

HYDROGEOLOGICAL ASSESSMENT **REPORT**

Swift River Solid Waste Disposal Facility

Submitted to:

Ms. Laura Prentice Senior Program Manager Land Development Unit Community Services YG PO Box 2703, Main Administration Building Whitehorse, YT Y1A 2C6

Report Number: 1114360073-501-R-Rev0-2900

Distribution:

2 - Yukon Government Community Services

2 - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Swift River Solid Waste Facility (the "Facility" or "Site") is one of the sites included in the program. The first phase completed for the program was a review of Site-specific requirements and considerations. The second phase was the preparation of a work plan and schedule. The third phase was the development and presentation of a Background Research and Facility Site Assessment Plan. The fourth phase consisted of the drill program tender specification and tender process management. The fifth phase consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters. This sixth and final phase resulted in a draft of this complete Hydrogeological Assessment Report detailing the impact of the Facility to groundwater quality, and risk to down gradient receptors.

In summary, the information obtained during the Site Assessment indicated the following:

- <u>Site Description</u>: The Facility is accessed by a 260 m gravel road, north off Kilometre 1,126.7 of the Alaska Highway in the southeast part of the Yukon Territory. It lies within the Pelly Mountains Ecological Region at latitude 60°02'23" North and longitude 131°01'54" West, approximately 150 km (Alaska Highway kilometres) west of the Town of Watson Lake and 10 km (Alaska Highway kilometres) northeast of Swift River, Yukon. The Facility is operated by the Yukon Government Highways and Public Works Transportation Maintenance Branch. The Facility was intended to serve only the Yukon Government highway camp and construction activities; however, three local hunting and fishing lodges and a drilling contractor also use the Facility. No evidence of chemical or fuel storage, above or below ground tanks, spills or discharges, or hazardous materials storage was observed during a Site reconnaissance.
- <u>Topography</u>: Site topography is characteristic of terraced glacio-fluvial landforms. The cleared area at the Facility is generally flat, with the surrounding area sloped to the southeast towards the Swift River. The Facility is located at a surface elevation of approximately 1,005 m above mean sea level (amsl).

Hydrogeology:

- A search of the Natural Resources Canada, Groundwater Information Network did not identify groundwater wells within 1,500 m of the Site.
- Subsurface conditions were investigated with three monitoring wells SR-MW12-01, SR-MW12-02, and SR-MW12-03, which were installed between May 25 and May 27, 2012 under the supervision of Golder Associates to establish a monitoring well network at the Facility.
- The Site stratigraphy consists of between 7 m and 14 m of till and minor glacio-fluvial outwash overlying bedrock of the Carboniferous to Permian Swift River formation, which is composed of phyllite and inter-layered quartzite and chert.

i

- Groundwater was encountered as follows:
 - SR-MW12-01: at approximately 23.7 m below grade, 9.4 m below the surficial sediments/bedrock interface; at 7.4 m below grade;
 - SR-MW12-02: in an unconfined surficial flow system approximately 3.6 m thick on top of bedrock;
 and
 - SR-MW12-03: approximately 6.1 m below grade and approximately 1 m above the bedrock interface.
- Due to the small size of the Site and inherent permeability of unconsolidated sediments and shallow, fractured bedrock it is anticipated that these units are hydraulically connected.
- Based on the groundwater elevations observed in each of the wells it was determined that groundwater flow at the Site is southeast towards the Swift River with a gradient of approximately 0.045 m/m.
- A round of hydraulic response testing (slug testing) was performed on July 4 and 5, 2012. Results indicated a hydraulic conductivity at the Site ranging from 3.2 x 10⁻⁵ to 3.5 x 10⁻⁷ m/s. This result produces an estimated average linear groundwater seepage velocity of up to 130 m per year.

Groundwater Chemistry:

- Monitoring wells SR-MW12-01, SR-MW12-02, and SR-MW12-03 were developed and sampled by Golder during one event on May 29, 2012, approximately one week after installation.
- A water quality assessment was performed on the samples taken during this first monitoring event. Water samples from all three of the newly installed monitoring wells, as well as the Swift River, showed acceptable levels of all chemical parameters tested, when compared against the Yukon Contaminated Sites Regulation (CSR) criteria for freshwater aquatic life. Results of groundwater sampling performed on the monitoring well network at the Site showed low levels of all constituents, including those typically associated with leachate contamination. This suggests that leachate influence on the groundwater at the Site is negligible.
- Detectable levels of petroleum hydrocarbons, naphthalene and heavy extractable petroleum hydrocarbons (HEPH_w) were found at SR-MW12-02. There is a possibility that the detected petroleum hydrocarbons are associated with the method used to drill the wells; therefore, the results may not have been representative of actual groundwater conditions.

The following recommendations are made based on the results of the 2012 hydrogeological and water quality investigations:

- As required by the Solid Waste Permit for the Facility, future groundwater monitoring should be conducted in the spring and late summer.
- Monitoring well locations and elevations should be surveyed by a professional land surveyor. Elevation and position of top of PVC pipe and ground elevation should be surveyed.
- The source and significance of detectable levels of petroleum hydrocarbons, naphthalene and HEPHw found at SR-MW12-02, should be revaluated following the two rounds of groundwater sampling (*i.e.*, one additional round of groundwater sampling). The presence of petroleum hydrocarbons may be associated with the method used to drill the well.
- As there are only five commercial-type users and only aquatic life standards apply to the site the source and significance of slightly elevated chemical parameters at SR-MW12-03 should be revaluated following the two rounds to groundwater sampling to ensure that groundwater at this well is not influenced by leachate and accurately depicts up-gradient groundwater conditions..

Study Limitations

This report was prepared for the Government of Yukon, Community Services Infrastructure Development Branch.

The inferences concerning the Swift River, Solid Waste Facility contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition of the property at the time of the Site reconnaissance, monitoring wells installation, and groundwater monitoring events, supplemented by historical and interview information obtained by Golder, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, Golder has relied in good faith on information provided. We accept no responsibility for deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this report have been prepared for the specific application to this project, and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time, and should be reviewed.

If new information is discovered during future work, Golder should be requested to re-evaluate the conclusions of this report and to provide amendments, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0	INTRODUCTION1						
	1.1	Background	1				
	1.2	Purpose and Objectives	1				
	1.3	Scope and Sequence of Work	1				
	1.4	Qualifications of Assessors	2				
	1.5	Authorization	3				
2.0	FACIL	ITY DESCRIPTION AND HISTORY	3				
	2.1	Location of the Study Area	3				
	2.2	Site History	3				
3.0	METH	ODOLOGY	3				
	3.1	Preliminary Hydrogeological Assessment	3				
	3.1.1	Data sources	4				
	3.1.2	Site Inspection	4				
	3.1.3	Background Geological information	5				
	3.1.4	Contaminated Sites Registry	5				
	3.1.5	Review of Solid Waste Disposal Facility Permit and Waste Management Plan	5				
	3.2	Field Investigations	6				
	3.2.1	Scope of Field Investigations	6				
	3.2.2	Groundwater Monitoring Well Network	6				
	3.2.3	Monitoring Well Surveying	8				
	3.2.4	Groundwater Monitoring Event	8				
	3.2.5	Hydraulic Response Tests	g				
	3.3	Laboratory Testing	g				
	3.4	Quality Control Assurance	g				
	3.5	Application of Applicable Water Quality Standards	10				
4.0	CONC	EPTUAL HYDROGEOLOGICAL MODEL	12				
	4.1	Setting	12				
	4.2	Climate	12				

	4.3	Geology and Hydrogeology	12			
	4.3.1	Geological Framework	12			
	4.3.2	Principal Aquifers	13			
	4.4	Groundwater Flow Systems	13			
	4.4.1	Regional and Intermediate Groundwater Flow	13			
	4.4.2	Local Groundwater Flow	14			
	4.5	Hydraulic Response Tests	14			
	4.6	Estimated Average Linear Groundwater Velocity	15			
	4.7	Potential Contamination of Groundwater and Transport Mechanisms	15			
5.0	GROUI	NDWATER IMPACT ASSESSMENT	16			
	5.1	Review of Groundwater Chemistry	16			
	5.2	Interpretation of Groundwater Chemistry	17			
6.0	CONCI	_USIONS	18			
7.0	RECOMMENDATIONS					

TABLES

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements	5
Table 2: Well Construction Details	7
Table 3: Monitoring Well Locations and Groundwater Elevations from the Monitoring Event on May 29, 2012	8
Table 4: Parameters sampled for May 2012	9
Table 5: Review of QA/QC Procedures Taken	9
Table 6: Applicable Water Quality Standards	11
Table 7 Aquifer Units Encountered at the Site	13
Table 8: Estimated Hydraulic Conductivity	14
Table 9: Important Groundwater Chemistry Results	16

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Plan and Cross Section Location
- Figure 3: Regional Surficial Geology
- Figure 4: Conceptual Hydrogeological Cross-Section
- Figure 5: Regional Drainage and Land Zoning
- Figure 6: Borehole Location Map Groundwater Elevation
- Figure 7: Schoeller Plot
- Figure 8: Piper Plot
- Figure 9: Stiff Diagram

APPENDICES

APPENDIX A

Site Photographs

APPENDIX B

Well Construction Logs

APPENDIX C

Well Development and Sampling Sheets

APPENDIX D

Slug Test Logs and Data

APPENDIX E

Laboratory Analytical Results and COC

1.0 INTRODUCTION

1.1 Background

Golder Associates Ltd. ("Golder") was retained by the Government of Yukon Community Services Infrastructure Branch on September 28, 2011 to complete a groundwater monitoring well network installation and hydrogeological assessment program at up to 20 solid waste facilities located across the Territory. The Swift River Solid Waste Disposal Facility (the "Facility", the "Site") is one of the sites included in the program. This completed Hydrogeological Assessment represents the final stage of this project.

These works have been performed in accordance with the approved scope of work detailed in Golder's proposal (P1-1436-0073) dated August 29, 2011, and accepted by Yukon Government Community Services on October 7, 2011. Additional works performed are detailed in our letter dated April 26, 2012 and were accepted April 30, 2012.

1.2 Purpose and Objectives

A phased approach is typically implemented in order to develop a Site-specific groundwater monitoring program. The following objectives are included in the development of the program:

- Develop a conceptual hydrogeological model of the Site using existing data that identifies contaminant source(s), pathways and receptors;
- Visit the Site to confirm the hydrogeological model, assess Site conditions and identify monitoring well locations;
- Design a monitoring well network and drilling program;
- Install groundwater monitoring wells in accordance with the plan;
- Sample the groundwater and, if applicable, surface water;
- Analyze the data and identify potential impacts;
- With the new data, re-evaluate the conceptual hydrogeological model and groundwater monitoring program; and
- Provide recommendations, if needed, to further assess potential impacts to groundwater quality.

1.3 Scope and Sequence of Work

The following scope was proposed to develop the hydrogeological conceptual model for the Site. This work was performed in accordance with the Waste Disposal Facility Permit (Permit No: 80-011 effective January 1, 2010 to December 31, 2011), relevant Environment Yukon Protocols and in accordance with the Yukon Environmental and Socioeconomic Assessment Act (YESAA) Decision Document issued for the Site (YESSA File 2011-0293) on March 15, 2012.

In summary, the work completed at the Facility included the following six phases:

- Phase 1 assessed the needs for special considerations at the Site;
- Phase 2 outlined a work plan and schedule;
- Phase 3 consisted of background research and finalization of a draft of the Site Assessment Plan;
- Phase 4 consisted of the drill program tender specification and tender process management;
- Phase 5 consisted of the installation of a monitoring well network and collection of data on water levels, water quality, and aquifer parameters; and
- Phase 6 comprised preparation of the draft of this Hydrogeological Assessment Report detailing the impact of the Facility on groundwater quality, and risk to down gradient receptors.

1.4 Qualifications of Assessors

Project Manager

The role of Project Manager was filled by Gary Hamilton, P. Geo., of Golder's Burnaby, BC office. Mr. Hamilton is a senior contaminant hydrogeologist and Principal with Golder Associates. He has over 25 years of experience, has completed landfill monitoring projects locally, and is very familiar with Yukon environmental regulations. Mr. Hamilton conducted the initial Site inspections, coordinated the drilling work and reviewed this assessment report.

Project Director

The role of Project Director was filled by Guy Patrick, P. Eng., of Golder's Victoria, BC office. Mr. Patrick is a senior hydrogeologist and a Principal with Golder Associates. He is a Professional Engineer registered with the Association of Professional Engineers of the Yukon Territory. Mr. Patrick has over 30 years of experience in the field of environmental and hydrogeological assessments.

Field Hydrogeologist-Engineer

The role of Project Hydrogeologist was filled by Calvin Beebe of Golder's Nelson, BC office. Mr. Beebe has an M.Sc. in Hydrogeology from Saint Francis Xavier University (2012) and has completed numerous projects as a Hydrogeologist with Golder Associates including work on contaminated sites, and works with senior personnel on a regular basis.

Mr. Beebe was assisted by Ms. Andrea Badger. Ms. Badger joined Golder in May 2012 as a Junior Engineer-in-Training. She obtained a B.Sc. in Civil Engineering with an Environmental Option, from the University of Alberta, Edmonton (2012) and a Diploma of Northern Studies, Outdoor and Environmental Studies at Yukon College, Whitehorse (2007). She has been involved with monitoring well drilling, development, testing and sampling at landfills across the Yukon. She has also been involved with surface water monitoring at a construction site in Northern British Columbia.

Technicians

Krista Meneghetti assisted with the drilling program. Ms. Meneghetti is a Senior Environmental Technologist based out of Golder's Vancouver, BC office. Joe Marquardson assisted with developing and sampling of wells. Mr. Marquardson is a Senior Fisheries Technician based out of Golder's Whitehorse office.

1.5 Authorization

Written authorization and a signed contract to proceed with the work outlined in our proposal dated August 29, 2011 was received by Ms. Laura Prentice, Program Manager, on October 7, 2011. Golder received e-mail authorization to proceed with additional work detailed in our letter dated April 26, 2012 on April 30, 2012. The Change Order for the work was attached to the e-mail message.

2.0 FACILITY DESCRIPTION AND HISTORY

2.1 Location of the Study Area

The Facility is located at Kilometre 1,126.7 of the Alaska Highway in the southeast part of the Yukon Territory. It lies within the Pelly Mountains Ecological Region at latitude 60°02'23" North and longitude 131°01'54" West. The Facility is accessed by a 260 m gravel road north off the Alaska Highway (Figure 1, "Key Plan"). The nearest inhabited area to the Site is the settlement of Swift River, which is located approximately 10 km to the southwest.

2.2 Site History

In 1994 the Yukon Government Highways and Public Works Transportation Maintenance Branch constructed the Swift River Waste Disposal Facility. A review of historical aerial photographs for the area indicates that the land was undeveloped prior to its use as a landfill. The approximate area land filled is included on Figure 2. Since 2006, some segregation of metals and other recyclable material from the waste was conducted.

Yukon Government Highways and Public Works Transportation Maintenance Branch (2008) prepared a Solid Waste Management Plan (SWMP) for the Facility.

3.0 METHODOLOGY

3.1 Preliminary Hydrogeological Assessment

The preliminary hydrogeological assessment involved a review and interpretation of existing information and an inspection for the Swift River solid waste disposal facility. The initial inspection of the Facility was conducted on October 23, 2011 and a follow-up inspection was completed on May 24, 2012. The purpose of preliminary hydrogeological assessment was to identify the appropriate drilling methods and equipment, and potential monitoring well locations. This portion of the work included the following three tasks:

- Compilation and review of available information;
- Assessment and interpretation of available hydrogeological data; and
- Development of a conceptual hydrogeological model.

3.1.1 Data sources

Data used to complete the hydrogeological assessment was obtained from the following sources:

- Site inspection of October 23, 2011 and May 24, 2012.
- Environment Canada, Meteorological Service of Canada Last Modified 2011-11-16, Website: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/Canadian Climate Normals or Averages 1971-2000.
- Fetter, C. W., Applied Hydrogeology, Third Edition, PRENTICE HALL, New Jersey. 1994.
- Geological Survey of Canada. Geology, Swift River, Yukon Territory, 1978.
- Government of Yukon Territory, Highways and Public Works, Transportation Maintenance Branch, Solid Waste Management Plan: Swift River Solid Waste Disposal Facility. 2008.
- Government of Yukon Territory. Environment Act Contaminated Sites Regulation. O.I.C. 2002/171. Schedule 3- Generic Numerical Water Standards for Protection of Freshwater Aquatic Life and Drinking Water.
- Government of Yukon Territory, Yukon Environment, Protocol for the Contaminated Sites Regulation under the Environment Act. 2011.
- Government of Yukon Territory, Yukon Geological Survey, YGS MapMaker Online Website: http://maps.gov.yk.ca/imf.jsp?site=YGS.
- Government of Yukon Territory, Yukon Mining and Lands Viewer Website: http://maps.gov.yk.ca/imf.jsp?site=miningLands.
- Government of Yukon Territory, Yukon Water, Water Data Catalogue
 Website: http://yukonwater.ca/MonitoringYukonWater/WaterDataCatalogue/.
- Government of Yukon Territory, Department of Environment, Compiled from The Yukon Water Well Registry Summary of Yukon Water Wells, May 11, 2006-Website: http://www.env.gov.yk.ca/monitoringenvironment/hydrology.php.
- Klassen, R. W., Surficial Geology Map of Swift River, Yukon Territory. Open File #539. Geological Survey of Canada. 1978.
- Natural Resources Canada, Groundwater Information Network Website: http://ngwd-bdnes.cits.nrcan.gc.ca/service/api_ngwds:gin/en/wmc/aquifermap.html.

3.1.2 Site Inspection

Prior to the Facility reconnaissance, Golder developed a Facility-specific health and safety plan (HASP) for implementation during the work. The health and safety plan included a description of the potential hazards that could be encountered during the Facility reconnaissance and proposed mitigation. Site inspections were conducted on October 23, 2011 and May 24, 2012. These two Site visits were conducted to review the layout of the Facility and confirm geological and topographic information obtained from the review of background data. Proposed monitoring well locations were reviewed for access constraints. Selected photographs of the Facility were taken during the reconnaissance and are presented in Appendix A.

3.1.3 Background Geological information

Geological information was obtained through a review of topographic and geological maps from the Department of Energy Mines and Resources Canada, and through the Canadian Geological Survey. Additional data on the subsurface of the surrounding area was obtained through the online Groundwater Information Network (GIN), provided by Natural Resources Canada (NRCAN), and the Yukon Water Well Registry. A search of the Yukon Water online Data Catalogue did not identify water testing results within the vicinity of the Facility.

3.1.4 Contaminated Sites Registry

A Site Registry search was conducted by Yukon Environment on December 1, 2011. The search identified no contaminated sites files or spill reports for the Swift River Solid Waste Facility; however, it was noted by that the Facility does not have any analytical results in the file to compare against the Yukon CSR standards to determine if any contamination exists.

3.1.5 Review of Solid Waste Disposal Facility Permit and Waste Management Plan

Solid Waste Permit 80-011 was reviewed. The Solid Waste Permit was issued on March 17, 2012. It states that the Facility is to be operated in compliance with any applicable requirements in federal, territorial, and municipal legislation including the Environment Act and Solid Waste Regulations;

Monitoring requirements set out in Waste Permit 80-011 include:

- Monitoring water levels and collecting water samples from groundwater monitoring wells at the Facility twice a year (spring and late summer);
- Sampling of down gradient surface water bodies concurrently with the groundwater sampling;
- Analyze surface water and groundwater samples for the parameters outline in section 3.7;
- Analyze water samples at a laboratory that is accredited as conforming to ISO/IEC 17025 by an accrediting body that conforms to ISO/IEC 17011; and
- Submitting monitoring results to Environment Yukon by January 31st each year.

Table 1: Summary of Waste Disposal Facility Permits and Groundwater Monitoring Requirements

Site	Site Disposal Facility Permit Number	Permit Type	Solid Waste Management Plan	Required Groundwater Monitoring
Swift River Solid Waste Disposal Facility	80-011	Solid Waste Disposal Facility	Yes (Highways and Public Works maintenance and transportation Branch 2011)	Twice Per Year

3.2 Field Investigations

3.2.1 Scope of Field Investigations

The scope of the field investigations included the following:

- Three on-site groundwater wells were drilled by Midnight Sun Drilling under the supervision of Golder Associates from May 25 to 27, 2012;
- Wells were developed and sampled by Golder Associates on May 29, 2012. The water levels at each well were measured prior to purging and sampling, and physiochemical parameters were monitored at each well during development and sampling. Groundwater samples were sent ISO/IEC 17025 accredited laboratories for analysis;
- Wells were slug tested to assess hydraulic conductivity and linear groundwater velocity; and
- Results of field and laboratory data are summarized and are interpreted in this report.

3.2.2 Groundwater Monitoring Well Network

Groundwater monitoring well installation was undertaken at the Swift River Solid Waste Disposal Facility in general accordance with Yukon Contaminated Site Regulation Protocol (Yukon Environment, 2011).

Three (3) groundwater monitoring wells were proposed to be installed at the Site to assess potential groundwater contamination sourced from the waste disposal facility. SR-MW12-01 and SR-MW12-02 were intended to assess any impact to the groundwater quality sourced from the landfill while SR-MW12-03 was targeted to characterize up-gradient groundwater. Locations of the monitoring wells (Figure 2) were selected based on aerial photography, review of Site history, and a Site inspection.

The drilling and monitoring well installation was completed by Midnight Sun Drilling of Whitehorse, Yukon under the direction of Golder Associates from May 25 to 27, 2012:

- SR-MW12-01 was installed on the southeast edge of the Site and advanced to a depth of 25.3 m below grade (m bg);
- SR-MW12-02 was installed at the southern corner of the Site and advanced to approximately 11.3 m bg;
 and
- SR-MW12-03 was installed on the northwest edge of the Site and advanced to approximately 10.1 m bg.

All wells were installed using a Driltech Marlin 5 truck-mounted air rotary drill rig.

The locations of newly installed wells were obtained by Trimble handheld GPS to an accuracy of 0.5 m or better. Elevations for top of casing (TOC) for all wells were obtained by level survey.

A Site plan showing the monitoring well locations and key Site features is provided in Figure 2. Note that newly installed wells were not surveyed.

Grab samples of drill cuttings were taken at regular intervals to log the lithology encountered in each borehole. Borehole logs indicating observed lithology along with well construction details are provided in Appendix B, with a summary of well construction details provided in Table 2. The following is a summary of the depth of saturated zones that were encountered at the Site:

- At well SR-MW12-01, which is located northwest and up gradient of the waste disposal cell, groundwater saturation was encountered at a depth of approximately 23.7 m bg, at 9.4 m below the surficial/bedrock interface;
- At well SR-MW12-02 groundwater saturation was encountered at approximately 7.4 m below the ground surface in an unconfined flow system approximately 3.6 m thick on top of bedrock; and
- At well SR-MW12-03 groundwater saturation was encountered at approximately 6.1 m bg, at approximately 1 m above the bedrock interface.

Each monitoring well was completed with the top of the screen installed as close as possible to the interval where the moisture content of the formation appeared to be transitioning from unsaturated to saturated.

Installation details are included on the borehole logs in Appendix B. Typical completion details are:

- Monitoring wells were completed with 50 mm PVC Schedule 40 PVC pipes;
- A 3 m long well screen (10-slot) was installed in all three monitoring wells;
- An un-slotted PVC pipe was installed above the well screen to about 0.80 m above grade;
- A silica sand pack was used to fill the annulus between the PVC well screen and the borehole wall. The sand pack was extended approximately 1.5 m above the top of the screened interval;
- A seal consisting of approximately 1.5 m of bentonite chips was placed directly above the sand pack. The remainder of the annulus was filled with bentonite well grout;
- Each well was capped with a PVC end-cap and the well PVC-standpipe protected with a lockable steel protective casing; and
- Each well was developed by removing a minimum of three well volumes using dedicated Waterra[™] tubing and a Hydrolift[™] pump. Development logs are provided in Appendix C.

