surrogate: Acridine d9 (%)<br>Surrogate: Chrysene d12 (%)<br>Surrogate: Naphthalene d8 (%) | Description<br>Sampled Date<br>Sampled Time<br>Client IDgroundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03AnalyteFluoranthene (mg/L)<0.000050 | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03         surface water<br>11-SEP-12<br>19:15<br>KE SURFACE           Analyte | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03         surface water<br>11-SEP-12<br>19:15<br>KE SURFACE           Analyte | Description<br>Sampled Date<br>Sampled Time<br>Client ID         groundwater<br>13-SEP-12<br>09:55<br>KE-MW12-03         surface water<br>11-SEP-12<br>19:15<br>KE SURFACE           Analyte |

### **Reference Information**

L1209363 CONTD.... PAGE 18 of 20 27-SEP-12 10:35 (MT) Version: FINAL

#### QC Samples with Qualifiers & Comments:

| QC Type Description              | Parameter                | Qualifier | Applies to Sample Number(s)                                                          |
|----------------------------------|--------------------------|-----------|--------------------------------------------------------------------------------------|
| Duplicate                        | Nitrite (as N)           | DLA       | L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, 4, -5, -6, -7, -8, -9    |
| Duplicate                        | Nitrate (as N)           | DLA       | L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3, 4, -5, -6, -7, -8, -9    |
| Duplicate                        | Aluminum (Al)-Dissolved  | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Boron (B)-Dissolved      | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Cadmium (Cd)-Dissolved   | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Chromium (Cr)-Dissolved  | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Copper (Cu)-Dissolved    | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Lead (Pb)-Dissolved      | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Selenium (Se)-Dissolved  | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Zinc (Zn)-Dissolved      | DLA       | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Duplicate                        | Fluoride (F)             | DLM       | L1209363-1, -10, -11, -12, -13, -14, -15, -16, -17, -2, -3,<br>4, -5, -6, -7, -8, -9 |
| Method Blank                     | Manganese (Mn)-Dissolved | MB-LOR    | L1209363-11, -12, -4, -9                                                             |
| Matrix Spike                     | Calcium (Ca)-Dissolved   | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Matrix Spike                     | Magnesium (Mg)-Dissolved | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Matrix Spike                     | Manganese (Mn)-Dissolved | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Matrix Spike                     | Potassium (K)-Dissolved  | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Matrix Spike                     | Uranium (U)-Dissolved    | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Matrix Spike                     | Sodium (Na)-Dissolved    | MS-B      | L1209363-1, -10, -13, -14, -15, -16, -2, -3, -5, -6, -7, -8                          |
| Qualifiers for Individual Parame | ters Listed:             |           |                                                                                      |
| Qualifier Description            |                          |           |                                                                                      |

| DLA     | Detection Limit Adjusted For required dilution                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLM     | Detection Limit Adjusted For Sample Matrix Effects                                                                                                       |
| MB-LOR  | Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please contact ALS if re-<br>analysis is required. |
| MS-B    | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.                                                       |
| SURR-ND | Surrogate recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.                                     |
| TKNI    | TKN result is likely biased low due to Nitrate interference. Nitrate-N is > 10x TKN.                                                                     |

#### **Test Method References:**

| ALS Test Code                                           | Matrix            | Test Description                                                                       | Method Reference**                                                                                                                                                                                            |
|---------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALK-PCT-VA                                              | Water             | Alkalinity by Auto. Titration                                                          | APHA 2320 "Alkalinity"                                                                                                                                                                                        |
|                                                         |                   |                                                                                        | Ikalinity". Total alkalinity is determined by potentiometric titration to a<br>m phenolphthalein alkalinity and total alkalinity values.                                                                      |
| ALK-PCT-VA                                              | Water             | Alkalinity by Auto. Titration                                                          | APHA 2320 Alkalinity                                                                                                                                                                                          |
|                                                         |                   |                                                                                        | Ikalinity". Total alkalinity is determined by potentiometric titration to a<br>m phenolphthalein alkalinity and total alkalinity values.                                                                      |
| ALK-SCR-VA                                              | Water             | Alkalinity by colour or titration                                                      | EPA 310.2 OR APHA 2320                                                                                                                                                                                        |
| colourimetric method.<br>OR<br>This analysis is carried | l out using proce | edures adapted from APHA Method 2320 "A                                                | calinity". Total Alkalinity is determined using the methyl orange<br>Ikalinity". Total alkalinity is determined by potentiometric titration to a<br>m phenolphthalein alkalinity and total alkalinity values. |
| ANIONS-CL-IC-VA                                         | Water             | Chloride by Ion Chromatography                                                         | APHA 4110 B.                                                                                                                                                                                                  |
|                                                         |                   | edures adapted from APHA Method 4110 B.<br>Determination of Inorganic Anions by Ion Ch | "Ion Chromatography with Chemical Suppression of Eluent<br>nromatography".                                                                                                                                    |
| ANIONS-F-IC-VA                                          | Water             | Fluoride by Ion Chromatography                                                         | APHA 4110 B.                                                                                                                                                                                                  |
|                                                         |                   | edures adapted from APHA Method 4110 B.<br>Determination of Inorganic Anions by Ion Ch | "Ion Chromatography with Chemical Suppression of Eluent<br>nromatography".                                                                                                                                    |
| ANIONS-NO2-IC-WR                                        | Water             | Nitrite Nitrogen by Ion Chromatography                                                 | EPA 300.1                                                                                                                                                                                                     |
|                                                         | m "Determinatio   | n of Inorganic Anions in Environmental Wate                                            | etermination of Inorganic Anions by Ion Chromatography", Revision<br>ers Using a Hydroxide-Selective Column", Application Note 154 v.19                                                                       |

#### **Reference Information**

EPA 300.1

Nitrate Nitrogen by Ion Chromatography

ANIONS-NO3-IC-WR

Water

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etermination                                                                         | of Inorganic Anions in Environmental Waters Using a H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of Inorganic Anions by Ion Chromatography", Revision<br>Hydroxide-Selective Column", Application Note 154 v.19,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANIONS-SO4-IC-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water                                                                                | Sulfate by Ion Chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APHA 4110 B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | ures adapted from APHA Method 4110 B. "Ion Chroma<br>etermination of Inorganic Anions by Ion Chromatograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CARBONS-DOC-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water                                                                                | Dissolved organic carbon by combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APHA 5310 TOTAL ORGANIC CARBON (TOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | ures adapted from APHA Method 5310 "Total Organic gh a 0.45 micron membrane filter prior to analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbon (TOC)". Dissolved carbon (DOC) fractions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COD-COL-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water                                                                                | Chemical Oxygen Demand by Colorimetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APHA 5220 D. CHEMICAL OXYGEN DEMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| This analysis is carried out determined using the close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | ures adapted from APHA Method 5220 "Chemical Oxy<br>rimetric method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gen Demand (COD)". Chemical oxygen demand is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EPH-SF-FID-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water                                                                                | EPH in Water by GCFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BCMOE EPH GCFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contaminated Sites "Extrac<br>entire water sample with die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ctable Petrole<br>chloromethan<br>ion (GC/FID).                                      | e with the British Columbia Ministry of Environment, La<br>um Hydrocarbons in Water by GC/FID" (Version 2.1, Ju<br>e. The extract is then solvent exchanged to toluene and<br>EPH results include Polycyclic Aromatic Hydrocarbons<br>ons (LEPH/HEPH).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uly 1999). The procedure involves extraction of the d analysed by capillary column gas chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HARDNESS-CALC-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water                                                                                | Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APHA 2340B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      | s) is calculated from the sum of Calcium and Magnesiu<br>centrations are preferentially used for the hardness calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HG-DIS-CVAFS-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Water                                                                                | Dissolved Mercury in Water by CVAFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA SW-846 3005A & EPA 245.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| American Public Health As<br>States Environmental Prote<br>involves a cold-oxidation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sociation, and<br>ection Agency<br>the acidified<br>atomic fluores                   | ures adapted from "Standard Methods for the Examina<br>d with procedures adapted from "Test Methods for Eval<br>r (EPA). The procedures may involve preliminary samp<br>sample using bromine monochloride prior to reduction<br>cence spectrophotometry (EPA Method 245.7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | luating Solid Waste" SW-846 published by the United<br>ble treatment by filtration (EPA Method 3005A) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LEPH/HEPH-CALC-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water                                                                                | LEPHs and HEPHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BC MOE LABORATORY MANUAL (2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Environment, Lands, and P<br>Solids or Water". Accordin<br>Extractable Petroleum Hyd<br>and Phenanthrene are subf<br>Fluoranthene, and Pyrene a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arks Analytic<br>g to this meth<br>rocarbon resu<br>tracted from E<br>are subtracted | Hydrocarbons in water. These results are determined a<br>al Method for Contaminated Sites "Calculation of Light<br>hod, LEPH and HEPH are calculated by subtracting sel-<br>ilts. To calculate LEPH, the individual results for Acena<br>EPH(C10-19). To calculate HEPH, the individual results<br>d from EPH(C19-32). Analysis of Extractable Petroleur<br>leum Hydrocarbons in Water by GC/FID" (Version 2.1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Heavy Extractable Petroleum Hydrocarbons in<br>lected Polycyclic Aromatic Hydrocarbon results from<br>aphthene, Acridine, Anthracene, Fluorene, Naphthalene<br>s for Benz(a)anthracene, Benzo(a)pyrene,<br>m Hydrocarbons adheres to all prescribed elements of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MET-DIS-ICP-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water                                                                                | Dissolved Metals in Water by ICPOES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA SW-846 3005A/6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| American Public Health As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sociation, and<br>ection Agency                                                      | ures adapted from "Standard Methods for the Examina<br>d with procedures adapted from "Test Methods for Eval<br>r (EPA). The procedure involves filtration (EPA Method<br>A Method 6010B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uating Solid Waste" SW-846 published by the United                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MET-DIS-LOW-MS-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water                                                                                | Dissolved Metals in Water by ICPMS(Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA SW-846 3005A/6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| American Public Health As<br>States Environmental Prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sociation, and<br>ection Agency                                                      | ures adapted from "Standard Methods for the Examina<br>d with procedures adapted from "Test Methods for Eval<br>r (EPA). The procedures involves preliminary sample to<br>pupled plasma - mass spectrometry (EPA Method 6020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | luating Solid Waste" SW-846 published by the United reatment by filtration (EPA Method 3005A).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NH3-F-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water                                                                                | Ammonia in Water by Fluorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J. ENVIRON. MONIT., 2005, 7, 37-42, RSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society<br>e levels of ammonium in seawater", Roslyn J. Waston et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PAH-SF-MS-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water                                                                                | PAH in Water by GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 3510, 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | n dichloromethane, prior to analysis by gas chromatogr<br>dily chromatographically separated, benzo(j)fluoranther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PAH-SURR-MS-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water                                                                                | PAH Surrogates for Waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 3510, 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analysed as per the corres demonstrate analytical acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      | test method. Known quantities of surrogate compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is are added prior to analysis to each sample to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PH-PCT-VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water                                                                                | pH by Meter (Automated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APHA 4500-H "pH Value"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The second set of the |                                                                                      | A DUA NO 1 A DOM | The set of the decision of the disk of the set of the s |

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

#### **Reference Information**

L1209363 CONTD.... PAGE 20 of 20 27-SEP-12 10:35 (MT) Version: FINAL

It is recommended that this analysis be conducted in the field. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode It is recommended that this analysis be conducted in the field. TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-F-VA** Water TKN in Water by Fluorescence APHA 4500-NORG D. This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection. VH in Water by Headspace GCFID **VH-HSFID-VA** Water B.C. MIN. OF ENV. LAB. MAN. (2009) The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection. **VH-SURR-FID-VA** Water VH Surrogates for Waters B.C. MIN. OF ENV. LAB. MAN. (2009) **VOC-HSMS-VA** Water VOCs in water by Headspace GCMS EPA8260B, 5021 The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA8260B 5021 The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA VOC7 and/or VOC Surrogates for Waters Water EPA8260B, 5021 **VPH-CALC-VA** Water VPH is VH minus select aromatics BC MOE LABORATORY MANUAL (2005) These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between nhexane (nC6) and n-decane (nC10). **XYLENES-CALC-VA** Water Sum of Xylene Isomer Concentrations CALCULATION Calculation of Total Xvlenes Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes. \*\* ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location WR ALS ENVIRONMENTAL - WHITEHORSE, YUKON, CANADA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA VA Chain of Custody Numbers: **GLOSSARY OF REPORT TERMS** Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



|                            |                                                                                      | Workorder                  | : L120936                 | 3 Re      | port Date:   | 27-SEP-12 | Pa     | ige 1 of 37 |
|----------------------------|--------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------|--------------|-----------|--------|-------------|
| Client:<br>Contact:        | GOLDER ASSOCIATES<br># 201B, 170 Titanium W<br>Whitehorse YT Y1A 00<br>Andrea Badger | Vay                        |                           |           |              |           |        |             |
| Test                       | Matrix                                                                               | Reference                  | Result                    | Qualifier | Units        | RPD       | Limit  | Analyzed    |
| ALK-PCT-VA                 | Water                                                                                |                            |                           |           |              |           |        |             |
| Batch                      | R2440917                                                                             |                            |                           |           |              |           |        |             |
| WG1551094<br>Alkalinity, T | <b>I-10 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>105.2 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | I-11 CRM<br>Total (as CaCO3)                                                         | VA-ALK-PC                  | <b>T-CONTROL</b><br>102.5 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-12 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>105.5 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-13 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>105.2 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-14 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>103.6 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-15 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>103.8 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-16 CRM</b><br>Total (as CaCO3)                                                  | VA-ALK-PC                  | <b>T-CONTROL</b><br>106.1 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>1-9 CRM</b><br>Total (as CaCO3)                                                   | VA-ALK-PC                  | <b>T-CONTROL</b><br>107.8 |           | %            |           | 85-115 | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-34 DUP</b><br>Total (as CaCO3)                                                  | <b>L1209363-1</b> 2<br>154 | <b>2</b><br>155           |           | mg/L         | 0.2       | 20     | 21-SEP-12   |
| Alkalinity, B              | licarbonate (as CaCO3)                                                               | 154                        | 155                       |           | mg/L         | 0.2       | 20     | 21-SEP-12   |
| Alkalinity, C              | Carbonate (as CaCO3)                                                                 | <1.0                       | <1.0                      | RPD-NA    | mg/L         | N/A       | 25     | 21-SEP-12   |
| Alkalinity, H              | lydroxide (as CaCO3)                                                                 | <1.0                       | <1.0                      | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>I-2 MB</b><br>Total (as CaCO3)                                                    |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| Alkalinity, B              | licarbonate (as CaCO3)                                                               |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| Alkalinity, C              | Carbonate (as CaCO3)                                                                 |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| Alkalinity, H              | lydroxide (as CaCO3)                                                                 |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| WG1551094                  |                                                                                      |                            | 4.0                       |           |              |           |        |             |
| -                          | otal (as CaCO3)<br>Sicarbonate (as CaCO3)                                            |                            | <1.0<br><1.0              |           | mg/L         |           | 1      | 21-SEP-12   |
|                            | Carbonate (as CaCO3)                                                                 |                            | <1.0<br><1.0              |           | mg/L         |           | 1      | 21-SEP-12   |
|                            | lydroxide (as CaCO3)                                                                 |                            | <1.0<br><1.0              |           | mg/L<br>mg/L |           | 1      | 21-SEP-12   |
| WG1551094                  |                                                                                      |                            | <1.0                      |           | iiig/∟       |           | 1      | 21-SEP-12   |
|                            | otal (as CaCO3)                                                                      |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| Alkalinity, B              | licarbonate (as CaCO3)                                                               |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| Alkalinity, C              | Carbonate (as CaCO3)                                                                 |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| -                          | lydroxide (as CaCO3)                                                                 |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
| WG1551094<br>Alkalinity, T | <b>1-6 MB</b><br>Total (as CaCO3)                                                    |                            | <1.0                      |           | mg/L         |           | 1      | 21-SEP-12   |
|                            |                                                                                      |                            |                           |           |              |           |        |             |



|                                                 |        | Workorder:  | L120936                 | 3         | Report Date: 27-SEP-12 |     | Page 2 of 3 |           |  |
|-------------------------------------------------|--------|-------------|-------------------------|-----------|------------------------|-----|-------------|-----------|--|
| est M                                           | latrix | Reference   | Result                  | Qualifier | Units                  | RPD | Limit       | Analyzed  |  |
| ALK-PCT-VA V                                    | Vater  |             |                         |           |                        |     |             |           |  |
| Batch R2440917                                  |        |             |                         |           |                        |     |             |           |  |
| WG1551094-6 MB<br>Alkalinity, Bicarbonate (as 0 | CaCO3) |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Alkalinity, Carbonate (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Alkalinity, Hydroxide (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| WG1551094-7 MB<br>Alkalinity, Total (as CaCO3   | )      |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Alkalinity, Bicarbonate (as 0                   | CaCO3) |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Alkalinity, Carbonate (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Alkalinity, Hydroxide (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 21-SEP-12 |  |
| Batch R2443112                                  |        |             |                         |           |                        |     |             |           |  |
| WG1553049-10 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | CONTROL<br>104.1        |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-11 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | <b>CONTROL</b><br>104.3 |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-12 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | <b>CONTROL</b> 104.1    |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-13 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | <b>CONTROL</b><br>102.9 |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-14 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | <b>CONTROL</b><br>102.5 |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-15 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | <b>CONTROL</b><br>105.2 |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-16 CRM<br>Alkalinity, Total (as CaCO3 | )      | VA-ALK-PCT- | CONTROL<br>102.1        |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-9 CRM<br>Alkalinity, Total (as CaCO3  | )      | VA-ALK-PCT- | <b>CONTROL</b><br>104.5 |           | %                      |     | 85-115      | 25-SEP-12 |  |
| WG1553049-8 MB<br>Alkalinity, Total (as CaCO3   | )      |             | <1.0                    |           | mg/L                   |     | 1           | 25-SEP-12 |  |
| Alkalinity, Bicarbonate (as C                   | CaCO3) |             | <1.0                    |           | mg/L                   |     | 1           | 25-SEP-12 |  |
| Alkalinity, Carbonate (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 25-SEP-12 |  |
| Alkalinity, Hydroxide (as Ca                    | aCO3)  |             | <1.0                    |           | mg/L                   |     | 1           | 25-SEP-12 |  |
| ALK-SCR-VA V                                    | Vater  |             |                         |           |                        |     |             |           |  |
| Batch R2440701                                  |        |             |                         |           |                        |     |             |           |  |
| WG1550572-2 CRM<br>Alkalinity, Total (as CaCO3  | )      | VA-ALKL-CON | <b>ITROL</b><br>97.4    |           | %                      |     | 85-115      | 20-SEP-12 |  |
| WG1550572-5 CRM<br>Alkalinity, Total (as CaCO3  | )      | VA-ALKM-CO  | NTROL<br>106.3          |           | %                      |     | 85-115      | 20-SEP-12 |  |
| WG1550572-10 DUP                                |        | L1209363-10 |                         |           |                        |     |             |           |  |



|                                     |                | Workorder: L1209 |              | Report Date: 27-SEP-12 |       |     | Page 3 of 37 |           |  |
|-------------------------------------|----------------|------------------|--------------|------------------------|-------|-----|--------------|-----------|--|
| est                                 | Matrix         | Reference        | Result       | Qualifier              | Units | RPD | Limit        | Analyzed  |  |
| ALK-SCR-VA                          | Water          |                  |              |                        |       |     |              |           |  |
|                                     | 40701          |                  |              |                        |       |     |              |           |  |
| WG1550572-10                        |                | L1209363-10      | 404          |                        |       |     |              |           |  |
| Alkalinity, Total (a                |                | 195              | 194          |                        | mg/L  | 0.4 | 20           | 20-SEP-12 |  |
| WG1550572-1<br>Alkalinity, Total (a | MB<br>s CaCO3) |                  | <2.0         |                        | mg/L  |     | 2            | 20-SEP-12 |  |
| WG1550572-4                         | MB             |                  |              |                        |       |     |              |           |  |
| Alkalinity, Total (a                | s CaCO3)       |                  | <2.0         |                        | mg/L  |     | 2            | 20-SEP-12 |  |
| WG1550572-7                         | MB             |                  |              |                        |       |     |              |           |  |
| Alkalinity, Total (a                | s CaCO3)       |                  | <2.0         |                        | mg/L  |     | 2            | 20-SEP-12 |  |
| NIONS-CL-IC-VA                      | Water          |                  |              |                        |       |     |              |           |  |
| Batch R243                          | 39735          |                  |              |                        |       |     |              |           |  |
|                                     | DUP            | L1209363-12      |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                | <0.50            | <0.50        | RPD-NA                 | mg/L  | N/A | 20           | 19-SEP-12 |  |
| WG1549122-15<br>Chloride (Cl)       | LCS            |                  | 97.9         |                        | %     |     | 05 445       |           |  |
|                                     |                |                  | 57.5         |                        | 70    |     | 85-115       | 19-SEP-12 |  |
| Chloride (Cl)                       | LCS            |                  | 97.8         |                        | %     |     | 85-115       | 19-SEP-12 |  |
|                                     | МВ             |                  |              |                        |       |     | 00 110       |           |  |
| Chloride (Cl)                       |                |                  | <0.50        |                        | mg/L  |     | 0.5          | 19-SEP-12 |  |
| WG1549122-10                        | MB             |                  |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | <0.50        |                        | mg/L  |     | 0.5          | 19-SEP-12 |  |
| WG1549122-13                        | MB             |                  |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | <0.50        |                        | mg/L  |     | 0.5          | 19-SEP-12 |  |
|                                     | MB             |                  | 0.50         |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | <0.50        |                        | mg/L  |     | 0.5          | 19-SEP-12 |  |
| WG1549122-7 Chloride (Cl)           | MB             |                  | <0.50        |                        | mg/L  |     | 0.5          | 10 SED 40 |  |
| WG1549122-11                        | Me             | 1 4000504 7      | <b>NO.30</b> |                        | my/⊏  |     | 0.5          | 19-SEP-12 |  |
| Chloride (Cl)                       | WIJ            | L1209564-7       | 101.1        |                        | %     |     | 75-125       | 19-SEP-12 |  |
| WG1549122-14                        | MS             | L1209704-1       |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | 100.7        |                        | %     |     | 75-125       | 19-SEP-12 |  |
| WG1549122-5                         | MS             | L1209363-7       |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | 100.5        |                        | %     |     | 75-125       | 19-SEP-12 |  |
|                                     | MS             | L1209433-3       |              |                        |       |     |              |           |  |
| Chloride (Cl)                       |                |                  | 100.5        |                        | %     |     | 75-125       | 19-SEP-12 |  |
| NIONS-F-IC-VA                       | Water          |                  |              |                        |       |     |              |           |  |
|                                     |                |                  |              |                        |       |     |              |           |  |