Table 2: Well Construction Details

Well ID	Drilled Depth (m bg)	Aquifer Unit Monitored	Casing Diameter (mm)	Screened Interval (m bg)	Filter Pack Interval (m bg)
SR-MW12-01 25.3 Bedrock		50	22.3 – 25.3	20.7 – 25.3	
SR-MW12-02	11.3	CLAYEY SILT/ GRAVEL/ BEDROCK	50	8.2 – 11.3	6.7 – 11.3
SR-MW12-03	10.1	Bedrock	50	7.0 – 10.1	5.8 – 10.1

3.2.3 Monitoring Well Surveying

Golder surveyed the vertical elevation to the top of the well PVC standpipe at SR-MW12-01, SR-MW12-02, and SR-MW12-03 on May 29, 2012. Elevations were relative to a benchmark, for which elevation was obtained via Trimble GPS with a vertical accuracy of approximately 0.1 m. Surveyed elevations were then determined relative to this single GPS elevation. Table 3 presents a summary of survey data and water-level measurements.

Table 3: Monitoring Well Locations and Groundwater Elevations from the Monitoring Event on May 29, 2012

· / · · · ·							
Well ID	GPS Location	Top of PVC Casing Elevation (masl)	Standing Water Level (mbtoc ¹)	Groundwater Elevation (masl)			
SR-MW12-01	6657509.8 m N 386864.0 m E	1009.6	9.33	1000.28			
SR-MW12-02	6657461.2 m N 386809.5 m E	1008.9	7.94	999.59			
SR-MW12-03	6657591.6 m N 386788.4 m E	1013.2	7.91	1005.29			

3.2.4 Groundwater Monitoring Event

Monitoring wells SR-MW12-01, SR-MW12-02, and SR-MW12-03 were developed and sampled by Golder on May 29, 2012. This allowed approximately one week of rest after installation. Due to logistical constraints, the wells could not be developed immediately following installation.

The procedure used for sampling followed Contaminated Sites Regulation Protocol No. 7. Prior to and during development/purging of each well, the water level was first measured with an electronic measuring tape. Between three and ten well volumes were then purged from each well using 5/8 inch high density polyethylene (HDPE) Waterra™ tubing, a foot valve, and a Hydrolift™ pump. Following purging, a sample was collected immediately. During purging, physiochemical parameters (pH, temperature, electrical conductance (EC), dissolved oxygen (DO)) were collected at regular intervals using an YSI 650MDS and allowed to reach equilibrium prior to sampling. Groundwater Development and Sampling Datasheets are presented in Appendix C. In addition to the three groundwater monitoring wells sampled, a surface water sample from the nearest potential down gradient receptor was acquired during the same monitoring round. The nearest downgradient receptor was determined to be a small oxbow in the channel of the Swift River approximately 550 m southeast of the Site.

Sample containers and appropriate preservatives were obtained from ALS's Whitehorse laboratory. Samples for dissolved metals were field-filtered using 0.45-micron, in-line filters and preserved with nitric acid. All samples were kept in coolers with ice packs prior to their delivery to ALS's Whitehorse office, within appropriate holding times. ALS's laboratory is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025 for analysis.

¹ mbtoc = meters below top of casing

3.2.5 Hydraulic Response Tests

Hydraulic response (slug) tests were performed on July 4 and 5, 2012 to assess the hydraulic conductivity of aquifers at the Site. Both rising head and falling head tests were performed using a solid 38 mm diameter PVC slug and a Solinst Levelogger electronic pressure transducer set to measure head fluctuations at one-second intervals. Manual water-level measurements were also recorded throughout the test.

Multiple rising head tests were successfully completed for SR-MW12-02. SR-MW12-01 test results could not be interpreted, and only one single rising head test was successfully performed in SR-MW12-03 due to slow responses.

3.3 Laboratory Testing

Parameters included in the laboratory testing of groundwater samples are summarized in Table 4. The parameter list complies with the Facility's Solid Waste Disposal Permit (Permit No. 80-011).

Sampling and analysis were undertaken in general accordance with Yukon Contaminated Site Regulation Protocols 2 and 5 (YCSR, 2011).

Table 4: Parameters sampled for May 2012

Sample ID	General Parameters	Nutrients	Dissolved Metals	PAH, BTEX, DOC	Fecal Coliform
SR-MW12-01	√	V	V	V	V
SR-MW12-02	√	√	V	√	√
SR-MW12-03	√	√	V	√	√
Swift River	√ √	√ √	√	√ √	√ √

3.4 Quality Control Assurance

The following section provides a detailed description of the Quality Assurance (QA) and Quality Control (QC) measures taken by Golder to ensure the accuracy and integrity of groundwater quality sample analysis.

The following table (Table 5) summarizes the QA/QC evaluation.

Table 5: Review of QA/QC Procedures Taken

QA/QC Aspect	Evidence and Evaluation			
Data Representativeness				
Sample Integrity	All samples were kept at the appropriate temperature and delivered to the laboratory within the appropriate holding times.			
Background Samples	SR-MW12-03 was intended to be up gradient of the Facility to provide background levels of physiochemical parameters.			
Field Procedures	Monitoring wells were developed and sampled using dedicated tubing. Equipment used in sampling more than one well was decontaminated using soap (Alconox™) and distilled water. Surface water samples were collected using one-time-use syringes.			
Calibration of Field Equipment	Calibration of field equipment was undertaken daily, prior to sampling wells.			

QA/QC Aspect	Evidence and Evaluation			
Data Precision and Accuracy	•			
	One blind duplicate was collected from WL-MW12-01 during the May 2012 groundwater monitoring event. Of the 112 analyte pairs tested, RPD values could not be calculated for 83 of			
Blind Duplicate	the pairs as both values in each pair were below the laboratory method detection limit (MDL). Of the remaining pairs tested only three analytes (nitrate, nitrite, and Total Kjeldahl Nitrogen) exceeded the RPD ² acceptance criteria of ±30%. These exceedances are considered to be generally minor and are related to the poor reproducibility of the analytical methods at low analyte concentrations.			
Trip Blanks	A trip blank was not collected during the May 2012 groundwater monitoring event.			
Laboratory Internal QA/QC	Laboratory QA/QC is detailed in the primary laboratory report (Appendix E). Overall, the primary lab showed acceptable testing frequency and acceptable results for the method blanks, laboratory duplicates and matrix spikes.			
Holding Times	No samples exceeded the maximum holding.			
Laboratory Detection Limit	Laboratory reports indicate that detection limits were below the standards applicable to this assessment.			
Completeness of test program	Wells were sampled in accordance with the Site Assessment and Work Plan criteria.			
Validity of Data Set	The data quality review indicates no significant systematic errors in the data collection or analysis process for groundwater. The results of laboratory internal QA/QC and analysis of blind duplicates were acceptable, and therefore, the data set is considered valid and complete for use as the basis for groundwater assessment.			

3.5 Application of Applicable Water Quality Standards

In accordance with the Government of Yukon's solid waste facility monitoring requirements, groundwater wells and the nearest surface water receptor were sampled and tested for the following parameters:

•	Major ions (Ca, Mg, Na, K, Cl,		Bicarbonate	•	Chemical oxygen demand
	SO ₄ , N, NO ₂ , NO ₃ and P)		рН		Total Kjeldahl Nitrogen
	Dissolved Metals		Total dissolved solids		EPH _{w10-10} & VH _{w6-10}
	Mercury		Ammonia		BTEX
	Hardness		Dissolved organic carbon		PAHs
•	Alkalinity		VOCs		Faecal coliform
	Carbonate				

² RPD calculations are presented in Appendix E of Golder's draft report entitled *Watson Lake Disposal Facility Hydrogeological Assessment* dated August 10, 2012

Groundwater and surface water analytical results were compared to the Yukon Contaminated Sites Regulation (YCSR) water standards or to the Canadian Environmental Quality Guidelines where no Yukon standard was available.

The four types of water uses outlined in the YCSR, the relevant water quality standards, and their applicability to this assessment are presented in Table 6.

Table 6: Applicable Water Quality Standards

Water Use	Applicable Water Quality Standard	Applicable Plume Radius (km)	Applicability to Assessment
Aquatic Life Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)		1	Applicable
Drinking Water	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Irrigation	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable
Livestock	Schedule 3 – Contaminated Sites Regulation (O.I.C. 2002/171)	1.5	Not Applicable

The following discusses the applicability of each water quality standard to the Facility.

Aquatic Life

Aquatic life standards, as per YCSR, are applicable primarily due to the Facility's proximity to the Swift River and several small oxbow ponds in the Swift River channel, all of which fall within the 1 km radius of the Site. It was determined, therefore, that aquatic life standards were **applicable** for the Swift River Facility.

Drinking Water

A search of drinking water wells on the groundwater Information Network website (accessed July 10, 2012) showed no drinking water wells located along the predicted down gradient direction between the Site and the Swift River, nor in any other area within a 1.5 km radius of the Site. It was therefore concluded that YCSR drinking water standards were **not applicable** for the Swift River Facility.

Irrigation

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on July 10, 2012, showed no irrigation wells on record for the Swift River area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there are irrigation wells in the area that were not identified.

A review of Google Earth Images from 2004, conducted by Golder on July 26, 2012, as well as several visits to the Facility conducted in May and July 2012 showed no agricultural land within 1.5 km of the Facility. It is therefore concluded that YCSR water quality standards for irrigation are **not applicable** to the Swift River Facility.

Livestock

A review of the Summary of Yukon Water Wells, compiled from The Yukon Water Well Registry, reviewed by Golder on July 10, 2012, showed no wells on record as being for livestock use in the Swift River area. It should be noted that this is not a complete record of all wells in the Yukon, and it is possible that there wells for livestock use in the area.

A review of Google Earth Images from 2004, conducted by Golder on July 26, 2012, as well as several visits to the Facility conducted in May and July 2012 showed no active livestock or livestock facilities within 1.5 km of the Facility. It is therefore concluded that YCSR standards for livestock are **not applicable** to the Swift River Facility.

4.0 CONCEPTUAL HYDROGEOLOGICAL MODEL

4.1 Setting

As illustrated on a Government of Canada topographic map, the Facility is at an elevation of approximately 1,005 m (3,300 feet) above sea level and lies within the Swift River Watershed. The regional hydraulic gradient near the Site is expected to follow the regional topography, which slopes southeast towards the Swift River. A cleared area is present at the Facility that is generally flat. A small pond is located up gradient, approximately 200 m west of the Facility.

4.2 Climate

Climate at the Site is likely similar to that at the Watson Lake A climate station (Climate ID 2101200), located approximately 150 km west of the Facility at an elevation of approximately 687.4 m above sea level. Average monthly precipitation reported at the Watson Lake station ranges from a low average of 13.9 mm in April to a high average of 59.9 mm in July. The average annual precipitation is approximately 404.4 mm, including 196.5 cm as snowfall. Temperature ranges from a low average of -24.2° C in January to a high average of 15.5°C in July. (Environment Canada, 2011)

Annual precipitation is relatively low (about 0.4m per year) and would suggest that infiltration of water through the waste and into the subsurface soils is relatively low. With a significant portion of the precipitation occurring in the form of snow, and the relatively cold climate, little infiltration would be expected during the winter months. During spring snow melt, there is the greatest potential for infiltration of water through the waste; however, a significant portion of the water would occur over land as surface runoff during this period.

4.3 Geology and Hydrogeology

4.3.1 Geological Framework

The southern Yukon, including the Swift River area, has undergone several episodes of glaciations, the most recent being the Quaternary McConnell glaciation (Figure 3, Regional Geology). During that period, sediments such as glacial till, glaciofluvial, and glaciolacustrine sediments were deposited, especially in low elevation areas such as the Swift River Valley.

The Swift River area is mapped as being underlain primarily by unconsolidated till and glaciofluvial deposits of Quaternary origin, with modern alluvial deposits associated with low-lying areas adjacent to the Swift River. Ablation till, colluvial glacial debris, and bedrock exposures are found at higher elevations near the Site.

Surficial geology maps published by the Yukon Geological Survey (YGS) indicate natural surficial materials at the Facility are representative of ablation till and glaciofluvial material deposited directly by glacial ice or melt water, respectfully. In general, deposits consist of well compacted to non-compacted material that is non-stratified and contains a heterogeneous mixture of particle sizes, commonly in a matrix of gravel, sand, and silt supporting cobbles and boulders. The thickness of the unconsolidated sediments was estimated by Klassen (1978) to be between 5 m and 30 m.

4.3.2 Principal Aquifers

As shown in Figure 4 (Conceptual Hydrogeological Model Section) it is inferred that groundwater occurs in a single phreatic aquifer composed of two hydraulically connected units; one unit being unconsolidated surficial sediments, and the other the underlying fractured bedrock. This aquifer probably also represents the "regional" flow conditions.

For the purpose of this report, aquifer units have been named the Surficial Aquifer and the Regional Bedrock Aquifer for ease of reference.

Table 7 Aquifer Units Encountered at the Site

Aquifer Name	Location	Aquifer Type	Comment
Surficial Aquifer	SR-MW12-02	Inter-granular,	CLAYEY SILT AND GRAVEL
Surnicial Aquilei	SR-MW12-03	porous media	Shallow flow
			Deep regional flow in this aquifer
Regional Bedrock Aquifer	SR-MW12-01 Possibly SR-MW12-03	Fractured rock	 Recharged by infiltration in outcrop areas and through lateral and vertical flow from the overlying surficial aquifer

4.4 Groundwater Flow Systems

4.4.1 Regional and Intermediate Groundwater Flow

It can be inferred from the topography that regional groundwater likely flows from the mountains (elevation approximately 1900 m amsl) to the northwest of the Site southeast towards the Swift River (elevation approximately 900 m amsl). Groundwater recharges the bedrock aquifer through infiltration of rainfall in high elevation areas and exposed outcrops and by direct infiltration of surface water. Regional groundwater flow occurs mainly through fractures in bedrock and to a lesser extent through unconsolidated sediments where the bedrock head intersects the water table. Regional groundwater discharges to the Swift River. This regional flow system was encountered in SR-MW12-01, where no significant surficial aquifer was encountered.

4.4.2 Local Groundwater Flow

Local flow direction at the Site is inferred from groundwater elevations in the newly installed monitoring well network to be to the Southeast (Figure 6, Groundwater Elevation). This is in accordance with the inferred regional groundwater flow direction. Hydraulic gradient at the Site was found to be moderate (approximately 0.045 m/m) due to the change in elevation between the mountain range located north of the Site and the Swift River. It can be inferred from this strong hydraulic gradient that nearly all groundwater from the Site discharges to the Swift River.

Golder used the groundwater depth data from June 2012 and well survey elevation information collected in May and June 2012 to calculate the groundwater elevation at each monitoring well. The water level measurements and groundwater elevations as of May 29, 2012 are presented in Table 3.

4.5 Hydraulic Response Tests

Golder Associates conducted slug tests on SR-MW12-01, SR-MW12-02 and SR-MW12-03 in July 2012. The slug tests were analyzed using AQTESOLV version 4.5 software and the results are included in Appendix D. The following is a summary of the findings.

Table 8: Estimated Hydraulic Conductivity

Monitoring Well ID	Primary Hydrogeological Unit	Solution Used	Estimated Hydraulic Conductivity (m/s)
SR-MW12-01	Fractured Rock	-	-
SR-MW12-02	CLAYEY SILT/GRAVEL	Bouwer-Rice (1976)	3.2 x 10 ⁻⁵
SR-MW12-03	Fractured Rock/CLAYEY SILT	Bouwer-Rice (1976)	3.5 x 10 ⁻⁷

As shown in Table 8, two different wells were successfully tested for hydraulic conductivity. Hydraulic conductivity at well SR-MW12-02 was assessed using multiple rising head slug tests. The assessed mean hydraulic conductivity of the unconsolidated CLAYEY SILT and GRAVEL unit found at SR-MW12-02 was 3.2×10^{-5} m/s, which is just outside the upper range for hydraulic conductivity of tills with a silty matrix (Fetter, 1994). Hydraulic conductivity at well SR-MW-12-03 was assessed using a similar method, but only a single rising head test was completed successfully. The combination weathered bedrock and unconsolidated CLAYEY SILT aquifer at SR-MW12-03 was assessed as having a hydraulic conductivity of 3.5×10^{-7} , which is a reasonable result for the conditions.

4.6 Estimated Average Linear Groundwater Velocity

As determined by the slug tests above, the reasonable range of hydraulic conductivities at the Site is between 3.2×10^{-5} and 3.5×10^{-7} . The hydraulic gradient across the Site was assessed, using the monitoring well network, to be approximately 0.045 m/m to the southeast. A range of reasonable linear groundwater velocities is calculated using the following equation:

$$V = (Ki)/n$$

Where: V: is the groundwater velocity in meters per second (m/s).

K: is the hydraulic conductivity in m/s as determined by slug testing

i: is the horizontal hydraulic gradient (m/m)

n: is the porosity which is estimated to be approximately 0.40 (Fetter, 1994) in the

CLAYEY SILT, and probably somewhat lower in the weathered bedrock.

The resulting groundwater velocity is estimated to be between 4×10^{-6} (m/s) and 4×10^{-8} (m/s); meaning groundwater flow velocity can be estimated to be between 1.24 and 126 m per year. Groundwater at the Site may travel faster or slower than these estimates due local variations in hydraulic conductivity.

4.7 Potential Contamination of Groundwater and Transport Mechanisms

Potential sources and transport mechanisms of groundwater contamination are evaluated based on the Site history, Site inspections, interviews with Facility personnel, hydrogeological investigation and contaminant transport principals. Potential sources include:

- Leachate from present and former domestic waste, commercial waste, industrial waste, metals, wood, rubber (tires), construction debris, derelict vehicles and any other waste disposed of at the Facility. Potential contaminants leaching from these sources include: heavy metals, nutrients (NO₃, NH₃), organic hydrocarbons (Fuels, PAHs, chlorinated hydrocarbons), and salts;
- Leakage and spillage from on-site hydrocarbon storage areas; and
- No off-site sources of pollution have been identified in this report. The Facility is located in a remote area far from any other facilities, making off-site sources of contamination unlikely.

Transport mechanisms that may act on these sources of contamination and cause contamination of downgradient receptors include:

- Percolation of precipitation from the surface, through the unsaturated zone, and into the saturated zone. This includes interflow, or flow of water through the unsaturated zone; and
- Transport of contaminants within the saturated zone (aquifer) to other downgradient locations.

5.0 GROUNDWATER IMPACT ASSESSMENT

5.1 Review of Groundwater Chemistry

As discussed in section 3.2.4, one round of groundwater monitoring was conducted on three newly installed wells and one surface water location at the Swift River Solid Waste Disposal Facility on May 29, 2012. Table 9 summarizes important parameters from the groundwater chemistry results. Chain-of-custody forms for the groundwater samples collected, as well as the complete groundwater chemistry results, can be found in Appendix E.

Table 9: Important Groundwater Chemistry Results

Sample Location	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	DOC (mg/L)	HEPHw (mg/L)
SR-MW12-01	168	2.61	0.0619	22.40	1.62	<0.25
SR-MW12-02	282	9.55	0.181	39.80	3.99	0.53
SR-MW12-03	241	4.69	0.0814	26.50	2.37	<0.25
Swift River	56	<0.50	<0.0050	6.08	3.44	<0.25

Total Dissolved Solids

A total dissolved solid (TDS) is a measurement of the total amount of dissolved organic and inorganic material contained within a liquid. Elevated TDS can indicate the presence of groundwater contamination caused by the degradation of contaminants and dissolution of the degraded material into groundwater. Typical ions that may characterize degraded waste include: NO₃, NH₃, Na, K, Mg, Ca, SO₄, Cl, and HCO₃.

TDS Values in monitoring well samples ranged from 168 mg/L in SR-MW12-01 to 282 mg/L in SR-MW12-02. These concentrations are considered within the normal range and variation for naturally occurring groundwater. Slightly elevated levels in SR-MW12-02 above the other wells may suggest minor leachate influence. TDS in the surface water sample was much lower than that found in any of the groundwater samples. This is generally expected in surface water, especially rivers, because the waters are oxygenated and not in prolonged contact with soil or rock.

Chloride

Chloride is often used as a tracer to assess anthropogenic influence on groundwater chemistry. Elevated chloride levels are associated with a number of sources including sewage, leachate, and road salting. In the case of landfills, elevated chloride is common due to degradation of waste with elevated salts. Chloride levels from the monitoring well network were low, ranging from 2.61 mg/L to 9.55 mg/L (SR-MW12-02). These values are considered reasonable for groundwater chemistry and not indicative of landfill leachate.

Ammonia

Ammonia is a typical landfill leachate indicator. Low levels of ammonia were detected in all three of the monitoring wells sampled, with values ranging from 0.062 mg/L in SR-MW12-01 to 0.181 mg/L in SR-MW12-02. The ammonia may be the result of minor leachate contamination, or may be naturally occurring. Levels were well below the limit for ammonia defined by the YCSR standard for freshwater aquatic life.

Dissolved Organic Carbon

Dissolved Organic Carbon (DOC) concentrations can be elevated by the presence of leachate originating from decomposed organic matter. Levels associated with landfill leachate can be in the hundreds or thousands of mg/L.

Dissolved organic carbon concentrations at all wells at the Swift River Site were low, and within values expected for natural background groundwater chemistry. Highest DOC levels were found in SR-MW12-02 (3.99 mg/L) which is one of the downgradient wells, and lowest in the other downgradient well SR-MW12-01 (1.62 mg/L).

Metals

Metals concentrations followed an observable trend. Most were highest in SR-MW12-02, lower in SR-MW12-01, and lowest in the surface water sample, as expected. No metals concentrations exceeded YCSR standard for freshwater aquatic life, and all were within what would be considered a reasonable range for naturally occurring groundwater.

Organics

Detectable levels of HEPHw (0.53 mg/L) and naphthalene (0.000065 mg/L) were identified in SR-MW12-02. As these chemicals should not be found in detectable levels in naturally occurring groundwater, this suggests minor leachate contamination at this well. Although levels were elevated above background concentrations, naphthalene was well below the YCSR limit (0.01 mg/L). There is no limit currently set for HEPHw concentration. The presence of petroleum hydrocarbons may be associated with the method used to drill the well.

5.2 Interpretation of Groundwater Chemistry

Four factors that may affect natural groundwater chemistry include:

- The source and chemical composition of recharge water;
- The lithological and hydrological properties of the geologic unit;
- The various chemical processes occurring within the geologic unit; and
- The amount of time the water has remained in contact with the geologic unit (residence time).

These factors may affect the type and quantities of dissolved constituents in ground water. The ionic composition of water can be used to classify the water into ionic types based on the dominant cation and anion, expressed in milliequivalents per litre (meq/L). The charge balance was calculated and the charge balance error was less than 5 percent, which is within the acceptable range for water that has a total ionic charge of 10 to 800 meq/L. These can be compared for different water samples using various types of plots.

The ionic compositions of samples from the Site were compared to discern different water types by plotting the meq/L concentrations of the samples on three types of diagrams: a Schoeller plot (Figure 7), a Piper diagram (Figure 8), and a Stiff diagram (Figure 9).