|                                    |        |        | Workorder:                  | L120936 | 3 Re      | port Date: 2 | 27-SEP-12 | Pa     | ige 4 of  |  |
|------------------------------------|--------|--------|-----------------------------|---------|-----------|--------------|-----------|--------|-----------|--|
| est                                |        | Matrix | Reference                   | Result  | Qualifier | Units        | RPD       | Limit  | Analyzed  |  |
| ANIONS-F-IC-VA                     |        | Water  |                             |         |           |              |           |        |           |  |
| Batch R2                           | 439735 |        |                             |         |           |              |           |        |           |  |
| WG1549122-3<br>Fluoride (F)        | DUP    |        | <b>L1209363-12</b><br>0.074 | 0.074   |           | mg/L         | 0.0       | 20     | 19-SEP-12 |  |
| WG1549122-15<br>Fluoride (F)       | LCS    |        |                             | 101.9   |           | %            |           | 85-115 | 19-SEP-12 |  |
| WG1549122-2<br>Fluoride (F)        | LCS    |        |                             | 101.6   |           | %            |           | 85-115 | 19-SEP-12 |  |
| WG1549122-1<br>Fluoride (F)        | МВ     |        |                             | <0.020  |           | mg/L         |           | 0.02   | 19-SEP-12 |  |
| WG1549122-10<br>Fluoride (F)       | МВ     |        |                             | <0.020  |           | mg/L         |           | 0.02   | 19-SEP-12 |  |
| WG1549122-13<br>Fluoride (F)       | МВ     |        |                             | <0.020  |           | mg/L         |           | 0.02   | 19-SEP-12 |  |
| <b>WG1549122-4</b><br>Fluoride (F) | МВ     |        |                             | <0.020  |           | mg/L         |           | 0.02   | 19-SEP-12 |  |
| <b>WG1549122-7</b><br>Fluoride (F) | МВ     |        |                             | <0.020  |           | mg/L         |           | 0.02   | 19-SEP-12 |  |
| WG1549122-11<br>Fluoride (F)       | MS     |        | L1209564-7                  | 100.4   |           | %            |           | 75-125 | 19-SEP-12 |  |
| WG1549122-14<br>Fluoride (F)       | MS     |        | L1209704-1                  | 104.6   |           | %            |           | 75-125 | 19-SEP-12 |  |
| WG1549122-5<br>Fluoride (F)        | MS     |        | L1209363-7                  | 100.5   |           | %            |           | 75-125 | 19-SEP-12 |  |
| WG1549122-8<br>Fluoride (F)        | MS     |        | L1209433-3                  | 104.0   |           | %            |           | 75-125 | 19-SEP-12 |  |
| ANIONS-NO2-IC-W                    | /R     | Water  |                             |         |           |              |           |        |           |  |
| Batch R2                           | 439214 |        |                             |         |           |              |           |        |           |  |
| WG1549682-3<br>Nitrite (as N)      | DUP    |        | <b>L1209363-1</b><br><0.050 | <0.050  | RPD-NA    | mg/L         | N/A       | 20     | 14-SEP-12 |  |
| WG1549682-2<br>Nitrite (as N)      | LCS    |        |                             | 104.8   |           | %            |           | 85-115 | 14-SEP-12 |  |
| WG1549682-6<br>Nitrite (as N)      | LCS    |        |                             | 104.0   |           | %            |           | 85-115 | 14-SEP-12 |  |
| WG1549682-1<br>Nitrite (as N)      | МВ     |        |                             | <0.0010 |           | mg/L         |           | 0.001  | 14-SEP-12 |  |
| WG1549682-5<br>Nitrite (as N)      | МВ     |        |                             | <0.0010 |           | mg/L         |           | 0.001  | 14-SEP-12 |  |
| WG1549682-4<br>Nitrite (as N)      | MS     |        | L1209363-7                  | 97.1    |           | %            |           | 75-125 | 14-SEP-12 |  |
| WG1549682-8                        | MS     |        | L1209430-2                  |         |           |              |           |        |           |  |
|                                    |        |        |                             |         |           |              |           |        |           |  |



|                                                                      |        | Workorder:                 | L1209363 | B Re      | port Date: 2 | 27-SEP-12 | Pa     | ige 5 of 37 |
|----------------------------------------------------------------------|--------|----------------------------|----------|-----------|--------------|-----------|--------|-------------|
| Test                                                                 | Matrix | Reference                  | Result   | Qualifier | Units        | RPD       | Limit  | Analyzed    |
| ANIONS-NO2-IC-WR<br>Batch R24392<br>WG1549682-8 MS<br>Nitrite (as N) |        | L1209430-2                 | 102.8    |           | %            |           | 75-125 | 14-SEP-12   |
| ANIONS-NO3-IC-WR                                                     | Water  |                            |          |           |              |           |        |             |
| Batch R24392                                                         | 214    |                            |          |           |              |           |        |             |
| WG1549682-3 DU<br>Nitrate (as N)                                     | JP     | <b>L1209363-1</b><br><0.25 | <0.25    | RPD-NA    | mg/L         | N/A       | 20     | 14-SEP-12   |
| WG1549682-2 LC<br>Nitrate (as N)                                     | S      |                            | 104.2    |           | %            |           | 85-115 | 14-SEP-12   |
| WG1549682-6 LC<br>Nitrate (as N)                                     | S      |                            | 104.5    |           | %            |           | 85-115 | 14-SEP-12   |
| WG1549682-1 MI<br>Nitrate (as N)                                     | 3      |                            | <0.0050  |           | mg/L         |           | 0.005  | 14-SEP-12   |
| WG1549682-5 MB<br>Nitrate (as N)                                     | 3      |                            | <0.0050  |           | mg/L         |           | 0.005  | 14-SEP-12   |
| WG1549682-4 MS<br>Nitrate (as N)                                     | 6      | L1209363-7                 | 99.6     |           | %            |           | 75-125 | 14-SEP-12   |
| WG1549682-8 MS<br>Nitrate (as N)                                     | 3      | L1209430-2                 | 100.7    |           | %            |           | 75-125 | 14-SEP-12   |
| ANIONS-SO4-IC-VA                                                     | Water  |                            |          |           |              |           |        |             |
| Batch R2439                                                          | 735    |                            |          |           |              |           |        |             |
| <b>WG1549122-3 DU</b><br>Sulfate (SO4)                               | JP     | <b>L1209363-12</b><br>54.7 | 54.7     |           | mg/L         | 0.0       | 20     | 19-SEP-12   |
| WG1549122-15 LC<br>Sulfate (SO4)                                     | S      |                            | 101.1    |           | %            |           | 85-115 | 19-SEP-12   |
| WG1549122-2 LC<br>Sulfate (SO4)                                      | S      |                            | 100.9    |           | %            |           | 85-115 | 19-SEP-12   |
| WG1549122-1 ME<br>Sulfate (SO4)                                      | 3      |                            | <0.50    |           | mg/L         |           | 0.5    | 19-SEP-12   |
| WG1549122-10 MI<br>Sulfate (SO4)                                     | 3      |                            | <0.50    |           | mg/L         |           | 0.5    | 19-SEP-12   |
| WG1549122-13 ME<br>Sulfate (SO4)                                     | 3      |                            | <0.50    |           | mg/L         |           | 0.5    | 19-SEP-12   |
| WG1549122-4 ME<br>Sulfate (SO4)                                      | 3      |                            | <0.50    |           | mg/L         |           | 0.5    | 19-SEP-12   |
| <b>WG1549122-7 ME</b><br>Sulfate (SO4)                               | 3      |                            | <0.50    |           | mg/L         |           | 0.5    | 19-SEP-12   |
| WG1549122-11 MS                                                      | 3      | L1209564-7                 |          |           | -            |           |        |             |



|                                             |        |                            |                         | -         | •              |          |        |             |  |
|---------------------------------------------|--------|----------------------------|-------------------------|-----------|----------------|----------|--------|-------------|--|
|                                             |        | Workorder:                 | L120936                 | 63        | Report Date: 2 | 7-SEP-12 | Pa     | age 6 of 37 |  |
| ſest                                        | Matrix | Reference                  | Result                  | Qualifier | Units          | RPD      | Limit  | Analyzed    |  |
| ANIONS-SO4-IC-VA                            | Water  |                            |                         |           |                |          |        |             |  |
| Batch R2439735                              |        |                            |                         |           |                |          |        |             |  |
| WG1549122-11 MS<br>Sulfate (SO4)            |        | L1209564-7                 | 102.9                   |           | %              |          | 75-125 | 19-SEP-12   |  |
| WG1549122-14 MS<br>Sulfate (SO4)            |        | L1209704-1                 | 102.5                   |           | %              |          | 75-125 | 19-SEP-12   |  |
| <b>WG1549122-5 MS</b><br>Sulfate (SO4)      |        | L1209363-7                 | 101.2                   |           | %              |          | 75-125 | 19-SEP-12   |  |
| <b>WG1549122-8 MS</b><br>Sulfate (SO4)      |        | L1209433-3                 | 97.9                    |           | %              |          | 75-125 | 19-SEP-12   |  |
| CARBONS-DOC-VA                              | Water  |                            |                         |           |                |          |        |             |  |
| Batch R2439116                              |        |                            |                         |           |                |          |        |             |  |
| WG1549198-2 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | <b>AFFEINE</b><br>100.2 |           | %              |          | 80-120 | 18-SEP-12   |  |
| WG1549198-4 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | <b>AFFEINE</b><br>98.0  |           | %              |          | 80-120 | 18-SEP-12   |  |
| WG1549198-1 MB<br>Dissolved Organic Carbo   | on     |                            | <0.50                   |           | mg/L           |          | 0.5    | 18-SEP-12   |  |
| WG1549198-3 MB<br>Dissolved Organic Carbo   | on     |                            | <0.50                   |           | mg/L           |          | 0.5    | 18-SEP-12   |  |
| WG1549198-7 MS<br>Dissolved Organic Carbo   | on     | L1209483-3                 | 90.6                    |           | %              |          | 70-130 | 18-SEP-12   |  |
| Batch R2439195                              |        |                            |                         |           |                |          |        |             |  |
| WG1548363-10 CRM                            | ~~     | VA-DOC-C-C                 | AFFEINE<br>97.7         |           | %              |          | 00.400 |             |  |
| Dissolved Organic Carbo                     | UII    |                            |                         |           | 70             |          | 80-120 | 17-SEP-12   |  |
| WG1548363-2 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | <b>AFFEINE</b><br>99.5  |           | %              |          | 80-120 | 17-SEP-12   |  |
| WG1548363-4 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | AFFEINE<br>94.2         |           | %              |          | 80-120 | 17-SEP-12   |  |
| WG1548363-6 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | <b>AFFEINE</b><br>95.6  |           | %              |          | 80-120 | 17-SEP-12   |  |
| WG1548363-8 CRM<br>Dissolved Organic Carbo  | on     | VA-DOC-C-C                 | <b>AFFEINE</b><br>95.8  |           | %              |          | 80-120 | 17-SEP-12   |  |
| WG1548363-13 DUP<br>Dissolved Organic Carbo | on     | <b>L1209363-16</b><br>5.04 | 4.95                    |           | mg/L           | 1.8      | 20     | 17-SEP-12   |  |
| WG1548363-1 MB<br>Dissolved Organic Carbo   | on     |                            | <0.50                   |           | mg/L           |          | 0.5    | 17-SEP-12   |  |
| WG1548363-3 MB<br>Dissolved Organic Carbo   | on     |                            | <0.50                   |           | mg/L           |          | 0.5    | 17-SEP-12   |  |
| WG1548363-5 MB                              |        |                            |                         |           | -              |          |        | · ·         |  |

WG1548363-5 MB



|                                            |        | Workorder:  | 1 1 2 0 0 2 0          | *<br>• •  | Report Date: 27-SEP-12 Page 7 of |              |        |            |  |
|--------------------------------------------|--------|-------------|------------------------|-----------|----------------------------------|--------------|--------|------------|--|
| Fact                                       | Matrix | Reference   | Result                 | Qualifier | Units                            | 7-SEP-12<br> | Limit  | ge 7 of 37 |  |
| est                                        | Watrix | Reference   | Result                 | Quaimer   | Units                            | RPD          | Limit  | Analyzed   |  |
| CARBONS-DOC-VA                             | Water  |             |                        |           |                                  |              |        |            |  |
| Batch R2439195                             |        |             |                        |           |                                  |              |        |            |  |
| WG1548363-5 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 17-SEP-12  |  |
| WG1548363-7 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 17-SEP-12  |  |
| WG1548363-9 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 17-SEP-12  |  |
| WG1548363-14 MS<br>Dissolved Organic Carbo | n      | L1209478-2  | 96.4                   |           | %                                |              | 70-130 | 17-SEP-12  |  |
| Batch R2439946                             |        |             |                        |           |                                  |              |        |            |  |
| WG1550152-2 CRM<br>Dissolved Organic Carbo | n      | VA-DOC-C-C  | AFFEINE<br>98.1        |           | %                                |              | 80-120 | 19-SEP-12  |  |
| WG1550152-4 CRM<br>Dissolved Organic Carbo | n      | VA-DOC-C-C  | <b>AFFEINE</b><br>94.2 |           | %                                |              | 80-120 | 19-SEP-12  |  |
| WG1550152-6 CRM<br>Dissolved Organic Carbo | n      | VA-DOC-C-C  | <b>AFFEINE</b><br>90.1 |           | %                                |              | 80-120 | 19-SEP-12  |  |
| WG1550152-8 CRM<br>Dissolved Organic Carbo | n      | VA-DOC-C-C  | <b>AFFEINE</b><br>90.4 |           | %                                |              | 80-120 | 19-SEP-12  |  |
| WG1550152-1 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 19-SEP-12  |  |
| WG1550152-3 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 19-SEP-12  |  |
| WG1550152-5 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 19-SEP-12  |  |
| WG1550152-7 MB<br>Dissolved Organic Carbo  | n      |             | <0.50                  |           | mg/L                             |              | 0.5    | 19-SEP-12  |  |
| WG1550152-10 MS<br>Dissolved Organic Carbo |        | L1210319-11 | 100.4                  |           | %                                |              | 70-130 | 19-SEP-12  |  |
| COD-COL-VA                                 | Water  |             |                        |           |                                  |              |        |            |  |
| Batch R2437967                             |        |             |                        |           |                                  |              |        |            |  |
| WG1548328-10 LCS<br>COD                    |        |             | 104.4                  |           | %                                |              | 85-115 | 18-SEP-12  |  |
| WG1548328-2 LCS<br>COD                     |        |             | 104.5                  |           | %                                |              | 85-115 | 18-SEP-12  |  |
| WG1548328-6 LCS<br>COD                     |        |             | 102.1                  |           | %                                |              | 85-115 | 18-SEP-12  |  |
| WG1548328-1 MB<br>COD                      |        |             | <20                    |           | mg/L                             |              | 20     | 18-SEP-12  |  |
| WG1548328-5 MB                             |        |             |                        |           | <del>y</del> , <b>-</b>          |              | 20     |            |  |
|                                            |        |             |                        |           |                                  |              |        |            |  |



|                                            |                  |            |           | •              |          |         |            |
|--------------------------------------------|------------------|------------|-----------|----------------|----------|---------|------------|
|                                            | Workorde         | r: L120936 | 3         | Report Date: 2 | 7-SEP-12 | Pa      | ge 8 of 37 |
| Test                                       | Matrix Reference | Result     | Qualifier | Units          | RPD      | Limit   | Analyzed   |
| COD-COL-VA                                 | Water            |            |           |                |          |         |            |
| Batch R2437967                             |                  |            |           |                |          |         |            |
| WG1548328-5 MB<br>COD                      |                  | <20        |           | mg/L           |          | 20      | 18-SEP-12  |
| WG1548328-9 MB<br>COD                      |                  | <20        |           | mg/L           |          | 20      | 18-SEP-12  |
| WG1548328-4 MS<br>COD                      | L1209045-1       | 103.7      |           | %              |          | 75-125  | 18-SEP-12  |
| WG1548328-8 MS<br>COD                      | L1209491-2       | 96.7       |           | %              |          | 75-125  | 18-SEP-12  |
| EPH-SF-FID-VA                              | Water            |            |           |                |          |         |            |
| Batch R2439979                             |                  |            |           |                |          |         |            |
| WG1549364-1 MB                             |                  |            |           |                |          |         |            |
| EPH10-19                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 20-SEP-12  |
| EPH19-32                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 20-SEP-12  |
| Batch R2440082                             |                  |            |           |                |          |         |            |
| WG1549364-3 MB<br>EPH10-19                 |                  | <0.25      |           | mg/L           |          | 0.25    | 21-SEP-12  |
| EPH19-32                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 21-SEP-12  |
| Batch R2442176<br>WG1550411-1 MB           |                  |            |           |                |          |         |            |
| EPH10-19                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 24-SEP-12  |
| EPH19-32                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 24-SEP-12  |
| WG1550411-3 MB<br>EPH10-19                 |                  | <0.25      |           | mg/L           |          | 0.25    | 24-SEP-12  |
| EPH19-32                                   |                  | <0.25      |           | mg/L           |          | 0.25    | 24-SEP-12  |
|                                            | Matan            | 10.20      |           | g. =           |          | 0.20    |            |
|                                            | Water            |            |           |                |          |         |            |
| Batch R2438056<br>WG1548035-3 LCS          |                  |            |           |                |          |         |            |
| Mercury (Hg)-Dissolved                     |                  | 91.4       |           | %              |          | 80-120  | 18-SEP-12  |
| WG1548035-1 MB<br>Mercury (Hg)-Dissolved   |                  | <0.00005   | 0         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Batch R2439159                             |                  |            |           |                |          |         |            |
| WG1548683-10 LCS<br>Mercury (Hg)-Dissolved |                  | 95.4       |           | %              |          | 80-120  | 19-SEP-12  |
| WG1548683-11 LCS<br>Mercury (Hg)-Dissolved |                  | 99.3       |           | %              |          | 80-120  | 19-SEP-12  |
| WG1548683-1 MB                             |                  |            |           |                |          |         |            |



|                                                              |                | Workorder:                    | L1209363  | Re        | eport Date: | 27-SEP-12 | Pa      | ge 9 of 37 |
|--------------------------------------------------------------|----------------|-------------------------------|-----------|-----------|-------------|-----------|---------|------------|
| Test                                                         | Matrix         | Reference                     | Result    | Qualifier | Units       | RPD       | Limit   | Analyzed   |
| HG-DIS-CVAFS-VA                                              | Water          |                               |           |           |             |           |         |            |
| Batch R2439159                                               |                |                               |           |           |             |           |         |            |
| WG1548683-7 MB<br>Mercury (Hg)-Dissolved                     |                |                               | <0.000050 |           | mg/L        |           | 0.00005 | 19-SEP-12  |
| Batch R2440928                                               |                |                               |           |           |             |           |         |            |
| WG1548035-18 DUP<br>Mercury (Hg)-Dissolved                   |                | <b>L1209363-2</b><br><0.00020 | <0.000050 | RPD-NA    | mg/L        | N/A       | 20      | 21-SEP-12  |
| WG1548035-19 MS<br>Mercury (Hg)-Dissolved                    |                | L1209363-3                    | 87.1      |           | %           |           | 70-130  | 21-SEP-12  |
| Batch R2442023                                               |                |                               |           |           |             |           |         |            |
| WG1552509-8 MB<br>Mercury (Hg)-Dissolved                     |                |                               | <0.000050 |           | mg/L        |           | 0.00005 | 24-SEP-12  |
|                                                              |                |                               |           |           |             |           |         |            |
| Batch R2443000<br>WG1552509-14 LCS<br>Mercury (Hg)-Dissolved |                |                               | 89.5      |           | %           |           | 80-120  | 25-SEP-12  |
| WG1552509-15 LCS<br>Mercury (Hg)-Dissolved                   |                |                               | 90.8      |           | %           |           | 80-120  | 25-SEP-12  |
| WG1552509-7 LCS<br>Mercury (Hg)-Dissolved                    |                |                               | 89.9      |           | %           |           | 80-120  | 25-SEP-12  |
| WG1552509-1 MB<br>Mercury (Hg)-Dissolved                     |                |                               | <0.000050 |           | mg/L        |           | 0.00005 | 25-SEP-12  |
| WG1552509-9 MB<br>Mercury (Hg)-Dissolved                     |                |                               | <0.000050 |           | mg/L        |           | 0.00005 | 25-SEP-12  |
| MET-DIS-ICP-VA                                               | Water          |                               |           |           |             |           |         |            |
| Batch R2437951                                               |                |                               |           |           |             |           |         |            |
| WG1548035-2 CRM                                              |                | VA-HIGH-WA                    |           |           | 0/          |           |         |            |
| Beryllium (Be)-Dissolved                                     |                |                               | 95.2      |           | %           |           | 80-120  | 17-SEP-12  |
| Bismuth (Bi)-Dissolved                                       |                |                               | 99.6      |           | %           |           | 80-120  | 17-SEP-12  |
| Cobalt (Co)-Dissolved                                        |                |                               | 95.0      |           | %           |           | 80-120  | 17-SEP-12  |
| Iron (Fe)-Dissolved                                          |                |                               | 97.4      |           | %           |           | 80-120  | 17-SEP-12  |
| Lithium (Li)-Dissolved                                       | luga           |                               | 100.2     |           | %           |           | 80-120  | 17-SEP-12  |
| Molybdenum (Mo)-Disso                                        | ived           |                               | 96.4      |           | %           |           | 80-120  | 17-SEP-12  |
| Nickel (Ni)-Dissolved                                        | d              |                               | 96.3      |           | %           |           | 80-120  | 17-SEP-12  |
| Phosphorus (P)-Dissolve                                      | <del>,</del> u |                               | 101.7     |           | %           |           | 80-120  | 17-SEP-12  |
| Silicon (Si)-Dissolved                                       |                |                               | 103.7     |           | %           |           | 80-120  | 17-SEP-12  |
| Silver (Ag)-Dissolved                                        |                |                               | 93.8      |           | %           |           | 80-120  | 17-SEP-12  |
| Sodium (Na)-Dissolved                                        |                |                               | 99.7      |           | %           |           | 80-120  | 17-SEP-12  |



|                                        |        | Workorder | : L120936           | 63        | Report Date: 2 | ort Date: 27-SEP-12 |        | age 10 of 3 |
|----------------------------------------|--------|-----------|---------------------|-----------|----------------|---------------------|--------|-------------|
| est                                    | Matrix | Reference | Result              | Qualifier | Units          | RPD                 | Limit  | Analyzed    |
| MET-DIS-ICP-VA                         | Water  |           |                     |           |                |                     |        |             |
| Batch R243                             | 37951  |           |                     |           |                |                     |        |             |
|                                        | CRM    | VA-HIGH-W |                     |           |                |                     |        |             |
| Strontium (Sr)-Dis                     |        |           | 99.3                |           | %              |                     | 80-120 | 17-SEP-12   |
| Thallium (TI)-Diss                     |        |           | 96.9                |           | %              |                     | 80-120 | 17-SEP-12   |
| Tin (Sn)-Dissolve                      |        |           | 98.9                |           | %              |                     | 80-120 | 17-SEP-12   |
| Titanium (Ti)-Diss                     |        |           | 96.9                |           | %              |                     | 80-120 | 17-SEP-12   |
| Vanadium (V)-Dis                       |        |           | 96.2                |           | %              |                     | 80-120 | 17-SEP-12   |
| WG1548035-1<br>Beryllium (Be)-Dis      | MB     |           | <0.0050             |           | mall           |                     | 0.005  |             |
|                                        |        |           | <0.0050             |           | mg/L           |                     | 0.005  | 17-SEP-12   |
| Bismuth (Bi)-Diss<br>Cobalt (Co)-Disso |        |           | <0.20<br><0.010     |           | mg/L<br>mg/L   |                     | 0.2    | 17-SEP-12   |
| Iron (Fe)-Dissolve                     |        |           | <0.010              |           | -              |                     | 0.01   | 17-SEP-12   |
|                                        |        |           |                     |           | mg/L           |                     | 0.03   | 17-SEP-12   |
| Lithium (Li)-Disso                     |        |           | <0.010              |           | mg/L           |                     | 0.01   | 17-SEP-12   |
| Molybdenum (Mo                         |        |           | <0.030              |           | mg/L           |                     | 0.03   | 17-SEP-12   |
| Nickel (Ni)-Dissol                     |        |           | <0.050              |           | mg/L           |                     | 0.05   | 17-SEP-12   |
| Phosphorus (P)-D                       |        |           | <0.30               |           | mg/L           |                     | 0.3    | 17-SEP-12   |
| Silicon (Si)-Dissol                    |        |           | <0.050              |           | mg/L           |                     | 0.05   | 17-SEP-12   |
| Silver (Ag)-Dissol                     |        |           | <0.010              |           | mg/L           |                     | 0.01   | 17-SEP-12   |
| Sodium (Na)-Diss                       |        |           | <2.0                |           | mg/L           |                     | 2      | 17-SEP-12   |
| Strontium (Sr)-Dis                     |        |           | <0.0050             |           | mg/L           |                     | 0.005  | 17-SEP-12   |
| Thallium (TI)-Diss                     |        |           | <0.20               |           | mg/L           |                     | 0.2    | 17-SEP-12   |
| Tin (Sn)-Dissolve                      |        |           | <0.030              |           | mg/L           |                     | 0.03   | 17-SEP-12   |
| Titanium (Ti)-Diss                     |        |           | <0.010              |           | mg/L           |                     | 0.01   | 17-SEP-12   |
| Vanadium (V)-Dis                       | solved |           | <0.030              |           | mg/L           |                     | 0.03   | 17-SEP-12   |
| Batch R243                             | 38999  |           |                     |           |                |                     |        |             |
| WG1548683-4<br>Beryllium (Be)-Dis      | CRM    | VA-HIGH-W | <b>ATRM</b><br>94.1 |           | %              |                     | 00.400 |             |
| Bismuth (Bi)-Diss                      |        |           | 94.1<br>99.0        |           | %              |                     | 80-120 | 18-SEP-12   |
| Cobalt (Co)-Disso                      |        |           | 99.0<br>96.0        |           | %              |                     | 80-120 | 18-SEP-12   |
| Iron (Fe)-Dissolve                     |        |           | 98.0<br>98.2        |           | %              |                     | 80-120 | 18-SEP-12   |
| Lithium (Li)-Disso                     |        |           | 90.2<br>100.0       |           | %              |                     | 80-120 | 18-SEP-12   |
|                                        |        |           | 97.0                |           |                |                     | 80-120 | 18-SEP-12   |
| Molybdenum (Mo                         | ,      |           | 97.0<br>96.4        |           | %              |                     | 80-120 | 18-SEP-12   |
| Nickel (Ni)-Dissol                     |        |           | 96.4<br>99.1        |           | %              |                     | 80-120 | 18-SEP-12   |
| Phosphorus (P)-E                       |        |           |                     |           | %              |                     | 80-120 | 18-SEP-12   |
| Silicon (Si)-Dissol                    |        |           | 102.3               |           | %              |                     | 80-120 | 18-SEP-12   |
| Silver (Ag)-Dissol                     |        |           | 95.2                |           | %              |                     | 80-120 | 18-SEP-12   |
| Sodium (Na)-Diss                       | soivea |           | 99.1                |           | %              |                     | 80-120 | 18-SEP-12   |



|                                            |        | Workorder | : L120936 | 63        | Report Date: 2 | 7-SEP-12 | Pa               | age 11 of 3 |
|--------------------------------------------|--------|-----------|-----------|-----------|----------------|----------|------------------|-------------|
| est                                        | Matrix | Reference | Result    | Qualifier | Units          | RPD      | Limit            | Analyzed    |
| MET-DIS-ICP-VA                             | Water  |           |           |           |                |          |                  |             |
| Batch R2438999                             | )      |           |           |           |                |          |                  |             |
| WG1548683-4 CRM                            |        | VA-HIGH-W |           |           | 0/             |          |                  |             |
| Strontium (Sr)-Dissolve                    |        |           | 100.1     |           | %              |          | 80-120           | 18-SEP-12   |
| Thallium (TI)-Dissolved                    | 1      |           | 97.6      |           | %              |          | 80-120           | 18-SEP-12   |
| Tin (Sn)-Dissolved                         |        |           | 97.6      |           | %              |          | 80-120           | 18-SEP-12   |
| Titanium (Ti)-Dissolved                    |        |           | 100.9     |           | %              |          | 80-120           | 18-SEP-12   |
| Vanadium (V)-Dissolve                      | d      |           | 96.4      |           | %              |          | 80-120           | 18-SEP-12   |
| WG1548683-8 CRM<br>Beryllium (Be)-Dissolve | he     | VA-HIGH-W | 92.8      |           | %              |          | 80-120           | 18-SEP-12   |
| Bismuth (Bi)-Dissolved                     |        |           | 99.0      |           | %              |          | 80-120<br>80-120 | 18-SEP-12   |
| Cobalt (Co)-Dissolved                      |        |           | 96.4      |           | %              |          | 80-120           | 18-SEP-12   |
| Iron (Fe)-Dissolved                        |        |           | 97.0      |           | %              |          | 80-120           | 18-SEP-12   |
| Lithium (Li)-Dissolved                     |        |           | 98.3      |           | %              |          | 80-120<br>80-120 | 18-SEP-12   |
| Molybdenum (Mo)-Diss                       | solved |           | 97.1      |           | %              |          | 80-120<br>80-120 | 18-SEP-12   |
| Nickel (Ni)-Dissolved                      | Joived |           | 96.8      |           | %              |          | 80-120           | 18-SEP-12   |
| Phosphorus (P)-Dissol                      | ved    |           | 99.0      |           | %              |          | 80-120<br>80-120 | 18-SEP-12   |
| Silicon (Si)-Dissolved                     | veu    |           | 101.3     |           | %              |          | 80-120           | 18-SEP-12   |
| Silver (Ag)-Dissolved                      |        |           | 94.9      |           | %              |          | 80-120           | 18-SEP-12   |
| Sodium (Na)-Dissolved                      | 4      |           | 98.3      |           | %              |          | 80-120           | 18-SEP-12   |
| Strontium (Sr)-Dissolve                    |        |           | 98.4      |           | %              |          | 80-120           | 18-SEP-12   |
| Thallium (TI)-Dissolved                    |        |           | 98.5      |           | %              |          | 80-120           | 18-SEP-12   |
| Tin (Sn)-Dissolved                         | •      |           | 98.2      |           | %              |          | 80-120           | 18-SEP-12   |
| Titanium (Ti)-Dissolved                    | 4      |           | 100.1     |           | %              |          | 80-120           | 18-SEP-12   |
| Vanadium (V)-Dissolve                      |        |           | 95.0      |           | %              |          | 80-120           | 18-SEP-12   |
| WG1548683-1 MB                             |        |           | 00.0      |           |                |          | 00 120           | TO OLI TZ   |
| Beryllium (Be)-Dissolve                    | ed     |           | <0.0050   |           | mg/L           |          | 0.005            | 18-SEP-12   |
| Bismuth (Bi)-Dissolved                     |        |           | <0.20     |           | mg/L           |          | 0.2              | 18-SEP-12   |
| Cobalt (Co)-Dissolved                      |        |           | <0.010    |           | mg/L           |          | 0.01             | 18-SEP-12   |
| Iron (Fe)-Dissolved                        |        |           | <0.030    |           | mg/L           |          | 0.03             | 18-SEP-12   |
| Lithium (Li)-Dissolved                     |        |           | <0.010    |           | mg/L           |          | 0.01             | 18-SEP-12   |
| Molybdenum (Mo)-Diss                       | solved |           | <0.030    |           | mg/L           |          | 0.03             | 18-SEP-12   |
| Nickel (Ni)-Dissolved                      |        |           | <0.050    |           | mg/L           |          | 0.05             | 18-SEP-12   |
| Phosphorus (P)-Dissol                      | ved    |           | <0.30     |           | mg/L           |          | 0.3              | 18-SEP-12   |
| Silicon (Si)-Dissolved                     |        |           | <0.050    |           | mg/L           |          | 0.05             | 18-SEP-12   |
| Silver (Ag)-Dissolved                      |        |           | <0.010    |           | mg/L           |          | 0.01             | 18-SEP-12   |
| Sodium (Na)-Dissolved                      | I      |           | <2.0      |           | mg/L           |          | 2                | 18-SEP-12   |
| Strontium (Sr)-Dissolve                    | ed     |           | <0.0050   |           | mg/L           |          | 0.005            | 18-SEP-12   |



|                                          |          | Workorder:   | L120936 | 3         | Report Date: 2 | 7-SEP-12 | Pa           | age 12 of 3 <sup>-</sup> |
|------------------------------------------|----------|--------------|---------|-----------|----------------|----------|--------------|--------------------------|
| est                                      | Matrix   | Reference    | Result  | Qualifier | Units          | RPD      | Limit        | Analyzed                 |
| MET-DIS-ICP-VA                           | Water    |              |         |           |                |          |              |                          |
| Batch R243899                            | 9        |              |         |           |                |          |              |                          |
| WG1548683-1 MB                           |          |              |         |           |                |          |              |                          |
| Thallium (TI)-Dissolved                  | a        |              | <0.20   |           | mg/L           |          | 0.2          | 18-SEP-12                |
| Tin (Sn)-Dissolved                       | J        |              | <0.030  |           | mg/L           |          | 0.03         | 18-SEP-12                |
| Titanium (Ti)-Dissolve                   |          |              | <0.010  |           | mg/L           |          | 0.01         | 18-SEP-12                |
| Vanadium (V)-Dissolve                    | ed       |              | <0.030  |           | mg/L           |          | 0.03         | 18-SEP-12                |
| WG1548683-7 MB<br>Beryllium (Be)-Dissolv | ed       |              | <0.0050 |           | mg/L           |          | 0.005        | 18-SEP-12                |
| Bismuth (Bi)-Dissolved                   |          |              | <0.20   |           | mg/L           |          | 0.005        |                          |
| Cobalt (Co)-Dissolved                    |          |              | <0.20   |           | mg/L           |          | 0.2          | 18-SEP-12                |
| Iron (Fe)-Dissolved                      |          |              | <0.030  |           | mg/L           |          |              | 18-SEP-12                |
| Lithium (Li)-Dissolved                   |          |              | <0.030  |           | mg/L           |          | 0.03         | 18-SEP-12                |
| Molybdenum (Mo)-Dis                      | colvod   |              | <0.010  |           | mg/L           |          | 0.01<br>0.03 | 18-SEP-12                |
| Nickel (Ni)-Dissolved                    | 301760   |              | <0.050  |           | mg/L           |          | 0.03         | 18-SEP-12                |
| Phosphorus (P)-Dissol                    | lved     |              | <0.30   |           | mg/L           |          | 0.05         | 18-SEP-12<br>18-SEP-12   |
| Silicon (Si)-Dissolved                   | wea      |              | <0.050  |           | mg/L           |          | 0.3          |                          |
| Silver (Ag)-Dissolved                    |          |              | <0.030  |           | mg/L           |          | 0.03         | 18-SEP-12<br>18-SEP-12   |
| Sodium (Na)-Dissolved                    | Ч        |              | <2.0    |           | mg/L           |          | 2            |                          |
| Strontium (Sr)-Dissolve                  |          |              | <0.0050 |           | mg/L           |          | 2            | 18-SEP-12                |
| Thallium (TI)-Dissolved                  |          |              | <0.20   |           | mg/L           |          |              | 18-SEP-12                |
| Tin (Sn)-Dissolved                       | J        |              | <0.20   |           | mg/L           |          | 0.2          | 18-SEP-12                |
| Titanium (Ti)-Dissolved                  | ч        |              | <0.030  |           | -              |          | 0.03         | 18-SEP-12                |
|                                          |          |              |         |           | mg/L           |          | 0.01         | 18-SEP-12                |
| Vanadium (V)-Dissolve                    |          |              | <0.030  |           | mg/L           |          | 0.03         | 18-SEP-12                |
| Batch R243988                            | 6        |              |         |           |                |          |              |                          |
| WG1548035-17 MS<br>Iron (Fe)-Dissolved   |          | L1208829-3   | 93.9    |           | %              |          | 70-130       | 20-SEP-12                |
| Sodium (Na)-Dissolved                    | Ч        |              | 100.1   |           | %              |          | 70-130       | 20-SEP-12<br>20-SEP-12   |
| Titanium (Ti)-Dissolve                   |          |              | 106.0   |           | %              |          | 70-130       | 20-SEP-12<br>20-SEP-12   |
|                                          |          |              | 100.0   |           | 70             |          | 70-130       | 20-3EF-12                |
| Batch R2440104                           | 4        | 1 4000 400 0 |         |           |                |          |              |                          |
| WG1548035-11 MS<br>Iron (Fe)-Dissolved   |          | L1209483-3   | 96.0    |           | %              |          | 70-130       | 19-SEP-12                |
| Sodium (Na)-Dissolve                     | d        |              | 102.0   |           | %              |          | 70-130       | 19-SEP-12                |
| Titanium (Ti)-Dissolve                   |          |              | 105.4   |           | %              |          | 70-130       | 19-SEP-12                |
| Batch R244103                            | <b>°</b> |              |         |           |                |          |              |                          |
| WG1548683-6 MS                           | <u> </u> | L1209093-4   |         |           |                |          |              |                          |
| Iron (Fe)-Dissolved                      |          | 2.20000-4    | 90.8    |           | %              |          | 70-130       | 20-SEP-12                |
| Sodium (Na)-Dissolved                    | d        |              | 103.3   |           | %              |          | 70-130       | 20-SEP-12                |



|                                            |         | Workorder: | L120936             | 63        | Report Date: 2 | 7-SEP-12 | Pa     | age 13 of 3 <sup>-</sup> |
|--------------------------------------------|---------|------------|---------------------|-----------|----------------|----------|--------|--------------------------|
| Test                                       | Matrix  | Reference  | Result              | Qualifier | Units          | RPD      | Limit  | Analyzed                 |
| MET-DIS-ICP-VA                             | Water   |            |                     |           |                |          |        |                          |
| Batch R244103                              | 32      |            |                     |           |                |          |        |                          |
| WG1548683-6 MS<br>Titanium (Ti)-Dissolve   |         | L1209093-4 | 103.7               |           | %              |          | 70-130 | 20-SEP-12                |
| Batch R244212                              | 22      |            |                     |           |                |          |        |                          |
| WG1552509-10 CRM<br>Beryllium (Be)-Dissolv |         | VA-HIGH-WA | <b>ATRM</b><br>98.6 |           | %              |          | 80-120 | 24-SEP-12                |
| Bismuth (Bi)-Dissolve                      | ed      |            | 102.1               |           | %              |          | 80-120 | 24-SEP-12                |
| Cobalt (Co)-Dissolved                      | d       |            | 97.5                |           | %              |          | 80-120 | 24-SEP-12                |
| Iron (Fe)-Dissolved                        |         |            | 100.2               |           | %              |          | 80-120 | 24-SEP-12                |
| Lithium (Li)-Dissolved                     | ł       |            | 100.9               |           | %              |          | 80-120 | 24-SEP-12                |
| Molybdenum (Mo)-Di                         | ssolved |            | 100.1               |           | %              |          | 80-120 | 24-SEP-12                |
| Nickel (Ni)-Dissolved                      |         |            | 98.1                |           | %              |          | 80-120 | 24-SEP-12                |
| Phosphorus (P)-Disso                       | olved   |            | 102.2               |           | %              |          | 80-120 | 24-SEP-12                |
| Silicon (Si)-Dissolved                     |         |            | 102.1               |           | %              |          | 80-120 | 24-SEP-12                |
| Silver (Ag)-Dissolved                      |         |            | 101.9               |           | %              |          | 80-120 | 24-SEP-12                |
| Sodium (Na)-Dissolve                       | ed      |            | 102.2               |           | %              |          | 80-120 | 24-SEP-12                |
| Strontium (Sr)-Dissol                      | ved     |            | 101.8               |           | %              |          | 80-120 | 24-SEP-12                |
| Thallium (TI)-Dissolve                     | ed      |            | 100.1               |           | %              |          | 80-120 | 24-SEP-12                |
| Tin (Sn)-Dissolved                         |         |            | 98.6                |           | %              |          | 80-120 | 24-SEP-12                |
| Titanium (Ti)-Dissolve                     | ed      |            | 105.0               |           | %              |          | 80-120 | 24-SEP-12                |
| Vanadium (V)-Dissolv                       | ved     |            | 101.3               |           | %              |          | 80-120 | 24-SEP-12                |
| WG1552509-8 MB<br>Beryllium (Be)-Dissolv   |         |            | <0.0050             |           | mg/L           |          | 0.005  | 24-SEP-12                |
| Bismuth (Bi)-Dissolve                      | ed      |            | <0.20               |           | mg/L           |          | 0.2    | 24-SEP-12                |
| Cobalt (Co)-Dissolved                      | d       |            | <0.010              |           | mg/L           |          | 0.01   | 24-SEP-12                |
| Iron (Fe)-Dissolved                        |         |            | <0.030              |           | mg/L           |          | 0.03   | 24-SEP-12                |
| Lithium (Li)-Dissolved                     | Ł       |            | <0.010              |           | mg/L           |          | 0.01   | 24-SEP-12                |
| Molybdenum (Mo)-Di                         | ssolved |            | <0.030              |           | mg/L           |          | 0.03   | 24-SEP-12                |
| Nickel (Ni)-Dissolved                      |         |            | <0.050              |           | mg/L           |          | 0.05   | 24-SEP-12                |
| Phosphorus (P)-Disso                       | olved   |            | <0.30               |           | mg/L           |          | 0.3    | 24-SEP-12                |
| Silicon (Si)-Dissolved                     |         |            | <0.050              |           | mg/L           |          | 0.05   | 24-SEP-12                |
| Silver (Ag)-Dissolved                      |         |            | <0.010              |           | mg/L           |          | 0.01   | 24-SEP-12                |
| Sodium (Na)-Dissolve                       | ed      |            | <2.0                |           | mg/L           |          | 2      | 24-SEP-12                |
| Strontium (Sr)-Dissol                      | ved     |            | <0.0050             |           | mg/L           |          | 0.005  | 24-SEP-12                |
| Thallium (TI)-Dissolve                     | ed      |            | <0.20               |           | mg/L           |          | 0.2    | 24-SEP-12                |
| Tin (Sn)-Dissolved                         |         |            | <0.030              |           | mg/L           |          | 0.03   | 24-SEP-12                |



|                                        |        | Workorder: | L1209363     | Re Re     | port Date: 2 | 27-SEP-12 | Pa     | age 14 of 3 |
|----------------------------------------|--------|------------|--------------|-----------|--------------|-----------|--------|-------------|
| Test                                   | Matrix | Reference  | Result       | Qualifier | Units        | RPD       | Limit  | Analyzed    |
| MET-DIS-ICP-VA                         | Water  |            |              |           |              |           |        |             |
| Batch R2442122                         |        |            |              |           |              |           |        |             |
| WG1552509-8 MB                         |        |            | 0.040        |           | ··· · · //   |           |        |             |
| Titanium (Ti)-Dissolved                |        |            | <0.010       |           | mg/L         |           | 0.01   | 24-SEP-12   |
| Vanadium (V)-Dissolved                 |        |            | <0.030       |           | mg/L         |           | 0.03   | 24-SEP-12   |
| Batch R2442237                         |        |            |              |           |              |           |        |             |
| WG1548035-27 MS<br>Iron (Fe)-Dissolved |        | L1209469-4 | 95.2         |           | %            |           | 70-130 | 21-SEP-12   |
| Sodium (Na)-Dissolved                  |        |            | 104.9        |           | %            |           | 70-130 | 21-SEP-12   |
| Titanium (Ti)-Dissolved                |        |            | 105.2        |           | %            |           | 70-130 | 21-SEP-12   |
|                                        |        |            |              |           |              |           | 10 100 | 21 021 12   |
| Batch R2442242<br>WG1548035-18 DUP     |        | L1209363-2 |              |           |              |           |        |             |
| Beryllium (Be)-Dissolved               |        | <0.0050    | <0.0050      | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Bismuth (Bi)-Dissolved                 |        | <0.20      | <0.20        | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Cobalt (Co)-Dissolved                  |        | <0.010     | <0.010       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Iron (Fe)-Dissolved                    |        | 0.475      | 0.481        |           | mg/L         | 1.4       | 20     | 21-SEP-12   |
| Lithium (Li)-Dissolved                 |        | 0.021      | 0.021        |           | mg/L         | 0.4       | 20     | 21-SEP-12   |
| Molybdenum (Mo)-Dissolv                | red    | <0.030     | <0.030       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Nickel (Ni)-Dissolved                  |        | <0.050     | <0.050       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Phosphorus (P)-Dissolved               | I      | <0.30      | <0.30        | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Silicon (Si)-Dissolved                 |        | 6.51       | 6.58         |           | mg/L         | 1.1       | 20     | 21-SEP-12   |
| Silver (Ag)-Dissolved                  |        | <0.010     | <0.010       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Sodium (Na)-Dissolved                  |        | 113        | 113          |           | mg/L         | 0.1       | 20     | 21-SEP-12   |
| Strontium (Sr)-Dissolved               |        | 2.20       | 2.22         |           | mg/L         | 0.7       | 20     | 21-SEP-12   |
| Thallium (TI)-Dissolved                |        | <0.20      | <0.20        | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Tin (Sn)-Dissolved                     |        | <0.030     | <0.030       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| Titanium (Ti)-Dissolved                |        | 0.018      | 0.019        |           | mg/L         | 2.7       | 20     | 21-SEP-12   |
| Vanadium (V)-Dissolved                 |        | <0.030     | <0.030       | RPD-NA    | mg/L         | N/A       | 20     | 21-SEP-12   |
| WG1548035-19 MS<br>Iron (Fe)-Dissolved |        | L1209363-3 | 104.2        |           | %            |           | 70.400 |             |
| Sodium (Na)-Dissolved                  |        |            | 104.2<br>N/A |           |              |           | 70-130 | 21-SEP-12   |
| , ,                                    |        |            |              | MS-B      | %            |           | -      | 21-SEP-12   |
| Titanium (Ti)-Dissolved                |        |            | 113.9        |           | %            |           | 70-130 | 21-SEP-12   |
| Batch R2442243                         |        |            |              |           |              |           |        |             |
| WG1548035-25 MS<br>Iron (Fe)-Dissolved |        | L1209711-3 | 94.5         |           | %            |           | 70-130 | 22-SEP-12   |
| Sodium (Na)-Dissolved                  |        |            | 97.7         |           | %            |           | 70-130 | 22-SEP-12   |
| Titanium (Ti)-Dissolved                |        |            | 99.3         |           | %            |           | 70-130 | 22-SEP-12   |



|                                        |        | Workorder:  | L120936 | 3         | Report Date: 2 | 7-SEP-12 | Pa     | age 15 of 3 |
|----------------------------------------|--------|-------------|---------|-----------|----------------|----------|--------|-------------|
| est                                    | Matrix | Reference   | Result  | Qualifier | Units          | RPD      | Limit  | Analyzed    |
| MET-DIS-ICP-VA                         | Water  |             |         |           |                |          |        |             |
| Batch R2442493                         |        |             |         |           |                |          |        |             |
| WG1548035-29 MS<br>Iron (Fe)-Dissolved |        | L1210039-13 | 93.3    |           | %              |          | 70-130 | 22-SEP-12   |
| Sodium (Na)-Dissolved                  |        |             | 101.6   |           | %              |          | 70-130 | 22-SEP-12   |
| Titanium (Ti)-Dissolved                |        |             | 107.9   |           | %              |          | 70-130 | 22-SEP-12   |
| WG1548035-31 MS                        |        | L1210039-31 |         |           |                |          |        | -           |
| Iron (Fe)-Dissolved                    |        | 21210000 01 | 93.9    |           | %              |          | 70-130 | 22-SEP-12   |
| Sodium (Na)-Dissolved                  |        |             | 98.5    |           | %              |          | 70-130 | 22-SEP-12   |
| Titanium (Ti)-Dissolved                |        |             | 104.9   |           | %              |          | 70-130 | 22-SEP-12   |
| Batch R2442899                         |        |             |         |           |                |          |        |             |
| WG1552509-11 CRM                       |        | VA-HIGH-WA  | TRM     |           |                |          |        |             |
| Beryllium (Be)-Dissolved               | 1      |             | 95.7    |           | %              |          | 80-120 | 24-SEP-12   |
| Bismuth (Bi)-Dissolved                 |        |             | 99.1    |           | %              |          | 80-120 | 24-SEP-12   |
| Cobalt (Co)-Dissolved                  |        |             | 95.6    |           | %              |          | 80-120 | 24-SEP-12   |
| Iron (Fe)-Dissolved                    |        |             | 98.1    |           | %              |          | 80-120 | 24-SEP-12   |
| Lithium (Li)-Dissolved                 |        |             | 101.3   |           | %              |          | 80-120 | 24-SEP-12   |
| Molybdenum (Mo)-Disso                  | lved   |             | 97.6    |           | %              |          | 80-120 | 24-SEP-12   |
| Nickel (Ni)-Dissolved                  |        |             | 97.2    |           | %              |          | 80-120 | 24-SEP-12   |
| Phosphorus (P)-Dissolve                | ed     |             | 100.4   |           | %              |          | 80-120 | 24-SEP-12   |
| Silicon (Si)-Dissolved                 |        |             | 100.8   |           | %              |          | 80-120 | 24-SEP-12   |
| Silver (Ag)-Dissolved                  |        |             | 102.4   |           | %              |          | 80-120 | 24-SEP-12   |
| Sodium (Na)-Dissolved                  |        |             | 97.1    |           | %              |          | 80-120 | 24-SEP-12   |
| Strontium (Sr)-Dissolved               | ł      |             | 100.0   |           | %              |          | 80-120 | 24-SEP-12   |
| Thallium (TI)-Dissolved                |        |             | 96.9    |           | %              |          | 80-120 | 24-SEP-12   |
| Tin (Sn)-Dissolved                     |        |             | 99.0    |           | %              |          | 80-120 | 24-SEP-12   |
| Titanium (Ti)-Dissolved                |        |             | 102.1   |           | %              |          | 80-120 | 24-SEP-12   |
| Vanadium (V)-Dissolved                 |        |             | 100.9   |           | %              |          | 80-120 | 24-SEP-12   |
| WG1552509-5 CRM                        |        | VA-HIGH-WA  | TRM     |           |                |          |        |             |
| Beryllium (Be)-Dissolved               | 1      |             | 96.5    |           | %              |          | 80-120 | 24-SEP-12   |
| Bismuth (Bi)-Dissolved                 |        |             | 99.1    |           | %              |          | 80-120 | 24-SEP-12   |
| Cobalt (Co)-Dissolved                  |        |             | 95.4    |           | %              |          | 80-120 | 24-SEP-12   |
| Iron (Fe)-Dissolved                    |        |             | 98.7    |           | %              |          | 80-120 | 24-SEP-12   |
| Lithium (Li)-Dissolved                 |        |             | 106.5   |           | %              |          | 80-120 | 24-SEP-12   |
| Molybdenum (Mo)-Disso                  | olved  |             | 99.3    |           | %              |          | 80-120 | 24-SEP-12   |
| Nickel (Ni)-Dissolved                  |        |             | 97.5    |           | %              |          | 80-120 | 24-SEP-12   |
| Phosphorus (P)-Dissolve                | ed     |             | 100.9   |           | %              |          | 80-120 | 24-SEP-12   |
| Silicon (Si)-Dissolved                 |        |             | 102.7   |           | %              |          | 80-120 | 24-SEP-12   |