- Schoeller: The Schoeller semi-logarithmic diagram (Figure 7) shows total concentrations of the cations and anions, and may be used to identify different water types. The water samples from wells are similar; however, SR-MW12-02 appears to have slightly higher concentrations for most anions than the other two groundwater samples. This suggests that this water may have had a longer residence time than the samples from SR-MW12-01 and SR-MW12-03, or that there is a difference in the lithology/or permeability, or that the sample is influenced by a surficial source (*i.e.*, landfill leachate).
- Piper: The Piper diagram (Figure 8) illustrates that although the groundwater and surface water samples have different concentrations of constituents, the overall groundwater chemistry is similar. All samples are classified as calcium-bicarbonate type water.
- Stiff: A visual inspection of the Stiff diagram indicates minor differences between the groundwater and surface water samples. The primary differences being that the surface water sample is depleted in sodium (Na) and chloride (Cl) and enriched in calcium (Ca) when compared to the groundwater samples. Water chemistry for well SR-MW12-02, located in the southeast corner of the Site has a higher portion of Na and Cl compared to the other two groundwater samples.

In addition to the above, a trend of notably elevated TDS, chloride, sulphate, DOC, and detectable naphthalene at SR-MW12-02 suggest that this well is influenced by leachate from the Site more than the other two wells; however, this influence appears to be relatively minor, with all constituents remaining below YCSR standard for freshwater aquatic life. Elevated levels of constituents at SR-MW12-03, although inconclusive, may potentially point to minor leachate influence, meaning that the well may not accurately characterize upgradient groundwater conditions despite being upgradient of most of the waste disposal Facility.

SR-MW12-01 has the lowest concentrations of most important constituents. Due to the location of this well in fractured bedrock, it is possible that the fracture network is not open to direct recharge from the Site. In such a case, then the parameters at this well may more closely reflect background conditions.

6.0 CONCLUSIONS

A monitoring well network consisting of three wells was successfully installed at the Swift River Solid Waste Disposal Facility from May 25 to 27, 2012. The wells were developed and sampled May 29, 2012, and slug tested on July 4 and 5, 2012.

The following conclusions are made based on the results of the 2012 hydrogeological assessment:

<u>Site Description</u>: The Facility is accessed by a 260 m gravel road north off Kilometre 1,126.7 of the Alaska Highway in the southeast part of the Yukon Territory. It lies within the Pelly Mountains Ecological Region at latitude 60°02'23" North and longitude 131°01'54" West, approximately 150 km (Alaska Highway kilometres) west of the Town of Watson Lake and 10 km (Alaska Highway kilometres) northeast of

Swift River, Yukon. The Facility is operated by the Yukon Government Highways and Public Works Transportation Maintenance Branch. The Facility was intended to serve only the Yukon Government highway camp and construction activities; however, three local lodges and a drilling contractor also use the Facility. No evidence of chemical or fuel storage, above or below ground tanks, spills or discharges or hazardous materials storage were observed during a Site reconnaissance.

Topography: Site topography is characteristic of terraced glacio-fluvial landforms. The cleared area at the Facility is generally flat, with the surrounding area sloped to the southeast towards the Swift River. The Facility is located at a surface elevation of approximately 1,005 m above mean sea level (amsl).

Hydrogeology:

- A search of the Natural Resources Canada, Groundwater Information Network did not identify groundwater wells within 1,500 metres of the Site.
- Subsurface conditions were investigated with three monitoring wells SR-MW12-01, SR-MW12-02, and SR-MW12-03, which were installed between May 25 and May 27, 2012 under the supervision of Golder Associates for the creation of a monitoring well network at the Facility.
- The Site stratigraphy consists of between 7 m and 14 m of till and minor glaciofluvial outwash overlying bedrock of the Carboniferous to Permian Swift River formation, which is composed of phyllite and inter-layered quartzite and chert.
- A confined groundwater aquifer was encountered as follows:
 - SR-MW12-01 at approximately 23.7 m below grade, 9.4 m below the surficial/bedrock, at 7.4 m below grade;
 - SR-MW12-02 in an unconfined surficial aquifer approximately 3.6 m thick on top of bedrock, and
 - SR-MW12-03 approximately 6.1 m below grade and approximately 1 m above the bedrock interface.
- Due to the small size of the Site and inherent permeability of unconsolidated sediments and fractured bedrock it is anticipated that these units are hydraulically connected.
- Wells SR-MW12-01 and SR-MW12-02 were shown to be downgradient of the Facility, while SR-MW12-03 is directly upgradient of the Facility.
- Based on the groundwater elevations observed in each of the wells it was determined that groundwater flow at the Site is southeast towards the Swift River with a gradient of approximately 0.045 m/m.
- A round of hydraulic response testing (slug testing) was performed on July 4 and 5, 2012. Results of indicated hydraulic conductivity at the Site ranging from 3.2 x 10⁻⁵ to 3.5 x 10⁻⁷ m/s. This result produces an estimated average linear groundwater seepage velocity of up to 130 m per year.

Groundwater Chemistry:

 Monitoring wells SR-MW12-01, SR-MW12-02, and SR-MW12-03 were developed and sampled by Golder during one event on May 29, 2012; approximately one week after installation.

- A water quality assessment was performed on the samples taken during this first monitoring event. Water samples from all three of the newly installed monitoring wells, as well as the Swift River, showed acceptable levels of all chemical parameters tested, when compared against the Yukon Contaminated Sites Regulation (YCSR) criteria for freshwater aguatic life.
- Results of groundwater sampling preformed on the monitoring well network at the Site showed low levels of all constituents, including those typically associated with leachate contamination. This suggests that leachate influence on the groundwater at the Site is minimal.
- A trend of elevated TDS, chloride, sulphate, DOC, and detectable naphthalene at SR-MW12-02 suggest that this well is influenced by leachate from the landfill.
- Groundwater samples taken from all wells met the Yukon Contaminated Site Regulation Standards for freshwater aquatic life, which was the only standard deemed applicable at the Swift River Facility.
- Detectable levels of petroleum hydrocarbons, naphthalene and heavy extractable petroleum hydrocarbons (HEPH_w) were found at SR-MW12-02. There is a possibility that the detected petroleum hydrocarbons are associated with the method used to drill the wells; therefore, the results may not have been representative of actual groundwater conditions.

7.0 RECOMMENDATIONS

The following recommendations are made based on the results of the hydrogeological assessment presented in this report:

- As required by the Solid Waste Permit for the Facility, future groundwater monitoring should be conducted in the spring and late summer.
- Monitoring well locations and elevations should be surveyed by a professional land surveyor. Elevation and position of top of PVC pipe and ground elevation should be surveyed.
- The source and significance of detectable levels of petroleum hydrocarbons, naphthalene and HEPHw found at SR-MW12-02, should be revaluated following the two rounds of groundwater sampling (*i.e.*, one additional round of groundwater sampling). The presence of petroleum hydrocarbons may be associated with the method used to drill the well.
- As there are only five commercial-type users and only aquatic life standards apply to the site the source and significance of slightly elevated chemical parameters at SR-MW12-03 should be revaluated following the two rounds to groundwater sampling to ensure that groundwater at this well is not influenced by leachate and accurately depicts up-gradient groundwater conditions.

8.0 CLOSURE

We trust that this draft report is adequate for your current needs. Should you have any questions or require any additional information please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

ORIGINAL SIGNED

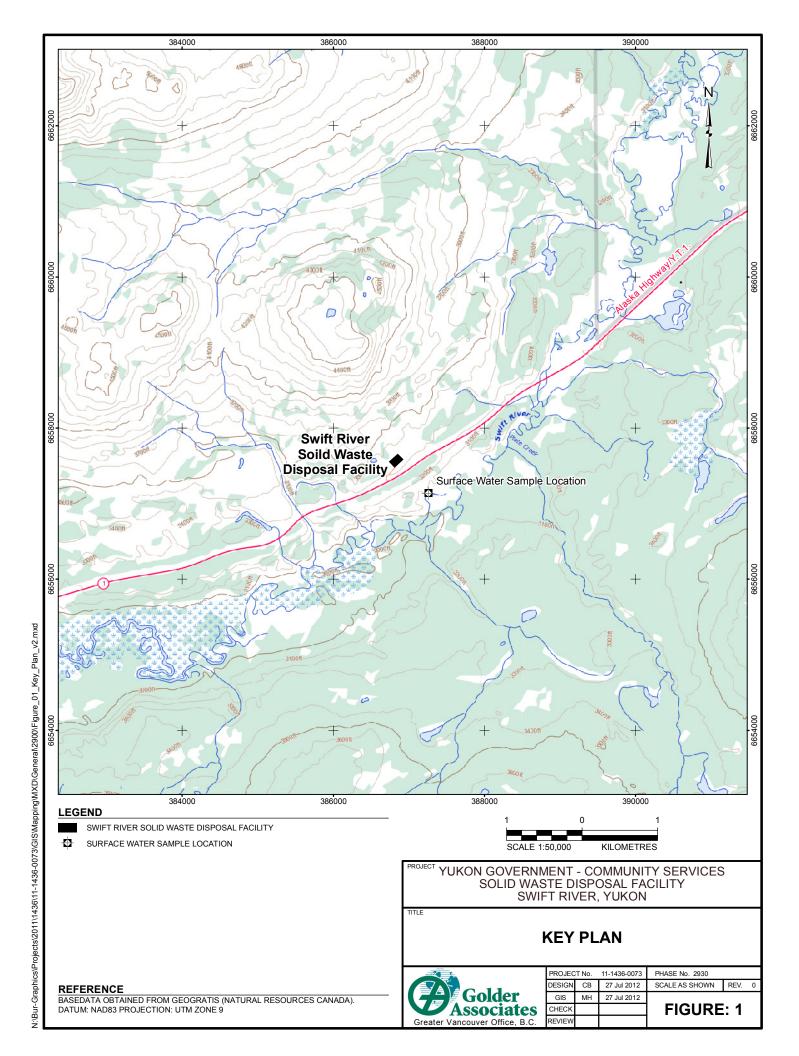
Calvin Beebe, M.Sc. Hydrogeologist

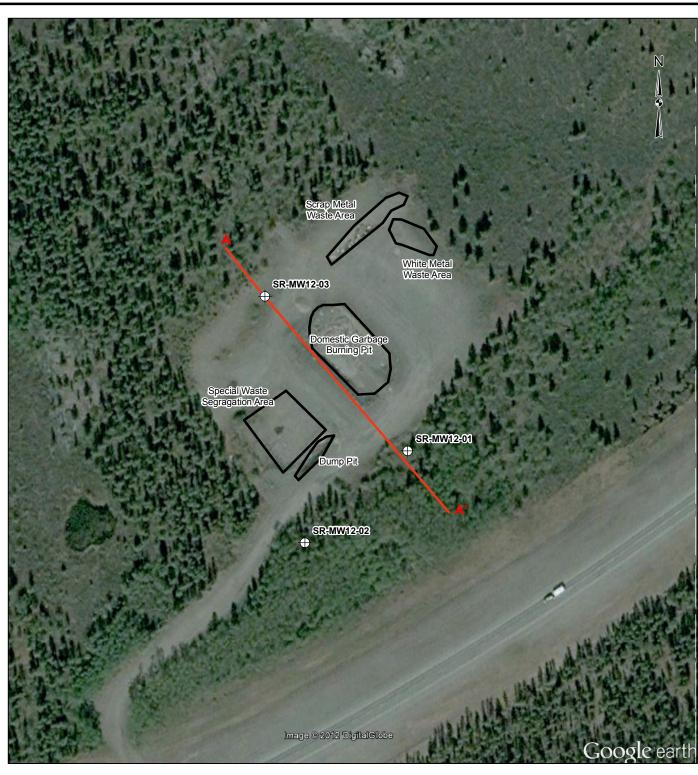
Gary Hamilton, P.Geo. Principal, Hydrogeologist

ORIGINAL SIGNED

Reviewed By:

ORIGINAL SIGNED


Guy Patrick, P.Eng. Principal, Hydrogeologist


CB/GJH/GCP/syd

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2011\1436\0073\1114360073\1114360073-501-r-rev0-2900\1114360073-001-r-rev0-2900 swift river hydrogeo assess 23feb_13.docx

MONITORING WELL MONITORING WELL

CROSS SECTION

PROJECT YUKON GOVERNMENT - COMMUNITY SERVICES SOLID WASTE DISPOSAL FACILITY SWIFT RIVER, YUKON

SITE PLAN & CROSS SECTION LOCATION

	L
	1
Golder	
Associates	ŀ
Greater Vancouver Office, B.C.	F

PROJEC	T No.	11-1436-0073	PHASE No. 2900	2900	
DESIGN	СВ	27 Jul 2012	SCALE AS SHOWN	SCALE AS SHOWN REV.	
GIS	JW	07 Aug 2012			
CHECK			FIGURE: 2		
REVIEW			1		

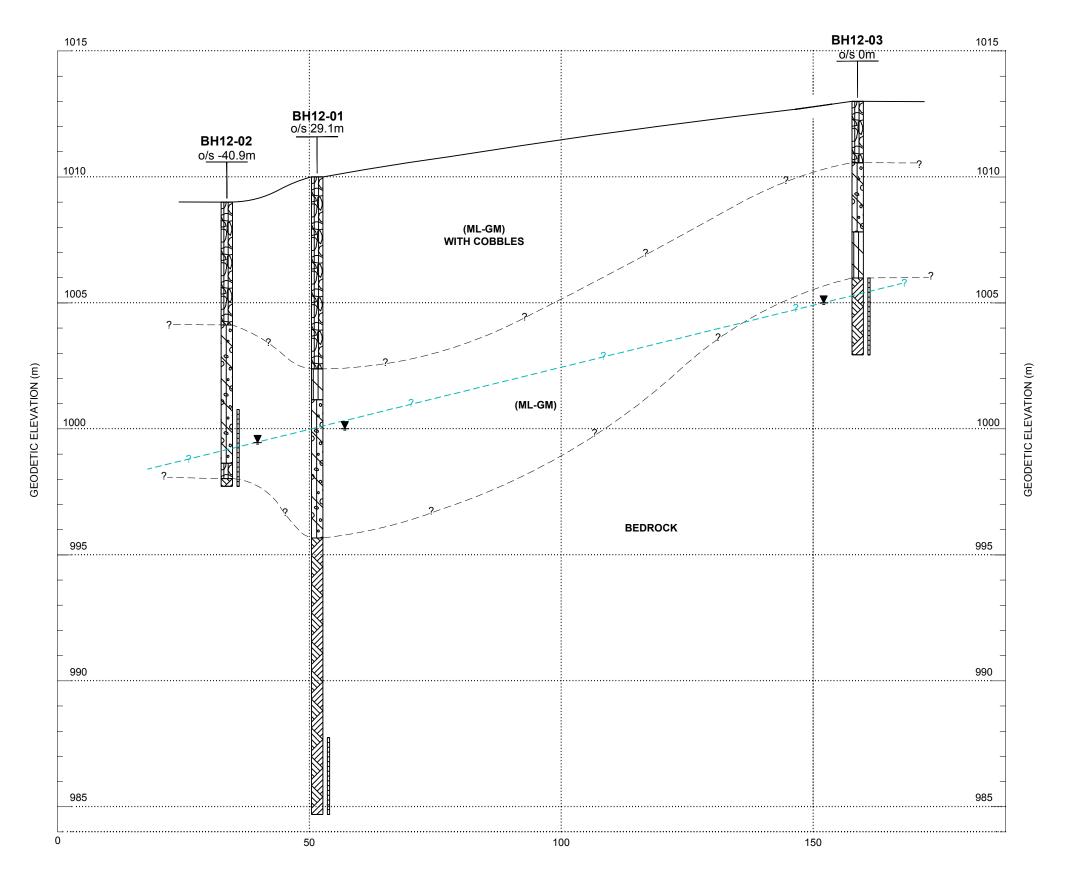
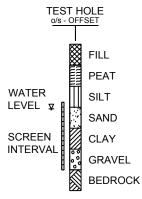

REFERENCE

IMAGE OBTAINED FROM GOOGLE EARTH, USED UNDER LICENSE.
IMAGERY DATE: JUNE 1, 2005. GOOGLE EARTH IMAGE IS NOT TO SCALE.
DATUM: NAD83 PROJECTION: UTM ZONE 9

PROJECT No. 11-1436-0073 PHASE No. 2900 REFERENCE DESIGN CB 07 Aug 2012 SCALE AS SHOWN REV. 0 **Golder Associates** BASEDATA OBTAINED FROM GEOGRATIS (NATURAL RESOURCES CANADA). SURFICIAL GEOLOGY DATA OBTAINED FROM THE YUKON GOVERNMENT, ENERGY, MINES AND RESOUCES. DATUM: NAD83 PROJECTION: ALBERS GIS JW 07 Aug 2012 FIGURE: 3 CHECK


A'SOUTHEAST

A NORTHWEST

LEGEND

TEST HOLE LOCATION SHOWING INFERRED STRATIGRAPHIC DATA. FOR DETAILED STRATIGRAPHY REFER TO RECORD OF TEST HOLE LOGS IN APPENDIX C.

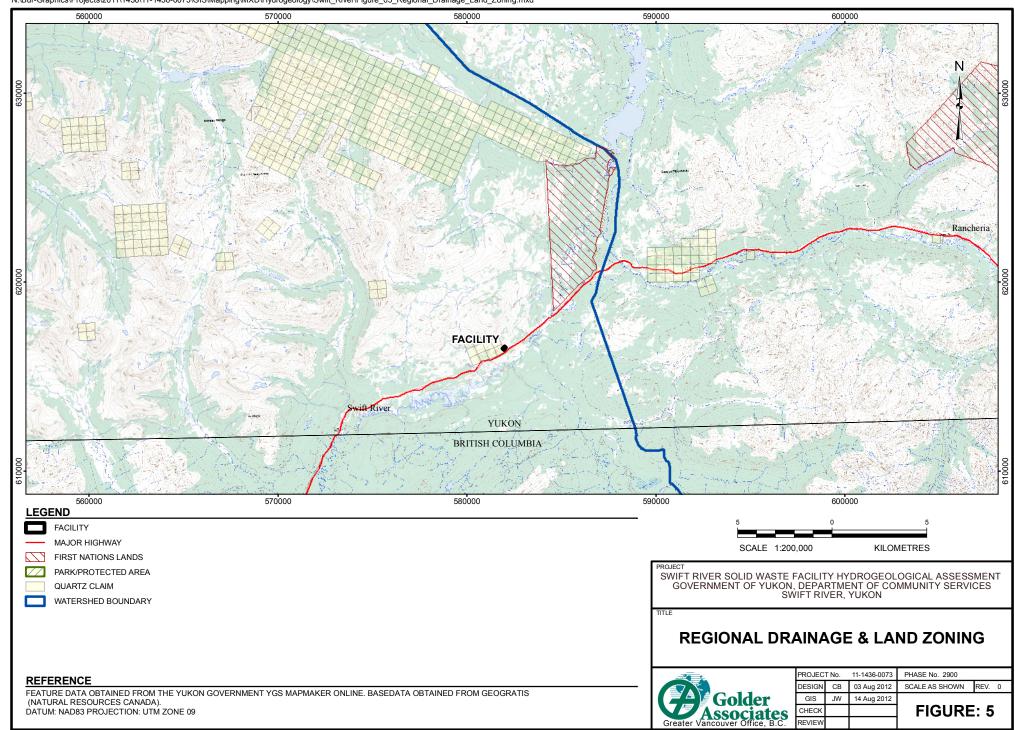
- APPROXIMATE GROUND SURFACE

---?--- INFERRED STRATIGRAPHIC BOUNDARY

---?--- INFERRED GROUNDWATER (mASL)

SPECIAL NOTE: DATA CONCERNING THE VARIOUS STRATA HAVE BEEN OBTAINED AT TEST HOLE LOCATIONS ONLY. THE SOIL STRATIGRAPHY BETWEEN TEST HOLES HAS BEEN INFERRED FROM GEOLOGICAL EVIDENCE AND MAY VARY FROM THAT SHOWN.

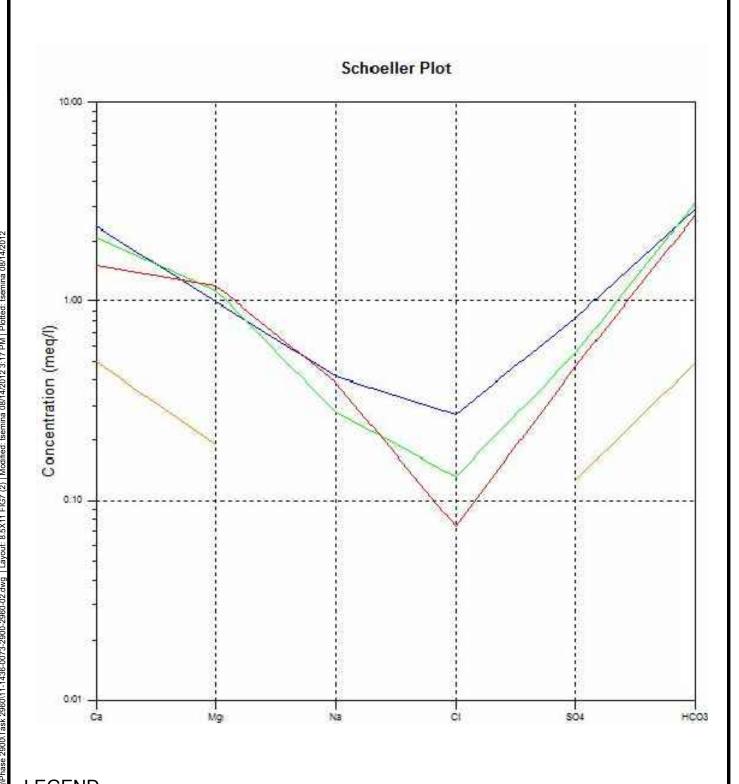
PROJECT

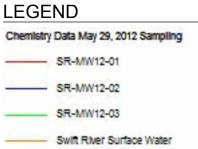

GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES SWIFT RIVER, Y.T.

ITLE

CONCEPTUAL HYDROGEOLOGICAL CROSS - SECTION

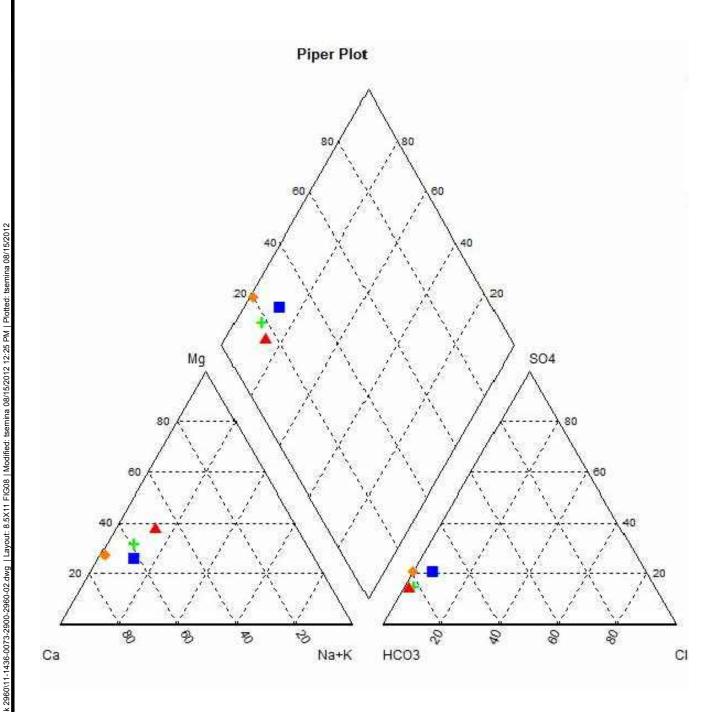
1	PROJECT N	lo 1	1 1/36 0073	FILE No. 11-1436-00	73 2000 2060 01
	DESIGN	CB	03AUG12		
	CADD	TS	03AUG12	FIGURE 4	
	CHECK				


REFERENCE


IMAGE OBTAINED FROM GOOGLE EARTH, USED UNDER LICENSE.
IMAGERY DATE: JUNE 1, 2005. GOOGLE EARTH IMAGE IS NOT TO SCALE.
DATUM: NAD83 PROJECTION: UTM ZONE 9

BOREHOLE LOCATION MAP GROUNDWATER ELEVATION

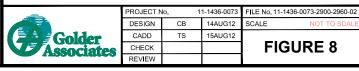
REVIEW]		
CHECK			FIGURE: 6		
GIS	JW	14 Aug 2012			
DESIGN	СВ	27 Jul 2012	SCALE AS SHOWN	REV.	
PROJEC	T No.	11-1436-0073	PHASE No. 2930		


PROJECT
GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES
WIDE SOLID WASTER FACILITY
SWIFT RIVER, Y.T.

TITLE

SCHOELLER PLOT

	1
Golder	Γ
Associates	Γ
110000111100	Г


FILE No. 11-1436-0073-2900-2960	1-1436-0073	lo. 11-1436-0073		
SCALE NOT TO SCA	14AUG12	CB	DESIGN	
	14AUG12	TS	CADD	
1 FIGURE 7			CHECK	
			REVIEW	

PROJECT
GOVERNMENT OF YUKON, DEPARTMENT OF COMMUNITY SERVICES
WIDE SOLID WASTER FACILITY
SWIFT RIVER, Y.T.

PIPER PLOT

Greater Vancouver Office, B.C

REVIEW

SWIFT RIVER SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX A

Site Photographs

Photograph 1: Shows the installation of SR-MW12-01 May 2012.

Photograph 2: Looking west across the Facility at the domestic garbage burning pit and scrap metal area.

Photograph 3: View looking northwest across the Site at the domestic garbage burning pit from the initial Site visit.

Photograph 4: View looking south across the Site at the domestic garbage burning pit and special waste segregation area from the initial Site visit.

o:\final\2011\1436\11-1436-0073\1114360073-501-r-rev0-2900\appendices\app a\site photos.docx

SWIFT RIVER SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX B

Well Construction Logs

RECORD OF BOREHOLE: SR-MW12-01

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon

N: 6657509.76 E: 386864 Zone: UTM 9 North

DRILLING DATE: May 25, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 3 DATUM: Geodetic

RES					_			ppm				\oplus						ڳڏ	STANDPIPE
ᇤᅵᇰᆝ	DESCRIPTION	A PLOT	LEV.	NUMBER	BI OWS/0.3m	CORE No.	CORE RECOVERY %	5 PID	10	15	2	0	WAT	TER CO	ONTEN	T PER	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
METRES BORING METHOD	DEGORITION		EPTH (m)	NON P		S S	CC RECO\	PID ppm	100) 150	20	10	Wp I		—⊖ ^W	<i>I</i>	→ WI 10	ADI	
0	Ground Surface (ML GM) SILT and GRAVEL some		0.00							- 100									Stickup = 0.88m
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ground Surface (ML-GM) SILT and GRAVEL, some fine to medium sand, brown, with cobbles, dry.		0.00																Grout
9 M5 Drilleol	- at 6.10m depth: moist.																		
8	- at 7.62m depth: grades to grey, dense. (ML) CLAYEY SILT, some gravel, some fine to medium sand, grey, moist, firm to hard.		7.62																05/29/2012
9	- from 8.53m - 8.84m depth: boulder. (ML) CLAYEY SILT and GRAVEL, grey, moist.		999.88 8.84																<u></u>
10 —	CONTINUED NEXT PAGE			1 6	ss –														

RECORD OF BOREHOLE: SR-MW12-01

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon

N: 6657509.76 E: 386864 Zone: UTM 9 North

DRILLING DATE: May 25, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 3 DATUM: Geodetic

ш	ų	QQ	SOIL PROFILE			SA	MPL	ES		PID ppm					0						٥٦	PIEZOMETER, STANDPIPE
0	METRES	BORING METHOD		STRATA PLOT (m) TABABA TABABA TABABA TABABA TABABA TABABABAB	띪		0.3m	No.	E RY %	5	5 1	0	15	20							ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
TOU	ME	RING	DESCRIPTION	DEPTH		TYPE	BLOWS/0.3m	CORE No.	COVE	PID ppm						WAT Wn F	ER CC	ONTEN	T PER	CENT — WI	ADDI AB. T	INOTALLATION
Ĺ	_	BC		R (m)	_		ᆸ	0	R	5	0 1	00 1	50	200			0 2			10		
_	10		(ML) CLAYEY SILT and GRAVEL,		+			H					+	+								
F			grey, moist. (continued)															(888 1888 -
F					1	GS																588888 588888 58888 58888 58888 58888 58888 58888 58888 5888
Ė																						8888888
-	11																					8888 888-
Ė																						8888888
Ė																						33333
-																						
F	12																					88888
-																						
09/13/12	13																					
Irozdiak																						
GLB bo																						
LIBRAR																						
REGION -	14																					Grout
rany:BC F	15	Orill Rig	Bedrock, brown, grey.	994.39																		
GDT LIB		Auger																				888888
BETA 1	15	ounted	Air Rotary																			
MPLATE	10	ruck Mc	Air R																			
SION TE		Itech Ti																				5500
e:BC RE		M5 Dri																				
Templat	16																					
NVIRO)																						
HOLE (E																						
BORE																						
Form:B	17																					
J Output																						
SR).GP																						
773 (2900	18																					
1436-00																						
MGINT/1			- from 18.29m - 22.86m depth: grades to orange-brown (weathered?).																			
ZAFTING 																						
6-0073\D	19																					Bentonite Chip Seal
6/11-1436																						
2011/143																						
DIECTSV	20			M	L.	L					L	<u> </u>	L.			L_			L_			
FIEW/BUR-GRAPHICSPROJECTS201114396/073/DRAFTING/GINT/11-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/I1-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/II-1436-0073/DRAFTING/GINT/GINT/GINT/GINT/GINT/GINT/GINT/	20		CONTINUED NEXT PAGE																			
JR-GRAP	DE	PTH	H SCALE						Ź									L		ED: KM		
File:N:\BI	1:							V		Ass	olde ocia	r tes_										RAFT

1:50

RECORD OF BOREHOLE: SR-MW12-01

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon

N: 6657509.76 E: 386864 Zone: UTM 9 North

DRILLING DATE: May 25, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling SHEET 3 OF 3 DATUM: Geodetic

\Box	00	SOIL PROFILE			8	SAMPI	ES		PID ppm					⊕					(0	PIEZOMETER,
METRES	BORING METHOD	DESCRIPTION	AT D	EPTH (m)	NUMBER	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm			15	20		Wp F	DNTEN	/	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
20 -											JU	150	200			0 3	1	1		
21	Auger Drill Rig	Bedrock, brown, grey. (continued)																		Bentonite Chip Seal
23 E 24 25 26 27 28 29 30 DEP	M5 Drittech Truck Mounted Auger Drill Rig	ੇ ਦੇ ਜ਼ੁਰੂ ਦੇ ਪੁੱਢ - at 24.69m depth: increased moisture.																		51mm Slotted PVC Pipe
		End of Borehole.		983.42 25.30																
26																				
27																				
28																				
29																				
30																				
DEF	PTH	H SCALE						7		olde						L	LOGGI			DAET

1:50

RECORD OF BOREHOLE: SR-MW12-02

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon

N: 6657461.22 E: 386809.5 Zone: UTM 9 North

DRILLING DATE: May 25, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 2 DATUM: Geodetic

	ᄝ	SOIL PROFILE	1		S	AMPL			PID ppm					⊕				ᇦ	PIEZOMETER, STANDPIPE
METRES	BORING METHOD	DESCRIPTION	ATA D	EPTH (m)	TYPE	BLOWS/0.3m	CORE No.	CORE ECOVERY %	PID ppm	5 1	0	15	20			DNTEN'	CENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
+	ā	0 10 1			-	I III		~	5	0 10	00	150	200			0 3	0		Stickup = 0.72m
0 1 2 3 4 USA PIOLOGIA	לו הפסי הסיים הסיי	Ground Surface (ML-GM) SILT and GRAVEL, some fine to medium sand, brown, with cobbles, dry.		0.00															Grout
2 9 A Drillein Anner Drill Rio	Air Rotary	(ML-GM) CLAYEY SILT and GRAVEL, grey-brown, dry.		4.88															Bentonite Chip Seal 05/29/2012 10/20 Silica Sand
9 9		- at 8.53m depth: grades to brown. - at 9.14m depth: less gravel, some sand, dark brown, increased moisture, inferred groundwater table.																	51mm Slotted PVC Pipe
		CONTINUED NEXT PAGE																	

RECORD OF BOREHOLE: SR-MW12-02

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon

N: 6657461.22 E: 386809.5 Zone: UTM 9 North

DRILLING DATE: May 25, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 2 DATUM: Geodetic

Ī	SCALE SES			SOIL PROFILE	то-		~		MPLI WE		%.	PID ppm	j 1) 1	5 2	⊕						STING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
	DEPTH SCALE METRES	OUTTAN CINIOO	BORING IN	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	PID ppm	0 10	0 15		00	Wp I	ER CC	⊖W		CENT H WI	ADDITIONAL LAB. TESTING	INSTALLATION
-	— 10 		Air Rotary	(ML-GM) CLAYEY SILT and GRAVEL, grey-brown, dry. (continued) (GM) SILTY GRAVEL, grey-brown, wet. Bedrock.		997.84 10.36 997.23 10.97 996.92																	51mm Slotted PVC Pipe
19/13/12				End of Borehole.		11.28																	- - - - - - - - - - - - - - - - - - -
18cW18UR-GRAPHICSIPROJECTS2011/1436/11-435-0073/DRAFTING/GINT/1-1436-0073 (2900 SR), GPJ Output Fam; BC, BOREHOLE (ENVIRO) Template; BC REGION TEMPLATE BETA 1, GDT Library; BC REGION LIBRARY, GLB butoxalak 09/13/12	- 14 - 14																						- - - - - - - - - - - - - - - - - - -
VVIRO) Template:BC REGION TEMPLATE BETA	- 15 - 15 16 16 16 16																						- - - - - - - - - - - - - - - - - - -
SR).GPJ Output Form:BC_BOREHOLE (EN	- 17																						- - - - - - - - - - - - - - - - - - -
73\DRAFTING\GINT\11-1436-0073 (2900																							- - - - - - - - - - - - - - - - - - -
PHICS/PROJECTS\2011\1436\11-1436-007	- 19 																						- - - - - - - - - - - - - - - - - - -
ile:N:\BUR-GRAF	DE 1 :			CALE						(Ž	G	olde:	: tes					L	OGGE	ED: KM	D	RAFT

RECORD OF BOREHOLE: SR-MW12-03

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon N: 6657591.7 E: 386788.4 Zone: UTM 9 North

DRILLING DATE: May 26, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 1 OF 2 DATUM: Geodetic

(Mill sor	und Surface IL-GM) SILT and GRAVEL, trace to me sand, brown, dry. IL-GM) CLAYEY SILT and GRAVEL, to to some sand, brown, moist.	1012.40 DEPTH (m) 0.00	NUMBER TYPE	BLOWS/0.3M CORE No.	5 10 PID ppm 50 100	15 20	WATER CONTENT PERCENT Wp W W W W W W W W W W W W W W W W W W	1501
1 (Mi sor	IL-GM) SILT and GRAVEL, trace to me sand, brown, dry.	0.00						Stickup = 0.78m
(M) trad	IL-GM) CLAYEY SILT and GRAVEL, ice to some sand, brown, moist.							
Auger Drill Rig								Grout
9 M5 Drillech Truck Mounted Auger Drill Rig Ar Rotary 2 19	IL) CLAYEY SILT, some gravel, ice sand, grey, moist.	0 1007.22						10/20 Silica
	at 6.71m depth: grades to dark grey, creased moisture. edrock, dark grey, moist.	1005.39 7.01						Sand 05/29/2012 <u>▼</u>
9								51mm Slotted PVC Pipe
10	CONTINUED NEXT PAGE			- - -				-

RECORD OF BOREHOLE: SR-MW12-03

CLIENT: Yukon Government Community Services PROJECT: Yukon Landfill Assessment LOCATION: Swift River, Yukon N: 6657591.7 E: 386788.4 Zone: UTM 9 North

DRILLING DATE: May 26, 2012 DRILLING CONTRACTOR: Midnight Sun Drilling

SHEET 2 OF 2 DATUM: Geodetic

TE TE		Q P	SOIL PROFILE	1			SAN	MPLE	ΞS		PID ppm					⊕						- Sr	PIEZOMETER, STANDPIPE
DEPTH SCALE	/ETRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	E No.	CORE RECOVERY %	PID ppm	1	0 '	15	20		WAT	ER C	L	T PE	RCENT	ADDITIONAL LAB. TESTING	PIEZOMETER, STANDPIPE OR THERMISTOR INSTALLATION
DEP	2	BORIN		STRAT	DEPTH (m)	NON	۲	BLOW	SOR	RECO	ppm 5) 10	00 1	50	200)	Wp ł		— <i></i> 0\	V	— WI 40	AD	
-	10			X//	1002.34 10.86																		
E			End of Borehole.		10.06																		- -
Ė																							- - -
E	11																						-
-																							- - -
-																							- - -
F	12																						<u>-</u> -
-																							- - -
2																							-
liak 09/13/1	13																						- -
JLB bdrozd																							-
LIBRARY.0																							- - -
CREGION	14																						-
Library:B																							- - -
ETA 1.GD																							-
EMPLATE BETA	15																						-
REGION TE																							- - -
mplate:BC	16																						-
IVIRO) Te																							- - -
EHOLE (E)																							- - -
m:BC_BOR	17																						- -
Output For																							- - -
0 SR).GPJ																							- -
6-0073 (290	18																						- -
INT/11-143																							- -
AFTING/G																							- - -
36-0073\DF	19																						- -
1436/11-14;																							- - -
ECTS/2011/																							- -
Fie.NRBUR-GRAPHICS/PROJECTS/2011/438-0073/DRAFTINGIGINT/11-1438-0073/2300/SR), (290 SR), (290 SR	20																						_
UR-GRAPH	DEF	PTH S	CALE	1						7		.1.7								LOGG	ED: K	M	
File:N:/B(1:								V	Ď	G Ass	olde ocia	r tes_							СН	ECKE	D: D	RAFT

SWIFT RIVER SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX C

Well Development and Sampling Sheets

ation: Swif	SVN/1	MIND	Temp	erature:	17		Date	ct No.: pleted by	29 M	16-00 144 20 1	12 Time:	1402 BADLER
ONITORING me of Measurem epth to product: epth to water Be epth to Bottom of iameter Standpi	elow Top of of Well Belo	Product the Casing:	nickness:Aasing: B	7.20 10.869 50	metres	(B-A)*2. (B-A)*1.	1 volume 0 = .1 =	e: _	Yes QX 19.2 litres litres 10.2 metr	- for a 51	mm (2.0 inch mm (1.5 inch	a) diameter well a) diameter well
QUIPMENT H and Temp. Me conductivity Meter vissolved Oxyge Pump: Non Pump Details:	eter: er: n Meter: ee 🖸 Wa			□ Subm	Serial Serial Serial nersible	No	S	Cal	ibration Buffi libration Solu D.O. Cheme Bailer Type:	ution:	1413	10
ourge Volume:	Well. \	Vol. X		-		litres L/min.	Sta	art:	1405	Fi	nish:	
Avg. Flow Rate:	-					Piles	0		Minter			
Avg. Flow Rate:	Volume Removed	Temp.	pH (Units)	Cond. (uS/cm)		lox (mg	3/L) %	innot!	Water Level (m)	alle	Remarks	
Time	Volume			(uS/cm)) (m)	V) (mg	g/L) %	mrof .	Level (m)	START	PUMA	-
Time 1405	Volume Removed		(Units) 7,29	(uS/cm)) (m ¹	OX (mg	9/L) %		Level (m)	VERY	PUMA 51LTY	-
Time	Volume Removed (L)	(°C)	(Units)	(uS/cm) 244 229) (m'	lox (mg	60 60	m 5	Level (m)	MOD	PUMA	-
Time 1405	Volume Removed (L)	5,37 4,79 3,65	7,29 7,40 2,52	244 229) (m)	lox (mg or	68		Level (m) /6 110 7.985 8.242	MOD "	FUMA SILTY SILT	-
140 S 141 Z 141 7	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40	244 229 196) (m	lox (mg or	60 60		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421	Volume Removed (L)	5,37 4,79 3,65	7,29 7,40 2,52	244 229) (m	lox (mg or	68		Level (m) /6 110 7.985 8.242	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40 2,52	244 229 196) (m	lox (mg or	68		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40 2,52	244 229 196) (m	lox (mg or	68		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40 2,52	244 229 196) (m	lox (mg or	68		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40 2,52	244 229 196) (m	lox (mg or	68		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 403	7,29 7,40 2,52	244 229 196) (m	lox (mg or	68		Level (m) 10 17.985 8.242 8.930	MOD "	PUMA SILTY SILT	-
Time 1405 1412 1417 1421 1425	Volume Removed (L)	5,37 4,79 3,65 4,20	(Units) 7.29 7.40 2.52 7.67 7.63	(us/cm) 2 4 4 2 2 9 1 9 (a) 1) (m	ox (mg or land)	9/L) % 68 60 ,46 98	-like 🗆	Level (m) 6 1110 7.985 8.242 8.930 7.455	MOD "	PUMA SILTY SILT	-
Time 140 \$ 1417 1421 1425 1430 Comments: Odour:	Volume Removed (L) 6 30 45 60 75	5,37 4,79 3,65 4,20	(Units) 7.29 7.40 2.52 7.67 7.63	(us/cm) 2 4 4 2 2 9 1 9 (a) 1) (m	ox (mg or land)	9/L) % 68 60 ,46 98		Level (m) 6 1110 7.985 8.242 8.930 7.455	MOD "	PUMA SILTY SILT	-
140 141 142 142 142 143	Volume Removed (L) 6 30 45 60 15 Period of the control of the con	5,37 4,79 3,65 4,20 4,20	(Units) 7.29 7.40 2.52 7.67 7.63 If yes Hy 111111	(us/cm) 2 4 4 2 2 9 1 9 (a) 1 9 (a) 1 9 (a) 1 1 1 1 1 1 1 1	on-like [(mg or 1/4 2 2 2 2 1 1 1 1 1 Con	Metallic I I I I I tainer Size	I Very	Level (m) 6 1110 7.985 8.242 8.930 7.455	VEBY MOD "	PUMA SILTY SILT	-
Time 140 \$ 1417 1421 1425 1430 Comments: Odour: Sheen:	Volume Removed (L) 30 45 60 75 PS	5,37 4,79 3,165 4,20 4,20	(Units) 7.29 7.40 2.52 7.67 7.63 If yes Hy 111111	(us/cm) 2 4 4 2 2 9 1 19 (a) 1 19 (a) 1 1 1 1 1 1) (m		Metallic I I I I	I Very	Level (m) 6 1110 7.985 8.242 8.930 7.455	VEBY MOD "	PUMA SILTY SILT	

						ittemites wine				Filter	hon	Preservatives
Analysis	Тур	e	40 mL	100 mL	250 mL	500 mL	1 L	2 L	4L			170001100
	□ Plastic	D Glass								□ Yes	□ No	
	☐ Piastic	☐ Glass			/					☐ Yes	□No	
	□ Plastic	☐ Glass		11/	11/		-			□ Yes	□ No	
	□ Plastic	☐ Glass	1	1		-0	10)			☐ Yes	□ No	
	□ Plastic	Glass	-	17	1/	10	-			☐ Yes	□ No .	
	□ Plastic	☐ Glass		4	1	1				☐ Yes	□ No	
-		Glass	-							☐ Yes	□ No	
	□ Plastic	□ Glass	-	1				10.		☐ Yes	□ No	
	☐ Plastic					חשר)PE/Teflo	n Tuhin	n		Froundwa	ter Filter
SCN No.	Cons	umables:		terra Tubir con Tubing			O. Ampo		a			

GROUNDWATER DEVELOPMENT AND PURGING/SAMPLING DATA SHEET

Development
Development
Development

o h h	f Measurer to product: to water Be	elow Top of Well Be	Product of Casing:	thickness: A Casing: B	9.33		Ones (Bres (Bres (Bres	ally influer e well volu A)*2.0 = A)*1.1 = mple intak	ime:		es - for a 51 m		ch) diameter well
and du sol	PMENT d Temp. Meteritivity Mete	eter: er: n Meter:	Model Model Model aterra	Y S Peristaltic	Subr	_ Sei	rial No. rial No. rial No.	NHS	Ca	alibration Bu alibration So D.O. Chem Bailer Type	lution:	413	10
ge	L DEVE Volume: Flow Rate:	Well.	Vol. X				litres		Start:	1125	Finis	sh:	355
	Time	Volume Removed	Temp.	pH (Units)	Cond.		Redox (mV)	Diss. O ₂ (mg/L) or %		Water Level (m)	Jid.	Remarks	amilit
1	1175	(L)	(0)	(0.1110)	1			01 76		9.334	STARR	PU	mp
1	125	1	5,63	6.77	201	2		4.27		15.395	CLEAR		
1	122	20	144)	7.31	17		-	4.63	075000	23,300			
1	137	30	4.31			6		5.41		24.110	CCMIC		
L	202	45		7.01	-	-		8.23		24,445			
-	203	60	597	7.3)	205			0.0		24,40			
	1239	75	-		-	-				24.400		-	
	1300	90	0 40	1001	110-	2		7 20	-	23.20			420
	13.45	105	7.02	7.21	19	T		7.30	-	27.20	1	ne c	300-3
L					-				-	-		-	
		1		-	-			-	-	-			
-			1 9		-		-		The same			-	
	nments: Odour: Sheen: Turbidity:	□ Yes □ Yes Clear	₩ No	If yes Hy	odrocarbo			111111		Silty		- 44.5	440 140 640 140
	Analysi	s	Туре			400 =1	250 m	Container Siz		2 L	4L Filt	ered	Preservatives
-					10 mL	100 mL	250 m	SJO IN	112	-	□ Yes	□ No	
-				D Glass			1				□ Yes	□ No	
1				□ Glass	1	4	1			1	□ Yes	□ No	RE IL THE
L				□ Glass		20				-	□ Yes	D No	
-				□ Glass		1	01	-			☐ Yes	□ No	No.
-			□ Plastic	☐ Giass		6	4					□ No	
			□ Plastic	☐ Glass			-	-			☐ Yes		
			man and an artist	☐ Glass							☐ Yes	□ No	
			□ Plastic	L Glass		-					□ Yes	□ No	