|                                           |        | Workorder | : L120936 | 63        | Report Date: 2 | 7-SEP-12 | Pa     | age 16 of 3 |
|-------------------------------------------|--------|-----------|-----------|-----------|----------------|----------|--------|-------------|
| est                                       | Matrix | Reference | Result    | Qualifier | Units          | RPD      | Limit  | Analyzed    |
| MET-DIS-ICP-VA                            | Water  |           |           |           |                |          |        |             |
| Batch R2442899                            | Ð      |           |           |           |                |          |        |             |
| WG1552509-5 CRM                           |        | VA-HIGH-W |           |           | 0/             |          |        |             |
| Silver (Ag)-Dissolved                     |        |           | 104.3     |           | %              |          | 80-120 | 24-SEP-12   |
| Sodium (Na)-Dissolved                     |        |           | 98.4      |           | %              |          | 80-120 | 24-SEP-12   |
| Strontium (Sr)-Dissolve                   |        |           | 101.8     |           | %              |          | 80-120 | 24-SEP-12   |
| Thallium (TI)-Dissolved                   | 1      |           | 97.9      |           | %              |          | 80-120 | 24-SEP-12   |
| Tin (Sn)-Dissolved                        | J      |           | 97.7      |           | %              |          | 80-120 | 24-SEP-12   |
| Titanium (Ti)-Dissolved                   |        |           | 103.0     |           | %              |          | 80-120 | 24-SEP-12   |
| Vanadium (V)-Dissolve                     | ð      |           | 101.6     |           | %              |          | 80-120 | 24-SEP-12   |
| WG1552509-1 MB<br>Beryllium (Be)-Dissolve | ed     |           | <0.0050   |           | mg/L           |          | 0.005  | 24-SEP-12   |
| Bismuth (Bi)-Dissolved                    | Į      |           | <0.20     |           | mg/L           |          | 0.2    | 24-SEP-12   |
| Cobalt (Co)-Dissolved                     |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Iron (Fe)-Dissolved                       |        |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| Lithium (Li)-Dissolved                    |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Molybdenum (Mo)-Diss                      | solved |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| Nickel (Ni)-Dissolved                     |        |           | <0.050    |           | mg/L           |          | 0.05   | 24-SEP-12   |
| Phosphorus (P)-Dissol                     | ved    |           | <0.30     |           | mg/L           |          | 0.3    | 24-SEP-12   |
| Silicon (Si)-Dissolved                    |        |           | <0.050    |           | mg/L           |          | 0.05   | 24-SEP-12   |
| Silver (Ag)-Dissolved                     |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Sodium (Na)-Dissolved                     | ł      |           | <2.0      |           | mg/L           |          | 2      | 24-SEP-12   |
| Strontium (Sr)-Dissolve                   | ed     |           | <0.0050   |           | mg/L           |          | 0.005  | 24-SEP-12   |
| Thallium (TI)-Dissolved                   | ł      |           | <0.20     |           | mg/L           |          | 0.2    | 24-SEP-12   |
| Tin (Sn)-Dissolved                        |        |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| Titanium (Ti)-Dissolved                   | ł      |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Vanadium (V)-Dissolve                     | ed     |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| WG1552509-9 MB                            |        |           |           |           |                |          |        |             |
| Beryllium (Be)-Dissolve                   |        |           | <0.0050   |           | mg/L           |          | 0.005  | 24-SEP-12   |
| Bismuth (Bi)-Dissolved                    | l      |           | <0.20     |           | mg/L           |          | 0.2    | 24-SEP-12   |
| Cobalt (Co)-Dissolved                     |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Iron (Fe)-Dissolved                       |        |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| Lithium (Li)-Dissolved                    |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |
| Molybdenum (Mo)-Diss                      | solved |           | <0.030    |           | mg/L           |          | 0.03   | 24-SEP-12   |
| Nickel (Ni)-Dissolved                     |        |           | <0.050    |           | mg/L           |          | 0.05   | 24-SEP-12   |
| Phosphorus (P)-Dissol                     | ved    |           | <0.30     |           | mg/L           |          | 0.3    | 24-SEP-12   |
| Silicon (Si)-Dissolved                    |        |           | <0.050    |           | mg/L           |          | 0.05   | 24-SEP-12   |
| Silver (Ag)-Dissolved                     |        |           | <0.010    |           | mg/L           |          | 0.01   | 24-SEP-12   |



|                                        |        | Workorder:  | L120936 | 3         | Report Date: 2 | 7-SEP-12 | Pa     | age 17 of 3            |
|----------------------------------------|--------|-------------|---------|-----------|----------------|----------|--------|------------------------|
| est                                    | Matrix | Reference   | Result  | Qualifier | Units          | RPD      | Limit  | Analyzed               |
| MET-DIS-ICP-VA                         | Water  |             |         |           |                |          |        |                        |
| Batch R2442899                         | )      |             |         |           |                |          |        |                        |
| WG1552509-9 MB                         |        |             |         |           | _              |          |        |                        |
| Sodium (Na)-Dissolved                  |        |             | <2.0    |           | mg/L           |          | 2      | 24-SEP-12              |
| Strontium (Sr)-Dissolve                |        |             | <0.0050 |           | mg/L           |          | 0.005  | 24-SEP-12              |
| Thallium (TI)-Dissolved                |        |             | <0.20   |           | mg/L           |          | 0.2    | 24-SEP-12              |
| Tin (Sn)-Dissolved                     |        |             | <0.030  |           | mg/L           |          | 0.03   | 24-SEP-12              |
| Titanium (Ti)-Dissolved                | l      |             | <0.010  |           | mg/L           |          | 0.01   | 24-SEP-12              |
| Vanadium (V)-Dissolve                  | d      |             | <0.030  |           | mg/L           |          | 0.03   | 24-SEP-12              |
| Batch R2443052                         | 2      |             |         |           |                |          |        |                        |
| WG1548035-9 MS                         |        | L1209492-46 |         |           | 0/             |          |        |                        |
| Iron (Fe)-Dissolved                    |        |             | 100.2   |           | %              |          | 70-130 | 25-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 101.8   |           | %              |          | 70-130 | 25-SEP-12              |
| Titanium (Ti)-Dissolved                |        |             | 109.3   |           | %              |          | 70-130 | 25-SEP-12              |
| Batch R2443115                         |        |             |         |           |                |          |        |                        |
| WG1548035-5 MS                         |        | L1209555-18 |         |           | 0/             |          |        |                        |
| Iron (Fe)-Dissolved                    |        |             | 99.9    |           | %              |          | 70-130 | 25-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 114.6   |           | %              |          | 70-130 | 25-SEP-12              |
| Titanium (Ti)-Dissolved                |        |             | 112.7   |           | %              |          | 70-130 | 25-SEP-12              |
| WG1548035-7 MS<br>Iron (Fe)-Dissolved  |        | L1209555-29 | 101.7   |           | %              |          | 70-130 | 25-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 109.8   |           | %              |          | 70-130 | 25-SEP-12<br>25-SEP-12 |
| Titanium (Ti)-Dissolved                |        |             | 109.0   |           | %              |          | 70-130 | 25-SEP-12<br>25-SEP-12 |
|                                        |        |             | 112.0   |           | 70             |          | 70-130 | 20-3EF-12              |
| Batch R2443141                         |        | 1 4000507 4 |         |           |                |          |        |                        |
| WG1548035-15 MS<br>Iron (Fe)-Dissolved |        | L1209537-4  | 96.5    |           | %              |          | 70-130 | 23-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 101.9   |           | %              |          | 70-130 | 23-SEP-12              |
| Titanium (Ti)-Dissolved                |        |             | 106.4   |           | %              |          | 70-130 | 23-SEP-12              |
|                                        |        |             |         |           |                |          | 10-100 |                        |
| Batch R2443782<br>WG1548035-13 MS      |        | L1209540-7  |         |           |                |          |        |                        |
| Iron (Fe)-Dissolved                    |        | L1209340-7  | 87.8    |           | %              |          | 70-130 | 25-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 97.3    |           | %              |          | 70-130 | 25-SEP-12              |
| Titanium (Ti)-Dissolved                |        |             | 94.9    |           | %              |          | 70-130 | 25-SEP-12              |
| Batch R2444051                         |        |             |         |           |                |          |        |                        |
| WG1548035-33 MS                        |        | L1209581-2  |         |           |                |          |        |                        |
| Iron (Fe)-Dissolved                    |        |             | 100.4   |           | %              |          | 70-130 | 24-SEP-12              |
| Sodium (Na)-Dissolved                  |        |             | 108.6   |           | %              |          | 70-130 | 24-SEP-12              |
| Titanium (Ti)-Dissolved                | I      |             | 111.1   |           | %              |          | 70-130 | 24-SEP-12              |



|                                    |        | Workorder  | : L120936 | 3         | Report Date: 2 | 7-SEP-12 | Pa      | ge 18 of 3 |
|------------------------------------|--------|------------|-----------|-----------|----------------|----------|---------|------------|
| est                                | Matrix | Reference  | Result    | Qualifier | Units          | RPD      | Limit   | Analyzed   |
| MET-DIS-LOW-MS-VA                  | Water  |            |           |           |                |          |         |            |
| Batch R2438088                     | 3      |            |           |           |                |          |         |            |
| WG1548035-1 MB                     |        |            |           |           |                |          |         |            |
| Aluminum (Al)-Dissolv              |        |            | <0.0030   |           | mg/L           |          | 0.003   | 18-SEP-12  |
| Antimony (Sb)-Dissolv              |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Arsenic (As)-Dissolved             |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Barium (Ba)-Dissolved              |        |            | <0.00005  | 0         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Boron (B)-Dissolved                |        |            | <0.010    |           | mg/L           |          | 0.01    | 18-SEP-12  |
| Cadmium (Cd)-Dissolv               | ed     |            | <0.00005  | 0         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Calcium (Ca)-Dissolve              | d      |            | <0.020    |           | mg/L           |          | 0.02    | 18-SEP-12  |
| Chromium (Cr)-Dissolv              | ved    |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Copper (Cu)-Dissolved              | l      |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Lead (Pb)-Dissolved                |        |            | <0.00005  | 0         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Magnesium (Mg)-Disso               | olved  |            | <0.0050   |           | mg/L           |          | 0.005   | 18-SEP-12  |
| Manganese (Mn)-Disse               | olved  |            | <0.00005  | 0         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Potassium (K)-Dissolve             | ed     |            | <0.050    |           | mg/L           |          | 0.05    | 18-SEP-12  |
| Selenium (Se)-Dissolv              | ed     |            | <0.0010   |           | mg/L           |          | 0.001   | 18-SEP-12  |
| Uranium (U)-Dissolved              |        |            | <0.00001  | 0         | mg/L           |          | 0.00001 | 18-SEP-12  |
| Zinc (Zn)-Dissolved                |        |            | <0.0030   |           | mg/L           |          | 0.003   | 18-SEP-12  |
| Batch R2438189                     | )      |            |           |           |                |          |         |            |
| WG1548683-4 CRM                    |        | VA-HIGH-W/ | ATRM      |           |                |          |         |            |
| Aluminum (Al)-Dissolv              |        |            | 112.9     |           | %              |          | 80-120  | 18-SEP-12  |
| Antimony (Sb)-Dissolv              | ed     |            | 107.1     |           | %              |          | 80-120  | 18-SEP-12  |
| Arsenic (As)-Dissolved             |        |            | 112.9     |           | %              |          | 80-120  | 18-SEP-12  |
| Barium (Ba)-Dissolved              |        |            | 114.2     |           | %              |          | 80-120  | 18-SEP-12  |
| Cadmium (Cd)-Dissolv               | ed     |            | 113.0     |           | %              |          | 80-120  | 18-SEP-12  |
| Calcium (Ca)-Dissolve              | d      |            | 108.0     |           | %              |          | 80-120  | 18-SEP-12  |
| Chromium (Cr)-Dissolv              | ved    |            | 111.6     |           | %              |          | 80-120  | 18-SEP-12  |
| Copper (Cu)-Dissolved              | l      |            | 108.3     |           | %              |          | 80-120  | 18-SEP-12  |
| Lead (Pb)-Dissolved                |        |            | 107.6     |           | %              |          | 80-120  | 18-SEP-12  |
| Magnesium (Mg)-Disso               | olved  |            | 111.6     |           | %              |          | 80-120  | 18-SEP-12  |
| Manganese (Mn)-Disse               | olved  |            | 110.1     |           | %              |          | 80-120  | 18-SEP-12  |
| Potassium (K)-Dissolve             | ed     |            | 110.9     |           | %              |          | 80-120  | 18-SEP-12  |
| Selenium (Se)-Dissolv              | ed     |            | 101.4     |           | %              |          | 80-120  | 18-SEP-12  |
| Uranium (U)-Dissolved              |        |            | 104.0     |           | %              |          | 80-120  | 18-SEP-12  |
|                                    |        |            |           |           |                |          | 00.400  |            |
| Zinc (Zn)-Dissolved                |        |            | 102.4     |           | %              |          | 80-120  | 10-3EP-12  |
| Zinc (Zn)-Dissolved WG1548683-7 MB |        |            | 102.4     |           | %              |          | 80-120  | 18-SEP-12  |



|                         |        | Workorder: | L1209363  | }         | Report Date: 2 | 7-SEP-12 | Pa      | ge 19 of 3 |
|-------------------------|--------|------------|-----------|-----------|----------------|----------|---------|------------|
| est                     | Matrix | Reference  | Result    | Qualifier | Units          | RPD      | Limit   | Analyzed   |
| MET-DIS-LOW-MS-VA       | Water  |            |           |           |                |          |         |            |
| Batch R2438189          |        |            |           |           |                |          |         |            |
| WG1548683-7 MB          |        |            | 0.0004.0  |           |                |          |         |            |
| Antimony (Sb)-Dissolved |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Arsenic (As)-Dissolved  |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Barium (Ba)-Dissolved   |        |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Boron (B)-Dissolved     |        |            | <0.010    |           | mg/L           |          | 0.01    | 18-SEP-12  |
| Cadmium (Cd)-Dissolved  |        |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Chromium (Cr)-Dissolved | d      |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Copper (Cu)-Dissolved   |        |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Lead (Pb)-Dissolved     |        |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Potassium (K)-Dissolved |        |            | <0.050    |           | mg/L           |          | 0.05    | 18-SEP-12  |
| Selenium (Se)-Dissolved | l      |            | <0.0010   |           | mg/L           |          | 0.001   | 18-SEP-12  |
| Uranium (U)-Dissolved   |        |            | <0.000010 |           | mg/L           |          | 0.00001 | 18-SEP-12  |
| Zinc (Zn)-Dissolved     |        |            | <0.0030   |           | mg/L           |          | 0.003   | 18-SEP-12  |
| Batch R2438609          |        |            |           |           |                |          |         |            |
| WG1548683-1 MB          |        |            | <0.0030   |           | ~~~~/l         |          | 0.000   |            |
| Aluminum (Al)-Dissolved |        |            |           |           | mg/L           |          | 0.003   | 18-SEP-12  |
| Antimony (Sb)-Dissolved |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Arsenic (As)-Dissolved  |        |            | <0.00010  |           | mg/L           |          | 0.0001  | 18-SEP-12  |
| Barium (Ba)-Dissolved   |        |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Boron (B)-Dissolved     |        |            | <0.010    |           | mg/L           |          | 0.01    | 18-SEP-12  |
| Cadmium (Cd)-Dissolved  | d      |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Calcium (Ca)-Dissolved  |        |            | <0.020    |           | mg/L           |          | 0.02    | 18-SEP-12  |
| Chromium (Cr)-Dissolved | d      |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Copper (Cu)-Dissolved   |        |            | <0.00050  |           | mg/L           |          | 0.0005  | 18-SEP-12  |
| Lead (Pb)-Dissolved     |        |            | <0.000050 |           | mg/L           |          | 0.00005 | 18-SEP-12  |
| Magnesium (Mg)-Dissolv  | ved    |            | <0.0050   |           | mg/L           |          | 0.005   | 18-SEP-12  |
| Manganese (Mn)-Dissolv  | /ed    |            | <0.000050 | )         | mg/L           |          | 0.00005 | 18-SEP-12  |
| Potassium (K)-Dissolved | l      |            | <0.050    |           | mg/L           |          | 0.05    | 18-SEP-12  |
| Selenium (Se)-Dissolved | I      |            | <0.0010   |           | mg/L           |          | 0.001   | 18-SEP-12  |
| Uranium (U)-Dissolved   |        |            | <0.000010 | 1         | mg/L           |          | 0.00001 | 18-SEP-12  |
| Zinc (Zn)-Dissolved     |        |            | <0.0030   |           | mg/L           |          | 0.003   | 18-SEP-12  |
| Batch R2439752          |        |            |           |           |                |          |         |            |
| WG1548035-2 CRM         |        | VA-HIGH-WA |           |           |                |          |         |            |
| Aluminum (Al)-Dissolved |        |            | 103.1     |           | %              |          | 80-120  | 19-SEP-12  |
| Antimony (Sb)-Dissolved | l      |            | 100.6     |           | %              |          | 80-120  | 19-SEP-12  |



|                          | Workorder: L120936 | Report Date: 2  | 7-SEP-12 | Page 20 of     |
|--------------------------|--------------------|-----------------|----------|----------------|
| est Matrix               | Reference Result   | Qualifier Units | RPD L    | imit Analyzed  |
| MET-DIS-LOW-MS-VA Water  |                    |                 |          |                |
| Batch R2439752           |                    |                 |          |                |
| WG1548035-2 CRM          | VA-HIGH-WATRM      |                 |          |                |
| Arsenic (As)-Dissolved   | 103.3              | %               |          | 30-120 19-SEP- |
| Barium (Ba)-Dissolved    | 105.0              | %               |          | 30-120 19-SEP- |
| Boron (B)-Dissolved      | 108.1              | %               |          | 30-120 19-SEP- |
| Cadmium (Cd)-Dissolved   | 103.0              | %               |          | 30-120 19-SEP- |
| Calcium (Ca)-Dissolved   | 97.7               | %               | 8        | 30-120 19-SEP- |
| Chromium (Cr)-Dissolved  | 102.6              | %               | 8        | 30-120 19-SEP- |
| Copper (Cu)-Dissolved    | 97.1               | %               | 8        | 30-120 19-SEP- |
| Lead (Pb)-Dissolved      | 101.3              | %               | 8        | 30-120 19-SEP- |
| Magnesium (Mg)-Dissolved | 99.2               | %               | 8        | 30-120 19-SEP- |
| Manganese (Mn)-Dissolved | 101.8              | %               | 8        | 30-120 19-SEP- |
| Potassium (K)-Dissolved  | 99.6               | %               | 8        | 30-120 19-SEP- |
| Selenium (Se)-Dissolved  | 100.4              | %               | 8        | 30-120 19-SEP- |
| Uranium (U)-Dissolved    | 101.5              | %               | 8        | 30-120 19-SEP- |
| Zinc (Zn)-Dissolved      | 94.6               | %               | 8        | 30-120 19-SEP- |
| WG1548683-8 CRM          | VA-HIGH-WATRM      |                 |          |                |
| Aluminum (Al)-Dissolved  | 99.8               | %               | 8        | 30-120 19-SEP- |
| Antimony (Sb)-Dissolved  | 104.3              | %               | 8        | 30-120 19-SEP- |
| Arsenic (As)-Dissolved   | 100.7              | %               | 8        | 30-120 19-SEP- |
| Barium (Ba)-Dissolved    | 103.6              | %               | 8        | 30-120 19-SEP- |
| Boron (B)-Dissolved      | 110.7              | %               | 8        | 30-120 19-SEP- |
| Cadmium (Cd)-Dissolved   | 102.1              | %               | 8        | 30-120 19-SEP- |
| Calcium (Ca)-Dissolved   | 100.5              | %               | 8        | 30-120 19-SEP- |
| Chromium (Cr)-Dissolved  | 100.7              | %               | 8        | 30-120 19-SEP- |
| Copper (Cu)-Dissolved    | 96.1               | %               | 8        | 30-120 19-SEP- |
| Lead (Pb)-Dissolved      | 105.2              | %               | 8        | 30-120 19-SEP- |
| Magnesium (Mg)-Dissolved | 98.2               | %               | 8        | 30-120 19-SEP- |
| Manganese (Mn)-Dissolved | 101.9              | %               | 8        | 30-120 19-SEP- |
| Potassium (K)-Dissolved  | 97.7               | %               | 8        | 30-120 19-SEP- |
| Selenium (Se)-Dissolved  | 100.6              | %               |          | 30-120 19-SEP- |
| Uranium (U)-Dissolved    | 109.6              | %               |          | 30-120 19-SEP- |
| Zinc (Zn)-Dissolved      | 93.4               | %               |          | 30-120 19-SEP- |
| Batch R2440035           |                    |                 |          |                |
| WG1548683-7 MB           |                    |                 |          |                |
| Calcium (Ca)-Dissolved   | <0.020             | mg/L            | C        | 0.02 20-SEP-   |
| Magnesium (Mg)-Dissolved | <0.0050            | mg/L            | C        | 0.005 20-SEP-  |



|                                            | Workord         | er: L1209363      | B Re         | eport Date: 2 | 27-SEP-12 | Pa          | ge 21 of 37            |
|--------------------------------------------|-----------------|-------------------|--------------|---------------|-----------|-------------|------------------------|
| Test Ma                                    | atrix Reference | Result            | Qualifier    | Units         | RPD       | Limit       | Analyzed               |
| MET-DIS-LOW-MS-VA W                        | ater            |                   |              |               |           |             |                        |
| Batch R2440035                             |                 |                   |              |               |           |             |                        |
| WG1548683-7 MB<br>Manganese (Mn)-Dissolved |                 | 0.000077          | MB-LOR       | mg/L          |           | 0.00005     | 20-SEP-12              |
| Batch R2441054                             |                 |                   |              |               |           |             |                        |
| WG1548035-18 DUP                           | L1209363        | -2                |              |               |           |             |                        |
| Aluminum (AI)-Dissolved                    | <0.050          | <0.015            | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Antimony (Sb)-Dissolved                    | <0.0025         | 0.00061           |              | mg/L          | 1.2       | 20          | 20-SEP-12              |
| Arsenic (As)-Dissolved                     | 0.00855         | 0.00861           |              | mg/L          | 0.7       | 20          | 20-SEP-12              |
| Barium (Ba)-Dissolved                      | <0.10           | 0.0123            |              | mg/L          | 0.3       | 20          | 20-SEP-12              |
| Boron (B)-Dissolved                        | <0.50           | <0.050            | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Cadmium (Cd)-Dissolved                     | <0.0010         | <0.00025          | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Calcium (Ca)-Dissolved                     | 213             | 213               |              | mg/L          | 0.0       | 20          | 20-SEP-12              |
| Chromium (Cr)-Dissolved                    | <0.010          | <0.0025           | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Copper (Cu)-Dissolved                      | <0.0050         | <0.0025           | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Lead (Pb)-Dissolved                        | <0.0025         | <0.00025          | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Magnesium (Mg)-Dissolved                   | 477             | 482               |              | mg/L          | 1.2       | 20          | 20-SEP-12              |
| Manganese (Mn)-Dissolved                   | 0.377           | 0.385             |              | mg/L          | 2.1       | 20          | 20-SEP-12              |
| Potassium (K)-Dissolved                    | 28.2            | 28.9              |              | mg/L          | 2.3       | 20          | 20-SEP-12              |
| Selenium (Se)-Dissolved                    | <0.0050         | <0.0050           | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| Uranium (U)-Dissolved                      | 0.00731         | 0.00741           |              | mg/L          | 1.4       | 20          | 20-SEP-12              |
| Zinc (Zn)-Dissolved                        | <0.25           | <0.015            | RPD-NA       | mg/L          | N/A       | 20          | 20-SEP-12              |
| WG1548035-19 MS<br>Aluminum (Al)-Dissolved | L1209363        | <b>-3</b><br>91.6 |              | %             |           | 70-130      | 20-SEP-12              |
| Arsenic (As)-Dissolved                     |                 | 112.8             |              | %             |           | 70-130      | 20-SEP-12<br>20-SEP-12 |
| Cadmium (Cd)-Dissolved                     |                 | 93.0              |              | %             |           | 70-130      | 20-SEP-12<br>20-SEP-12 |
| Calcium (Ca)-Dissolved                     |                 | N/A               | MS-B         | %             |           | 70-130      | 20-SEP-12<br>20-SEP-12 |
| Chromium (Cr)-Dissolved                    |                 | 94.6              | MO-D         | %             |           | -<br>70-130 | 20-SEP-12<br>20-SEP-12 |
| Copper (Cu)-Dissolved                      |                 | 87.6              |              | %             |           |             |                        |
| Lead (Pb)-Dissolved                        |                 | 101.2             |              | %             |           | 70-130      | 20-SEP-12              |
| Magnesium (Mg)-Dissolved                   |                 | N/A               | MS-B         | %             |           | 70-130      | 20-SEP-12              |
| Magnesium (Mg)-Dissolved                   |                 | N/A               | MS-B         | %             |           | -           | 20-SEP-12              |
| Potassium (K)-Dissolved                    |                 | N/A               | MS-B<br>MS-B | %             |           | -           | 20-SEP-12              |
|                                            |                 |                   |              |               |           | -           | 20-SEP-12              |
| Uranium (U)-Dissolved                      |                 | N/A               | MS-B         | %             |           | -           | 20-SEP-12              |
| Zinc (Zn)-Dissolved                        |                 | 80.7              |              | %             |           | 70-130      | 20-SEP-12              |



|                        |        | Workorder: | L120936  | 3         | Report Date: 27 | 7-SEP-12 | Pa      | ge 22 of 3 |
|------------------------|--------|------------|----------|-----------|-----------------|----------|---------|------------|
| ſest                   | Matrix | Reference  | Result   | Qualifier | Units           | RPD      | Limit   | Analyzed   |
| MET-DIS-LOW-MS-VA      | Water  |            |          |           |                 |          |         |            |
| Batch R2442159         | )      |            |          |           |                 |          |         |            |
| WG1552509-8 MB         |        |            |          |           |                 |          |         |            |
| Aluminum (Al)-Dissolve |        |            | <0.0030  |           | mg/L            |          | 0.003   | 24-SEP-12  |
| Antimony (Sb)-Dissolve |        |            | <0.00010 |           | mg/L            |          | 0.0001  | 24-SEP-12  |
| Arsenic (As)-Dissolved |        |            | <0.00010 |           | mg/L            |          | 0.0001  | 24-SEP-12  |
| Barium (Ba)-Dissolved  |        |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Boron (B)-Dissolved    |        |            | <0.010   |           | mg/L            |          | 0.01    | 24-SEP-12  |
| Cadmium (Cd)-Dissolv   | ed     |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Calcium (Ca)-Dissolved | d      |            | <0.020   |           | mg/L            |          | 0.02    | 24-SEP-12  |
| Chromium (Cr)-Dissolv  | ved    |            | <0.00050 |           | mg/L            |          | 0.0005  | 24-SEP-12  |
| Copper (Cu)-Dissolved  |        |            | <0.00050 |           | mg/L            |          | 0.0005  | 24-SEP-12  |
| Lead (Pb)-Dissolved    |        |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Magnesium (Mg)-Disso   | olved  |            | <0.0050  |           | mg/L            |          | 0.005   | 24-SEP-12  |
| Manganese (Mn)-Disso   | olved  |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Potassium (K)-Dissolve | ed     |            | <0.050   |           | mg/L            |          | 0.05    | 24-SEP-12  |
| Selenium (Se)-Dissolve | ed     |            | <0.0010  |           | mg/L            |          | 0.001   | 24-SEP-12  |
| Uranium (U)-Dissolved  |        |            | <0.00001 | 0         | mg/L            |          | 0.00001 | 24-SEP-12  |
| Zinc (Zn)-Dissolved    |        |            | <0.0030  |           | mg/L            |          | 0.003   | 24-SEP-12  |
| WG1548035-19 MS        |        | L1209363-3 |          |           |                 |          |         |            |
| Antimony (Sb)-Dissolve | ed     |            | 126.6    |           | %               |          | 70-130  | 24-SEP-12  |
| Boron (B)-Dissolved    |        |            | 127.0    |           | %               |          | 70-130  | 24-SEP-12  |
| Batch R2442738         | 3      |            |          |           |                 |          |         |            |
| WG1552509-1 MB         |        |            |          |           |                 |          |         |            |
| Aluminum (Al)-Dissolve |        |            | <0.0030  |           | mg/L            |          | 0.003   | 24-SEP-12  |
| Antimony (Sb)-Dissolve |        |            | <0.00010 |           | mg/L            |          | 0.0001  | 24-SEP-12  |
| Arsenic (As)-Dissolved |        |            | <0.00010 |           | mg/L            |          | 0.0001  | 24-SEP-12  |
| Barium (Ba)-Dissolved  |        |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Boron (B)-Dissolved    |        |            | <0.010   |           | mg/L            |          | 0.01    | 24-SEP-12  |
| Cadmium (Cd)-Dissolv   |        |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Calcium (Ca)-Dissolved |        |            | <0.020   |           | mg/L            |          | 0.02    | 24-SEP-12  |
| Chromium (Cr)-Dissolv  | red    |            | <0.00050 |           | mg/L            |          | 0.0005  | 24-SEP-12  |
| Copper (Cu)-Dissolved  |        |            | <0.00050 |           | mg/L            |          | 0.0005  | 24-SEP-12  |
| Lead (Pb)-Dissolved    |        |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Magnesium (Mg)-Disso   | olved  |            | <0.0050  |           | mg/L            |          | 0.005   | 24-SEP-12  |
| Manganese (Mn)-Disso   | olved  |            | <0.00005 | 0         | mg/L            |          | 0.00005 | 24-SEP-12  |
| Potassium (K)-Dissolve | ed     |            | <0.050   |           | mg/L            |          | 0.05    | 24-SEP-12  |
| Selenium (Se)-Dissolve | ed     |            | <0.0010  |           | mg/L            |          | 0.001   | 24-SEP-12  |



|                                                     | Workorde       | er: L1209363 | 3 F       | Report Date: 2 | 7-SEP-12 | Pa      | ge 23 of 37 |
|-----------------------------------------------------|----------------|--------------|-----------|----------------|----------|---------|-------------|
| Test Mat                                            | trix Reference | Result       | Qualifier | Units          | RPD      | Limit   | Analyzed    |
| MET-DIS-LOW-MS-VA Wa                                | iter           |              |           |                |          |         |             |
| Batch R2442738                                      |                |              |           |                |          |         |             |
| WG1552509-1 MB                                      |                |              |           |                |          |         |             |
| Uranium (U)-Dissolved                               |                | <0.000010    | 0         | mg/L           |          | 0.00001 | 24-SEP-12   |
| Zinc (Zn)-Dissolved                                 |                | <0.0030      |           | mg/L           |          | 0.003   | 24-SEP-12   |
| WG1552509-9 MB<br>Aluminum (Al)-Dissolved           |                | <0.0030      |           | ~~~/           |          | 0.000   |             |
| Antimony (Sb)-Dissolved                             |                | <0.0000      |           | mg/L<br>mg/L   |          | 0.003   | 24-SEP-12   |
| Antimolity (Sb)-Dissolved<br>Arsenic (As)-Dissolved |                | <0.00010     |           |                |          | 0.0001  | 24-SEP-12   |
| . ,                                                 |                | <0.00010     | h         | mg/L           |          | 0.0001  | 24-SEP-12   |
| Barium (Ba)-Dissolved                               |                |              | 5         | mg/L           |          | 0.00005 | 24-SEP-12   |
| Boron (B)-Dissolved                                 |                | <0.010       | <b>^</b>  | mg/L           |          | 0.01    | 24-SEP-12   |
| Cadmium (Cd)-Dissolved                              |                | <0.000050    | J         | mg/L           |          | 0.00005 | 24-SEP-12   |
| Calcium (Ca)-Dissolved                              |                | <0.020       |           | mg/L           |          | 0.02    | 24-SEP-12   |
| Chromium (Cr)-Dissolved                             |                | <0.00050     |           | mg/L           |          | 0.0005  | 24-SEP-12   |
| Copper (Cu)-Dissolved                               |                | <0.00050     | _         | mg/L           |          | 0.0005  | 24-SEP-12   |
| Lead (Pb)-Dissolved                                 |                | <0.000050    | )         | mg/L           |          | 0.00005 | 24-SEP-12   |
| Magnesium (Mg)-Dissolved                            |                | <0.0050      | _         | mg/L           |          | 0.005   | 24-SEP-12   |
| Manganese (Mn)-Dissolved                            |                | <0.000050    | 0         | mg/L           |          | 0.00005 | 24-SEP-12   |
| Potassium (K)-Dissolved                             |                | <0.050       |           | mg/L           |          | 0.05    | 24-SEP-12   |
| Selenium (Se)-Dissolved                             |                | <0.0010      |           | mg/L           |          | 0.001   | 24-SEP-12   |
| Uranium (U)-Dissolved                               |                | <0.000010    | 0         | mg/L           |          | 0.00001 | 24-SEP-12   |
| Zinc (Zn)-Dissolved                                 |                | <0.0030      |           | mg/L           |          | 0.003   | 24-SEP-12   |
| Batch R2443662                                      |                |              |           |                |          |         |             |
| WG1552509-10 CRM                                    | VA-HIGH-V      |              |           | 0/             |          |         |             |
| Aluminum (Al)-Dissolved                             |                | 104.6        |           | %              |          | 80-120  | 25-SEP-12   |
| Antimony (Sb)-Dissolved                             |                | 106.7        |           | %              |          | 80-120  | 25-SEP-12   |
| Arsenic (As)-Dissolved                              |                | 102.2        |           | %              |          | 80-120  | 25-SEP-12   |
| Barium (Ba)-Dissolved                               |                | 102.5        |           | %              |          | 80-120  | 25-SEP-12   |
| Boron (B)-Dissolved                                 |                | 91.1         |           | %              |          | 80-120  | 25-SEP-12   |
| Cadmium (Cd)-Dissolved                              |                | 103.9        |           | %              |          | 80-120  | 25-SEP-12   |
| Calcium (Ca)-Dissolved                              |                | 99.3         |           | %              |          | 80-120  | 25-SEP-12   |
| Chromium (Cr)-Dissolved                             |                | 100.1        |           | %              |          | 80-120  | 25-SEP-12   |
| Copper (Cu)-Dissolved                               |                | 98.5         |           | %              |          | 80-120  | 25-SEP-12   |
| Lead (Pb)-Dissolved                                 |                | 102.2        |           | %              |          | 80-120  | 25-SEP-12   |
| Magnesium (Mg)-Dissolved                            |                | 101.5        |           | %              |          | 80-120  | 25-SEP-12   |
| Manganese (Mn)-Dissolved                            |                | 102.0        |           | %              |          | 80-120  | 25-SEP-12   |
| Potassium (K)-Dissolved                             |                | 102.0        |           | %              |          | 80-120  | 25-SEP-12   |
| Selenium (Se)-Dissolved                             |                | 102.5        |           | %              |          | 80-120  | 25-SEP-12   |



|                                                  | Workorder: L120936     | Report Date: 2  | 7-SEP-12 | Pa               | age 24 of 3            |
|--------------------------------------------------|------------------------|-----------------|----------|------------------|------------------------|
| est Matrix                                       | Reference Result       | Qualifier Units | RPD      | Limit            | Analyzed               |
| MET-DIS-LOW-MS-VA Water                          |                        |                 |          |                  |                        |
| Batch R2443662                                   |                        |                 |          |                  |                        |
| WG1552509-10 CRM<br>Uranium (U)-Dissolved        | VA-HIGH-WATRM<br>103.1 | %               |          | 00.400           |                        |
| Zinc (Zn)-Dissolved                              | 97.0                   | %               |          | 80-120           | 25-SEP-12              |
|                                                  |                        | 70              |          | 80-120           | 25-SEP-12              |
| WG1552509-11 CRM<br>Aluminum (Al)-Dissolved      | VA-HIGH-WATRM<br>104.9 | %               |          | 80-120           | 25-SEP-12              |
| Antimony (Sb)-Dissolved                          | 106.5                  | %               |          | 80-120           | 25-SEP-12              |
| Arsenic (As)-Dissolved                           | 101.2                  | %               |          | 80-120           | 25-SEP-12              |
| Barium (Ba)-Dissolved                            | 101.0                  | %               |          | 80-120           | 25-SEP-12              |
| Boron (B)-Dissolved                              | 91.4                   | %               |          | 80-120           | 25-SEP-12              |
| Cadmium (Cd)-Dissolved                           | 102.0                  | %               |          | 80-120           | 25-SEP-12              |
| Calcium (Ca)-Dissolved                           | 99.7                   | %               |          | 80-120           | 25-SEP-12              |
| Chromium (Cr)-Dissolved                          | 102.1                  | %               |          | 80-120           | 25-SEP-12              |
| Copper (Cu)-Dissolved                            | 98.5                   | %               |          | 80-120           | 25-SEP-12              |
| Lead (Pb)-Dissolved                              | 97.8                   | %               |          | 80-120           | 25-SEP-12              |
| Magnesium (Mg)-Dissolved                         | 105.0                  | %               |          | 80-120           | 25-SEP-12              |
| Manganese (Mn)-Dissolved                         | 102.5                  | %               |          | 80-120           | 25-SEP-12              |
| Potassium (K)-Dissolved                          | 101.3                  | %               |          | 80-120           | 25-SEP-12              |
| Selenium (Se)-Dissolved                          | 99.6                   | %               |          | 80-120           | 25-SEP-12              |
| Uranium (U)-Dissolved                            | 99.7                   | %               |          | 80-120           | 25-SEP-12              |
| Zinc (Zn)-Dissolved                              | 97.3                   | %               |          | 80-120           | 25-SEP-12              |
| WG1552509-5 CRM                                  | VA-HIGH-WATRM          | %               |          | 00,400           |                        |
| Aluminum (Al)-Dissolved                          | 106.5                  |                 |          | 80-120           | 25-SEP-12              |
| Antimony (Sb)-Dissolved                          | 105.9                  | %               |          | 80-120           | 25-SEP-12              |
| Arsenic (As)-Dissolved                           | 102.8                  | %               |          | 80-120           | 25-SEP-12              |
| Barium (Ba)-Dissolved<br>Boron (B)-Dissolved     | 102.5                  | %               |          | 80-120           | 25-SEP-12              |
|                                                  | 93.2                   | %               |          | 80-120           | 25-SEP-12              |
| Cadmium (Cd)-Dissolved<br>Calcium (Ca)-Dissolved | 103.4<br>101.6         | %               |          | 80-120           | 25-SEP-12              |
| Chromium (Cr)-Dissolved                          | 101.8                  | %               |          | 80-120           | 25-SEP-12              |
| Copper (Cu)-Dissolved                            | 99.2                   | %               |          | 80-120<br>80-120 | 25-SEP-12              |
| Lead (Pb)-Dissolved                              | 99.2<br>103.4          | %               |          | 80-120<br>80-120 | 25-SEP-12              |
| Magnesium (Mg)-Dissolved                         | 103.4                  | %               |          | 80-120<br>80-120 | 25-SEP-12              |
| Manganese (Mn)-Dissolved                         | 103.1                  | %               |          | 80-120<br>80-120 | 25-SEP-12              |
| Potassium (K)-Dissolved                          | 103.2                  | %               |          | 80-120<br>80-120 | 25-SEP-12<br>25-SEP-12 |
| Selenium (Se)-Dissolved                          | 103.2                  | %               |          | 80-120<br>80-120 | 25-SEP-12<br>25-SEP-12 |
| Uranium (U)-Dissolved                            | 103.8                  | %               |          | 80-120<br>80-120 | 25-SEP-12<br>25-SEP-12 |



|                                                                                           |        | •                   |                     |           | •                      |     |               |           |
|-------------------------------------------------------------------------------------------|--------|---------------------|---------------------|-----------|------------------------|-----|---------------|-----------|
|                                                                                           |        | Workorder: L1209363 |                     | 3         | Report Date: 27-SEP-12 |     | Page 25 of 37 |           |
| Test                                                                                      | Matrix | Reference           | Result              | Qualifier | Units                  | RPD | Limit         | Analyzed  |
| MET-DIS-LOW-MS-VA<br>Batch R2443662<br>WG1552509-5 CRM<br>Zinc (Zn)-Dissolved             | Water  | VA-HIGH-W           | <b>ATRM</b><br>98.7 |           | %                      |     | 80-120        | 25-SEP-12 |
| NH3-F-VA                                                                                  | Water  |                     |                     |           |                        |     |               |           |
| Batch         R2441464           WG1551682-10         CRM           Ammonia, Total (as N) |        | VA-NH3-F            | 94.4                |           | %                      |     | 85-115        | 23-SEP-12 |
| WG1551682-2 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 101.4               |           | %                      |     | 85-115        | 23-SEP-12 |
| WG1551682-4 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 98.9                |           | %                      |     | 85-115        | 23-SEP-12 |
| WG1551682-6 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 93.4                |           | %                      |     | 85-115        | 23-SEP-12 |
| WG1551682-8 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 93.7                |           | %                      |     | 85-115        | 23-SEP-12 |
| WG1551682-1 MB<br>Ammonia, Total (as N)                                                   |        |                     | <0.0050             |           | mg/L                   |     | 0.005         | 23-SEP-12 |
| WG1551682-3 MB<br>Ammonia, Total (as N)                                                   |        |                     | <0.0050             |           | mg/L                   |     | 0.005         | 23-SEP-12 |
| WG1551682-5 MB<br>Ammonia, Total (as N)                                                   |        |                     | <0.0050             |           | mg/L                   |     | 0.005         | 23-SEP-12 |
| WG1551682-7 MB<br>Ammonia, Total (as N)                                                   |        |                     | <0.0050             |           | mg/L                   |     | 0.005         | 23-SEP-12 |
| WG1551682-9 MB<br>Ammonia, Total (as N)                                                   |        |                     | <0.0050             |           | mg/L                   |     | 0.005         | 23-SEP-12 |
| WG1551682-12 MS<br>Ammonia, Total (as N)                                                  |        | L1209742-2          | 95.1                |           | %                      |     | 75-125        | 23-SEP-12 |
| Batch R2442196<br>WG1552459-10 CRM<br>Ammonia, Total (as N)                               |        | VA-NH3-F            | 86.6                |           | %                      |     | 85-115        | 24-SEP-12 |
| WG1552459-2 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 101.0               |           | %                      |     | 85-115        | 24-SEP-12 |
| WG1552459-4 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 93.1                |           | %                      |     | 85-115        | 24-SEP-12 |
| WG1552459-6 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 95.5                |           | %                      |     | 85-115        | 24-SEP-12 |
| WG1552459-8 CRM<br>Ammonia, Total (as N)                                                  |        | VA-NH3-F            | 95.6                |           | %                      |     | 85-115        | 24-SEP-12 |
| WG1552459-1 MB                                                                            |        |                     |                     |           |                        |     |               |           |

WG1552459-1 MB



|                                         |        | Workorder: | L120936  | 3         | Report Date: 2 | 7-SEP-12 | Pa      | ge 26 of 3 |
|-----------------------------------------|--------|------------|----------|-----------|----------------|----------|---------|------------|
| est                                     | Matrix | Reference  | Result   | Qualifier | Units          | RPD      | Limit   | Analyzed   |
| NH3-F-VA                                | Water  |            |          |           |                |          |         |            |
| Batch R2442196                          |        |            |          |           |                |          |         |            |
| WG1552459-1 MB<br>Ammonia, Total (as N) |        |            | <0.0050  |           | mg/L           |          | 0.005   | 24-SEP-12  |
| WG1552459-3 MB<br>Ammonia, Total (as N) |        |            | <0.0050  |           | mg/L           |          | 0.005   | 24-SEP-12  |
| WG1552459-5 MB<br>Ammonia, Total (as N) |        |            | <0.0050  |           | mg/L           |          | 0.005   | 24-SEP-12  |
| WG1552459-7 MB<br>Ammonia, Total (as N) |        |            | <0.0050  |           | mg/L           |          | 0.005   | 24-SEP-12  |
| WG1552459-9 MB<br>Ammonia, Total (as N) |        |            | <0.0050  |           | mg/L           |          | 0.005   | 24-SEP-12  |
| WG1552459-12 MS                         |        | L1209462-7 |          |           | -              |          |         |            |
| Ammonia, Total (as N)                   | Matan  |            | 95.5     |           | %              |          | 75-125  | 24-SEP-12  |
| PAH-SF-MS-VA                            | Water  |            |          |           |                |          |         |            |
| Batch R2438644<br>WG1549364-2 LCS       |        |            |          |           |                |          |         |            |
| Acenaphthene                            |        |            | 105.0    |           | %              |          | 60-130  | 20-SEP-12  |
| Acenaphthylene                          |        |            | 104.9    |           | %              |          | 60-130  | 20-SEP-12  |
| Acridine                                |        |            | 101.3    |           | %              |          | 60-130  | 20-SEP-12  |
| Anthracene                              |        |            | 107.2    |           | %              |          | 60-130  | 20-SEP-12  |
| Benz(a)anthracene                       |        |            | 101.2    |           | %              |          | 60-130  | 20-SEP-12  |
| Benzo(a)pyrene                          |        |            | 100.3    |           | %              |          | 60-130  | 20-SEP-12  |
| Benzo(b)fluoranthene                    |        |            | 94.7     |           | %              |          | 60-130  | 20-SEP-12  |
| Benzo(g,h,i)perylene                    |        |            | 90.0     |           | %              |          | 60-130  | 20-SEP-12  |
| Benzo(k)fluoranthene                    |        |            | 93.4     |           | %              |          | 60-130  | 20-SEP-12  |
| Chrysene                                |        |            | 102.6    |           | %              |          | 60-130  | 20-SEP-12  |
| Dibenz(a,h)anthracene                   |        |            | 98.9     |           | %              |          | 60-130  | 20-SEP-12  |
| Fluoranthene                            |        |            | 105.4    |           | %              |          | 60-130  | 20-SEP-12  |
| Fluorene                                |        |            | 102.7    |           | %              |          | 60-130  | 20-SEP-12  |
| Indeno(1,2,3-c,d)pyrene                 |        |            | 104.2    |           | %              |          | 60-130  | 20-SEP-12  |
| Naphthalene                             |        |            | 102.0    |           | %              |          | 50-130  | 20-SEP-12  |
| Phenanthrene                            |        |            | 110.2    |           | %              |          | 60-130  | 20-SEP-12  |
| Pyrene                                  |        |            | 104.7    |           | %              |          | 60-130  | 20-SEP-12  |
| Quinoline                               |        |            | 99.4     |           | %              |          | 60-130  | 20-SEP-12  |
| WG1549364-1 MB                          |        |            |          |           |                |          |         |            |
| Acenaphthene                            |        |            | <0.00005 | 0         | mg/L           |          | 0.00005 | 20-SEP-12  |
| Acenaphthylene                          |        |            | <0.00005 |           |                |          |         |            |