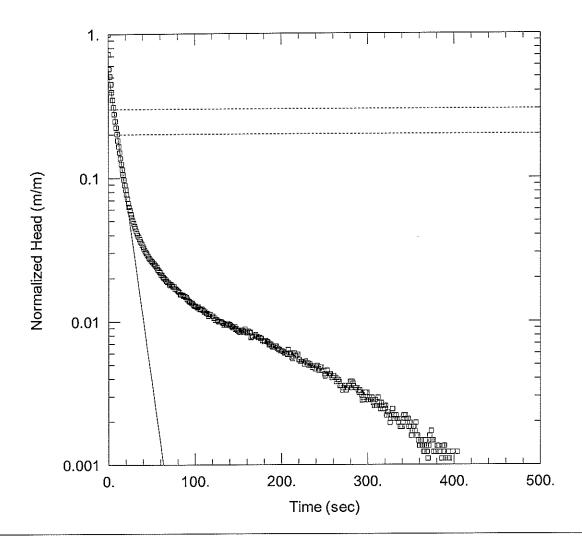
TORING V	VELL !	NFORMA 025	Te	emperatu 9V		Tida	Dat	7 45 ced:	29 y:		2017	73/ 2 Time:	7900
to product: to water Belo to Bottom of eter Standpipe	Well Belo	Casing:		A 7.9	42 metro 0 metro mm	es (B-/	A)*2.0 = A)*1.1 =			es - for	a 38 mr		n) diameter well n) diameter well
IPMENT L ad Temp. Meter uctivity Meter. lived Oxygen b: None Details:	er:	Model	YS/ Peristaltic		Ser	ial No.		Ca	libration Bu libration So D.O. Chem Bailer Type	olution: net Amp	-	4/3	□ 10
LL DEVEL e Volume: Flow Rate:		NT/PURG		=		litres L/mir		tart:	102	8	_ Finisi	h:	MAGESTER STATE
	Volume Removed	Temp.	pH (Units)	Cor (uS/		Redox (mV)	Diss. O ₂ (mg/L) or %	rail of the same o	Water Level (m)			Remarks	
028	(L)	1 111							7,942		ART	Pui	MP
030	1	6.82	6.9	7 19	5		4.80		1	VE	RY!	5/17	7
036	15	4.09	7.15		6		4,89		8.830		(1		
042'	20	3,84	7.7)3		5,98		9,550		- 1		
045	30	101	1	1					9590	1			Im OF BO
1050	00	124							9,100	COL	UEC	T 5	AMPLES
	^					,	10	500	,	-	500	DI	10
7	011	DIVI	1	ZEX	(1)	/	50	DK	7 -	2 +	RO	BLE	101
	ū	FE	TOC		VA	11	8		-	1			
									-	-			
				-					-				
		1				-	1	1.5					
Odour: Sheen:	□ Yes □ Yes	D No		Hydrocai			Metalli	c-like I Very	Silty	Joseff Line	00/1	11 1 21	200 300 7200 304 1340 3040
	Clear	11111	1111									T	
Turbidity:		Туре		10	100 mL	250 ml	Container Siz		2 L	4 L	Filte	red	Preservatives
		-	Cless.	40 mL	100 mL	250 1111	000 1112		0		□ Yes	□No	
Analysis			☐ Glaşs				//	10	(□ Yes	□No	in I
			☐ Glass			1	1	10			☐ Yes	□No	ND A
		□ Plastic	☐ Glass		1	1	1	1			□ Yes	□ No	
		C Diaglia	m Aigsa	6	10						☐ Yes	□ No	
		□ Plastic			1						-		
		□ Piastic	☐ Glass	-		-					□ Yes	□ No	
Turbidity: Analysis				-							☐ Yes	□ No	

☑ Development

1

C:\Users\BrMacdonald\Desktop\New Forms\GW Development and Purging Sampling Data SheeLdoom PHOTOS

		sponse T	est	Rising Head Falling Head
ata	Sheet			L Failing Flead
	Location: 5	MW 12-06 IWIFT RIVE 1-1436-00 5. MARQUELL 29 MARCI 1300	74/2900 50W, A.	BADGER
ONITOR	ING WELL INFO	RMATION		
	Depth to bottom		o of casing:	## Meters 2,160 meters 0.73 meters 0.050 meters (1 inch = 0.025 meters) meters meters (1 foot = 0.3048 meters) (eg: sand, silt, clay)
QUIPME	ENT LIST			
	Slug Mass: Length: Diameter:	1.5	kilograms meters meters	Water column height:mete Inside diameter:mete and/or Volume of water removed: litres
	Pressure trans Sampling Inter	ducer serial #:	1	seconds or minutes (circle one)
SINGLE-	Pressure trans Sampling Inter	ducer serial #:	Finish time:	seconds or minutes (circle one)
SINGLE-	Pressure trans Sampling Inter -WELL RESPONS Start time	ducer serial #: val:	Finish time: Water Level (m)	seconds or minutes (circle one) Comments
SINGLE-	Pressure trans Sampling Inter -WELL RESPONS Start time Time	ducer serial #: val: SE TEST	Finish time: Water Level (m)	Comments TX IN (0.2 OFF BOTTOM)
SINGLE	Pressure trans Sampling Inter -WELL RESPONS Start time	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUC IN
SINGLE-	Pressure trans Sampling Inter -WELL RESPONS Start time Time	ducer serial #: val: SE TEST	Finish time: Water Level (m)	Comments TX IN (0.2 OFF BOTTOM) SLUC IN SLUC OUT
SINGLE	Pressure trans Sampling Inter -WELL RESPONS Start time Time	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG IN
SINGLE-	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT
SINGLE	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE-	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT
SINGLE	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE-	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE-	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN
SINGLE-	Pressure trans Sampling Inter WELL RESPONS Start time Time 1305 1311 1323 1330 1337 1343	ducer serial #: val: SE TEST	Finish time: Water Level (m) 8.404 8.272	Comments TX IN (0.2 OFF BOTTOM) SLUG IN SLUG OUT SLUG IN



SWIFT RIVER SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX D

Slug Test Logs and Data

SLUG TEST ANALYSIS FOR WELL SR-MW12-02 (TEST #1)

Data Set: \...\SR-MW12-02_TEST 1_CB.aqt

Date: 08/15/12 Time: 13:38:16

PROJECT INFORMATION

Test Well: SR-MW12-02 Test Date: 5-July-2012

AQUIFER DATA

Saturated Thickness: 3.67 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SR-MW12-02 Test #1)

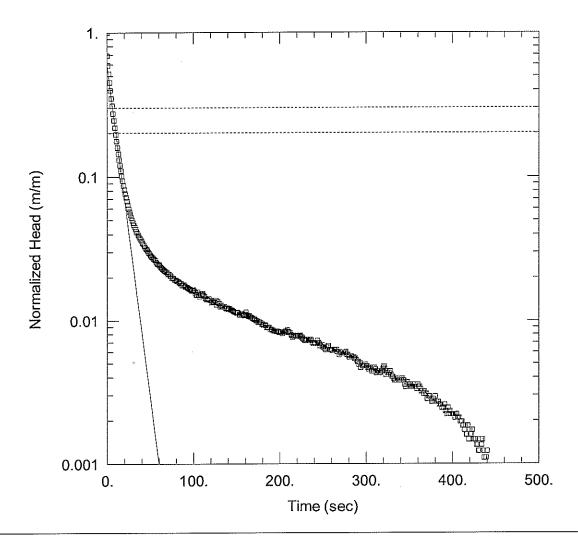
Initial Displacement: 0.817 m

Total Well Penetration Depth: 3.67 m

Casing Radius: 0.025 m

Static Water Column Height: 3.67 m

Screen Length: 3.05 m Well Radius: 0.092 m


SOLUTION

Aquifer Model: Unconfined

K = 2.838E-5 m/sec

Solution Method: Bouwer-Rice

y0 = 0.4536 m

SLUG TEST ANALYSIS FOR WELL SR-MW12-02 (TEST #2)

Data Set: \...\SR-MW12-02_TEST 2_CB.aqt

Date: 08/15/12 Time: 13:39:09

PROJECT INFORMATION

Test Well: <u>SR-MW12-02</u> Test Date: <u>5-July-2012</u>

AQUIFER DATA

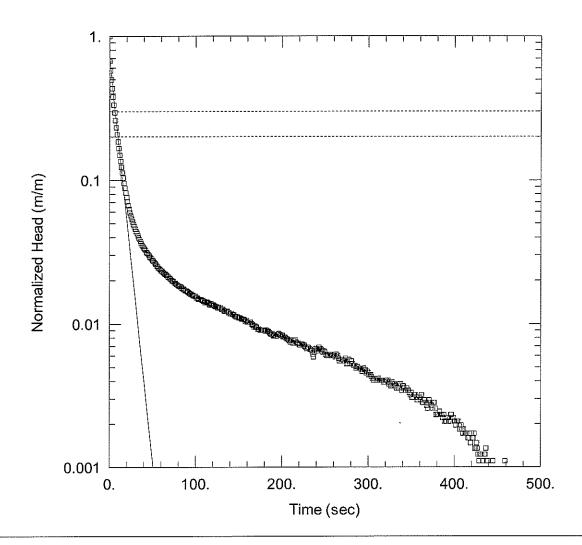
Saturated Thickness: 3.67 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (Sr-MW12-02)

Initial Displacement: 0.817 m

Total Well Penetration Depth: 3.67 m

Casing Radius: 0.025 m


Static Water Column Height: 3.67 m

Screen Length: 3.05 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Bouwer-Rice</u>

K = 3.029E-5 m/sec y0 = 0.4757 m

SLUG TEST ANALYSIS FOR WELL SR-MW12-02 (TEST #3)

Data Set: \...\SR-MW12-02_TEST 3_CB.aqt

Date: 08/15/12 Time: 13:39:42

PROJECT INFORMATION

 $\begin{array}{ll} \text{Test Well:} & \underline{\text{SR-MW12-02}} \\ \text{Test Date:} & \underline{\text{5-July-2012}} \end{array}$

AQUIFER DATA

Saturated Thickness: 3.67 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (Sr-MW12-02)

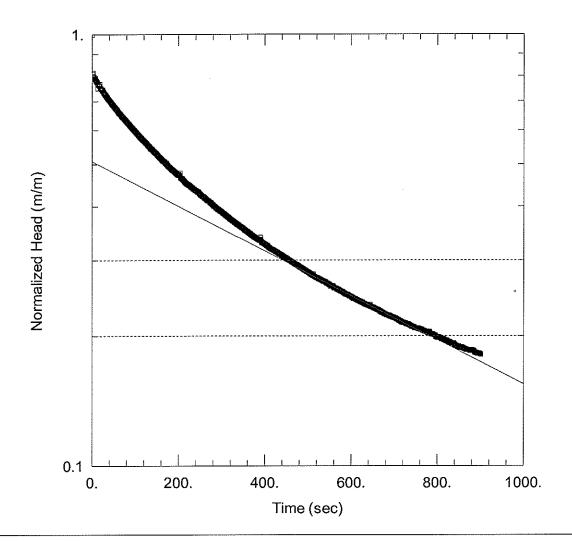
Initial Displacement: 0.817 m

Total Well Penetration Depth: 3.67 m

Casing Radius: 0.025 m

Static Water Column Height: 3.67 m

Screen Length: 3.05 m Well Radius: 0.092 m


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.668E-5 m/sec

y0 = 0.5667 m

SLUG TEST ANALYSIS FOR WELL SR-MW12-03 (TEST #1)

Data Set: \...\SR-MW12-03_Slug test_5-July-12.aqt

Date: 08/15/12 Time: 13:40:15

PROJECT INFORMATION

Test Well: <u>SR-MW12-03</u> Test Date: <u>5-July-2012</u>

AQUIFER DATA

Saturated Thickness: 3.05 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SR-MW12-03)

Initial Displacement: 0.487 m

Total Well Penetration Depth: 3.047 m

Casing Radius: 0.025 m

Static Water Column Height: 7.51 m

Screen Length: 3.047 m Well Radius: 0.092 m

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 3.504E-7 m/sec

y0 = 0.2471 m

Single-well Response Test Data Sheet

4	Rising	Head

Falling Head

Well No.:	5R-MW12-04
Location:	SWIFT RIVER
Project No.:	11-1436-0073 12900
Completed By:	A BADGER
Date:	05-JUL-12
T:	25.

MONITORING WELL INFORMATION 3.44 Depth to water below top of casing: meters Depth to bottom of well below top of casing: 10.95 meters Distance from top of pipe to ground surface: meters Well casing diameter: 0-05 meters (1 inch = 0.025 meters)Borehold diameter: 0.18 meters Screen length: 3.048 (1 foot = 0.3048 meters) Screened unit: (eg: sand, silt, clay)

QUIPME	NT LIST					
	Slug				Bailer	
	Mass:	4. 1	kilograms		Water column height:	meters
	Length:	1.5	meters		Inside diameter:	meters
	Diameter:	6-637	meters	and/or	Volume of water removed:	litres
	Pressure trans	sducer serial #:	0011032686			
	Sampling Inte	rval:			seconds or minutes (circle one)	

SINGLE-WELL RESPONSE TEST

Start time: 1252 Finish time: 1411

Time	Elapsed Time	Water Level (m)	Comments
1252			Tx in (0.2m from Borrow)
1254		2.56	SLUG IN
1259		2.69	
1300		2.74	
1302		2.77	
1304		2.78	
1306		2.78	•
1309		LI COLLEGE N	scub out
1319			SCUC IN
1329			SLUG our
13 39			Scac In
1349			ScaG out
1359			SCUG IN
1409			sluc out

Data	Sheet						Falling Head	i
	Well No.: Location: Project No.: Completed By: Date: Time:		PEVER 073/2900 ER					
MONITOR	ING WELL INF	ORMATION						
	Depth to botton	eter:	op of casing:	0.05	meters meters meters meters meters meters meters (eg: sand, s	(1 foot = 0.	.025 meters) 3048 meters)	
EQUIPME					(09. 54114, 5	sir, day)		
	Slug Mass: Length: Diameter: Pressure trans Sampling Inter	o os o os sducer serial #:	kilograms meters meters 00 11 03 62		Inside dia	lumn height: ameter: of water remo		meters meters litres
SINGLE-V	VELL RESPONS		Finish time:	20.13	-			
	Time	Elapsed Time	Water Level (m)		Cor	mments		7
	19.20 19.22 19.26 19.27 19.26 19.36 19.43 19.50 19.50 19.50		10.83	SLUG ON SLUG IN SLUG ON SLUG ON SLUG ON SLUG ON SLUG ON		m off	30.700)	
	2013			To our			3	

Rising Head

Single-well Response Test

Single-well Response Test Rising Head **Data Sheet** Falling Head Well No .: 572-MW 12-05 Location: SWIFT RIVER Project No.: 11-1436-0073/2900 Completed By: A BAOGER Date: 05-JUL-12 Time: 1015 MONITORING WELL INFORMATION Depth to water below top of casing: meters Depth to bottom of well below top of casing: meters Distance from top of pipe to ground surface: Well casing diameter: 0.05 meters (1 inch = 0.025 meters) Borehold diameter: 0.181 meters 3.048 Screen length: meters (1 foot = 0.3048 meters) Screened unit: (eg: sand, silt, clay) **EQUIPMENT LIST** Slug Bailer Mass: kilograms Water column height: meters 1.5 Length: meters Inside diameter: meters Diameter: 0.0379 meters and/or Volume of water removed: Pressure transducer serial #: 001103 2680 Sampling Interval: seconds or minutes (circle one) SINGLE-WELL RESPONSE TEST Start time: 10:15 Finish time: 12.40 Time Elapsed Time Water Level (m) Comments 1015 (0.2 m OFF BUTTOM 1017 10.85 SLUG IN 10.83 1022 10.32 1024 1027 10.31 1028 10-80 1030 10.79 1031 10.76 1033 10.77 1034 10.76 1037 10.76 Slug our 1057 SLUGIA 1111 SLUG ONT

1211 1231 1240

1131

SLUG OUT SLUG OUT TX OUT

SLUGIN

	e-well Re Sheet	sponse	Test			Rising Head Falling Head						
)	Well No.: Location: Project No.: Completed By: Date: Time:	512- MW SWERT PI 11-1436-00 A BAOGE 04- JUL- 1800	EVER 573/2900 F									
ONITOR	ING WELL INFO	RMATION										
	Depth to bottom	below top of cas n of well below to op of pipe to gro	op of casing:	8.49	meters meters meters							
	Well casing dian Borehold diame Screen length: Screened unit:			0.050	meters meters meters (eg: sand,	(1 inch = 0.025 meters) (1 foot = 0.3048 meters) silt, clay)						
QUIPME	NT LIST Slug Mass: Length: Diameter:	1.5	kilograms meters meters		Inside di	olumn height: ameter: of water removed:	meters					
	Pressure transc Sampling Interv	ducer serial #:	00 11 0326 1 secon	.80	_	or minutes (circle one)	litres					
SINGLE-V	VELL RESPONS		Finish time:	19.08								
	Start time:	18.02	- Fillish dine.	11.03	-							
	Start time:		Water Level (m)	14.03	Co	omments	1					
				Tx in		omments m off Bottom)]					
	Time 18:02		Water Level (m)		(02							
	Time 18:02 18:05		8.415 8.44	Tx in	(02							
	Time 18:02 18:05 18:01		8 4 15 8 4 4 9 4 45	Tx in	(02							
	Time 18:02 18:05 18:01 18:10		8.415 8.44	Tx in	(0.2 EN							
	Time 18:02 18:05 18:06 18:10 18:11		8 4 15 8 4 4 9 4 45	Tx in stuc a	(0.2 EN							
	Time 18:02 18:05 18:01 18:10		8 4 15 8 4 4 9 4 45	Tx in	(0.1 EN							

succe our

SLUG IN

since our

Tx Out

18:44

18:52

19:00

19:08

SWIFT RIVER SOLID WASTE DISPOSAL FACILITY HYDROGEOLOGICAL ASSESSMENT

APPENDIX E

Laboratory Analytical Results and COC

Table E1 Results of Water Analyses - Metals [YTG Landfill Monitoring, Swift River, Yukon]

SCN			10-174288-01	10-174288-02	10-174288-03	10-174288-04
Location			SR-MW12-02	SR-MW12-01	SR-MW12-03	SWIFT RIVER
QA/QC	CSR-AW					
Date		Notes	29-MAY-12	29-MAY-12	29-MAY-12	29-MAY-12
Parameters						
pH (field)			7.21	7.21	7.63	-
Temperature °C			3.84	7.02	4.20	-
Conductivity (uS/cm)			303	197	209	-
Dissolved Oxygen (mg/L)			5.98	7.30	-	-
Laboratory Parameters						
pH (laboratory)			8.04	7.32	7.82	7.95
Hardness (as CaCO3)			169	136	161	34.6
total dissolved solids			282	168	241	56
Aggregate Organics COD			E 1	~20	~20	-20
dissolved organic carbon			54 3.99	<20 1.62	<20 2.37	<20 3.44
dissolved organic cardon			3.99	1.02	2.37	3.44
Bacteriological				2	2	0
Coliform Bacteria - Fecal			<2	<2	<2	8
Dissolved Metals						
aluminum	0.2		<0.010	< 0.010	< 0.010	0.029
antimony arsenic	0.2		<0.00050 0.00074	< 0.00050	<0.00050	<0.00050 0.00049
barium	10		0.00074	0.00091 0.061	0.00171 0.059	< 0.020
beryllium	0.053		< 0.0050	< 0.0050	< 0.0050	< 0.0050
bismuth	0,000		< 0.20	< 0.20	< 0.20	< 0.20
boron			< 0.10	< 0.10	< 0.10	< 0.10
cadmium	0.0001 - 0.0006	H	< 0.00020	< 0.00020	< 0.00020	< 0.00020
calcium			47.9	30.4	42.2	10.0
chromium	$0.010^{VI}, 0.090^{III}$	V	< 0.0020	< 0.0020	< 0.0020	< 0.0020
cobalt	0.009		< 0.010	< 0.010	< 0.010	< 0.010
copper	0.020 - 0.090	Н	0.0011	< 0.0010	< 0.0010	< 0.0010
iron lead	0.040 - 0.160	Н	<0.030	<0.030	<0.030	0.041 <0.00050
lithium	0.040 - 0.100	п	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	< 0.00050
magnesium			12.1	14.5	13.6	2.33
manganese			0.613	0.544	0.425	0.0048
mercury	0.001		< 0.00020	< 0.00020	< 0.00020	< 0.00020
molybdenum	10		< 0.030	< 0.030	< 0.030	< 0.030
nickel	0.250 - 1.5	H	< 0.050	< 0.050	< 0.050	< 0.050
phosphorus			< 0.30	< 0.30	< 0.30	< 0.30
potassium selenium	0.01		2.30 <0.0010	1.62 <0.0010	2.01 <0.0010	0.41 <0.0010
silicon	0.01		3.05	4.50	<0.0010 4.61	3.04
silver	0.0005 - 0.015	Н	< 0.010	< 0.010	< 0.010	< 0.010
sodium			9.7	9.0	6.4	<2.0
strontium			0.164	0.170	0.168	0.0371
thallium	0.003		< 0.20	< 0.20	< 0.20	< 0.20
tin			< 0.030	< 0.030	< 0.030	< 0.030
titanium	1		< 0.010	< 0.010	< 0.010	< 0.010
uranium vanadium	3		0.00176 <0.030	0.00179 <0.030	0.00228 <0.030	0.00023 <0.030
zinc	0.075 - 2.4	Н	<0.050	< 0.050	< 0.050	< 0.050
Other Inouganies						
Other Inorganics bicarbonate (CaCO3)			145	136	156	30.1
carbonate (CaCO3)			<2.0	<2.0	<2.0	<2.0
hydroxide (CaCO3)			<2.0	<2.0	<2.0	<2.0
total alkalinity (CaCO3)			145	136	156	30.1
ammonia	1.31 - 18.5	pН	0.181	0.0619	0.0814	< 0.0050
bromide (free)			<0.050	< 0.050	< 0.050	< 0.050
chloride	2.2		9.55	2.61	4.69	<0.50
fluoride	2 - 3	Н	0.280 0.336	0.278	0.209	0.125 0.0171
nitrate (as N) nitrite (as N)	400 0.2 - 2	Cl	0.336	0.0177 <0.0010	0.0332 <0.0010	<0.0171
total Kjeldahl nitrogen	U.2 - 2	CI	8.77	0.152	0.897	0.163
sulphate	1000		39.8	22.4	26.5	6.08
Notes:		_	_			

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules.

Golder Associates

Land Use abbreviations: AW (Aquatic Life).

H = standard is Hardness dependent CL = standard is chloride dependent

pH = standard is pH dependent

V= Standard is valence dependent VI refers to chromium VI and III refers to chromium III

T = standard varies with temperature

 $MCS = Most\ Conservative\ Standard$

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

Italics indicates standard is below detection limit.