|                         |        | Workorder: | L1209363  |           | Report Date: 27 | -SEP-12 | Pa      | ge 27 of 3 |
|-------------------------|--------|------------|-----------|-----------|-----------------|---------|---------|------------|
| est                     | Matrix | Reference  | Result    | Qualifier | Units           | RPD     | Limit   | Analyzed   |
| PAH-SF-MS-VA            | Water  |            |           |           |                 |         |         |            |
| Batch R2438644          |        |            |           |           |                 |         |         |            |
| WG1549364-1 MB          |        |            |           |           | "               |         |         |            |
| Acridine                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Anthracene              |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benz(a)anthracene       |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(a)pyrene          |        |            | <0.000010 |           | mg/L            |         | 0.00001 | 20-SEP-12  |
| Benzo(b)fluoranthene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(g,h,i)perylene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(k)fluoranthene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Chrysene                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Dibenz(a,h)anthracene   |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Fluoranthene            |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Fluorene                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Indeno(1,2,3-c,d)pyrene |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Naphthalene             |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Phenanthrene            |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Pyrene                  |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Quinoline               |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| WG1549364-3 MB          |        |            |           |           |                 |         |         |            |
| Acenaphthene            |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Acenaphthylene          |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Acridine                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Anthracene              |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benz(a)anthracene       |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(a)pyrene          |        |            | <0.000010 |           | mg/L            |         | 0.00001 | 20-SEP-12  |
| Benzo(b)fluoranthene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(g,h,i)perylene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Benzo(k)fluoranthene    |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Chrysene                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Dibenz(a,h)anthracene   |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Fluoranthene            |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Fluorene                |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Indeno(1,2,3-c,d)pyrene |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Naphthalene             |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Phenanthrene            |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |
| Pyrene                  |        |            | <0.000050 |           | mg/L            |         | 0.00005 | 20-SEP-12  |



| Batch         R2439714           WG1550411-2         LCS           Acenaphthene         91.8         %         60-130           Acenaphthylene         88.5         %         60-130           Acridine         90.0         %         60-130           Antridine         90.0         %         60-130           Anthracene         95.8         %         60-130           Benzo(a)nthracene         86.4         %         60-130           Benzo(a)pyrene         76.7         %         60-130           Benzo(b)fluoranthene         89.5         %         60-130           Benzo(b)fluoranthene         99.4         %         60-130           Benzo(b)fluoranthene         94.7         %         60-130           Chrysene         92.6         %         60-130           Fluoranthene         93.1         %         60-130           Fluoranthene         83.3         %         60-130           Pluoranthene         83.3         %         60-130           Pyrene         93.5         %         60-130           Naphthalene         86.2         %         60-130           Pyrene         83.5         % </th <th>Page 28 of 3</th> <th>-SEP-12</th> <th>Report Date: 27</th> <th>3</th> <th>L120936</th> <th>Workorder:</th> <th></th> <th></th> | Page 28 of 3      | -SEP-12 | Report Date: 27 | 3         | L120936   | Workorder: |        |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------------|-----------|-----------|------------|--------|------------------------|
| Batch         R2438644           WG1543364-3         MB           Quinoline         <0.00050         mg/L         0.00050           Batch         R2439714             0.00050         mg/L         0.00050           Batch         R2439714              0.00050             0.00050                0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit Analyzed    | RPD     | Units           | Qualifier | Result    | Reference  | Matrix |                        |
| WG1549364-3         MB         <0.00050         mg/L         0.00050           Batch         R2439714                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |         |                 |           |           |            | Water  | -SF-MS-VA              |
| Quinoline         <         0.000050         mg/L         0.000050           Batch         R2439714 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>tch R2438644</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |         |                 |           |           |            |        | tch R2438644           |
| WG1550411-2         LCS           Acenaphthene         91.8         %         60-130           Acenaphthylene         88.5         %         60-130           Acridine         90.0         %         60-130           Anthracene         95.8         %         60-130           Benz(a)anthracene         86.4         %         60-130           Benz(a)pyrene         76.7         %         60-130           Benz(a)pyrene         91.9         %         60-130           Benzo(g)t,i)perylene         91.9         %         60-130           Benzo(g)t,i)perylene         92.6         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluoranthene         93.1         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         8.5         @         60-130                                                                                                                                           | 0.00005 20-SEP-12 |         | mg/L            | )         | <0.000050 |            |        |                        |
| WG1550411-2         LCS           Acenaphthene         91.8         %         60-130           Acenaphthylene         88.5         %         60-130           Acridine         90.0         %         60-130           Anthracene         95.8         %         60-130           Benz(a)anthracene         86.4         %         60-130           Benz(a)pyrene         76.7         %         60-130           Benz(a)pyrene         91.9         %         60-130           Benzo(g)t,ilperylene         91.9         %         60-130           Benzo(g)t,ilperylene         91.9         %         60-130           Benzo(g)t,ilperylene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluoranthene         86.2         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         80.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         85.5         %         60-130                                                                                                                              |                   |         |                 |           |           |            |        | tch R2439714           |
| Acridine         90.0         %         60-130           Anthracene         95.8         %         60-130           Benz(a)anthracene         86.4         %         60-130           Benzo(a)pyrene         76.7         %         60-130           Benzo(b)fluoranthene         89.5         %         60-130           Benzo(g),h,i)perylene         91.9         %         60-130           Benzo(k)fluoranthene         99.4         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indenc(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         50-130           Phenanthrene         89.2         %         60-130           Quinoline         83.5         %         60-130           Quinoline         80.2         %         60-130           Acenaphthene         <0.000050                                                                                                                                                                             | 60-130 21-SEP-12  |         | %               |           | 91.8      |            |        | G1550411-2 LCS         |
| Anthracene         98.8         %         60-130           Benz(a)anthracene         86.4         %         60-130           Benzo(a)pyrene         76.7         %         60-130           Benzo(b)fluoranthene         89.5         %         60-130           Benzo(g), i)perylene         91.9         %         60-130           Benzo(k)fluoranthene         99.4         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a, h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluoranthene         93.1         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           Quinoline         83.5         %         60-130           Quinoline         80.2         %         60-130           Quinoline         80.5         %         60-130           Acenaphthrene         <0.000050                                                                                                                                | 60-130 21-SEP-12  |         | %               |           | 88.5      |            |        | Acenaphthylene         |
| Benz(a)anthracene         B6.4         %         60-130           Benzo(a)pyrene         76.7         %         60-130           Benzo(b)fluoranthene         89.5         %         60-130           Benzo(g,h,i)perylene         91.9         %         60-130           Benzo(g,h,i)perylene         99.4         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Phenanthrene         89.2         %         60-130           Quinoline         83.5         %         60-130           Quinoline         80.2         %         60-130           Verre         93.5         %         60-130           Quinoline         80.2         %         60-130           Verre         93.5         %         60-130           Acenaphthylene         <0.00050                                                                                                                                        | 60-130 21-SEP-12  |         | %               |           | 90.0      |            |        | Acridine               |
| Berzo(a)pyrene         76.7         %         60-130           Benzo(b)fluoranthene         89.5         %         60-130           Benzo(g,h,i)perylene         91.9         %         60-130           Benzo(k)fluoranthene         99.4         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Phenanthrene         83.5         %         60-130           Quinoline         83.5         %         60-130           Quinoline         83.5         %         60-130           Quinoline         83.5         %         60-130           Quinoline         80.2         %         60-130           Quinoline         80.2         %         60-130           Quinoline         80.2         %         60-130           Acenaphthylene         <0.000050                                                                                                                                       | 60-130 21-SEP-12  |         | %               |           | 95.8      |            |        | Anthracene             |
| Benzo(b)fluoranthene         89.5         %         60-130           Benzo(g,h,i)perylene         91.9         %         60-130           Benzo(k)fluoranthene         99.4         %         60-130           Chrysene         92.6         %         60-130           Diberz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           VG1550411-1         MB         MB         60-130           Acenaphthene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60-130 21-SEP-12  |         | %               |           | 86.4      |            |        | Benz(a)anthracene      |
| Benzo(g),h.j)perylene         91.9         %         60-130           Benzo(k)fluoranthene         99.4         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         50-130           Phenanthrene         89.2         %         60-130           Quinoline         83.5         %         60-130           Quinoline         83.5         %         60-130           Acenaphthene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60-130 21-SEP-12  |         | %               |           | 76.7      |            |        | Benzo(a)pyrene         |
| Benzo(k)fluoranthene         99.4         %         60-130           Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           VG1550411-1         MB           0.000050         mg/L         0.000050           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60-130 21-SEP-12  |         | %               |           | 89.5      |            |        | Benzo(b)fluoranthene   |
| Chrysene         92.6         %         60-130           Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB         MB         60-130           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60-130 21-SEP-12  |         | %               |           | 91.9      |            |        | Benzo(g,h,i)perylene   |
| Dibenz(a,h)anthracene         94.7         %         60-130           Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         60-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB         ME         60-130           Acenaphthene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60-130 21-SEP-12  |         | %               |           | 99.4      |            |        | Benzo(k)fluoranthene   |
| Fluoranthene         93.1         %         60-130           Fluorene         90.6         %         60-130           Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         50-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB         MB          60-000050           Acenaphthene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60-130 21-SEP-12  |         | %               |           | 92.6      |            |        | Chrysene               |
| Fluorene         90.6         %         60.130           Indeno(1,2,3-c,d)pyrene         88.3         %         60.130           Naphthalene         86.2         %         50.130           Phenanthrene         89.2         %         60.130           Pyrene         93.5         %         60.130           Quinoline         83.5         %         60.130           WG1550411-1         MB         MB         Magnet         Magnet           Acenaphthylene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60-130 21-SEP-12  |         | %               |           | 94.7      |            |        | Dibenz(a,h)anthracene  |
| Indeno(1,2,3-c,d)pyrene         88.3         %         60-130           Naphthalene         86.2         %         50-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB          60-000050         mg/L         0.000050           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60-130 21-SEP-12  |         | %               |           | 93.1      |            |        | luoranthene            |
| Naphthalene         86.2         %         50-130           Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB          60-000050         mg/L         0.000055           Acenaphthene         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60-130 21-SEP-12  |         | %               |           | 90.6      |            |        | luorene                |
| Phenanthrene         89.2         %         60-130           Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB         83.5         %         60-130           WG1550411-1         MB         -         0.000050         mg/L         0.000050           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60-130 21-SEP-12  |         | %               |           | 88.3      |            |        | ndeno(1,2,3-c,d)pyrene |
| Pyrene         93.5         %         60-130           Quinoline         83.5         %         60-130           WG1550411-1         MB         %         60-130           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50-130 21-SEP-12  |         | %               |           | 86.2      |            |        | Naphthalene            |
| Quinoline         83.5         %         60-130           WG1550411-1         MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60-130 21-SEP-12  |         | %               |           | 89.2      |            |        | Phenanthrene           |
| WG1550411-1         MB           Acenaphthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60-130 21-SEP-12  |         | %               |           | 93.5      |            |        | Pyrene                 |
| Acenaphthene       <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60-130 21-SEP-12  |         | %               |           | 83.5      |            |        | Quinoline              |
| Acenaphthylene       <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |         |                 |           |           |            |        |                        |
| Acridine       <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00005 21-SEP-12 |         | -               |           |           |            |        |                        |
| Anthracene         <0.000050         mg/L         0.000050           Benz(a)anthracene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00005 21-SEP-12 |         |                 | )         | <0.000050 |            |        |                        |
| Benz(a)anthracene         <0.000050         mg/L         0.000050           Benzo(a)pyrene         <0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00005 21-SEP-12 |         | •               |           |           |            |        |                        |
| Benzo(a)pyrene         <0.000010         mg/L         0.00001           Benzo(b)fluoranthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |         |                 |           |           |            |        |                        |
| Benzo(b)fluoranthene         <0.000050         mg/L         0.000050           Benzo(g,h,i)perylene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |         |                 |           |           |            |        |                        |
| Benzo(g,h,i)perylene         <0.000050         mg/L         0.000050           Benzo(k)fluoranthene         <0.000050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00001 21-SEP-12 |         |                 |           |           |            |        |                        |
| Benzo(k)fluoranthene <0.000050 mg/L 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00005 21-SEP-12 |         |                 |           |           |            |        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00005 21-SEP-12 |         |                 |           |           |            |        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00005 21-SEP-12 |         |                 |           |           |            |        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00005 21-SEP-12 |         |                 |           |           |            |        | -                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00005 21-SEP-12 |         |                 |           |           |            |        |                        |
| Fluoranthene <0.000050 mg/L 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00005 21-SEP-12 |         | mg/L            | )         | <0.000050 |            |        | luoranthene            |



|                                    |        | Workorder: | 1 1209363 | }         | Report Date: 27 | -SEP-12 | Da      | ge 29 of 3 |
|------------------------------------|--------|------------|-----------|-----------|-----------------|---------|---------|------------|
| est                                | Matrix | Reference  | Result    | Qualifier | Units           | RPD     | Limit   | Analyzed   |
| PAH-SF-MS-VA                       | Water  |            |           |           |                 |         |         | -          |
| Batch R2439714                     | mator  |            |           |           |                 |         |         |            |
| WG1550411-1 MB                     |        |            |           |           |                 |         |         |            |
| Fluorene                           |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Indeno(1,2,3-c,d)pyrene            |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Naphthalene                        |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Phenanthrene                       |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Pyrene                             |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Quinoline                          |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Batch R2440768                     |        |            |           |           |                 |         |         |            |
| WG1550411-3 MB                     |        |            |           |           |                 |         |         |            |
| Acenaphthene                       |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Acenaphthylene                     |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Acridine                           |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Anthracene                         |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Benz(a)anthracene                  |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Benzo(a)pyrene                     |        |            | <0.000010 | )         | mg/L            |         | 0.00001 | 21-SEP-12  |
| Benzo(b)fluoranthene               |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Benzo(g,h,i)perylene               |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Benzo(k)fluoranthene               |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Chrysene                           |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Dibenz(a,h)anthracene              |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Fluoranthene                       |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Fluorene                           |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Indeno(1,2,3-c,d)pyrene            |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Naphthalene                        |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Phenanthrene                       |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Pyrene                             |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| Quinoline                          |        |            | <0.000050 | )         | mg/L            |         | 0.00005 | 21-SEP-12  |
| РН-РСТ-VA                          | Water  |            |           |           |                 |         |         |            |
| Batch R2443112                     |        |            |           |           |                 |         |         |            |
| <b>WG1553049-24 CRM</b><br>pH      |        | VA-PH7-BUF | 7.03      |           | pН              |         | 6.9-7.1 | 25-SEP-12  |
| <b>WG1553049-25 CRM</b><br>рН      |        | VA-PH7-BUF | 7.03      |           | рН              |         | 6.9-7.1 | 25-SEP-12  |
| ,<br><b>WG1553049-26 СRM</b><br>рН |        | VA-PH7-BUF | 7.03      |           | pH              |         | 6.9-7.1 | 25-SEP-12  |
| WG1553049-27 CRM                   |        | VA-PH7-BUF |           |           | ч.,             |         | 0.3-1.1 | 20-025-12  |



|                                                              |        |                             |         | •         | •              |           |         |              |
|--------------------------------------------------------------|--------|-----------------------------|---------|-----------|----------------|-----------|---------|--------------|
|                                                              |        | Workorder:                  | L120936 | 3         | Report Date: 2 | 27-SEP-12 | Pa      | age 30 of 37 |
| Test                                                         | Matrix | Reference                   | Result  | Qualifier | Units          | RPD       | Limit   | Analyzed     |
| PH-PCT-VA                                                    | Water  |                             |         |           |                |           |         |              |
| Batch R2443112<br>WG1553049-27 CRM<br>pH                     |        | VA-PH7-BUF                  | 7.02    |           | рН             |           | 6.9-7.1 | 25-SEP-12    |
| <b>WG1553049-28 CRM</b><br>рН                                |        | VA-PH7-BUF                  | 7.02    |           | рН             |           | 6.9-7.1 | 25-SEP-12    |
| <b>WG1553049-29 СRM</b><br>рН                                |        | VA-PH7-BUF                  | 7.01    |           | рН             |           | 6.9-7.1 | 25-SEP-12    |
| <b>WG1553049-30 СRM</b><br>рН                                |        | VA-PH7-BUF                  | 7.01    |           | рН             |           | 6.9-7.1 | 25-SEP-12    |
| TDS-VA                                                       | Water  |                             |         |           |                |           |         |              |
| Batch R2439701<br>WG1548151-3 DUP<br>Total Dissolved Solids  |        | <b>L1209363-1</b><br>8890   | 8750    |           | mg/L           | 1.6       | 20      | 18-SEP-12    |
| WG1548151-11 LCS<br>Total Dissolved Solids                   |        |                             | 99.2    |           | %              |           | 85-115  | 18-SEP-12    |
| WG1548151-2 LCS<br>Total Dissolved Solids                    |        |                             | 100.4   |           | %              |           | 85-115  | 18-SEP-12    |
| WG1548151-5 LCS<br>Total Dissolved Solids                    |        |                             | 97.8    |           | %              |           | 85-115  | 18-SEP-12    |
| WG1548151-8 LCS<br>Total Dissolved Solids                    |        |                             | 97.6    |           | %              |           | 85-115  | 18-SEP-12    |
| WG1548151-1 MB<br>Total Dissolved Solids                     |        |                             | <10     |           | mg/L           |           | 10      | 18-SEP-12    |
| WG1548151-10 MB<br>Total Dissolved Solids                    |        |                             | <10     |           | mg/L           |           | 10      | 18-SEP-12    |
| WG1548151-4 MB<br>Total Dissolved Solids                     |        |                             | <10     |           | mg/L           |           | 10      | 18-SEP-12    |
| WG1548151-7 MB<br>Total Dissolved Solids                     |        |                             | <10     |           | mg/L           |           | 10      | 18-SEP-12    |
| TKN-F-VA                                                     | Water  |                             |         |           |                |           |         |              |
| Batch R2441463<br>WG1549655-6 DUP<br>Total Kjeldahl Nitrogen |        | <b>L1209363-15</b><br>0.572 | 0.556   |           | mg/L           | 2.8       | 20      | 23-SEP-12    |
| WG1549655-2 LCS<br>Total Kjeldahl Nitrogen                   |        |                             | 104.2   |           | %              | -         | 75-125  | 23-SEP-12    |
| WG1549655-5 LCS<br>Total Kjeldahl Nitrogen                   |        |                             | 112.2   |           | %              |           | 75-125  | 23-SEP-12    |
| WG1549655-1 MB<br>Total Kjeldahl Nitrogen                    |        |                             | <0.050  |           | mg/L           |           | 0.05    | 23-SEP-12    |
|                                                              |        |                             |         |           |                |           |         |              |



|                                               |       | Workorder:                  | L120936 | 3 Re      | eport Date: 2 | 27-SEP-12 | Pa     | ige 31 of 37 |
|-----------------------------------------------|-------|-----------------------------|---------|-----------|---------------|-----------|--------|--------------|
| Test Ma                                       | atrix | Reference                   | Result  | Qualifier | Units         | RPD       | Limit  | Analyzed     |
| TKN-F-VA W                                    | /ater |                             |         |           |               |           |        |              |
| Batch R2441463                                |       |                             |         |           |               |           |        |              |
| WG1549655-4 MB<br>Total Kjeldahl Nitrogen     |       |                             | <0.050  |           | mg/L          |           | 0.05   | 23-SEP-12    |
| Batch R2442141                                |       |                             |         |           |               |           |        |              |
| WG1550523-2 LCS<br>Total Kjeldahl Nitrogen    |       |                             | 93.5    |           | %             |           | 75-125 | 24-SEP-12    |
| WG1550523-1 MB<br>Total Kjeldahl Nitrogen     |       |                             | <0.050  |           | mg/L          |           | 0.05   | 24-SEP-12    |
| Batch R2443047                                |       |                             |         |           |               |           |        |              |
| WG1550523-5 LCS<br>Total Kjeldahl Nitrogen    |       |                             | 98.2    |           | %             |           | 75-125 | 24-SEP-12    |
| WG1550523-4 MB<br>Total Kjeldahl Nitrogen     |       |                             | <0.050  |           | mg/L          |           | 0.05   | 24-SEP-12    |
| VH-HSFID-VA W                                 | /ater |                             |         |           |               |           |        |              |
| Batch R2441333                                |       |                             |         |           |               |           |        |              |
| WG1550775-3 DUP<br>Volatile Hydrocarbons (VH6 | -10)  | <b>L1209363-17</b><br><0.10 | <0.10   | RPD-NA    | mg/L          | N/A       | 50     | 22-SEP-12    |
| WG1550775-2 LCS<br>Volatile Hydrocarbons (VH6 | -10)  |                             | 85.2    |           | %             |           | 70-130 | 22-SEP-12    |
| WG1550775-1 MB<br>Volatile Hydrocarbons (VH6  | -10)  |                             | <0.10   |           | mg/L          |           | 0.1    | 22-SEP-12    |
| VOC-HSMS-VA W                                 | /ater |                             |         |           |               |           |        |              |
| Batch R2443281                                |       |                             |         |           |               |           |        |              |
| WG1554616-2 LCS                               |       |                             |         |           |               |           |        |              |
| Bromodichloromethane                          |       |                             | 93.9    |           | %             |           | 70-130 | 26-SEP-12    |
| Bromoform                                     |       |                             | 93.6    |           | %             |           | 70-130 | 26-SEP-12    |
| Carbon Tetrachloride                          |       |                             | 103.1   |           | %             |           | 70-130 | 26-SEP-12    |
| Chlorobenzene                                 |       |                             | 98.5    |           | %             |           | 70-130 | 26-SEP-12    |
| Dibromochloromethane                          |       |                             | 93.9    |           | %             |           | 70-130 | 26-SEP-12    |
| Chloroethane                                  |       |                             | 95.8    |           | %             |           | 60-140 | 26-SEP-12    |
| Chloroform                                    |       |                             | 94.2    |           | %             |           | 70-130 | 26-SEP-12    |
| Chloromethane                                 |       |                             | 96.7    |           | %             |           | 60-140 | 26-SEP-12    |
| 1,2-Dichlorobenzene                           |       |                             | 99.6    |           | %             |           | 70-130 | 26-SEP-12    |
| 1,3-Dichlorobenzene                           |       |                             | 103.1   |           | %             |           | 70-130 | 26-SEP-12    |
| 1,4-Dichlorobenzene                           |       |                             | 100.8   |           | %             |           | 70-130 | 26-SEP-12    |
| 1,1-Dichloroethane                            |       |                             | 90.6    |           | %             |           | 70-130 | 26-SEP-12    |
| 1,2-Dichloroethane                            |       |                             | 85.3    |           | %             |           | 70-130 | 26-SEP-12    |



|                                        |         | Workorder | : L120936     | 3         | Report Date: 2 | 7-SEP-12 | Pa               | age 32 of 3            |
|----------------------------------------|---------|-----------|---------------|-----------|----------------|----------|------------------|------------------------|
| lest .                                 | Matrix  | Reference | Result        | Qualifier | Units          | RPD      | Limit            | Analyzed               |
| VOC-HSMS-VA                            | Water   |           |               |           |                |          |                  |                        |
| Batch R24432                           |         |           |               |           |                |          |                  |                        |
| WG1554616-2 LC<br>1,1-Dichloroethylene |         |           | 80.5          |           | %              |          | 70.400           |                        |
| cis-1,2-Dichloroethy                   |         |           | 95.2          |           | %              |          | 70-130           | 26-SEP-12              |
| trans-1,2-Dichloroet                   |         |           | 95.2<br>88.8  |           | %              |          | 70-130           | 26-SEP-12              |
| Dichloromethane                        | Tylefie |           | 86.3          |           | %              |          | 70-130           | 26-SEP-12              |
| 1,2-Dichloropropane                    |         |           | 90.6          |           | %              |          | 60-140           | 26-SEP-12              |
| cis-1,3-Dichloroprop                   |         |           | 90.0<br>88.1  |           | %              |          | 70-130           | 26-SEP-12              |
| trans-1,3-Dichloropro                  | -       |           | 88.0          |           | %              |          | 70-130           | 26-SEP-12              |
| 1,1,1,2-Tetrachloroe                   |         |           | 88.0<br>100.7 |           | 76<br>%        |          | 70-130           | 26-SEP-12              |
| 1,1,2,2-Tetrachloroe                   |         |           | 84.9          |           | %              |          | 70-130           | 26-SEP-12              |
| Tetrachloroethylene                    |         |           | 04.9<br>106.3 |           | %              |          | 70-130           | 26-SEP-12              |
| 1,1,1-Trichloroethan                   |         |           | 100.3         |           | %              |          | 70-130           | 26-SEP-12              |
| 1,1,2-Trichloroethan                   |         |           | 89.1          |           | %              |          | 70-130<br>70-130 | 26-SEP-12<br>26-SEP-12 |
| Trichloroethylene                      |         |           | 101.7         |           | %              |          |                  |                        |
| Trichlorofluorometha                   | ana     |           | 101.7         |           | %              |          | 70-130           | 26-SEP-12              |
| Vinyl Chloride                         | ane     |           | 99.8          |           | %              |          | 60-140           | 26-SEP-12              |
| WG1554616-1 ME                         | -       |           | 99.0          |           | 70             |          | 60-140           | 26-SEP-12              |
| Bromodichlorometha                     |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Bromoform                              |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Carbon Tetrachlorid                    | e       |           | <0.00050      | 1         | mg/L           |          | 0.0005           | 26-SEP-12              |
| Chlorobenzene                          |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Dibromochlorometha                     | ane     |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Chloroethane                           |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Chloroform                             |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Chloromethane                          |         |           | <0.0050       |           | mg/L           |          | 0.005            | 26-SEP-12              |
| 1,2-Dichlorobenzene                    | e       |           | <0.00070      | 1         | mg/L           |          | 0.0007           | 26-SEP-12              |
| 1,3-Dichlorobenzene                    | e       |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| 1,4-Dichlorobenzene                    |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| 1,1-Dichloroethane                     |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| 1,2-Dichloroethane                     |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| 1,1-Dichloroethylene                   | e       |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| cis-1,2-Dichloroethy                   |         |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| trans-1,2-Dichloroet                   | hylene  |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |
| Dichloromethane                        |         |           | <0.0050       |           | mg/L           |          | 0.005            | 26-SEP-12              |
| 1,2-Dichloropropane                    | 2       |           | <0.0010       |           | mg/L           |          | 0.001            | 26-SEP-12              |