COC = Chain of Custody

Results of Water Analyses - Hydrocarbons YTG Landfill Monitoring, Swift River, Yukon

SCN		10-174288-01	10-174288-02	10-174288-03	10-174288-04
Location	Aquatic Life	SR-MW12-02	SR-MW12-01	SR-MW12-03	SWIFT RIVER
QA/QC Date	CSR-AW (freshwater) Notes	29-MAY-12	29-MAY-12	29-MAY-12	29-MAY-12
Monoaromatic Hydrocarbons					
benzene	4	< 0.00050	< 0.00050	< 0.00050	< 0.00050
ethylbenzene	2	< 0.00050	< 0.00050	< 0.00050	< 0.00050
styrene	0.72	< 0.00050	< 0.00050	< 0.00050	< 0.00050
toluene	0.390	< 0.00070	< 0.00060	< 0.00050	< 0.00050
ortho-xylene		< 0.00050	< 0.00050	< 0.00050	< 0.00050
meta- & para-xylene		< 0.00050	< 0.00050	< 0.00050	< 0.00050
total xylene		< 0.00075	< 0.00075	< 0.00075	< 0.00075
VHw ₆₋₁₀	15	<0.10	< 0.10	< 0.10	< 0.10
VPHw	1.5	<0.10	< 0.10	< 0.10	< 0.10
Polycyclic Aromatic Hydrocarbons					
acenaphthene		< 0.000050	< 0.000050	< 0.000050	< 0.000050
acenaphthylene		<0.000050	< 0.000050	< 0.000050	< 0.000050
acridine	0.0005	<0.000050	<0.000050	<0.000050	<0.000050
anthracene	0.001	<0.000050	<0.000050	<0.000050	<0.000050
benzo(a)anthracene	0.001	<0.000050	<0.000050	<0.000050	<0.000050
benzo(a)pyrene	0.0001	<0.000010	<0.000010	<0.000010	<0.000010
benzo(b)fluoranthene		<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050	<0.000050 <0.000050
benzo(g,h,i)perylene benzo(k)fluoranthene		<0.000050	<0.000050	<0.000050	<0.000050
chrysene		<0.000050	< 0.000050	< 0.000050	< 0.000050
dibenzo(a,h)anthracene		<0.000050	< 0.000050	< 0.000050	< 0.000050
fluoranthene	0.002	< 0.000050	< 0.000050	< 0.000050	< 0.000050
fluorene	0.12	< 0.000050	< 0.000050	< 0.000050	< 0.000050
indeno(1,2,3-c,d)pyrene		< 0.000050	< 0.000050	< 0.000050	< 0.000050
naphthalene	0.01	0.000065	< 0.000050	< 0.000050	< 0.000050
phenanthrene	0.003	< 0.000050	< 0.000050	< 0.000050	< 0.000050
pyrene	0.0002	< 0.000050	< 0.000050	< 0.000050	< 0.000050
quinoline	0.034	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Other Hydrocarbons					
EPHw ₁₀₋₁₉	5	< 0.25	< 0.25	< 0.25	< 0.25
EPHw ₁₉₋₃₂		0.53	< 0.25	< 0.25	< 0.25
LEPHw	0.5	< 0.25	< 0.25	< 0.25	< 0.25
HEPHw		0.53	< 0.25	< 0.25	< 0.25
Miscellaneous Organics					
methyl tertiary butyl ether (MTBE)		<0.00050	< 0.00050	< 0.00050	< 0.00050
Chlorinated Hydrocarbons					
bromodichloromethane (BDCM)		< 0.0010	< 0.0010	< 0.0010	< 0.0010
tribromomethane (bromoform)		< 0.0010	< 0.0010	< 0.0010	< 0.0010
tetrachloromethane (carbon tetrachloride)	0.13	< 0.00050	< 0.00050	< 0.00050	< 0.00050
monochlorobenzene (chlorobenzene)	0.013	< 0.0010	< 0.0010	< 0.0010	< 0.0010
dibromochloromethane (DBCM)		<0.0010 <0.0010	< 0.0010	<0.0010	<0.0010
chloroethane (ethyl chloride) trichloromethane (chloroform)	0.02	<0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010
chloromethane (methyl chloride)	0.02	<0.0010	< 0.0010	< 0.0010	<0.0010
1,2-dichlorobenzene		<0.0030	< 0.0030	< 0.0030	< 0.00070
1,3-dichlorobenzene	1.5	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,4-dichlorobenzene	0.26	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,1-dichloroethane		< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,2-dichloroethane	1	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,1-dichloroethylene (1,1-dichloroethene)		< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,2-dichloroethylene (cis) (1,2-dichloroethene (cis))		< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,2-dichloroethylene (trans) (1,2-dichloroethene (trans))		< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,3-dichloropropene		< 0.0014	< 0.0014	< 0.0014	< 0.0014
dichloromethane (methylene chloride)	0.98	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-dichloropropane (propylene dichloride)		<0.0010	< 0.0010	< 0.0010	< 0.0010
cis-1,3-Dichloropropylene		<0.0010 <0.0010	<0.0010	<0.0010	<0.0010 <0.0010
trans-1,3-Dichloropropylene 1,1,1,2-tetrachloroethane		<0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010
1,1,2-tetrachioroethane		<0.0010	<0.0010	<0.0010 <0.0010	<0.0010
tetrachloroethylene (1,1,2,2-tetrachloroethene)	1.1	<0.0010	< 0.0010	< 0.0010	< 0.0010
1.1.1-trichloroethane	2,2	< 0.0010	< 0.0010	< 0.0010	< 0.0010
1,1,2-trichloroethane		< 0.0010	< 0.0010	< 0.0010	< 0.0010
trichloroethylene (1,1,2-trichloroethene)	0.2	< 0.0010	< 0.0010	< 0.0010	< 0.0010
trichlorofluromethane (freon 11)		< 0.0010	< 0.0010	< 0.0010	< 0.0010
vinyl chloride (chloroethene)		< 0.0010	< 0.0010	< 0.0010	< 0.0010
, ()					

Notes:

All concentrations in milligrams per litre (mg/L), unless otherwise noted.

Standards from the Yukon Contaminated Sites Regulation (CSR), from the Environment Act (O.I.C. 2002/171) its associated Schedules. Land Use abbreviations: AW (Aquatic Life).

Italics indicates standard is below detection limit.

FDA = field duplicate available

FD = field duplicate

QA/QC = quality assurance/quality control

SCN = sample control number

COC = Chain of Custody

EPHw₁₀₋₁₉ = extractable petroleum hydrocarbons, carbon range 10-19

LEPHw = light extractable petroleum hydrocarbons

Where water use for the protection of aquatic life applies, the standards for $EPHw_{10-19}$ is equivalent to LEPHw, when no LEPHw analysis is undertaken.

VPHw = volatile petroleum hydrocarbons

 $VHw_{6-10} = volatile hydrocarbons, carbon range 6-10$

Where water use for the protection of aquatic life applies, the standards for VHw6-10 equivalent to VPHw, when no VPHw analysis is undertaken.

PAH = polycyclic aromatic hydrocarbon

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

			1	0	-1	. 7	74	2	8	3	3		
					100								
						P	age		_1		of	1	F
lo	availa	bility -	Cor	ntact	ALS to	0 00	onfirm	T	AT)	6			
_	d Time	_		_		I							
	0% sur									1	6		
)a)	/s)-10(0% Su	rcha	rge -	Contac	ct A	LS to	co	nfirm	TAT			1
	Anal					m 7	TAT	_	4	_			
_	terec	_				=/=	2)	1		_		_	
7	1	1	7	/	1	7)			1	-		
	-	2	1	_	K		/		_	+	_	+	
	3	È	7				7						
^	N.		00		-	1				1		1	LS
2	1 5	1	豆		115	1				1			aine
Y	3	1/2	503		100					1			Con
	MAN		1							4		1	010
	S	1	3		150								Number of Containers
	A	0										1	DN.
1	X	X					_						
1	X	X											
1	×	X			7					T			
	X	Y			-		ne's	T			7/1		
							1						7
		No.						T					
					-								
		1							July 1				7
				4	100				*				1
					7	19			501	1			1
		7											
													1
ro	dous	Det	ails	;		-					_		-
		and her	i de										1
_	_			-					95	1000	nobil in		
po	ort c	ору.											
VE	ERIF	ICAT	101	N (la	b us	e c	only)	Y)					1
			Ti	me:				Ob	ser	vat	ion	s:	1
							- 1		s/N			F	

Report To	Environme	-	eterment power			ww	w.alsglobal.com	New Yorks Committee									F	age	1	of !
	GOLDER			1	Report F	ormat / Distribut	ion	The same of the sa	Sen	vice Rec	nuet-/	Duch ou	blockto	- 11 -						
Contact:				5	Standard:	Other	(specify):		001	Regu	lar /Star	ndard Tu	bject to	availat	oility - Co	ontact Al	LS to c	confirm TA	AT)	149
Address:	JOE MARQUAT			5	Select: P			Fax								ness Days				
	201 B 170 T	MNINALT	MAA	E	Email 1:	imargi		e golder.co		Emen	nancy (t 2 Duni	Days)-5	0% sur	charge -	Contact	ALS to	confirm T	AT	
Phone: 87	TIA 061			E	Email 2:	Shamilt	onesolde	5000	IN.	Samo	Day or	I-Z Busii	ness Da	ys)-100	% Surch	arge - C	ontact A	ALS to co	onfirm TAT	
Invoice To	7.334.74Z3		SA PERSONAL PROPERTY.	of property and		-	30100	71-01-0		Carrie	Day or	vveeken				t ALS to c		TAT	1	
mivolee 10	Same as Report ? (circ	ele) Yes or No	(if No, provide de	etails)	Client / Pr	roject Informatio	n					/ I===0				Reques				
Company:	Copy of Invoice with Re	eport? (circle)	Yes or No		lob #:		073/296	λ	1	1	1	(Indic	ate Fil	Itered	or Pre	eserve	d, F/F	P)		
Contact:		AL MI	Carlette 1	P	O/AFE:		7 0 10	9	+	/	/	/	/	/	/	/	/	/	1	
Address:				L	SD:	A SECTION			-					37	3 3					
	100					100			-					1 5	2 2	4		7		
Phone:		Fax:		Q	Quote #:			Section 2 and 2 and 2	- 1				10	1	3		-			
Lab Work O	rder # (lab use only)		S. P. S.	ΙΔ	LS		1	tool or or burney	1			1	5	1 5	5	1	12.5			
	(lab use only)				ontact:			MARGUARDS			_		141	1 9	1 3		resins.		4	
Sample #		Sample I	dentification					1. BADGER .	- 7	2	7	X	2	3	1					
Cample #	(Thi		Il appear on the re	enort)		Date	Time	Sample Type	W	200	PAM	E.	22	13	3		177			
			- appear of the fe	сроп)		(dd-mmm-yy)	(hh:mm)	oumpie Type	3	Amen	Carper	53	2	R	30	1				
	MW12-06-					29-MAY-12	10.50	FIN	X	V	X	V	×	V	1					-
	MW12-05-5R					29-MAY-12	13.45	GW	1	~			0	7	^			-		
	MW 12-04-5R					29-MAY-12	14.30		^	->-	Y.	K	X	X	X					
	SWEET TELUS	EZ	1000					GW	X	X	X	X	X	X	X					
		-	1800			29-MAY-12	15.36	SW	X	X	X	X	X	X	y					
		7	08/1-	and I					The same		- 1				1					-
			450									45								
	The state of the s																			
																	-			
						and the same of					1				166	11/1	1967			
	1 1000000		The Name of Street, St			A AND LOCAL DESIGNATION OF THE PARTY NAMED IN											10			+
		1	- Timb	1000	and the same of	100 made at 10 m		MALES TO					-					0.00	2	+
						Last new - 14						A						136	77	
		100	-	haman's will				1			1		-		200					
	Special	Instructions / F	Regulation with	water as land	(0011			799												
		1	- garacton with	water or land us	se (CCM)	E- Freshwater A	quatic Life/BC C	CSR-Commercial/A	B Tier	1-Natu	ıral/E	TC) / I	Hazar	dous	Detai	Is				
	E live all		Fallow I																	
	Durth		railure to c	complete all poi	rtions of	this form may d	elay analysis. I	Please fill in this fo	rm LE	GIBLY		1000	-							
	CHIDMENT DELETION	e use of this fo	orm the user ack	nowledges and	agrees	with the Terms a	nd Conditions	as specified on the	back	nage	of the	white								
eleased by:					SHIP	MENT RECEPTION	ON (lab use only)	Juon	page (
_		Date:	Time:	Received by:		Date:	Time:	Temperature:	Verifie	ed by:	SI			ERIFI		ON (lab	use o			
J. MARQ	WARDSON !	29-MAY-12	18.00						VOTINE	u by.		L	Date:			Time:			bservati	
REFE	ER TO BACK PAGE FOR AL		AND SAMPLING IN	FORMATION				°C											es / No ? Yes add	
			CALL LING IN	ORWATION			WHITE - LABO	DRATORY COPY	YELLO	W - CL	IENT (COPY					GI		.01 From	
																	-		01 110	11

GOLDER ASSOCIATES LTD.

ATTN: Joe Marquardson 201B 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received: 31-MAY-12

Report Date: 08-JUN-12 13:30 (MT)

Version: FINAL

Client Phone: 867-334-7423

Certificate of Analysis

Lab Work Order #: L1155242

Project P.O. #: NOT SUBMITTED

Job Reference: 11-1436-0073/2900

C of C Numbers: 10-174288

Legal Site Desc:

ambu Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 2 of 9 08-JUN-12 13:30 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1155242-1 GW 29-MAY-12 10:50 MW12-06-SR	L1155242-2 GW 29-MAY-12 13:45 MW12-05-SR	L1155242-3 GW 29-MAY-12 14:30 MW12-04-SR	L1155242-4 GW 29-MAY-12 15:30 SWIFT RIVER	
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	169	136	161	34.6	
	pH (pH)	8.04	7.32	7.82	7.95	
	Total Dissolved Solids (mg/L)	282	168	241	56	
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	145	136	156	30.1	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	
	Alkalinity, Total (as CaCO3) (mg/L)	145	136	156	30.1	
	Ammonia, Total (as N) (mg/L)	0.181	0.0619	0.0814	<0.0050	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (CI) (mg/L)	9.55	2.61	4.69	<0.50	
	Fluoride (F) (mg/L)	0.280	0.278	0.209	0.125	
	Nitrate (as N) (mg/L)	0.336	0.0177	0.0332	0.0171	
	Nitrite (as N) (mg/L)	0.0013	<0.0010	<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	8.77	0.152	0.897	0.163	
	Sulfate (SO4) (mg/L)	39.8	22.4	26.5	6.08	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	3.99	1.62	2.37	3.44	
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/100mL)	<2	<2	<2	8	
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (Al)-Dissolved (mg/L)	<0.010	<0.010	<0.010	0.029	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.00074	0.00091	0.00171	0.00049	
	Barium (Ba)-Dissolved (mg/L)	0.074	0.061	0.059	<0.020	
	Beryllium (Be)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	
	Boron (B)-Dissolved (mg/L)	<0.10	<0.10	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	
	Calcium (Ca)-Dissolved (mg/L)	47.9	30.4	42.2	10.0	
	Chromium (Cr)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	
	Cobalt (Co)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Copper (Cu)-Dissolved (mg/L)	0.0011	<0.0010	<0.0010	<0.0010	
	Iron (Fe)-Dissolved (mg/L)	<0.030	<0.030	<0.030	0.041	
	Lead (Pb)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Lithium (Li)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Magnesium (Mg)-Dissolved (mg/L)	12.1	14.5	13.6	2.33	
	Manganese (Mn)-Dissolved (mg/L)	0.613	0.544	0.425	0.0048	
	Mercury (Hg)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 9 08-JUN-12 13:30 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1155242-1 GW 29-MAY-12 10:50 MW12-06-SR	L1155242-2 GW 29-MAY-12 13:45 MW12-05-SR	L1155242-3 GW 29-MAY-12 14:30 MW12-04-SR	L1155242-4 GW 29-MAY-12 15:30 SWIFT RIVER	
Grouping	Analyte					
WATER	•					
Dissolved Metals	Molybdenum (Mo)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	
	Nickel (Ni)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30	<0.30	<0.30	
	Potassium (K)-Dissolved (mg/L)	2.30	1.62	2.01	0.41	
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Silicon (Si)-Dissolved (mg/L)	3.05	4.50	4.61	3.04	
	Silver (Ag)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Sodium (Na)-Dissolved (mg/L)	9.7	9.0	6.4	<2.0	
	Strontium (Sr)-Dissolved (mg/L)	0.164	0.170	0.168	0.0371	
	Thallium (TI)-Dissolved (mg/L)	<0.20	<0.20	<0.20	<0.20	
	Tin (Sn)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00176	0.00179	0.00228	0.00023	
	Vanadium (V)-Dissolved (mg/L)	<0.030	<0.030	<0.030	<0.030	
	Zinc (Zn)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	
Aggregate Organics	COD (mg/L)	54	<20	<20	<20	
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bromodichloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Bromoform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Carbon Tetrachloride (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Chlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Dibromochloromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Chloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Chloroform (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Chloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	1,2-Dichlorobenzene (mg/L)	<0.00070	<0.00070	<0.00070	<0.00070	
	1,3-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,4-Dichlorobenzene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,1-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,2-Dichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,1-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	cis-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	trans-1,2-Dichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,3-Dichloropropene (cis & trans) (mg/L)	<0.0014	<0.0014	<0.0014	<0.0014	
	Dichloromethane (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	1,2-Dichloropropane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 4 of 9 08-JUN-12 13:30 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1155242-1 GW 29-MAY-12 10:50 MW12-06-SR	L1155242-2 GW 29-MAY-12 13:45 MW12-05-SR	L1155242-3 GW 29-MAY-12 14:30 MW12-04-SR	L1155242-4 GW 29-MAY-12 15:30 SWIFT RIVER	
Grouping	Analyte					
WATER						
Volatile Organic Compounds	cis-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	trans-1,3-Dichloropropylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Methyl t-butyl ether (MTBE) (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	1,1,1,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,1,2,2-Tetrachloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Tetrachloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Toluene (mg/L)	<0.00070	<0.00060	<0.00050	<0.00050	
	1,1,1-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	1,1,2-Trichloroethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Trichloroethylene (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Trichlorofluoromethane (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Vinyl Chloride (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	ortho-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	meta- & para-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Xylenes (mg/L)	<0.00075	<0.00075	<0.00075	<0.00075	
	Surrogate: 4-Bromofluorobenzene (SS) (%)	102.2	100.1	102.4	100.6	
	Surrogate: 1,4-Difluorobenzene (SS) (%)	103.4	103.8	105.0	104.7	
Hydrocarbons	EPH10-19 (mg/L)	<0.25	<0.25	<0.25	<0.25	
	EPH19-32 (mg/L)	0.53	<0.25	<0.25	<0.25	
	LEPH (mg/L)	<0.25	<0.25	<0.25	<0.25	
	HEPH (mg/L)	0.53	<0.25	<0.25	<0.25	
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	
	Surrogate: 3,4-Dichlorotoluene (SS) (%)	96.8	96.2	107.6	108.8	
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Acenaphthylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Acridine (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Benz(a)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Benzo(a)pyrene (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Benzo(b)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Benzo(g,h,i)perylene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Benzo(k)fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Chrysene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 5 of 9 08-JUN-12 13:30 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1155242-1 GW 29-MAY-12 10:50 MW12-06-SR	L1155242-2 GW 29-MAY-12 13:45 MW12-05-SR	L1155242-3 GW 29-MAY-12 14:30 MW12-04-SR	L1155242-4 GW 29-MAY-12 15:30 SWIFT RIVER	
Grouping	Analyte					
WATER						
Polycyclic Aromatic Hydrocarbons	Dibenz(a,h)anthracene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Fluoranthene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Fluorene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Indeno(1,2,3-c,d)pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Naphthalene (mg/L)	0.000065	<0.000050	<0.000050	<0.000050	
	Phenanthrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Pyrene (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Quinoline (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Surrogate: Acenaphthene d10 (%)	90.6	96.7	92.6	96.8	
	Surrogate: Acridine d9 (%)	98.4	106.3	110.9	120.1	
	Surrogate: Chrysene d12 (%)	79.8	97.0	86.4	97.1	
	Surrogate: Naphthalene d8 (%)	94.3	100.7	101.5	101.8	
	Surrogate: Phenanthrene d10 (%)	92.4	100.2	100.5	112.4	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1155242 CONTD....
PAGE 6 of 9
08-JUN-12 13:30 (MT)

08-JUN-12 13:30 (MT) Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Aluminum (AI)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Chromium (Cr)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Lead (Pb)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Selenium (Se)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Zinc (Zn)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Beryllium (Be)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Bismuth (Bi)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Molybdenum (Mo)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Phosphorus (P)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Silver (Ag)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Thallium (TI)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Tin (Sn)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Titanium (Ti)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Vanadium (V)-Dissolved	DLA	L1155242-1, -2, -3, -4
Duplicate	Bromide (Br)	DLM	L1155242-1, -2, -3, -4
Duplicate	Fluoride (F)	DLM	L1155242-1, -2, -3, -4
Duplicate	Nitrite (as N)	DLM	L1155242-1, -2, -3, -4
Duplicate	Cadmium (Cd)-Dissolved	DLM	L1155242-1, -2, -3, -4
Duplicate	Cadmium (Cd)-Dissolved	DLM	L1155242-1, -2, -3, -4
Laboratory Control Sample	1,1,1-Trichloroethane	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	Carbon Tetrachloride	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	Chloroform	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	Tetrachloroethylene	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	Trichloroethylene	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	Trichlorofluoromethane	LCS-ND	L1155242-1, -2, -3, -4
Laboratory Control Sample	cis-1,2-Dichloroethylene	LCS-ND	L1155242-1, -2, -3, -4
Matrix Spike	Nitrate (as N)	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Sulfate (SO4)	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Potassium (K)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L1155242-1, -2, -3, -4
Matrix Spike	Potassium (K)-Dissolved	MS-B	L1155242-1, -2, -3, -4

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit Adjusted For required dilution
DLM	Detection Limit Adjusted For Sample Matrix Effects
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320

This analysis is carried out using procedures adapted from EPA Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a

Reference Information

L1155242 CONTD.... PAGE 7 of 9 08-JUN-12 13:30 (MT)

Version: FINΔI

pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

ANIONS-BR-IC-VA

Water

Bromide by Ion Chromatography

APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-CL-IC-VA

Chloride by Ion Chromatography

APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

ANIONS-F-IC-VA

Fluoride by Ion Chromatography

APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

Water

Nitrite in Water by Ion Chromatography

EPA 300.0

This analysis is carried out using procedures adapted from EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Nitrite is detected by UV absorbance.

ANIONS-NO3-IC-VA

Nitrate in Water by Ion Chromatography

EPA 300.0

This analysis is carried out using procedures adapted from EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Nitrate is detected by UV absorbance.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 B.

This analysis is carried out using procedures adapted from APHA Method 4110 B. "Ion Chromatography with Chemical Suppression of Eluent Conductivity" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography".

CARBONS-DOC-VA

Water

Dissolved organic carbon by combustion

APHA 5310 TOTAL ORGANIC CARBON (TOC)

This analysis is carried out using procedures adapted from APHA Method 5310 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are determined by filtering the sample through a 0.45 micron membrane filter prior to analysis.

Chemical Oxygen Demand by Colorimetric

APHA 5220 D. CHEMICAL OXYGEN DEMAND

This analysis is carried out using procedures adapted from APHA Method 5220 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is determined using the closed reflux colourimetric method.

EPH-SF-FID-VA

Water

EPH in Water by GCFID

BCMOE EPH GCFID

This analysis is carried out in accordance with the British Columbia Ministry of Environment, Lands and Parks (BCMELP) Analytical Method for Contaminated Sites "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 1999). The procedure involves extraction of the entire water sample with dichloromethane. The extract is then solvent exchanged to toluene and analysed by capillary column gas chromatography with flame ionization detection (GC/FID). EPH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not equivalent to Light and Heavy Extractable Petroleum Hydrocarbons (LEPH/HEPH).

FCOLI-MTF-ENV-VA

Water

Fecal coliform by MPN

APHA METHOD 9221

This analysis is carried out using procedures adapted from APHA Method 9221 "Multiple-Tube Fermentation Technique for Members of the Coliform Group". Serial dilutions of the sample are incubated with the appropriate growth medium, and coliform bacteria is quantified by a statistical estimation of bacteria density (most probable number). The test involves an initial 48 hour incubation (presumptive test), postive results require further testing (up to an additional 72 hours) to confirm and quantify total and fecal coliform.

HARDNESS-CALC-VA

Water

Hardness

APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-DIS-CVAFS-VA

Water

Dissolved Mercury in Water by CVAFS

EPA SW-846 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

LEPH/HEPH-CALC-VA

Water

LEPHs and HEPHs

BC MOE LABORATORY MANUAL (2005)

Light and Heavy Extractable Petroleum Hydrocarbons in water. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual results for Acenaphthene, Acridine, Anthracene, Fluorene, Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(a)pyrene, Fluoranthene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Water by GC/FID" (Version 2.1, July 20, 1999).

MET-DIS-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

Reference Information

L1155242 CONTD....

PAGE 8 of 9

08-JUN-12 13:30 (MT)

Version: FINAL

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-F-VA Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PAH-SF-MS-VA Water PAH in Water by GCMS EPA 3510, 8270

The entire water sample is extracted with dichloromethane, prior to analysis by gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PAH-SURR-MS-VA Water PAH Surrogates for Waters EPA 3510, 8270

Analysed as per the corresponding PAH test method. Known quantities of surrogate compounds are added prior to analysis to each sample to demonstrate analytical accuracy.

PH-MAN-VA Water pH by Manual Meter APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

It is recommended that this analysis be conducted in the field.

PH-MAN-VA Water pH by Manual Meter APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode.

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TKN-F-VA Water TKN in Water by Fluorescence APHA 4500-NORG D.

This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection.

VH-HSFID-VA Water VH in Water by Headspace GCFID B.C. MIN. OF ENV. LAB. MAN. (2009)

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.

VH-SURR-FID-VA Water VH Surrogates for Waters B.C. MIN. OF ENV. LAB. MAN. (2009)

VOC-HSMS-VA Water VOCs in water by Headspace GCMS EPA8260B, 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph.

Target compound concentrations are measured using mass spectrometry detection.

VOC7-HSMS-VA Water BTEX/MTBE/Styrene by Headspace GCMS EPA8260B, 5021

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph.

Target compound concentrations are measured using mass spectrometry detection.

VOC7/VOC-SURR-MS-VA Water VOC7 and/or VOC Surrogates for Waters EPA8260B, 5021

VPH-CALC-VA Water VPH is VH minus select aromatics BC MOE LABORATORY MANUAL (2005)

These results are determined according to the British Columbia Ministry of Environment Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water". The concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and, in solids, Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10).

Reference Information

L1155242 CONTD....
PAGE 9 of 9
08-JUN-12 13:30 (MT)
Version: FINAL

XYLENES-CALC-VA V

Water

Sum of Xylene Isomer Concentrations

CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

10-174288

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1155242 Report Date: 08-JUN-12 Page 1 of 18

Client: GOLDER ASSOCIATES LTD.

201B 170 Titanium Way Whitehorse YT Y1A 0G1

Contact: Joe Marquardson

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SCR-VA	Water							
Batch R2 WG1483140-2 Alkalinity, Total	376596 CRM (as CaCO3)	VA-ALKL-CO	NTROL 100.9		%		85-115	04-JUN-12
WG1483140-5 Alkalinity, Total	CRM (as CaCO3)	VA-ALKM-CO	94.4		%		85-115	04-JUN-12
WG1483140-1 Alkalinity, Total	MB (as CaCO3)		<2.0		mg/L		2	04-JUN-12
WG1483140-4 Alkalinity, Total	MB (as CaCO3)		<2.0		mg/L		2	04-JUN-12
WG1483140-7 Alkalinity, Total	MB (as CaCO3)		<2.0		mg/L		2	04-JUN-12
ANIONS-BR-IC-VA	Water							
	375973							
WG1481952-6 Bromide (Br)	DUP	L1155242-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	01-JUN-12
WG1481952-18 Bromide (Br)	LCS		88.5		%		85-115	01-JUN-12
WG1481952-2 Bromide (Br)	LCS		92.5		%		85-115	01-JUN-12
WG1481952-1 Bromide (Br)	MB		<0.050		mg/L		0.05	01-JUN-12
WG1481952-10 Bromide (Br)	МВ		<0.050		mg/L		0.05	01-JUN-12
WG1481952-13 Bromide (Br)	МВ		<0.050		mg/L		0.05	01-JUN-12
WG1481952-16 Bromide (Br)	МВ		<0.050		mg/L		0.05	01-JUN-12
WG1481952-4 Bromide (Br)	МВ		<0.050		mg/L		0.05	01-JUN-12
WG1481952-7 Bromide (Br)	МВ		<0.050		mg/L		0.05	01-JUN-12
WG1481952-11 Bromide (Br)	MS	L1155242-4	88.8		%		75-125	01-JUN-12
WG1481952-14 Bromide (Br)	MS	L1155660-8	89.8		%		75-125	01-JUN-12
WG1481952-5 Bromide (Br)	MS	L1155041-1	85.6		%		75-125	01-JUN-12
WG1481952-8 Bromide (Br)	MS	L1155161-4	85.6		%		75-125	01-JUN-12

Workorder: L1155242

Report Date: 08-JUN-12

Page 2 of 18

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-CL-IC-VA		Water							
Batch R2	375973								
WG1481952-6 Chloride (CI)	DUP		L1155242-1 9.55	9.56		mg/L	0.1	20	01-JUN-12
WG1481952-18 Chloride (CI)	LCS			100.2		%		85-115	01-JUN-12
WG1481952-2 Chloride (CI)	LCS			100.2		%		85-115	01-JUN-12
WG1481952-1 Chloride (CI)	MB			<0.50		mg/L		0.5	01-JUN-12
WG1481952-10 Chloride (Cl)	MB			<0.50		mg/L		0.5	01-JUN-12
WG1481952-13 Chloride (Cl)	МВ			<0.50		mg/L		0.5	01-JUN-12
WG1481952-16 Chloride (Cl)	МВ			<0.50		mg/L		0.5	01-JUN-12
WG1481952-4 Chloride (Cl)	МВ			<0.50		mg/L		0.5	01-JUN-12
WG1481952-7 Chloride (CI)	МВ			<0.50		mg/L		0.5	01-JUN-12
WG1481952-11 Chloride (Cl)	MS		L1155242-4	101.0		%		75-125	01-JUN-12
WG1481952-14 Chloride (Cl)	MS		L1155660-8	102.0		%		75-125	01-JUN-12
WG1481952-5 Chloride (Cl)	MS		L1155041-1	101.3		%		75-125	01-JUN-12
WG1481952-8 Chloride (Cl)	MS		L1155161-4	101.3		%		75-125	01-JUN-12
ANIONS-F-IC-VA		Water							
	375973 DUP		L1155242-1 0.280	0.284		mg/L	1.4	20	01-JUN-12
WG1481952-18 Fluoride (F)	LCS			105.5		%		85-115	01-JUN-12
WG1481952-2 Fluoride (F)	LCS			105.4		%		85-115	01-JUN-12
WG1481952-1 Fluoride (F)	МВ			<0.020		mg/L		0.02	01-JUN-12
WG1481952-10 Fluoride (F)	МВ			<0.020		mg/L		0.02	01-JUN-12
WG1481952-13	МВ					Ü			3. 33.1 12

Workorder: L1155242

Report Date: 08-JUN-12 Page 3 of 18

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-F-IC-VA		Water							
	375973								
WG1481952-13 Fluoride (F)	MB			<0.020		mg/L		0.02	01-JUN-12
WG1481952-16 Fluoride (F)	MB			<0.020		mg/L		0.02	01-JUN-12
WG1481952-4 Fluoride (F)	MB			<0.020		mg/L		0.02	01-JUN-12
WG1481952-7 Fluoride (F)	MB			<0.020		mg/L		0.02	01-JUN-12
WG1481952-11 Fluoride (F)	MS		L1155242-4	104.8		%		75-125	01-JUN-12
WG1481952-14 Fluoride (F)	MS		L1155660-8	107.1		%		75-125	01-JUN-12
WG1481952-17 Fluoride (F)	MS		L1155779-16	104.2		%		75-125	01-JUN-12
WG1481952-5 Fluoride (F)	MS		L1155041-1	106.4		%		75-125	01-JUN-12
WG1481952-8 Fluoride (F)	MS		L1155161-4	106.5		%		75-125	01-JUN-12
ANIONS-NO2-IC-V	4	Water							
Batch R23	375973								
WG1481952-6 Nitrite (as N)	DUP		L1155242-1 0.0013	0.0014		mg/L	8.7	20	01-JUN-12
WG1481952-18 Nitrite (as N)	LCS			98.8		%		85-115	01-JUN-12
WG1481952-2 Nitrite (as N)	LCS			98.4		%		85-115	01-JUN-12
WG1481952-1 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	01-JUN-12
WG1481952-13 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	01-JUN-12
WG1481952-16 Nitrite (as N)	MB			<0.0010		mg/L		0.001	01-JUN-12
WG1481952-4 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	01-JUN-12
WG1481952-7 Nitrite (as N)	МВ			<0.0010		mg/L		0.001	01-JUN-12
WG1481952-11 Nitrite (as N)	MS		L1155242-4	96.3		%		75-125	01-JUN-12
WG1481952-14	MS		L1155660-8					. 5 120	0. 00.N 12

Workorder: L1155242 Report Date: 08-JUN-12 Page 4 of 18

est		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-NO2-IC-VA	١	Water							
Batch R23	375973								
WG1481952-14 Nitrite (as N)	MS		L1155660-8	97.3		%		75-125	01-JUN-12
WG1481952-17 Nitrite (as N)	MS		L1155779-16	92.9		%		75-125	01-JUN-12
WG1481952-5 Nitrite (as N)	MS		L1155041-1	95.8		%		75-125	01-JUN-12
WG1481952-8 Nitrite (as N)	MS		L1155161-4	95.3		%		75-125	01-JUN-12
ANIONS-NO3-IC-VA	١	Water							
Batch R23	375973								
WG1481952-6 Nitrate (as N)	DUP		L1155242-1 0.336	0.336		mg/L	0.0	20	01-JUN-12
WG1481952-18 Nitrate (as N)	LCS			101.6		%		85-115	01-JUN-12
WG1481952-2 Nitrate (as N)	LCS			101.5		%		85-115	01-JUN-12
WG1481952-1 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-10 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-13 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-16 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-4 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-7 Nitrate (as N)	MB			<0.0050		mg/L		0.005	01-JUN-12
WG1481952-11 Nitrate (as N)	MS		L1155242-4	101.4		%		75-125	01-JUN-12
WG1481952-14 Nitrate (as N)	MS		L1155660-8	102.6		%		75-125	01-JUN-12
WG1481952-17 Nitrate (as N)	MS		L1155779-16	N/A	MS-B	%		-	01-JUN-12
WG1481952-5 Nitrate (as N)	MS		L1155041-1	101.9		%		75-125	01-JUN-12
WG1481952-8 Nitrate (as N)	MS		L1155161-4	102.0		%		75-125	01-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 5 of 18

					•			90 0 0
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-SO4-IC-VA	Water							
Batch R2375973 WG1481952-6 DUP Sulfate (SO4)	•	L1155242-1 39.8	39.8		mg/L	0.0	20	01-JUN-12
WG1481952-18 LCS Sulfate (SO4)			102.9		%		85-115	01-JUN-12
WG1481952-2 LCS Sulfate (SO4)			102.6		%		85-115	01-JUN-12
WG1481952-1 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-10 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-13 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-16 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-4 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-7 MB Sulfate (SO4)			<0.50		mg/L		0.5	01-JUN-12
WG1481952-11 MS Sulfate (SO4)		L1155242-4	102.4		%		75-125	01-JUN-12
WG1481952-14 MS Sulfate (SO4)		L1155660-8	102.9		%		75-125	01-JUN-12
WG1481952-17 MS Sulfate (SO4)		L1155779-16	N/A	MS-B	%		-	01-JUN-12
WG1481952-5 MS Sulfate (SO4)		L1155041-1	102.6		%		75-125	01-JUN-12
WG1481952-8 MS Sulfate (SO4)		L1155161-4	102.8		%		75-125	01-JUN-12
CARBONS-DOC-VA	Water							
Batch R2376983	}							
WG1483515-1 MB Dissolved Organic Carl	oon		<0.50		mg/L		0.5	04-JUN-12
WG1483515-2 MB Dissolved Organic Carl	oon		<0.50		mg/L		0.5	04-JUN-12
COD-COL-VA	Water							

Workorder: L1155242

Report Date: 08-JUN-12 Page 6 of 18

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COD-COL-VA		Water							
Batch R2	2376580								
WG1482075-2 COD	LCS			101.4		%		85-115	04-JUN-12
WG1482075-5 COD	LCS			101.0		%		85-115	04-JUN-12
WG1482075-1 COD	МВ			<20		mg/L		20	04-JUN-12
WG1482075-4 COD	MB			<20		mg/L		20	04-JUN-12
Batch R2	2377663								
WG1484599-2 COD	LCS			100.5		%		85-115	06-JUN-12
WG1484599-5 COD	LCS			99.8		%		85-115	06-JUN-12
WG1484599-8 COD	LCS			101.7		%		85-115	06-JUN-12
WG1484599-1 COD	MB			<20		mg/L		20	06-JUN-12
WG1484599-4 COD	MB			<20		mg/L		20	06-JUN-12
WG1484599-7 COD	MB			<20		mg/L		20	06-JUN-12
EPH-SF-FID-VA		Water							
Batch R2	2378052								
WG1484780-1	MB								
EPH10-19				< 0.25		mg/L		0.25	07-JUN-12
EPH19-32				<0.25		mg/L		0.25	07-JUN-12
Batch R2	2378250								
WG1484780-3	MB								
EPH10-19				<0.25		mg/L		0.25	07-JUN-12
EPH19-32				<0.25		mg/L		0.25	07-JUN-12
HG-DIS-CVAFS-V	4	Water							
	2375154								
WG1481705-1 Mercury (Hg)-D	MB Dissolved			<0.00005	0	mg/L		0.00005	01-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 7 of 18

Test Matri	ix Reference	Result	Qualifier Units	RPD	Limit	Analyzed
HG-DIS-CVAFS-VA Water	er					
Batch R2376273 WG1481705-3 MS Mercury (Hg)-Dissolved	L1155048-15	80.6	%		70-130	04-JUN-12
Batch R2376930 WG1481705-8 MS Mercury (Hg)-Dissolved	L1155418-1	91.9	%		70-130	05-JUN-12
MET-DIS-ICP-VA Wate	er					
Batch R2375338						
WG1481705-3 MS	L1155048-15	0.4.7	0/			
Iron (Fe)-Dissolved		94.7	%		70-130	01-JUN-12
Sodium (Na)-Dissolved		97.0	%		70-130	01-JUN-12
Titanium (Ti)-Dissolved		103.9	%		70-130	01-JUN-12
Batch R2375353						
WG1481705-2 CRM Beryllium (Be)-Dissolved	VA-HIGH-WA	TRM 98.4	%		80-120	01-JUN-12
Bismuth (Bi)-Dissolved		99.2	%		80-120	01-JUN-12
Cobalt (Co)-Dissolved		96.0	%		80-120	01-JUN-12
Iron (Fe)-Dissolved		98.2	%		80-120	01-JUN-12
Lithium (Li)-Dissolved		98.8	%		80-120	01-JUN-12
Molybdenum (Mo)-Dissolved		99.0	%		80-120	01-JUN-12
Nickel (Ni)-Dissolved		100.1	%		80-120	01-JUN-12
Phosphorus (P)-Dissolved		100.5	%		80-120	01-JUN-12
Silicon (Si)-Dissolved		104.2	%		80-120	01-JUN-12
Silver (Ag)-Dissolved		91.7	%		80-120	01-JUN-12
Sodium (Na)-Dissolved		101.7	%		80-120	01-JUN-12
Strontium (Sr)-Dissolved		101.5	%		80-120	01-JUN-12
Thallium (TI)-Dissolved		97.8	%		80-120	01-JUN-12
Tin (Sn)-Dissolved		99.6	%		80-120	01-JUN-12
Titanium (Ti)-Dissolved		101.8	%		80-120	01-JUN-12
Vanadium (V)-Dissolved		98.4	%		80-120	01-JUN-12
WG1481705-1 MB			4			
Beryllium (Be)-Dissolved		<0.0050	mg/L		0.005	01-JUN-12
Bismuth (Bi)-Dissolved		<0.20	mg/L		0.2	01-JUN-12
Cobalt (Co)-Dissolved		<0.010	mg/L		0.01	01-JUN-12
Iron (Fe)-Dissolved		< 0.030	mg/L		0.03	01-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 8 of 18

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-ICP-VA	Water							
Batch R2375353								
WG1481705-1 MB			-0.010		ma/I		0.04	04
Lithium (Li)-Dissolved	, a d		<0.010		mg/L		0.01	01-JUN-12
Molybdenum (Mo)-Dissolv	/eu		<0.030		mg/L		0.03	01-JUN-12
Nickel (Ni)-Dissolved			<0.050		mg/L		0.05	01-JUN-12
Phosphorus (P)-Dissolved	1		<0.30		mg/L		0.3	01-JUN-12
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	01-JUN-12
Silver (Ag)-Dissolved			<0.010		mg/L		0.01	01-JUN-12
Sodium (Na)-Dissolved			<2.0		mg/L		2	01-JUN-12
Strontium (Sr)-Dissolved			<0.0050		mg/L		0.005	01-JUN-12
Thallium (Tl)-Dissolved			<0.20		mg/L		0.2	01-JUN-12
Tin (Sn)-Dissolved			<0.030		mg/L		0.03	01-JUN-12
Titanium (Ti)-Dissolved			<0.010		mg/L		0.01	01-JUN-12
Vanadium (V)-Dissolved			<0.030		mg/L		0.03	01-JUN-12
Batch R2376807								
WG1481705-9 MS		L1155041-2						
Iron (Fe)-Dissolved			94.9		%		70-130	04-JUN-12
Sodium (Na)-Dissolved			100.8		%		70-130	04-JUN-12
Titanium (Ti)-Dissolved			103.1		%		70-130	04-JUN-12
Batch R2376833								
WG1481705-8 MS		L1155418-1	00.0		0/			
Iron (Fe)-Dissolved			92.3		%		70-130	04-JUN-12
Sodium (Na)-Dissolved			96.6		%		70-130	04-JUN-12
Titanium (Ti)-Dissolved			107.1		%		70-130	04-JUN-12
MET-DIS-LOW-MS-VA	Water							
Batch R2376155								
WG1481705-1 MB			0.0000		4			
Aluminum (Al)-Dissolved			<0.0030		mg/L		0.003	02-JUN-12
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	02-JUN-12
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	02-JUN-12
Barium (Ba)-Dissolved			<0.00005	0	mg/L		0.00005	02-JUN-12
Boron (B)-Dissolved			<0.010		mg/L		0.01	02-JUN-12
Cadmium (Cd)-Dissolved			<0.00005	0	mg/L		0.00005	02-JUN-12
Calcium (Ca)-Dissolved			<0.020		mg/L		0.02	02-JUN-12
Chromium (Cr)-Dissolved			<0.00050		mg/L		0.0005	02-JUN-12
Copper (Cu)-Dissolved			<0.00050		mg/L		0.0005	02-JUN-12
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	02-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 9 of 18

est l	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-LOW-MS-VA	Water							
Batch R2376155								
WG1481705-1 MB	_		0.0050					
Magnesium (Mg)-Dissolve			<0.0050	•	mg/L		0.005	02-JUN-12
Manganese (Mn)-Dissolve	a		<0.00005	U	mg/L		0.00005	02-JUN-12
Potassium (K)-Dissolved			<0.050		mg/L		0.05	02-JUN-12
Selenium (Se)-Dissolved			<0.0010	•	mg/L		0.001	02-JUN-12
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	02-JUN-12
Zinc (Zn)-Dissolved			<0.0030		mg/L		0.003	02-JUN-12
Batch R2376765								
WG1481705-3 MS Aluminum (Al)-Dissolved		L1155048-15	112.6		%		70-130	04-JUN-12
Antimony (Sb)-Dissolved			118.1		%			
Arsenic (As)-Dissolved			129.5		%		70-130 70-130	04-JUN-12 04-JUN-12
Barium (Ba)-Dissolved			N/A	MS-B	%		70-130	04-JUN-12
Boron (B)-Dissolved			122.5	WO D	%		- 70-130	04-JUN-12
Cadmium (Cd)-Dissolved			113.1		%		70-130	04-JUN-12 04-JUN-12
Calcium (Ca)-Dissolved			N/A	MS-B	%		70-130	04-JUN-12
Chromium (Cr)-Dissolved			109.2	WO B	%		70-130	04-JUN-12
Copper (Cu)-Dissolved			104.8		%		70-130	04-JUN-12 04-JUN-12
Lead (Pb)-Dissolved			104.4		%		70-130	04-JUN-12
Magnesium (Mg)-Dissolve	Ч		N/A	MS-B	%		70-130	04-JUN-12
Manganese (Mn)-Dissolve			N/A	MS-B	%		-	04-JUN-12
Potassium (K)-Dissolved	u		N/A	MS-B	%		-	
Selenium (Se)-Dissolved			116.1	IVIO-D	%		70 420	04-JUN-12 04-JUN-12
Uranium (U)-Dissolved			111.2		%		70-130 70-130	04-JUN-12 04-JUN-12
Zinc (Zn)-Dissolved			103.5		%			
, ,			103.5		76		70-130	04-JUN-12
Batch R2377264		14455440.4						
WG1481705-8 MS Antimony (Sb)-Dissolved		L1155418-1	117.3		%		70-130	05-JUN-12
Barium (Ba)-Dissolved			N/A	MS-B	%		-	05-JUN-12
Boron (B)-Dissolved			119.6	-	%		70-130	05-JUN-12
Cadmium (Cd)-Dissolved			127.9		%		70-130	05-JUN-12
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	05-JUN-12
Chromium (Cr)-Dissolved			125.9		%		70-130	05-JUN-12
Copper (Cu)-Dissolved			119.9		%		70-130	05-JUN-12
Lead (Pb)-Dissolved			108.2		%		70-130	05-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 10 of 18

5418-1	MCD	0/			05 1111 40
N/A	MS-B	%		=	05-JUN-12
N/A	MS-B	%		=	05-JUN-12
N/A	MS-B	%		-	05-JUN-12
104.4		%		70-130	05-JUN-12
123.0		%		70-130	05-JUN-12
5418-1		0/			
111.7		%		70-130	06-JUN-12
122.8		%		70-130	06-JUN-12
118.3		%		70-130	06-JUN-12
IH3-F					
104.4		%		85-115	05-JUN-12
IH3-F 102.6		%		05.445	05
		70		85-115	05-JUN-12
IH3-F 103.2		%		85-115	05-JUN-12
IH3-F		,,		03-113	00 0011 12
97.6		%		85-115	05-JUN-12
<0.0050		mg/L		0.005	05-JUN-12
<0.0050		mg/L		0.005	05-JUN-12
<0.0050		mg/L		0.005	05-JUN-12
0.0050		a. /l		2 225	
<0.0050		mg/L		0.005	05-JUN-12
0266-1		%		75 125	05-JUN-12
J4.1		70		75-125	05-JUN-12
102.9		%		60-130	07-JUN-12
					07-JUN-12
					07-JUN-12
	94.1 102.9 102.2 99.9	102.9 102.2	102.9 % 102.2 %	102.9 % 102.2 %	102.9 % 60-130 102.2 % 60-130