|                         |        | Workorder:  | L1209363 | B Re      | port Date: 2 | 27-SEP-12 | Pa     | age 33 of 37 |
|-------------------------|--------|-------------|----------|-----------|--------------|-----------|--------|--------------|
| Test                    | Matrix | Reference   | Result   | Qualifier | Units        | RPD       | Limit  | Analyzed     |
| VOC-HSMS-VA             | Water  |             |          |           |              |           |        |              |
| Batch R244328           | 1      |             |          |           |              |           |        |              |
| WG1554616-1 MB          |        |             |          |           |              |           |        |              |
| cis-1,3-Dichloropropyle |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| trans-1,3-Dichloroprop  | ylene  |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| 1,1,1,2-Tetrachloroeth  | ane    |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| 1,1,2,2-Tetrachloroeth  | ane    |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| Tetrachloroethylene     |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| 1,1,1-Trichloroethane   |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| 1,1,2-Trichloroethane   |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| Trichloroethylene       |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| Trichlorofluoromethan   | e      |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| Vinyl Chloride          |        |             | <0.0010  |           | mg/L         |           | 0.001  | 26-SEP-12    |
| VOC7-HSMS-VA            | Water  |             |          |           |              |           |        |              |
| Batch R244106           | 6      |             |          |           |              |           |        |              |
| WG1550775-3 DUP         |        | L1209363-17 |          |           |              |           |        |              |
| Benzene                 |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| Ethylbenzene            |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| Methyl t-butyl ether (M | TBE)   | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| Styrene                 |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| Toluene                 |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| meta- & para-Xylene     |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| ortho-Xylene            |        | <0.00050    | <0.00050 | RPD-NA    | mg/L         | N/A       | 30     | 23-SEP-12    |
| WG1550775-2 LCS         |        |             |          |           |              |           |        |              |
| Benzene                 |        |             | 101.5    |           | %            |           | 70-130 | 22-SEP-12    |
| Ethylbenzene            |        |             | 106.6    |           | %            |           | 70-130 | 22-SEP-12    |
| Methyl t-butyl ether (M | TBE)   |             | 103.4    |           | %            |           | 70-130 | 22-SEP-12    |
| Styrene                 |        |             | 98.7     |           | %            |           | 70-130 | 22-SEP-12    |
| Toluene                 |        |             | 101.6    |           | %            |           | 70-130 | 22-SEP-12    |
| meta- & para-Xylene     |        |             | 103.3    |           | %            |           | 70-130 | 22-SEP-12    |
| ortho-Xylene            |        |             | 104.7    |           | %            |           | 70-130 | 22-SEP-12    |
| WG1550775-1 MB          |        |             |          |           |              |           |        |              |
| Benzene                 |        |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |
| Ethylbenzene            |        |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |
| Methyl t-butyl ether (M | TBE)   |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |
| Styrene                 |        |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |
| Toluene                 |        |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |
| meta- & para-Xylene     |        |             | <0.00050 |           | mg/L         |           | 0.0005 | 22-SEP-12    |



|                                                |        | Workorder | : L1209363 | 3         | Report Date: 2 | 7-SEP-12 | Pa     | age 34 of 37 |
|------------------------------------------------|--------|-----------|------------|-----------|----------------|----------|--------|--------------|
| Test                                           | Matrix | Reference | Result     | Qualifier | Units          | RPD      | Limit  | Analyzed     |
| VOC7-HSMS-VA                                   | Water  |           |            |           |                |          |        |              |
| Batch R24410<br>WG1550775-1 ME<br>ortho-Xylene |        |           | <0.00050   |           | mg/L           |          | 0.0005 | 22-SEP-12    |
| ortilo Xylone                                  |        |           | <0.00000   |           | iiig/L         |          | 0.0005 | 22-3EF-12    |

Workorder: L1209363

Report Date: 27-SEP-12

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |
|       |                                             |

#### Sample Parameter Qualifier Definitions:

| Qualifier | Description                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| J         | Duplicate results and limits are expressed in terms of absolute difference.                                                                             |
| MB-LOR    | Method Blank exceeds ALS DQO. LORs adjusted for samples with positive hits below 5 times blank level. Please<br>contact ALS if re-analysis is required. |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.                                                      |
| RPD-NA    | Relative Percent Difference Not Available due to result(s) being less than detection limit.                                                             |

Workorder: L1209363

Report Date: 27-SEP-12

Page 36 of 37

#### Hold Time Exceedances:

| ALS Product Description       | Sample<br>ID | Sampling Date                      | Date Processed                     | Rec. HT      | Actual HT  | Units          | Qualifier          |
|-------------------------------|--------------|------------------------------------|------------------------------------|--------------|------------|----------------|--------------------|
| Physical Tests                |              | • =                                |                                    |              |            |                |                    |
| Total Dissolved Solids by G   | Gravimetric  |                                    |                                    |              |            |                |                    |
|                               | 1            | 09-SEP-12 15:40                    | 18-SEP-12 00:00                    | 7            | 8          | days           | EHT                |
|                               | 2            | 10-SEP-12 10:20                    | 18-SEP-12 00:00                    | 7            | 8          | days           | EHT                |
|                               | 3            | 10-SEP-12 11:30                    | 18-SEP-12 00:00                    | 7            | 8          | days           | EHT                |
| pH by Meter (Automated)       |              |                                    |                                    |              |            |                |                    |
|                               | 1            | 09-SEP-12 15:40                    | 25-SEP-12 11:16                    | 0.25         | 380        | hours          | EHTR-FM            |
|                               | 2            | 10-SEP-12 10:20                    | 25-SEP-12 11:16                    | 0.25         | 361        | hours          | EHTR-FM            |
|                               | 3            | 10-SEP-12 11:30                    | 25-SEP-12 11:16                    | 0.25         | 360        | hours          | EHTR-FM            |
|                               | 4            | 13-SEP-12 13:30                    | 25-SEP-12 11:16                    | 0.25         | 286        | hours          | EHTR-FM            |
|                               | 5            | 12-SEP-12 10:40                    | 25-SEP-12 11:16                    | 0.25         | 313        | hours          | EHTR-FM            |
|                               | 6            | 10-SEP-12 16:30                    | 25-SEP-12 11:16                    | 0.25         | 355        | hours          | EHTR-FM            |
|                               | 7            | 10-SEP-12 17:45                    | 25-SEP-12 11:16                    | 0.25         | 354        | hours          | EHTR-FM            |
|                               | 8            | 10-SEP-12 16:30                    | 25-SEP-12 11:16                    | 0.25         | 355        | hours          | EHTR-FM            |
|                               | 9            | 12-SEP-12 13:20                    | 25-SEP-12 11:16                    | 0.25         | 310        | hours          | EHTR-FM            |
|                               | 10           | 11-SEP-12 10:45                    | 25-SEP-12 11:16                    | 0.25         | 336        | hours          | EHTR-FM            |
|                               | 11           | 11-SEP-12 12:30                    | 25-SEP-12 11:16                    | 0.25         | 335        | hours          | EHTR-FM            |
|                               | 12<br>13     | 11-SEP-12 14:15                    | 25-SEP-12 11:16                    | 0.25         | 333        | hours          | EHTR-FM            |
|                               | 13           | 11-SEP-12 15:15<br>12-SEP-12 17:30 | 25-SEP-12 11:16<br>25-SEP-12 11:16 | 0.25<br>0.25 | 332<br>306 | hours          | EHTR-FM<br>EHTR-FM |
|                               | 14           | 13-SEP-12 17.30                    | 25-SEP-12 11:16                    | 0.25         | 290        | hours<br>hours | EHTR-FM            |
|                               | 16           | 13-SEP-12 09:55                    | 25-SEP-12 11:16                    | 0.25         | 290        | hours          | EHTR-FM            |
|                               | 10           | 11-SEP-12 19:15                    | 25-SEP-12 11:16                    | 0.25         | 328        | hours          | EHTR-FM            |
| Anions and Nutrients          | 17           | 11-0EI -12 13.15                   | 20-011-12 11.10                    | 0.20         | 520        | nouis          |                    |
| Nitrate Nitrogen by Ion Chr   | omotography  |                                    |                                    |              |            |                |                    |
| Nicate Nicogen by Ion Chi     |              |                                    |                                    | 2            | r          | dava           | FUTD               |
|                               | 1            | 09-SEP-12 15:40<br>10-SEP-12 10:20 | 14-SEP-12 17:19<br>14-SEP-12 17:19 | 3<br>3       | 5          | days           | EHTR<br>EHTR       |
|                               | 2<br>3       | 10-SEP-12 10.20                    | 14-SEP-12 17:19<br>14-SEP-12 17:19 | 3            | 4<br>4     | days<br>days   | EHTR               |
|                               | 6            | 10-SEP-12 11:30                    | 14-SEP-12 17:19                    | 3            | 4          | days<br>days   | EHTR               |
|                               | 7            | 10-SEP-12 17:45                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
|                               | 8            | 10-SEP-12 16:30                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
| Nitrite Nitrogen by Ion Chro  | -            | 10 021 12 10.00                    |                                    | 0            |            | dayo           | Linix              |
| Hand Harogen by for one       | 1            | 09-SEP-12 15:40                    | 14-SEP-12 17:19                    | 3            | 5          | days           | EHTR               |
|                               | 2            | 10-SEP-12 10:20                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
|                               | 3            | 10-SEP-12 11:30                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
|                               | 6            | 10-SEP-12 16:30                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
|                               | 7            | 10-SEP-12 17:45                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
|                               | 8            | 10-SEP-12 16:30                    | 14-SEP-12 17:19                    | 3            | 4          | days           | EHTR               |
| Volatile Organic Compound     | S            |                                    |                                    |              |            |                |                    |
| VOCs in water by Headspa      | ce GCMS      |                                    |                                    |              |            |                |                    |
| ,,                            | 1            | 09-SEP-12 15:40                    | 26-SEP-12 19:41                    | 14           | 17         | days           | EHT                |
|                               | 2            | 10-SEP-12 10:20                    | 26-SEP-12 19:41                    | 14           | 16         | days           | EHT                |
|                               | 3            | 10-SEP-12 11:30                    | 26-SEP-12 19:41                    | 14           | 16         | days           | EHT                |
|                               | 6            | 10-SEP-12 16:30                    | 26-SEP-12 19:41                    | 14           | 16         | days           | EHT                |
|                               | 7            | 10-SEP-12 17:45                    | 26-SEP-12 19:41                    | 14           | 16         | days           | EHT                |
|                               | 8            | 10-SEP-12 16:30                    | 26-SEP-12 19:41                    | 14           | 16         | days           | EHT                |
|                               | 10           | 11-SEP-12 10:45                    | 26-SEP-12 19:41                    | 14           | 15         | days           | EHT                |
|                               | 11           | 11-SEP-12 12:30                    | 26-SEP-12 19:41                    | 14           | 15         | days           | EHT                |
|                               | 12           | 11-SEP-12 14:15                    | 26-SEP-12 19:41                    | 14           | 15         | days           | EHT                |
|                               | 13           | 11-SEP-12 15:15                    | 26-SEP-12 19:41                    | 14           | 15         | days           | EHT                |
|                               | 17           | 11-SEP-12 19:15                    | 26-SEP-12 19:41                    | 14           | 15         | days           | EHT                |
| Legend & Qualifier Definition | ns:          |                                    |                                    |              |            |                |                    |

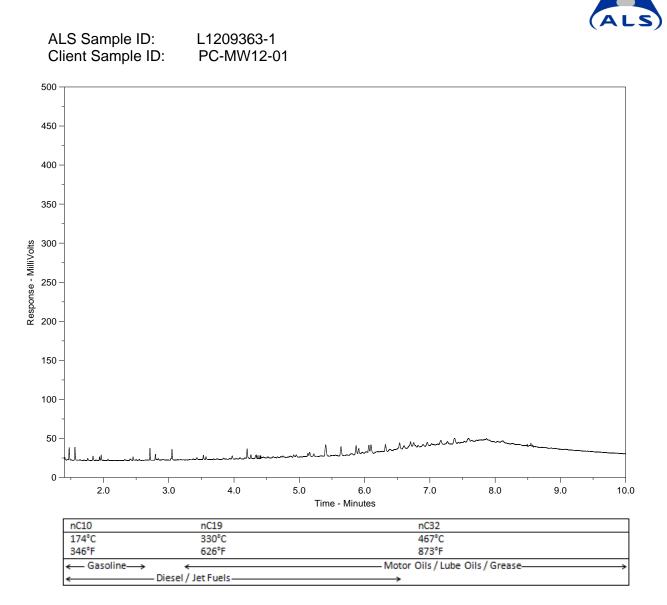
Legend & Qualifier Definitions:

Workorder: L1209363

Report Date: 27-SEP-12

Page 37 of 37

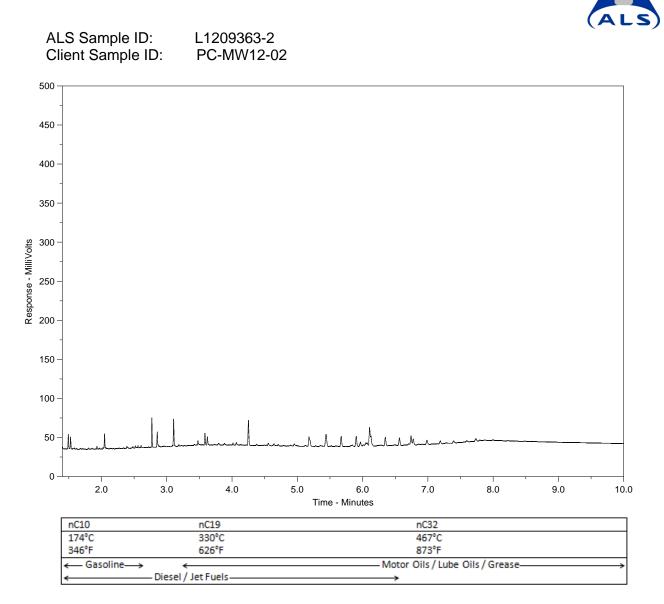
EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).


Notes\*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1209363 were received on 14-SEP-12 10:55.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

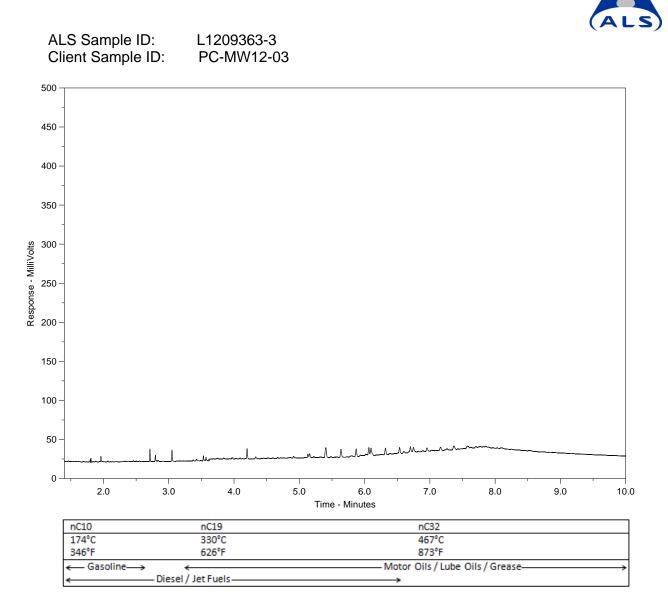
The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

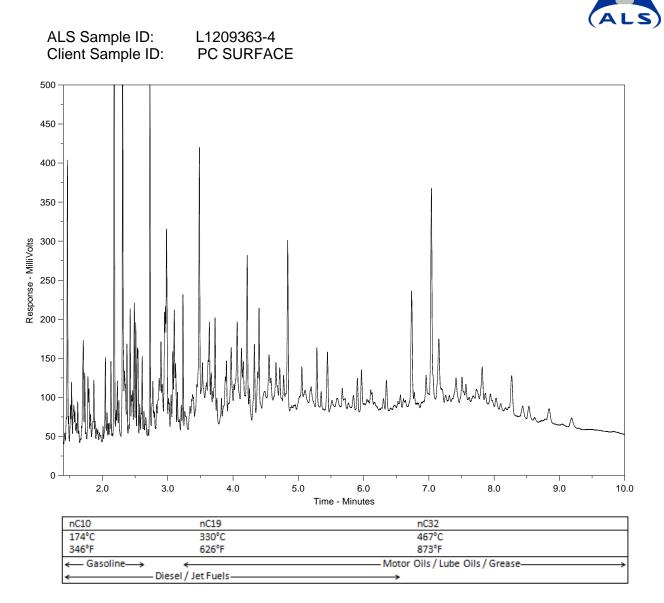
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

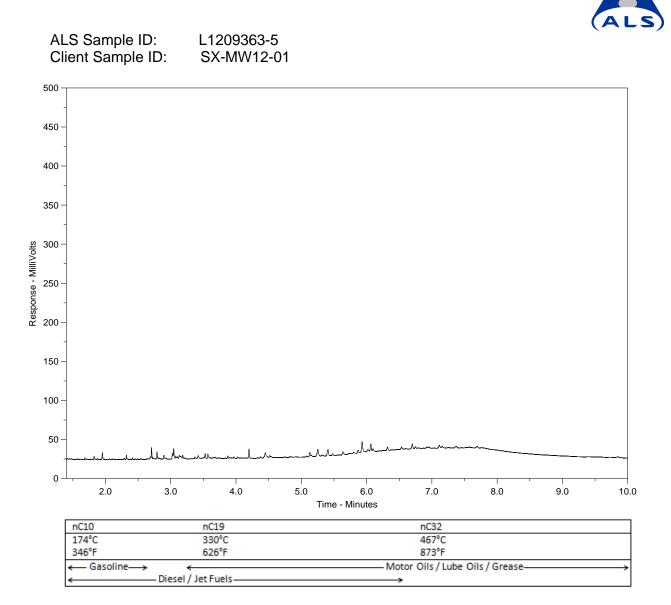
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

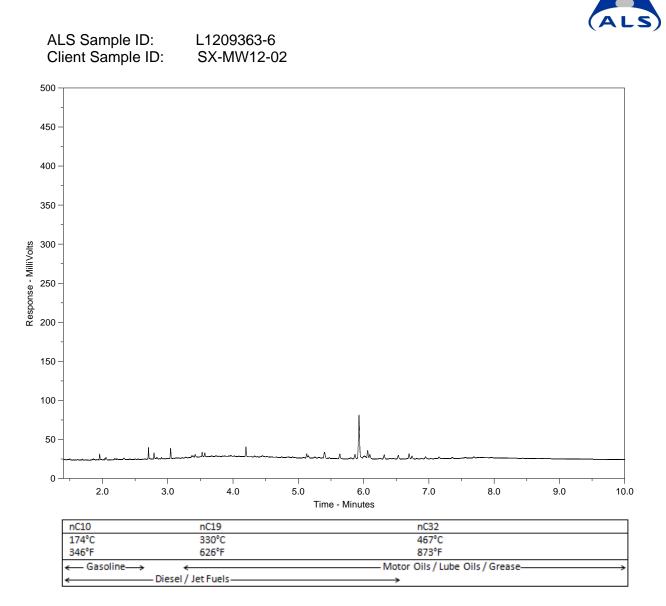
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

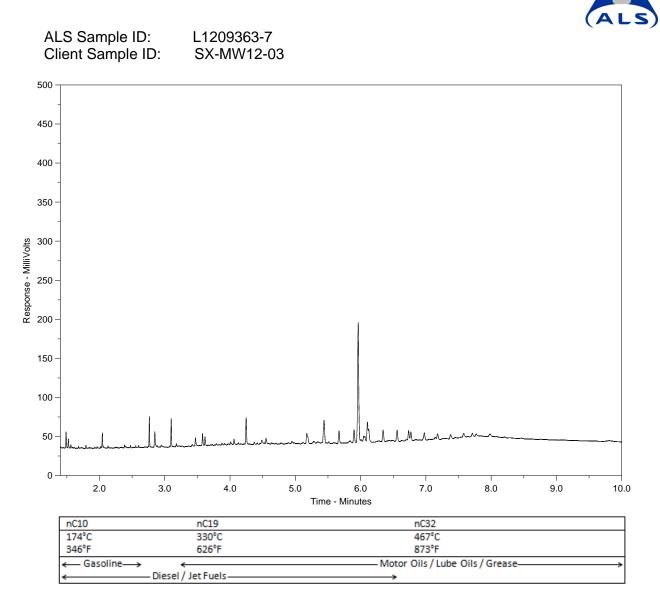
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

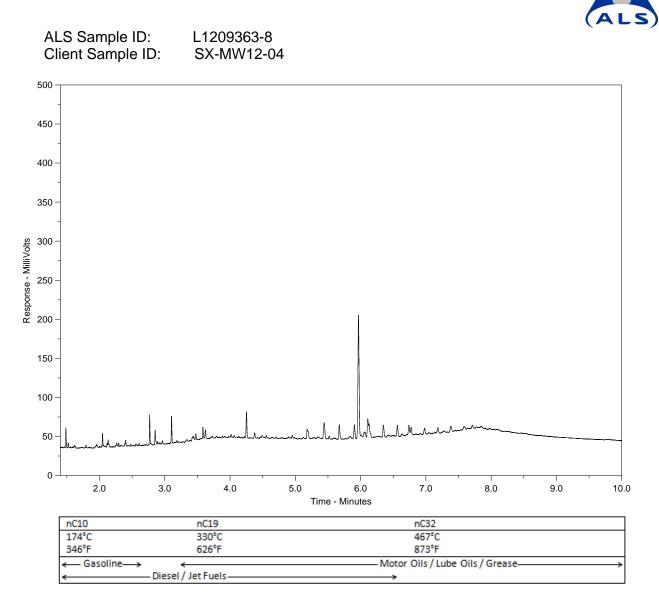
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

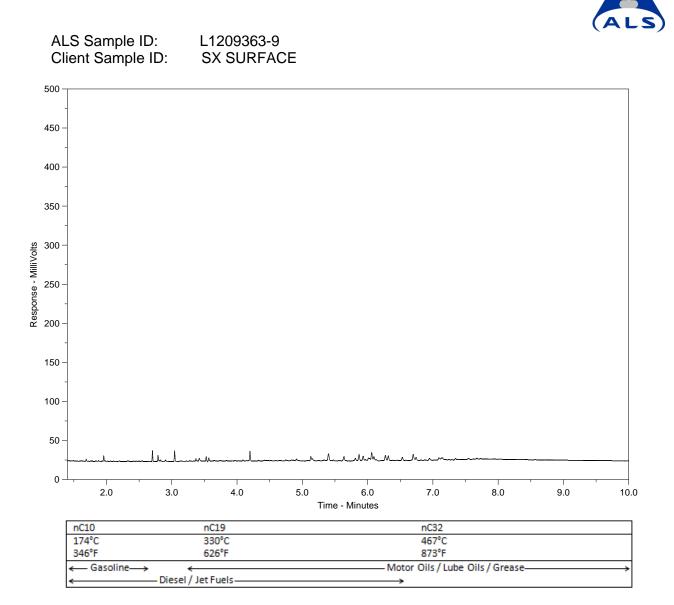
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