Workorder: L1155242 Report Date: 08-JUN-12 Page 11 of 18

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2378045								
WG1484780-2 LCS Anthracene			98.6		%		00.400	07 1111 40
							60-130	07-JUN-12
Benz(a)anthracene			100.8		%		60-130	07-JUN-12
Benzo(a)pyrene			103.3		%		60-130	07-JUN-12
Benzo(b)fluoranthene			97.8		%		60-130	07-JUN-12
Benzo(g,h,i)perylene			100.0		%		60-130	07-JUN-12
Benzo(k)fluoranthene			104.5		%		60-130	07-JUN-12
Chrysene			105.2		%		60-130	07-JUN-12
Dibenz(a,h)anthracene			92.1		%		60-130	07-JUN-12
Fluoranthene			102.9		%		60-130	07-JUN-12
Fluorene			103.5		%		60-130	07-JUN-12
Indeno(1,2,3-c,d)pyrene)		96.3		%		60-130	07-JUN-12
Naphthalene			103.2		%		50-130	07-JUN-12
Phenanthrene			104.1		%		60-130	07-JUN-12
Pyrene			104.8		%		60-130	07-JUN-12
Quinoline			101.1		%		60-130	07-JUN-12
WG1484780-1 MB					_			
Acenaphthene			<0.00005		mg/L		0.00005	07-JUN-12
Acenaphthylene			<0.00005	0	mg/L		0.00005	07-JUN-12
Acridine			<0.00005	0	mg/L		0.00005	07-JUN-12
Anthracene			<0.00005	0	mg/L		0.00005	07-JUN-12
Benz(a)anthracene			<0.00005	0	mg/L		0.00005	07-JUN-12
Benzo(a)pyrene			<0.00001	0	mg/L		0.00001	07-JUN-12
Benzo(b)fluoranthene			<0.00005	0	mg/L		0.00005	07-JUN-12
Benzo(g,h,i)perylene			<0.00005	0	mg/L		0.00005	07-JUN-12
Benzo(k)fluoranthene			<0.00005	0	mg/L		0.00005	07-JUN-12
Chrysene			<0.00005	0	mg/L		0.00005	07-JUN-12
Dibenz(a,h)anthracene			<0.00005	0	mg/L		0.00005	07-JUN-12
Fluoranthene			<0.00005	0	mg/L		0.00005	07-JUN-12
Fluorene			<0.00005	0	mg/L		0.00005	07-JUN-12
Indeno(1,2,3-c,d)pyrene	•		<0.00005	0	mg/L		0.00005	07-JUN-12
Naphthalene			<0.00005	0	mg/L		0.00005	07-JUN-12
Phenanthrene			<0.00005	0	mg/L		0.00005	07-JUN-12
Pyrene			<0.00005	0	mg/L		0.00005	07-JUN-12
Quinoline			<0.00005	0	mg/L		0.00005	07-JUN-12
					=			

Workorder: L1155242 Report Date: 08-JUN-12 Page 12 of 18

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-SF-MS-VA	Water							
Batch R2378363 WG1484780-3 MB Acenaphthene			<0.000050		mg/L		0.00005	07-JUN-12
Acenaphthylene			<0.000050		mg/L		0.00005	07-JUN-12
Acridine			<0.000050		mg/L		0.00005	07-JUN-12
Anthracene			<0.000050		mg/L		0.00005	07-30N-12 07-JUN-12
Benz(a)anthracene			<0.000050		mg/L		0.00005	07-JUN-12
Benzo(a)pyrene			<0.000010		mg/L		0.00001	07-JUN-12
Benzo(b)fluoranthene			<0.000050		mg/L		0.00001	07-JUN-12
Benzo(g,h,i)perylene			<0.000050		mg/L		0.00005	07-JUN-12
Benzo(k)fluoranthene			<0.000050		mg/L		0.00005	07-JUN-12
Chrysene			<0.000050		mg/L		0.00005	07-JUN-12
Dibenz(a,h)anthracene			<0.000050		mg/L		0.00005	07-JUN-12
Fluoranthene			<0.000050		mg/L		0.00005	07-JUN-12
Fluorene			<0.000050		mg/L		0.00005	07-JUN-12
Indeno(1,2,3-c,d)pyrene			<0.000050		mg/L		0.00005	07-JUN-12
Naphthalene			<0.000050		mg/L		0.00005	07-JUN-12
Phenanthrene			<0.000050		mg/L		0.00005	07-JUN-12
Pyrene			<0.000050		mg/L		0.00005	07-JUN-12
Quinoline			<0.000050		mg/L		0.00005	07-JUN-12
PH-MAN-VA	Water				J			0. 00=
Batch R2376409	water							
WG1483635-1 CRM pH		VA-PH7-BUF	7.09		рН		6.9-7.1	05-JUN-12
WG1483635-2 DUP pH		L1155242-3 7.82	7.78	J	рН	0.04	0.2	05-JUN-12
PH-PCT-VA	Water							
Batch R2375592 WG1482317-22 CRM pH		VA-PH7-BUF	6.99		рН		6.9-7.1	01-JUN-12
WG1482317-23 CRM pH		VA-PH7-BUF	6.98		рН		6.9-7.1	01-JUN-12
WG1482317-25 CRM pH		VA-PH7-BUF	6.98		рН		6.9-7.1	01-JUN-12
WG1482317-26 CRM рН		VA-PH7-BUF	6.99		рН		6.9-7.1	01-JUN-12
WG1482317-27 CRM		VA-PH7-BUF			-			

Workorder: L1155242 Report Date: 08-JUN-12 Page 13 of 18

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-PCT-VA		Water							
Batch R23	375592								
WG1482317-27 pH	CRM		VA-PH7-BUF	6.99		рН		6.9-7.1	01-JUN-12
WG1482317-28 pH	CRM		VA-PH7-BUF	7.08		рН		6.9-7.1	01-JUN-12
Batch R23	377345								
WG1483124-22 pH	CRM		VA-PH7-BUF	7.02		рН		6.9-7.1	04-JUN-12
WG1483124-23 pH	CRM		VA-PH7-BUF	7.03		рН		6.9-7.1	04-JUN-12
WG1483124-24 pH	CRM		VA-PH7-BUF	7.01		рН		6.9-7.1	04-JUN-12
WG1483124-25 pH	CRM		VA-PH7-BUF	7.02		рН		6.9-7.1	04-JUN-12
WG1483124-26 pH	CRM		VA-PH7-BUF	7.02		рН		6.9-7.1	04-JUN-12
WG1483124-27 pH	CRM		VA-PH7-BUF	6.99		рН		6.9-7.1	04-JUN-12
WG1483124-28 pH	CRM		VA-PH7-BUF	7.01		рН		6.9-7.1	04-JUN-12
TDS-VA		Water							
Batch R23	377443								
WG1483560-11 Total Dissolved				100.8		%		85-115	04-JUN-12
WG1483560-2 Total Dissolved				101.2		%		85-115	04-JUN-12
WG1483560-5 Total Dissolved				98.6		%		85-115	04-JUN-12
WG1483560-8 Total Dissolved S	LCS Solids			100.8		%		85-115	04-JUN-12
WG1483560-1 Total Dissolved	MB Solids			<10		mg/L		10	04-JUN-12
WG1483560-10 Total Dissolved				<10		mg/L		10	04-JUN-12
WG1483560-4 Total Dissolved S	MB Solids			<10		mg/L		10	04-JUN-12
WG1483560-7 Total Dissolved S	MB Solids			<10		mg/L		10	04-JUN-12
TKN-F-VA		Water							

Workorder: L1155242 Report Date: 08-JUN-12 Page 14 of 18

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-VA Water							
Batch R2377312							
WG1483574-2 LCS							
Total Kjeldahl Nitrogen		97.6		%		75-125	05-JUN-12
WG1483574-5 LCS Total Kjeldahl Nitrogen		96.2		%		75 105	05 ILIN 40
WG1483574-1 MB		30.2		70		75-125	05-JUN-12
Total Kjeldahl Nitrogen		<0.050		mg/L		0.05	05-JUN-12
WG1483574-4 MB				•			
Total Kjeldahl Nitrogen		< 0.050		mg/L		0.05	05-JUN-12
VH-HSFID-VA Water							
Batch R2374599							
WG1483283-2 LCS							
Volatile Hydrocarbons (VH6-10)		114.3		%		70-130	05-JUN-12
WG1483283-1 MB		0.40		//		0.4	
Volatile Hydrocarbons (VH6-10)		<0.10		mg/L		0.1	05-JUN-12
VOC-HSMS-VA Water							
Batch R2373952							
WG1483283-2 LCS Bromodichloromethane		110.1		%		70-130	04-JUN-12
Bromoform		107.8		%		70-130	04-JUN-12
Carbon Tetrachloride		132.9	LCS-ND	%		70-130	04-JUN-12
Chlorobenzene		121.7		%		70-130	04-JUN-12
Dibromochloromethane		106.0		%		70-130	04-JUN-12
Chloroethane		122.3		%		60-140	04-JUN-12
Chloroform		134.7	LCS-ND	%		70-130	04-JUN-12
Chloromethane		100.0		%		60-140	04-JUN-12
1,2-Dichlorobenzene		110.9		%		70-130	04-JUN-12
1,3-Dichlorobenzene		112.7		%		70-130	04-JUN-12
1,4-Dichlorobenzene		109.5		%		70-130	04-JUN-12
1,1-Dichloroethane		120.8		%		70-130	04-JUN-12
1,2-Dichloroethane		102.2		%		70-130	04-JUN-12
1,1-Dichloroethylene		120.0		%		70-130	04-JUN-12
cis-1,2-Dichloroethylene		131.2	LCS-ND	%		70-130	04-JUN-12
trans-1,2-Dichloroethylene		122.6		%		70-130	04-JUN-12
Dichloromethane		121.6		%		60-140	04-JUN-12
1,2-Dichloropropane		111.0		%		70-130	04-JUN-12
cis-1,3-Dichloropropylene		106.6		%		70-130	04-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 15 of 18

Test	Matrix F		Matrix Reference Result		Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water								
Batch R237395	52								
WG1483283-2 LCS			00.0		0.4				
trans-1,3-Dichloropro	-		96.3		%		70-130	04-JUN-12	
1,1,1,2-Tetrachloroeth			119.3		%		70-130	04-JUN-12	
1,1,2,2-Tetrachloroeth	nane		98.9		%		70-130	04-JUN-12	
Tetrachloroethylene			130.3	LCS-ND	%		70-130	04-JUN-12	
1,1,1-Trichloroethane			134.8	LCS-ND	%		70-130	04-JUN-12	
1,1,2-Trichloroethane			112.0		%		70-130	04-JUN-12	
Trichloroethylene			134.3	LCS-ND	%		70-130	04-JUN-12	
Trichlorofluoromethar	ne		156.7	LCS-ND	%		60-140	04-JUN-12	
Vinyl Chloride			120.9		%		60-140	04-JUN-12	
WG1483283-1 MB					_				
Bromodichloromethar	ne		<0.0010		mg/L		0.001	04-JUN-12	
Bromoform			<0.0010		mg/L		0.001	04-JUN-12	
Carbon Tetrachloride			<0.00050		mg/L		0.0005	04-JUN-12	
Chlorobenzene			<0.0010		mg/L		0.001	04-JUN-12	
Dibromochloromethar	ne		<0.0010		mg/L		0.001	04-JUN-12	
Chloroethane			<0.0010		mg/L		0.001	04-JUN-12	
Chloroform			<0.0010		mg/L		0.001	04-JUN-12	
Chloromethane			<0.0050		mg/L		0.005	04-JUN-12	
1,2-Dichlorobenzene			<0.00070		mg/L		0.0007	04-JUN-12	
1,3-Dichlorobenzene			<0.0010		mg/L		0.001	04-JUN-12	
1,4-Dichlorobenzene			<0.0010		mg/L		0.001	04-JUN-12	
1,1-Dichloroethane			<0.0010		mg/L		0.001	04-JUN-12	
1,2-Dichloroethane			<0.0010		mg/L		0.001	04-JUN-12	
1,1-Dichloroethylene			<0.0010		mg/L		0.001	04-JUN-12	
cis-1,2-Dichloroethyle	ne		<0.0010		mg/L		0.001	04-JUN-12	
trans-1,2-Dichloroethy	/lene		<0.0010		mg/L		0.001	04-JUN-12	
Dichloromethane			<0.0050		mg/L		0.005	04-JUN-12	
1,2-Dichloropropane			<0.0010		mg/L		0.001	04-JUN-12	
cis-1,3-Dichloropropy	ene		<0.0010		mg/L		0.001	04-JUN-12	
trans-1,3-Dichloropro	oylene		<0.0010		mg/L		0.001	04-JUN-12	
1,1,1,2-Tetrachloroeth	-		<0.0010		mg/L		0.001	04-JUN-12	
1,1,2,2-Tetrachloroeth			<0.0010		mg/L		0.001	04-JUN-12	
Tetrachloroethylene			<0.0010		mg/L		0.001	04-JUN-12	
1,1,1-Trichloroethane			<0.0010		mg/L		0.001	04-JUN-12	

Workorder: L1155242 Report Date: 08-JUN-12

Page 16 of 18

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-HSMS-VA	Water							
Batch R237395	2							
WG1483283-1 MB								
1,1,2-Trichloroethane			<0.0010		mg/L		0.001	04-JUN-12
Trichloroethylene			<0.0010		mg/L		0.001	04-JUN-12
Trichlorofluoromethan	e		<0.0010		mg/L		0.001	04-JUN-12
Vinyl Chloride			<0.0010		mg/L		0.001	04-JUN-12
VOC7-HSMS-VA	Water							
Batch R237395	2							
WG1483283-2 LCS								
Benzene			126.2		%		70-130	04-JUN-12
Ethylbenzene			123.5		%		70-130	04-JUN-12
Methyl t-butyl ether (M	TBE)		110.6		%		70-130	04-JUN-12
Styrene			116.7		%		70-130	04-JUN-12
Toluene			115.4		%		70-130	04-JUN-12
meta- & para-Xylene			123.6		%		70-130	04-JUN-12
ortho-Xylene			122.4		%		70-130	04-JUN-12
WG1483283-1 MB								
Benzene			<0.00050		mg/L		0.0005	04-JUN-12
Ethylbenzene			<0.00050		mg/L		0.0005	04-JUN-12
Methyl t-butyl ether (M	TBE)		<0.00050		mg/L		0.0005	04-JUN-12
Styrene			<0.00050		mg/L		0.0005	04-JUN-12
Toluene			<0.00050		mg/L		0.0005	04-JUN-12
meta- & para-Xylene			<0.00050		mg/L		0.0005	04-JUN-12
ortho-Xylene			<0.00050		mg/L		0.0005	04-JUN-12

Workorder: L1155242 Report Date: 08-JUN-12 Page 17 of 18

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1155242 Report Date: 08-JUN-12 Page 18 of 18

Hold Time Exceedances:

	Sample						
ALS Product Description	ID [.]	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
pH by Manual Meter							
	2	29-MAY-12 13:45	05-JUN-12 00:00	0.25	154	hours	EHTR-FM
	3	29-MAY-12 14:30	05-JUN-12 00:00	0.25	154	hours	EHTR-FM
pH by Meter (Automated)							
	1	29-MAY-12 10:50	01-JUN-12 16:56	0.25	78	hours	EHTR-FM
	4	29-MAY-12 15:30	04-JUN-12 18:52	0.25	147	hours	EHTR-FM
Bacteriological Tests							
Fecal coliform by MPN							
	1	29-MAY-12 10:50	31-MAY-12 14:30	30	52	hours	EHTR
	2	29-MAY-12 13:45	31-MAY-12 14:30	30	49	hours	EHTR
	3	29-MAY-12 14:30	31-MAY-12 14:30	30	48	hours	EHTR
	4	29-MAY-12 15:30	31-MAY-12 14:30	30	47	hours	EHTR
Legend & Qualifier Definition	ne:						

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

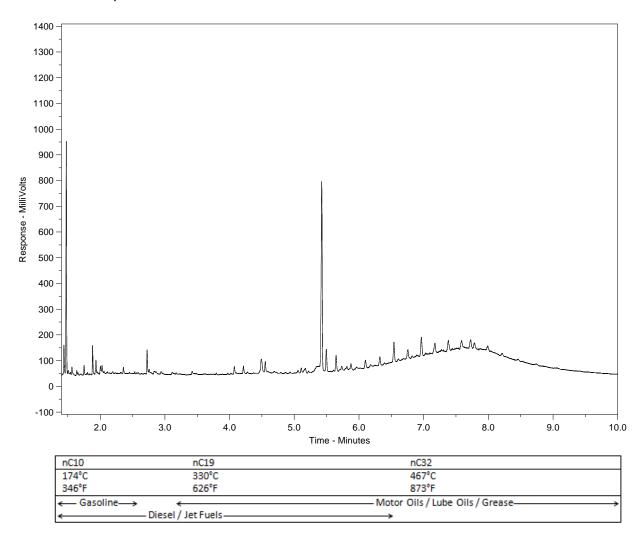
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

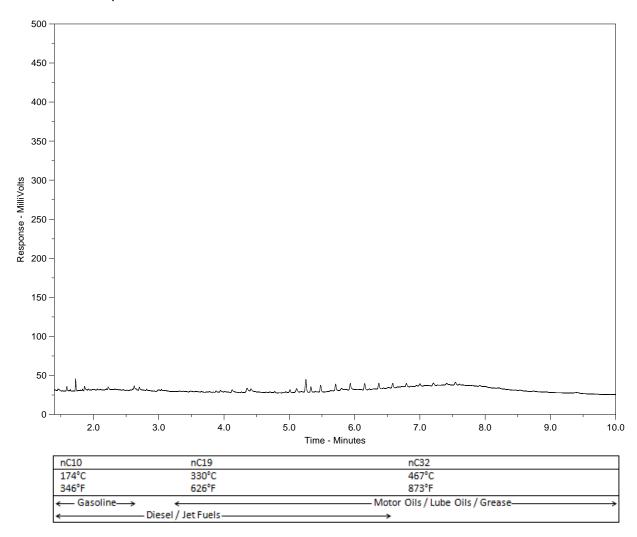
Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1155242 were received on 31-MAY-12 09:45.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

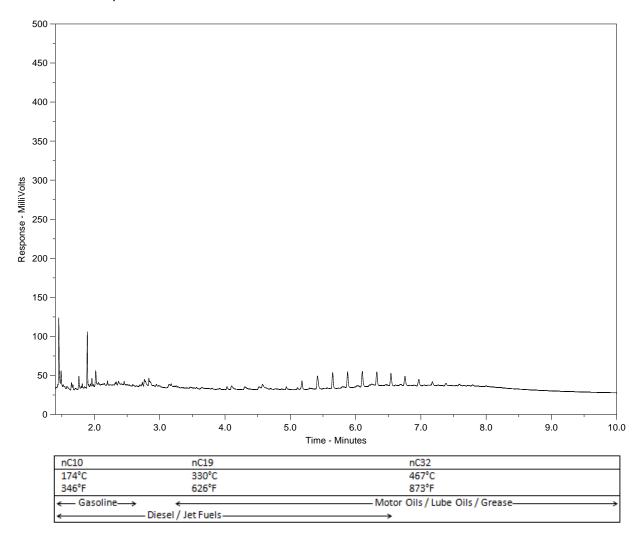
ALS Sample ID: L1155242-1 Client Sample ID: MW12-06-SR


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

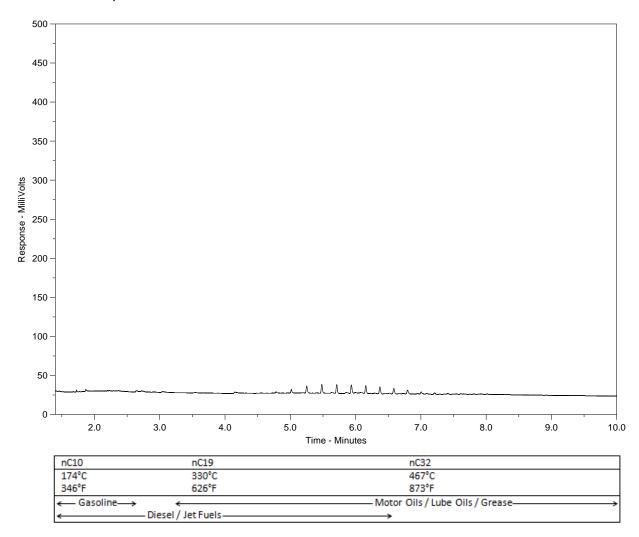
ALS Sample ID: L1155242-2 Client Sample ID: MW12-05-SR


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1155242-3 Client Sample ID: MW12-04-SR


The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

ALS Sample ID: L1155242-4 Client Sample ID: SWIFT RIVER

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

A				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>rm</u>	-			. —									
ALS) Environmental				2 - C O F	C *									Pa	ag e	<u> </u>	, <u>I</u>	
Report To	· · · · · · · · · · · · · · · · · · ·	Report Fo	rmat / Distribution	n		Service	e Requ	est:(Ru	sh sub)	ect to a	vailabiil	ty - Con	ntact ALS	S to cor	nfirm TA	T)		
Company: YOLDER		Standard:	Other (sp	pecify);		Regular (Standard Turnaround Times - Business Days)												
Contact: JOE MARQUARDSOF		Select: PDF X Excel X Digital Fax						Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT										
Address: 201 B 170 TITANIAM WY	2 Y	Email 1: 1 Margnardson e Solder.com						Emergency (1-2 Business Days)-100% Surcharge - Contact At,S to confirm TAT										
YIA OGI		Email 2: Shamiltone golder. com						Same Day or Weekend Emergency - Contact ALS to confirm TAT										
Phone: 867.334.7423 Fax:											Analy	sis Re	equest	t				
Invoice To Same as Report ? (circle) Yes) or No (if No	o, provide details)	Client / Pr	oject Information			(Indicate Filtered or Preserved, F/P)												
Copy of Invoice with Report? (circle) Yes of	or No	Job #:	11-1436-00	73/2960		\square					\geq					4	4	
Company:		PO / AFE:									2	\ 				,		
Contact:		LSD:			<u>.</u>						Œ	Ž				,		
Address:] .				١,٨	آلِيَ	\mathcal{Z}					e S	
Phone: Fax:	none: Fax:					2				5	2	COLICA		, 1			fair	
Lab Work Order # (lab use only) U1558	ALS Contact:			NARUWARDSDAY BADGER	الاوا	2	Ź	 	NUTREZENT	DESSELVED MEXTERS	7 Co					r of Cor		
∛ Sample # ⊗I					Sample Type	GER	766	PAM	Brex	12 13	5556	HECHT					Numbe	
MW12-06-SP					6W	Х	λ	У	×	Х	Х	λ						
MW12-05-5R			29-MAY-12 29-MAY-12	13.45	OW	λ	7	¥	X	X	У	X						
mw 12-04-5R			29-MAY-12	14.30	GW	χ	Х	Х	Х	Х	Х	Х						
SWEDT PIVER			29-MAY-12	15.34	SW	X	×	X	×	\times	×	У						
				-		1 .				i				П				
	<u>-</u>		<u> </u>															
Za As As								_										
Short Ho	olding Tim	ie =				<u> </u>												
Augustus and a second a second and a second	•																	
Puch	Processing	į							•									
I NUSITI	roccading	;															$\neg \neg$	
								-										
Special Instructions / Reg	julation with water or la	ind use (CCI	ME- Freshwater A	quatic Life/BC C	SR-Commercial/A	B Tier	1-Na	tural/l	ETC)	/ Haza	rdou	s Deta	ils					
							•											
<u> </u>	Failure to complete a	•	-															
By the use of this form	n the user acknowledge					e back	page											
SHIPMENT RELEASE (client use)	SHIPMENT RELEASE (client use)			SHIPMENT RECEPTION (lab use only)					SHIP			FICAT		(lab use only)				
1	Time: Received	d by: BP	May 31	Time: 9145	Temperature:	1	ied by	r;		Date):		Time	ε,		Observa Yes / No If Yes a	0?	
7. INDICAMENDOIS [11-1147-15]	· · · · · · · · · · · · · · · · · · ·			1		<u> </u>				L							uu Oir	

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 500 - 4260 Still Creek Drive Burnaby, British Columbia, V5C 6C6 Canada

T: +1 (604) 296 4200