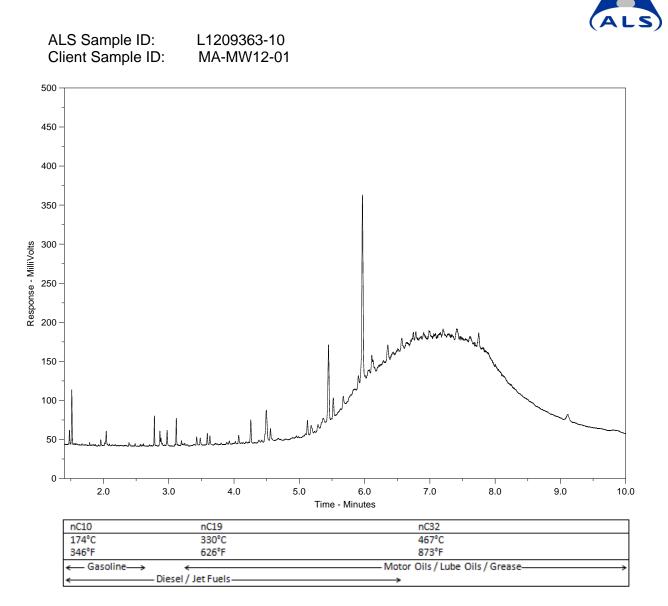
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

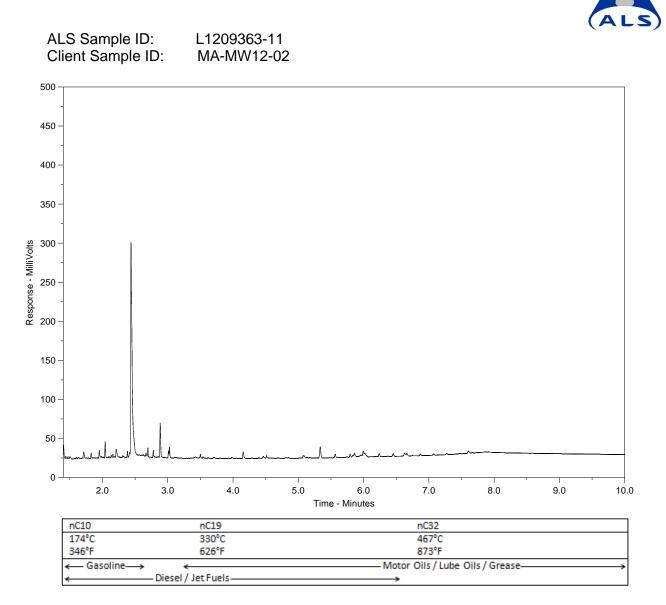
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

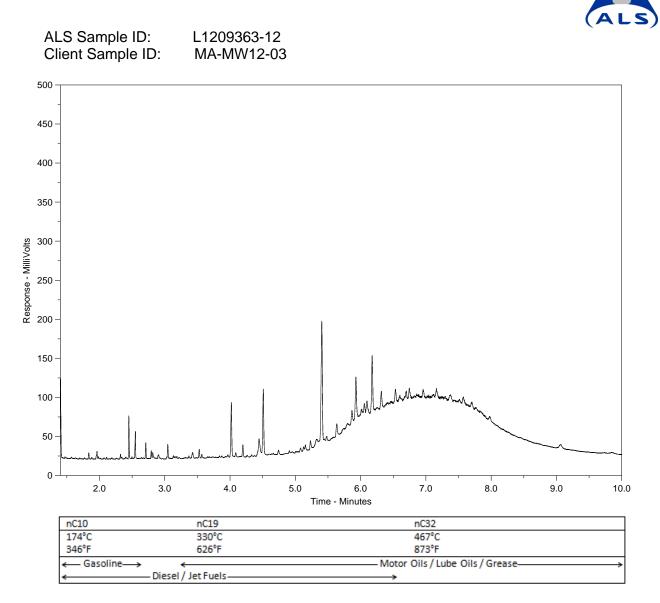
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

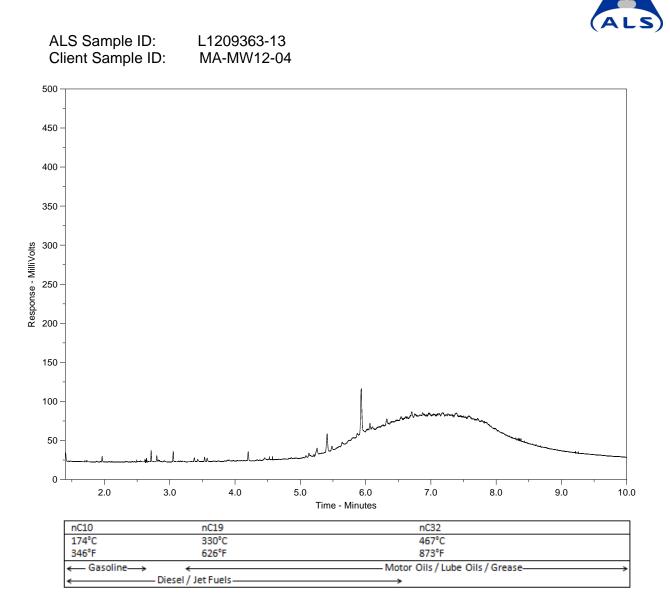
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

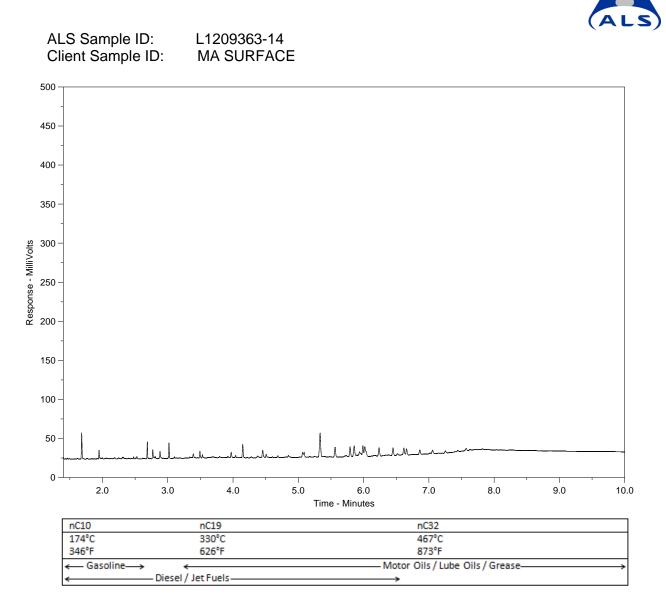
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

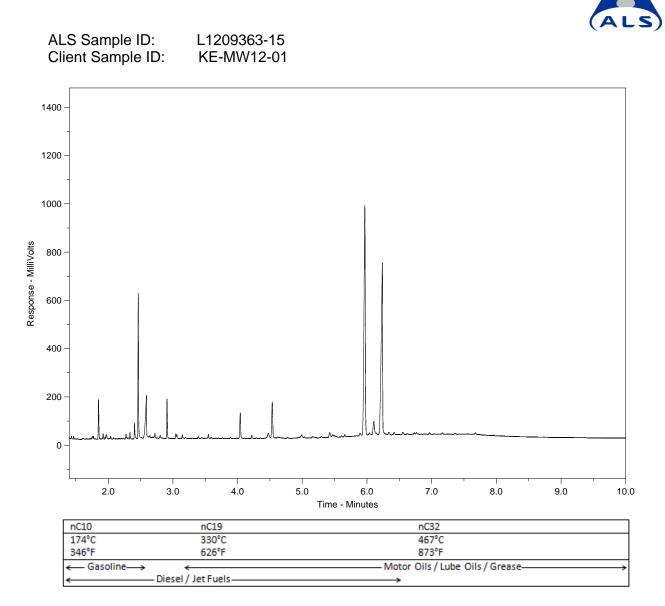
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

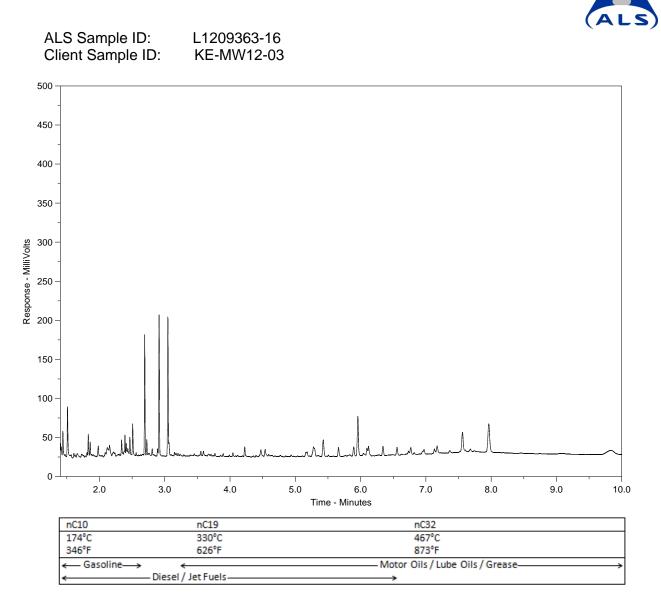
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

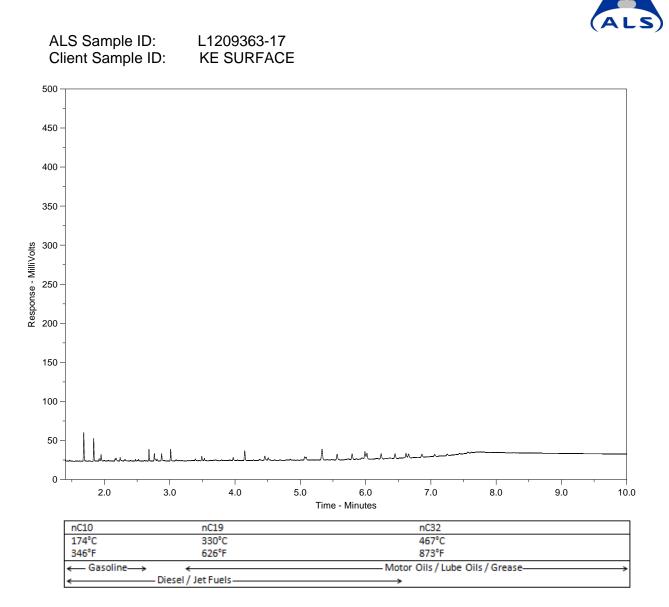
The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.



The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

#### Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

Digital

Fax

**Report Format / Distribution** 

√ Standard

✓ PDF

Email 1:

Other

✓ Excel

andrea badger@golder.com

COC#

Service Requested (Rush for routine analysis subject to availability)

O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT

O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT

O Same Day or Weekend Emergency - Contact ALS to Confirm TAT

Regular (Standard Turnaround Times - Business Days)

Page

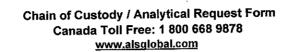
| 1 | of | 2 |  |
|---|----|---|--|

|           | onmental |
|-----------|----------|
| Report To |          |

Golder Associates

203 170 Titanium Way

Andrea Badger


Company:

Contact:

Address:

| Whitehorse, YT Y1A 0G1 |                                            |                    | Email 2:        | Email 2: gary hamilton@golder.com      |                       |                |                                           | Same Day or Weekend Emergency - Contact ALS to Confirm 141 Analysis Request |          |                 |         |          |          |          |         |             |                 |                      |  |
|------------------------|--------------------------------------------|--------------------|-----------------|----------------------------------------|-----------------------|----------------|-------------------------------------------|-----------------------------------------------------------------------------|----------|-----------------|---------|----------|----------|----------|---------|-------------|-----------------|----------------------|--|
| Phone:                 | 867-633-6076                               | Fax:               |                 | Email 3:                               | calvin beebe@         | golder.com     |                                           |                                                                             |          |                 |         |          |          |          | or both |             | E/P)            |                      |  |
| nvoice To              | Same as Report ?                           | ✓ Yes              | No              | Client /                               | Project Informati     | on             |                                           | Plea                                                                        | se indi  | cate be         |         | Itereo   | I, Pres  |          | or both | (r, r,<br>T | <u>[///</u>     |                      |  |
|                        | Invoice with Report?                       | Yes                | No No           | Job #:                                 | 11-1436-0073/1        | 200, 2200, 240 | 00, 2700                                  |                                                                             |          |                 |         | <u> </u> |          |          |         |             | ┢──┤            |                      |  |
| Company:               |                                            |                    |                 | PO / AF                                | E:                    |                |                                           | ×                                                                           |          |                 |         |          |          |          |         |             |                 |                      |  |
| Contact:               |                                            |                    |                 | LSD:                                   |                       |                |                                           | X                                                                           |          |                 |         |          |          |          | .       |             |                 | 20                   |  |
| Address:               | •                                          |                    |                 |                                        |                       |                | • · ·                                     | 202                                                                         |          | :   -           | ·       |          | -        |          |         |             |                 | aine                 |  |
| hone:                  |                                            | Fax:               |                 | Quote #                                | ·                     |                |                                           | 6                                                                           |          |                 |         | 1        |          |          |         | 1           |                 |                      |  |
| Lab V                  | Vork Order #<br>o use only)                | L12093             | 63              | ALS<br>Contact                         | t:                    | Sampler:       | A Badger                                  | er 11-1436-0072/xxxx                                                        |          |                 |         |          |          |          |         |             |                 | Number of Containers |  |
| Sample                 |                                            | Sample Ide         |                 |                                        | Date                  | (hh:mm)        | Sample Type                               | As per                                                                      |          |                 |         |          |          |          |         |             | · ·             | Nun                  |  |
| #                      | (This                                      | description will a | ppear on the re | port)                                  | (dd-mmm-yy)           |                |                                           | _<br>X                                                                      |          |                 |         | +        |          |          |         |             | +               | 8                    |  |
|                        | PC-MW12-01                                 |                    |                 |                                        | 09-Sep-12             | 15:40          | Groundwater                               |                                                                             |          |                 |         | +        |          |          |         |             | +               | 8                    |  |
|                        | PC-MW12-02                                 |                    |                 |                                        | 10-Sep-12             | 10:20          | Groundwater                               | X                                                                           |          | _               |         |          |          |          |         | +           | +               | 8                    |  |
|                        | PC-MW12-03                                 |                    |                 |                                        | 10-Sep-12             | 11:30          | Groundwater                               | Х                                                                           |          |                 |         |          | <u> </u> | L        |         |             |                 | <u>+</u>             |  |
| <u></u>                | PC Surface                                 |                    |                 | ······································ | 13-Sep-12             | 13:30          | Surface Water                             | X                                                                           |          |                 |         |          |          |          |         |             |                 | 8                    |  |
|                        | SX-MW12-01                                 |                    |                 |                                        | 12-Sep-12             | 10:40          | Groundwater                               | X                                                                           |          |                 |         |          |          |          |         |             | <u> </u>        | 8                    |  |
|                        |                                            |                    |                 |                                        | 10-Sep-12             | 16:30          | Groundwater                               | X                                                                           |          |                 |         |          |          |          |         |             |                 | 8                    |  |
|                        | SX-MW12-02                                 |                    |                 |                                        | 10-Sep-12             | 17:45          | Groundwater                               | X                                                                           |          |                 |         |          |          |          |         |             |                 | 8                    |  |
|                        | SX-MW12-03                                 |                    |                 |                                        | 10-Sep-12             | 16:30          | Groundwater                               | X                                                                           | - †      |                 |         |          |          |          |         |             |                 | 8                    |  |
|                        | SX-MW12-04                                 |                    |                 |                                        | _                     | 13:20          | Surface Water                             | x                                                                           |          |                 | -       | -        |          |          |         |             |                 | 8                    |  |
|                        | SX Surface                                 |                    |                 |                                        | 12-Sep-12             |                |                                           | x                                                                           | ┝━╀      |                 |         |          |          |          |         | +           | +               | 8                    |  |
|                        | MA-MW12-01                                 |                    |                 |                                        | 11-Sep-12             | 10:45          | Groundwater                               | <u> </u>                                                                    |          |                 |         | +        |          |          |         |             |                 | 1 8                  |  |
|                        | MA-MW12-02                                 |                    |                 |                                        | 11-Sep-12             | 12:30          | Groundwater                               | X                                                                           |          |                 |         |          |          | ┢──┼╸    |         |             |                 |                      |  |
|                        | MA-MW12-03                                 |                    |                 |                                        | 11-Sep-12             | 14:15          | Groundwater                               | X                                                                           |          |                 |         |          |          | <u> </u> |         |             |                 |                      |  |
|                        | Special Instru                             | uctions / Regula   | tions with wat  | er or land use (C                      | CME-Freshwater        | Aquatic Life/E | BC CSR - Commer                           | cial/A                                                                      | B Tier   | 1 - Na          | tural,  | etc) /   | Hazar    | dous     | Jetails |             |                 |                      |  |
| PC Surface             | , SX Surface, MA-MW<br>samples for DOC are | 12-02 and MA-M     | W12-03 sample   | es for dissolved m                     | etals are not filtere | d or preserved |                                           |                                                                             |          |                 |         |          |          |          |         |             |                 |                      |  |
| NOTE OF THE            | samples for DOO are                        |                    | Tallung to con  | plete all portion                      | s of this form ma     | y delay analys | is. Please fill in th                     | is for                                                                      | m LEC    | iBLY.           | arata l | Evcal    | tah      |          |         |             |                 |                      |  |
|                        |                                            | By the use of t    | his form the u  | ser acknowledge                        | s and agrees wit      | h the Terms a  | nd Conditions as p<br>le container / pres | irovi0                                                                      | tion / h | a sep<br>oldino | ı time  | table    | for co   | mmon     | analy   | ses.        |                 |                      |  |
|                        |                                            |                    | ab are the ALS  | S location addres                      | ises, phone num       | TION (jah use) | only)                                     |                                                                             |          | SHI             | MEN     | T VEF    | RIFICA   | TION (   | lab use | only)       |                 |                      |  |
| Released I             | SHIPMENT RELE                              |                    | Time (hh-mm)    | Received by:                           | Date:                 | Time:          | Temperature:                              |                                                                             | ified by |                 |         | ate:     |          | Time     |         | Ot<br>Ye    | serva<br>s / No | ?                    |  |
| audar - Driv           | dece                                       | 14_Sen_12          | 10:30           | Your -                                 | 18-LP-                | 210:50         | 3.200                                     |                                                                             |          |                 |         |          |          |          |         | _           | res ad          |                      |  |
| Andrea Bac             | dger                                       | 14-Sep-12          | 10:30           | Sa-                                    | 14-24-1               | 410.50         | 31200                                     | ;[                                                                          |          |                 |         |          | <u> </u> | <u> </u> | GE      | _           |                 | 01 From              |  |

COC #



Page <u>2</u> of <u>2</u>

\_

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rmat / Distribut    | ion             |                    | Service                  | Reque    | ested (F  | Rush f | for rou | tine a | nalysis | subje | ect to a | vailability                                  | )                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|--------------------|--------------------------|----------|-----------|--------|---------|--------|---------|-------|----------|----------------------------------------------|----------------------|
| Report To            | Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other               |                 |                    | Regula                   |          |           |        |         |        |         |       |          |                                              |                      |
| oompany.             | Andrea Badger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Image: Standard Constraints       Image: Standard Constraints |                     |                 |                    |                          |          |           |        |         |        |         |       |          |                                              |                      |
|                      | 203 170 Titanium Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andrea badger(      |                 |                    |                          |          |           |        |         |        |         |       |          |                                              | AT                   |
| 1001000              | Whitehorse, YT Y1A 0G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gary hamilton@      |                 |                    | O Same I                 | Day or W | leekend l |        |         |        |         |       | irm TAT  |                                              |                      |
|                      | 867-633-6076 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | calvin beebe@       |                 |                    |                          |          |           |        | -       |        | quest   |       |          |                                              |                      |
|                      | Same as Report ? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oject Informati     |                 |                    | Please                   | indicat  | te belov  | w Filt | tered,  | Pres   | erved   | or b  | oth (F   | , P, F/P)                                    | <u>)</u>             |
|                      | nvoice with Report? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-1436-0073/1      |                 | 0, 2700            |                          |          |           |        |         |        |         |       |          |                                              | _                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO / AFE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                 |                    | ×                        |          |           |        |         |        |         |       |          |                                              |                      |
| Company:<br>Contact: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LSD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                 |                    | Š                        |          |           |        |         |        |         | 1     |          |                                              | S                    |
| Address:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    | 22                       |          |           |        |         |        |         | ;     | ŀ        | •                                            | ner                  |
| Phone:               | Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 | •                  | ğ                        |          |           | -      |         |        | ·       |       |          |                                              | nta                  |
|                      | Vork Order #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                 |                    | 1 43                     |          |           |        |         |        |         |       |          |                                              | <u>č</u>             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Sampler:        | A Badger           |                          |          |           |        |         |        |         |       |          |                                              | er of                |
|                      | Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                | Time            |                    | As per 11-1436-0072/xxxx |          |           |        |         |        |         |       |          |                                              | Number of Containers |
| Sample               | (This description will appear on the report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (dd-mmm-yy)         | (hh:mm)         | Sample Type        | As I                     |          |           |        |         |        |         |       |          |                                              | <u><u>n</u>z</u>     |
|                      | MA-MW12-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-Sep-12           | 15:15           | Groundwater        | X                        |          |           |        |         |        |         |       |          |                                              | 8                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-Sep-12           | 18:30           | Surface Water      | X                        |          | T         |        |         |        |         |       |          |                                              | 8                    |
| n de finite<br>Tenn  | MA Surface<br>KE-MW12-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-Sep-12           | 9:25            | Groundwater        | X                        |          |           |        |         |        |         |       |          |                                              | 8                    |
|                      | KE-MW12-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13-Sep-12           | 9:55            | Groundwater        | X                        |          |           |        |         |        |         |       |          |                                              | 8                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-Sep-12           | 19:15           | Surface Water      | x                        |          |           | _      |         |        |         |       |          |                                              | 8                    |
|                      | KE Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    |                          |          | ╡╶┼       |        |         |        |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    | ┨╴┉┨╴                    |          |           |        |         |        |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    |                          | _        | +         |        |         |        |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    |                          |          |           |        |         |        |         |       |          |                                              | <u> </u>             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    |                          |          |           |        |         |        |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    |                          |          |           |        |         | ]      |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                   | 1               |                    |                          |          |           |        | 1       | Γ      |         |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    | ┼━┼╴                     |          | ┤──┤      |        | 1       |        | 1       |       |          |                                              |                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 | 0.007.0.0          |                          | Tior 1   | Natur     | al of  | tc)/b   | 12721  |         | Deta  | ils      |                                              |                      |
|                      | Special Instructions / Regulations with water or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | land use (CCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ME-Freshwater       | Aquatic Life/B  | C CSR - Comme      | CIAI/AD                  |          | matur     | ai, ci |         |        |         |       |          |                                              |                      |
| PC Surface,          | , SX Surface, MA-MW12-02 and MA-MW12-03 samples for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dissolved meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | als are not filtere | d or preserved  |                    |                          |          |           |        |         |        |         |       |          |                                              |                      |
| None of the          | samples for DOC are filtered or preserved<br>Failure to complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 | s Please fill in t | his form                 | LEGIB    | BLY.      |        |         |        |         |       |          |                                              |                      |
|                      | m at this form the upon o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oknowlodgee :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and arrees with     | the Terms an    | d Conditions as    | provided                 | on a s   | separa    | te Ex  | kcel t  | ab.    |         |       |          |                                              |                      |
|                      | By the use of this form the user an<br>Also provided on another Excel tab are the ALS loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation addresse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es, phone numb      | pers and samp   | le container / pre | servatio                 | 1711010  | սուց ա    | IIC to | able i  |        | ommo    | n an  | alyses   | <u>.                                    </u> |                      |
|                      | Also provided on another Excel tab are the ALS local<br>SHIPMENT RELEASE (client use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SHIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MENT RECEP          | TION (lab use o | nly)               |                          | 5        | SHIPM     | ENT    | VERI    | FICA   |         | (1000 | use or   |                                              |                      |
| Released b           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ived by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:               | Time:           | Temperature:       | Verifie                  | d by:    |           | Dat    | le:     |        | Tim     | e:    |          | Observ<br>Yes / N                            |                      |
| Released D           | y. Duto (domining)) inter (in this is a second seco | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                 | •(                 | <u>.</u>                 |          |           |        |         |        | 1       |       |          | If Yes a                                     |                      |
| Andrea Bad           | lger 14-Sep-12 10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                 |                    | <u> </u>                 |          |           | L      |         |        |         |       | GENF     | 18.01 F                                      |                      |

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa Asia Australasia Europe North America South America + 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada T: +1 (604) 296 4200

